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Preface

The purpose of the Japan Taiwan Joint Conference on Differential Geometry is
to foster discussions and interactions between the differential geometry communities
of Japan and Taiwan. It is held approximately every two years.

The first and second conferences were:

• 1st Japan-Taiwan Conference on Differential Geometry & 8th OCAMI-TIMS
Joint International Workshop on Differential Geometry and Geometric Anal-
ysis, 13-17 December 2016, Waseda University, Tokyo

• 2nd Taiwan-Japan Joint Conference on Differential Geometry, 1-5 November
2019, NCTS, National Taiwan University, Taipei

This report is a summary of the third conference:

• 3rd Japan-Taiwan Joint Conference on Differential Geometry, 1-3 November
2021 at OCAMI, Osaka City University, Osaka

It was held in hybrid format because of the COVID-19 pandemic. As the host
institute, OCAMI (at Osaka City University) provided the lecture room for the
conference and facilities for onsite participants as well as online participants. Taiwan
participants gathered at a lecture room kindly provided by the NCTS (National
Taiwan University). The two lecture rooms were connected by video link.

On the first day (1 November) the conference opened with short speeches by
Prof. Yoshihiro Ohnita (Director of OCAMI) and Prof. Yng-Ing Lee (Director of
NCTS). This was followed by 6 talks, 3 by Japan speakers and 3 by Taiwan speakers.
On the second day (2 November) there were 6 talks, 2 by Japan speakers and 4 by
Taiwan speakers. On the last day (3 November) there were 4 talks, 3 by Japan
speakers and 1 by a Taiwan speaker.

A wide range of topics related to differential geometry were presented: geometry
of CR manifolds, hyperbolic geometry, minimal surfaces and their moduli spaces,
submanifold theory, eigenvalues of the Laplacian, Lie groups, quantum cohomology
and Frobenius manifolds, mirror symmetry, derived differential geometry, classical
integrable systems, Hodge theory, mean curvature flow and Yamabe flow.

Although personal interactions were restricted this time by the hybrid format,
the conference was a valuable opportunity for geometry researchers on each side to
see what kind of research is being carried out on the other side; it is hoped that this
will lead to future contacts and collaborations.

The organisers are grateful to all speakers and participants, and to OCAMI and
NCTS for providing facilities.
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Quantum Flips and F-embeddings

Chin-Lung Wang (National Taiwan University)

We study analytic continuations of quantum cohomology under simple flips f :
X → X ′ along the extremal ray variable ql. Denote by Ψ : H(X ′) → H(X) the
(inverse) graph correspondence. We show that there is a unique deformation Ψ̂ of Ψ
which induces a non-linear imbedding QH(X ′) ↪→ QH(X) in the category of F (but
not Frobenius) manifolds into the regular integrable loci of QH(X) near ql = ∞.
This is a joint work with Yuan-Pin Lee and Hui-Wen Lin.

(C.-L. Wang) Department of Mathematics, Taida Institute for Mathematical Sciences(TIMS),
National Taiwan University, Taipei 10617, Taiwan
Email address: dragon@math.ntu.edu.tw
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Quantum Flips and F-embeddings

Chin-Lung Wang
National Taiwan University
(with Y.-P. Lee and H.-W. Lin)

The 3rd Japan-Taiwan Joint Conference on DG
November 1, 2021
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Contents

1 What is quantum cohomology?

2 The functoriality problem

3 Results for ordinary flips f : X 99K X0

Sketch of proof

(i) Irregular singularity of QH(X) along vanishing cycles

(ii) BD and BF/GMT over NE(X0)

(iii) Non-linear F-embedding QH(X0) ,! QH(X)
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1. What is Quantum Cohomology?

A: Deformation of (H(X),[) by rational curves.

3 / 42

I Let X/C be smooth projective, Mn(X, b) the stable map moduli

f : (C, p1, . . . , pn)! X

from n-pointed nodal curves, pa(C) = 0, f⇤(C) = b 2 NE(X).

I For i 2 [1, n], let ei : Mn(X, b)! X be the evaluation map

ei(f ) := f (pi) 2 X.

I Let t 2 H = H(X). The g = 0 Gromov–Witten potential

F(t) = hh�ii(t) := Â
n, b

qb

n!
ht⌦niXn,b

= Â
n�0, b2NE(X)

qb

n!

Z

[Mn(X,b)]vir

n

’
i=1

e⇤i t

is a formal function in t and qb’s (Novikov variables).

4 / 42
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I We call R := C[[q•]] the (formal) Kähler moduli and denote

HR = H⌦R.

I Let {Tµ} be a basis of H and {Tµ := Â gµnTn} the dual basis
with respect to the Poincaré pairing

gµn = (Tµ.Tn), (gµn) = (gµn)
�1.

I Let t = Â tµTµ. The big quantum ring (QH(X), ⇤) is the t-family
of rings QtH(X) = (TtHR , ⇤t):

Tµ ⇤t Tn := Â
e,k

∂µ∂n∂eF(t) gekTk ⌘Â Fµne gekTk

= Â
e,k
hhTµ, Tn, Teii(t) gekTk

= Â
k, n�0, b2NE(X)

qb

n!
hTµ, Tn, Tk , t⌦niXn+3, bTk .

5 / 42

I The WDVV associativity equations equip (HR , gµn, Fijk, T0 = 1) a
structure of formal Frobenius manifold over R.

I It is equivalent to the flatness of the Dubrovin connection

rz = d� 1
z

A := d� 1
z Â

µ

dtµ ⌦ Tµ⇤t

on the formal relative tangent bundle THR for all z 2 C⇥:

∂µAn = ∂nAµ, [Aµ, An] = 0,

I where the (connection) matrix Aµ for zrz
µ is z-free:

Aµ(t) = Tµ ⇤t .

I This z-free property uniquely characterizes the constant frame
{Tµ} among all frames {T̃µ} with

T̃µ(q•, t, z) ⌘ Tµ (mod R).

6 / 42
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I Let y = c1(p⇤1wC /Mn
) be the class of cotangent line at the first

marked section p1 : Mn ! C of C ! Mn, then

J(t, z�1) := 1 +
t
z

+ Â
b,n,µ

qb

n!
Tµ

⌧
Tµ

z(z� y)
, t⌦n

�X

n+1,b

encodes all one-descendent invariants hydTi, . . .i.
I The TRR:

hhyd+1Ti, Tj, Tkii = Âµ
hhydTi, TµiihhTµ, Tj, Tkii

implies the QDE:

z∂µ z∂nJ = Âk
Ak

µn z∂kJ.

I Let Dz be the ring generated by z∂i over O = C[z][[q•, t]]. The
Dz-module Odim H via z∂i 7! zrz

i is isomorphic to DzJ (cyclic).

7 / 42

I In practice, one might be able to find element

I(t̂, z, z�1) 2 DzJ(t, z�1)

along some restricted variables t̂ 2 H1 ⇢ H.

I For toric X, also hypersurfaces in it, ansatzs of I are found
through C⇥-localization data with t̂ 2 H2(X).

I [Lian–Liu–Yau 1996, Givental 1996] If c1(X) � 0, I = I(t̂, z�1)
and J(t̂, z�1) is obtained by a mirror transform.

I [Coates–Givental 2005, Iritani 2008, Brown 2010] An ansatz
I = I(t̂, z, z�1) is valid for any toric manifold.

I If hH1i = H (classical/quantum), there exists a recipe to get
J(t, z�1) and rz via Dz-module techniques plus

Birkhoff Fatcorizations + Generalized Mirror Transform.

8 / 42
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I Fix a presentation Tµ = ’ Di, define the naive quantization

bTµ := ’ bDi ⌘’ z∂i, µ = 0, . . . , R := dim H� 1.

I Since I 2 DzJ, we have bTµI 2 DzJ too. Hence

(bTµI)(t̂, z, z�1) = zrJ(s(t̂), z�1)B(t̂, z).

I The unique R⇥ R gauge transform B(t̂, z) is called BF. Namely,
B�1(z) removes the z-positive degree in I. In particular

J(s(t̂), z�1) = z∂0J = Âµ
bTµI · (B�1)0

µ =: P(t̂, z, z�1)I(t̂, z, z�1).

I The z�1 coefficient of PI gives the GMT:

t̂ 7! s(t̂) 2 HR .

9 / 42

2. The Functoriality Problem:

Quantum Motives?

Which part of the structure on QH(X) is functorial?

10 / 42
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I Mk: the category of Chow motives, k the ground field.

I Objects: X̂, smooth k-variety. Morphisms are correspondences

G 2 Mor(X̂, X̂0) := A(X⇥X0).

I Induced map on Chow groups: [G]⇤ : A(X)! A(X0):

a 7! p0⇤(G.p⇤a).

I Linear structures: if X̂ ⇠= X̂0 then Ai(X) ⇠= Ai(X0) for all i. If k is a
number field, X and X0 have the same L functions for each i.

I However, the ring structures are different: A(X) 6⇠= A(X0)!

I Is there a universal product structure on Chow motives? Namely a
universal family (A , ⇤)! T such that all geometric realizations
(A(X), •) correspond to special points.

I Big quantum product provides partial solution to it.

11 / 42

I Typical examples come from ordinary (r, r0)-flops/flips, r � r0:

E = Z⇥S Z0 ⇢ Y
f

uu

f0

))
P1 ⇠= ` ⇢ Z ⇢ X

f //

y
))

X0 � Z0 � `0 ⇠= P1

y0uu
S ⇢ X

I ȳ : Z = PS(F)! S, rk F = r + 1, y-extremal ray ` = [C].

I NZ/X|ȳ�1(s)
⇠= OPr(�1)�(r0+1) for all s 2 S.

I Y = BlZX = BlZ0X0,

f⇤KX = f0⇤KX0 + (r� r0)E.

12 / 42
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I For flops r = r0, we have K-equivalence and X̂ ⇠= X̂0 via

F := [Gf ]⇤ = f0⇤ � f⇤ : H(X)
⇠�!H(X0).

I It preserves the Poincaré pairing

(Fa.Fb)X0 = (f0⇤Fa.f⇤b)Y = ((f⇤a + x).f⇤b)Y = (a.b)X,

but NOT the cup product!

I For the simple case (S = pt), let ai 2 H2li(X), Â3
i=1 li = dim X,

(Fa1.Fa2.Fa3)
X0 = (a1.a2.a3)

X �’3
i=1(ai.hr�li)Z,

where h = c1(OZ(1)) 2 H2(Z).

I Solution: use quantum product (QtH, ⇤t) instead.

13 / 42

I The effectivity of extremal curve is not preserved:

F` = �`0 62 NE(X0).

I It is necessary to consider analytic continuations QH(X) of
QH(X) along the Kähler moduli via the partial compactification

Fqb = qFb toward “q` = •”.

I For flops, the functoriality is simply the canonical isomorphism

F : QH(X)
⇠�!QH(X0).

I In terms of Gromov–Witten invariants: for t 2 H(X),

FhhTi, Tj, TkiiX(t) = hhFTi, FTj, FTkiiX
0
(Ft).

I [Li–Ruan] for 3-folds, [LLW, LLQW] for general ordinary flops.

14 / 42

8 OCAMI Reports Vol. 6 (2022)



I The simplest non K-equivalent birational maps preserving the
dimension of Kähler moduli are smooth ordinary flips.

I Pseudo-abelian completion of Chow motives fM: objects (X̂, p),
where p 2 End(X̂) = A(X⇥X) is a projector: p2 = p. Then

X̂ ⌘ (X̂, 1) = (X̂, p)� (X̂, 1� p).

I For flips with r > r0, Y := [Gf�1 ] induces a sub-motive

Y : X̂0 ⇠�!(X̂, p), p := Y �F.

I On cohomology
Y : H(X0) ,�! H(X),

the Poincaré pairing is still preserved (Ya.Yb)X = (a.b)X0 , but
not the cup product. Not even the quantum product!

I Solutions?

15 / 42
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3. Statements of Results for Ordinary Flips

f : X 99K X0

16 / 42

I Claim: QH(X0) is still a sub-theory of QH(X) in a canonical,
though non-linear, manner.

I The basic exact sequence is an orthogonal splitting

0 // K // H(X)
F // H(X0)
Y
ll // 0 .

I The vanishing cycles K has dimension d := (r� r0) dim H(S):

K =
Mr

j=r0+1
[Pj]⌦H(S).

I The Dubrovin connection r can be analytically continued along
the Kähler moduli to a connection Fr by the rule

Fqb = qFb, b 2 NE(X).

I As before F` = �`0 and analytic continuations are required.

17 / 42
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I For divisor D = Â tiDi, (Di.bj) = dij, we couple ti with qbi :

qi := qbi eti
, ∂i =

∂

∂ti = qi
∂

∂qi
.

rµ = ∂µ �
1
z

Tµ⇤

has only (formal) regular singularities at qi = 0.

I Fr turns out is analytic in q` and contains irregular singularities
along K at q` = •, that is q`

0
= 0.

I Let H0 = H(X0) and R 0 = C[[NE(X0)]]. The Dubrovin connection
r0 on TH0R 0 is also (formally) regular.

I This suggests to extract r0 from Fr

by removing the K directions!

18 / 42

I We will show that there is a bundle-decomposition

TH⌦R 0[1/q`
0
] = T �?K (⇤)

into irregular eigenbundle K which extends K over R 0[1/q`
0
]

and the regular eigenbundle T = K ?.

I From (coordinates free) WDVV equations, both T and K are
shown to be integrable distributions. The integral submanifold

Mq0 � {(q0 6= 0, t = 0)}

is the proposed manifold corresponding to QH(X0).

I To relate T , and hence Mq0 , to QH(X0), we need to work on the
connection (z-dependent) version of (⇤).

I Hence there are BF/GMT involved, and it is unclear what kind
of functoriality should exist.

19 / 42
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Theorem (Lee–Lin–Wang, 2017, 2021)
For the projective local model f : X 99K X0 of ordinary (r, r0) flips, there is a
unique R 0-point s0(q0) 2 H0R 0 and a unique embedding bY(q0, s) over R 0:

bY : H(X0)R 0 �!M ,�! H(X)R 0 ,

s0(q0) + s 7�! bY(q0, s).

where s 2 H(X0), such that

(1) (bY, s0) restricts to (Y : H0 ,�! H, 0) when modulo q`
0
,

(2) bY induces an F-embedding over R 0[1/q`
0
]:

(TH0
R 0 [1/q`0 ]

,r0) � � dbY // (THR 0 [1/q`0 ],r)|M // K ⇠= NbY .

Remark: the simple flip case (S = pt) was proved in 2017.

20 / 42
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I In particular, outside the divisor q`
0
= 0, the (big) quantum

products on the corresponding tangent spaces are preserved.

I Denote bYi = ∂ibY, with induced metric

gij = (bYi, bYj), bYi := Â gijbYj.

I Then bY is an F-embedding means

hhbYµ, bYi, bYjiiX(bY(q0, s)) = hhT0µ, T0i, T0jiiX
0
(s0(q0) + s).

I For simple flips, this leads to a family of ring decompositions:

QbY(q0 ,s)H(X) ⇠= Qs0(q0)+sH(X0)⇥Cr�r0 ,

which depend on the points (q0, s).

21 / 42

4. STEP (i)

Irregular Singularity of QH(X) along Vanishing Cycles

(Local simple flip case)

f : X = PPr(O(�1)r0+1 �O) 99K X0 = PPr0 (O(�1)r+1 �O).

H(X) = C[h, x]/(hr+1, x(x � h)r0+1),

H(X0) = C[h0, x 0]/(hr0+1, x 0(x 0 � h0)r+1).

Fh = x 0 � h0, Fx = x 0,

F` = �`0, Fg = g0 + `0.

22 / 42
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I Small parameters t̂ = t0T0 + D 2 H2(X), ŝ = s0T00 + D0.

D = t1h + t2x = YD0 = Y(s1h0 + s2x 0) = s1(x � h) + s2x.

s1 = �t1, s2 = t2 + t1.

I Kähler moduli: NE(X) = Z`�Zg, NE(X0) = Z`0 �Zg0.

q1 = q`et1
, x = q01 = q`

0
es1

= 1/q1,

q2 = qget2
, y = q02 = qg0es2

= q1q2.

I Naive quantization, for i 2 [0, r], j 2 [0, r0 + 1], a = hixj,

â ⌘ ∂za := ĥix̂j = (z∂h)
i(z∂x)

j = (z∂1)
i(z∂2)

j.

I X is Fano: c1(X) = (r� r0)h + (r0 + 2)x is ample.
X0 is bad: c1(X0) = (r0 � r)h0 + (r + 2)x 0 has no fixed sign.

23 / 42
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I On X, for b = d1` + d2g 2 NE(X),

Ib =
1

’d1
m=1(h + mz)r+1 ’d2�d1

m=1 (x � h + mz)r0+1 ’d2
m=1(x + mz)

I I = et̂/z Âb eD.bqbIb is annihilated by Picard–Fuchs equations:

⇤` = (z∂h)
r+1 � q1(z∂x�h)

r0+1,

⇤g = z∂x(z∂x�h)
r0+1 � q2.

I I = I(z�1) =) I = Jsmall and Q0H(X) is “easy”. Yet it is still
non-trivial to write down rX explicitly.

I The naive frame, for e = hixj (or hi(x � h)j w.r.t. H(X0)),

∂ze I ⌘ ĥix̂j I := (z∂h)
i(z∂x)

j I

does not lead to z-free connection matrices for z∂1, z∂2!

24 / 42

The Y-corrected quantum frame

I The quantized basis corresponding to K = ker F is chosen to be

k̂iI = ĥi(x̂ � ĥ)r0+1I, i 2 [0, r� r0 � 1].

I For e1 2 [0, r + 1], e2 2 [0, r0], we define

ve := ĥe1(x̂ � ĥ)e2 I + d(e1, e2)
(�1)r0�e2 k̂e1+e2�(r0+1),

where (
d(e1, e2)

= 0 if e1 + e2 2 [0, r0], and
d(e1, e2)

= 1 otherwise.

I The added term comes from ker F() e1 + e2 2 [r0 + 1, r]. But
H2j(X0) with j � r + 1 are also corrected accordingly.

I The frame reduces to a classical basis when modulo NE(X).

25 / 42
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The connection matrices for z∂1 and z∂2.

I Proposition. For i = 1, 2, the connection matrix Ci(q1, q2) in the Y
corrected frame is independent of z. Moreover, Ai(t̂) = Ci.

I Write Ci =


C11

i C12
i

C21
i C22

i

�
w.r.t. H(X) = YH(X0)�? K.

I Let d = dim K = r� r0.

I For C1, the d⇥ d block corresponding to K is given by

C22
1 =

2
6664

(�1)r0+1q1
1

. . .
1

3
7775 .

I Other entries in C1 and C2 have “good properties”!

26 / 42

I Extract QH(X0) from QH(X): On X0, let b0 = d01`
0 + d02g0, then

IX0
b0 =

1

’
d01
1 (h0 + mz)r0+1 ’

d02�d01
1 (x 0 � h0 + mz)r+1 ’

d02
1 (x 0 + mz)

.

I It has Picard–Fuchs equations, irregular at q01 = 0,

⇤`0 := (z∂2 � z∂1)
r0+1 � q01(z∂1)

r+1,

⇤g0 := (z∂2)(z∂1)
r+1 � q02.

I Since ⇤`0 = q�1
1 ⇤` and ⇤g0 = z∂2⇤` � q1⇤g, we get the

I Key Lemma. Over C[q1, q�1
1 , q2] ⇠= C[q01, q01

�1, q02], we have “the
same” Picard–Fuchs ideal:

h⇤`,⇤gi ⇠= h⇤`0 ,⇤g0 i.

27 / 42
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I Corollary 1. The Y-corrected frame corresponds to the constant
frame for rX. Hence Ci gives GW invariants on X directly.

I Corollary 2. Under the analytic continuation in the Kähler
moduli over NE(X0), rX is irregular in the divisor (x = q01 = 0)
precisely in the kernel block.

I Corollary 3. If C1, C2 can be simultaneously block-diagonalized
to C̃1, C̃2, then the matrices C̃11

1 , C̃11
2 can be used to computerX0 .

I Block-diagonalization is possible: Warow, Shibuya, Malgrange.

I Issue: C̃i must involve z, need BF/GMT.

28 / 42

5. STEP (ii)

Block Diagonalizations and BF/GMT over NE(X0)

29 / 42
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I We have Aj(t̂) = Cj, j = 1, 2:

C22
1 =

2
6664

0 0 · · · (�1)r0+1q1
1 0 · · · 0

. . .
0 · · · 1 0

3
7775 =

1
x

2
6664

0 0 · · · (�1)r0+1

x 0 · · · 0
. . .

0 · · · x 0

3
7775 .

I Irregular PDE system in (x, y) with parameter z.

I R := dim H(X), R0 := dim H(X0), d = R� R0 = r� r0.

I To bring C22
1 into “semisimple” form, let u = x1/d and modify

the constant frame to {Ti}:

{Ti}R0�1
i=0 = {Te}, {TR0+i}d�1

i=0 = {uiki}d�1
i=0 .

I Then we do shearing (= base change in D-modules).

30 / 42

I Let Y(x) = diag(1R0 , u0, u1, · · · , ud�1). Let S = YW and x = ud,

zx
∂

∂x
S = C1S

becomes
zu

∂

∂u
W = D1(u, z)W, (⇤⇤)

D11
1 = d · C11

1 , D12
1 = d · C12

1 · diag(u0, u1, · · · , ud�1),

D21
1 = d · diag(u0, u�1, . . . , u�d+1) · C21

1 ,

D22
1 =

d
u

·

2
6664

0 0 · · · (�1)r0+1

1 �z 1
d u · · · 0

. . . . . .
0 · · · 1 �z d�1

d u

3
7775 .

I D21
1 is polynomial in u. Thus, (⇤⇤) is irregular of Poincaré rank 1

in u, and the irregular part only appears in the (2, 2) block D22
1 .

31 / 42
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I Therefore, D1(z = 0) has eigenvalues 0R0 and d distinct nonzero
eigenvalues from D22

1 (0) as solutions to

wd = (�1)r0+1.

I By the classical procedure (Wasow), and the flatness of rX:

(i) C1, C2 are simultaneously block diagonalized to C̃1, C̃2, such that the
(2, 2) blocks are diagonalized.

(ii) The new frame (gauge matrix) is z-dependent:

P = [T̃0, . . . , T̃R0�1, T̃R0 , . . . , T̃R�1] =


IR0 ⇤
⇤ Id

�
.

It has the initial term [T0, . . . , TR�1] in u.

(iii) T spanned by T̃0, . . . , T̃R0�1 and K spanned by T̃R0 , . . . , T̃R�1

lead to orthogonal reduction of connection.

32 / 42

I For a, b 2 H(X) we have

ab = a ⇤ b + Â
b2NE(X)

qbcb

for some cb 2 H(X). By induction we conclude that

Tµ⇤ = Â
b2NE(X)

qbPb(h⇤, x⇤)

where Pb is a polynomial. Since X is Fano, the sum is finite.

I So the block diagonalization extends to all Tµ⇤.
I In fact C̃11

1 and C̃11
2 , hence all C̃11

µ , are expressible in x, y, z.

I Now we apply BF to remove the z-dependence in C̃11
µ (x, y, z).

Let B = B(x, y, z) be the BF matrix and B(0) := B(x, y, 0).

[T0, . . . , TR0�1] :=
⇣
[T̃0, . . . , T̃R0�1]B

�1
⌘
(z = 0).

33 / 42
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I For a = 0, 1, 2, the “z-free” matrix

C0a(ŝ) = �(z∂aB)B�1 + BC̃11
a B�1 = B(0)C̃11

a;0B(0)�1(x, y)

is related to A0µ(s) for T0µ⇤0 at the generalized mirror point

s = s(ŝ) 2 H(X0)[[x, y]].

I Under this GMT, we get relations of GW invariants:

C0a(ŝ) = Âµ
A0µ(s(ŝ))

∂sµ

∂sa (ŝ), a = 0, 1, 2,

hhTa, Tj, TiiiX(ŝ) = Âµ

∂sµ

∂sa (ŝ)hhT0µ, T0j , T0iiiX0(s(ŝ)).

I Since (A0µ)i
0 = di

µ, s(ŝ) is determined by the first column:

(C0a)
µ
0 (ŝ) = hhTa, T0, TµiiX(ŝ) =

∂sµ

∂sa (ŝ).

34 / 42

I The next step is to transform T0 to the identity element (section)
e 2 T and normalized Ti’s to T̃i’s accordingly.

I Lemma. There is a unique element S0 2 T such that

S0 ⇤ T0 = e,

and so e acts as zero on K . (This requires delicate calculations!)

I Define the normalized frame on T by

eTµ := Tµ ⇤ S0.

I Theorem (Initial quantum invariance up to a shifting)
Let Ti(q0) = eTi(q0, ŝ = 0, z = 0) and s0(q0) = s(q0, ŝ = 0). Then we have

hTµ, Ti, TjiX = hhT0µ, T0i, T0jiiX
0
(s0(q0)).

35 / 42
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6. STEP (iii)

Non-Linear F-Embedding QH(X0) ,! QH(X)

36 / 42

I An F-manifold M is a complex manifold with a commutative
product structure on each TpM, such that a WDVV-type
integrability condition is forced when p 2 M varies.

I In QH(X), this is the structure which remembers ⇤p but forgets
the metric gij. Hertling and Manin showed that the WDVV
equations can be rewritten as

LX⇤Y(⇤) = X ⇤ LY(⇤) + Y ⇤ LX(⇤)

for any local vector fields X and Y.

I I.e., for any local vector fields X, Y, Z, W:

[X ⇤ Y, Z ⇤W]� [X ⇤ Y, Z] ⇤W � [X ⇤ Y, W] ⇤ Z
= X ⇤ [Y, Z ⇤W]�X ⇤ [Y, Z] ⇤W �X ⇤ [Y, W] ⇤ Z

+ Y ⇤ [X, Z ⇤W]� Y ⇤ [X, Z] ⇤W � Y ⇤ [X, W] ⇤ Z.

37 / 42
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I Denote by K the irregular eigenbundle and T := K? the regular
eigenbundle, which extend K and T from s = 0 to big s.

I Lemma
T is an integrable distribution of the relative tangent bundle THR 0 .

In particular, Im bY is the integral submanifold M (over R 0) containing the
slice (q`

0 6= 0, t = 0) which contains Im Y when modulo R 0.

I Proof.
Let X, Z be any local vector fields in T = K?. Let Y = ei and W = ej

be idempotents in K. Since a ⇤ b = 0 for a 2 K, b 2 K?,

0 = �X ⇤ Z ⇤ [ei, ej]� dijej ⇤ [X, Z].

Let i = j we get ej ⇤ [X, Z] = 0 for all j. Hence [X, Z] 2 K?.

38 / 42

I The quantum product on the Frobenius manifold H(X0)⌦R 0 is
semi-simple. Let v00, . . . , v0R0�1 be the idempotent vector fields.

I Dubrovin 1996: [v0i , v0j ] = 0 for all 0  i, j  R0 � 1. Hence the

corresponding canonical coordinates u00, . . . , u0R
0�1 satisfying

(u0i(q0, s = 0)) = s0(q0)

and v0i = ∂/∂u0i exist.

I This was extended to F-manifolds by Hertling. The F-manifold
M is semi-simple in the sense that ⇤p on TpM for p 2M is
semi-simple. Denote the idempotent vector fields by v1. . . . , vR0 .

I Hertling 2002: [vi, vj] = 0 for all 0  i, j  R0 � 1. Hence the
canonical coordinates u0, . . . , uR0�1 near each p 2M exist in the
sense that vi = ∂/∂ui.

39 / 42
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I Fixing the initial correspondence of frames:

I We have constructed an analytic family of coordinate systems
(u0(q0, p), . . . , uR0�1(q0, p)) parametrized by q0 2 R 0. Write

Ti(q0) = ÂR0�1
j=0 aj

i(q0) vj(q0, s = 0)

for an invertible R0 ⇥ R0 matrix (aj
i(q0)).

I
hTµ, Ti, TjiX = hhT0µ, T0i, T0jiiX

0
(s0(q0)). (1)

From this relation, we see easily that:

I Lemma
After a possible reordering of {v0j}, we have for all i = 0, . . . , R0 � 1:

T0i = ÂR0�1
j=0 aj

i(q0) v0j(s0(q0)).

40 / 42

I Now we define the map Ŷ by matching the canonical coordinates.
Namely, Ŷ(q0, s) 2M is the unique point on M so that

ui(Ŷ(q0, s)) = u0i(q0, s) = u0i(s0(q0) + s)

for i = 0, . . . , R0 � 1.

I Since the tangent map Ŷ⇤ matches the idempotents

Ŷ⇤∂/∂u0i = ∂/∂ui,

it induces a product structure isomorphism, and hence an
F-structure isomorphism by “coordinates-free WDVV’’.

I Also along s = 0, by Lemma we have

Ŷ⇤T0i = Ti

which matches the initial condition along the R 0-axis.

I H(X0) is contractible =) Ŷ exists globally. QED

41 / 42
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Ending Remarks

I Work in progress by LLW:

(1) Globalization to general (r, r0) flips.

(2) Reconstruction of QH(X) from QH(X0) and “the K-block”.

I Other approaches:

(3) [Woodward et. al.] studying wall crossing of GW invariants in
different GIT quotients.

(4) [Shoemaker et. al.] studying asymptotics of I functions in the
toric setup.

(5) [Iritani] Equivariant GW for toric flips.

I Would be interesting to compare their approaches with ours.

42 / 42
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Mirror Symmetry and Rigid Structures of
Generalized K3 Surfaces

Atsushi Kanazawa (Keio University)

Hitchin’s invention of generalized Calabi-Yau structures is a key to unify the
Calabi-Yau geometry (complex geometry of Calabi-Yau manifolds) and symplectic
geometry. Such structures have been extensively studied in 2-dimensions by Huy-
brechts. Based upon his fundamental work, we introduce a formulation of mirror
symmetry for generalized K3 surfaces, which generalizes mirror symmetry for lat-
tice polarized K3 surfaces. Along the way, we investigate complex and Kahler rigid
structures of generalized K3 surfaces.
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Introduction

Overview

Discuss mirror symmetry from the viewpoint of generalized CY geometry.

Mirror Symmetry:
duality between complex geometry and symplectic geometry

Generalized Calabi-Yau Geometry:
unification of CY geometry and symplectic geometry

The philosophies are different but there are some similarities.

Show that generalized CY geometry brings a new insight into rigid
structure of K3 surfaces and settle a problem for singular K3 surfaces
(complex rigid K3 surfaces).

Atsushi Kanazawa (Keio University) MS and rigid str of generalized K3 surfaces Japan-Taiwan Conf. on DG 2 / 20
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Mirror Symmetry

Mirror Symmetry

A Calabi-Yau (CY) manifold X is a compact Kähller manifold such that
c1(TX) = 0 and π1(X) = 0. Mirror symmetry (MS) conjectures that CY
manifolds show up in pairs, say X and Y, in such a way that

There are various formulations;

Hodge theoretic, homological, SYZ, ...

They are decategorified to the level of cohomologies:

Atsushi Kanazawa (Keio University) MS and rigid str of generalized K3 surfaces Japan-Taiwan Conf. on DG 3 / 20

K3 surfaces

K3 surfaces (2-dim CY)

MS for a K3 surface S is very subtle as the complex and Kähler structures
are somewhat mixed.

There are sublattices of H2(S ,Z) reflecting the complex structure: the
Néron-Severi, transcendental lattices

NS (S ) = {δ ∈ H2(S ,Z) | ⟨δ, [σ]⟩ = 0} ”algebraic 2-cycles”,

T (S ) = NS (S )⊥ ⊂ H2(S ,Z) ”transcendental 2-cycles”,

It is useful to consider the algebraic lattice (”algebraic cycles”)

NS ′(S ) = H0(S ,Z) ⊕ NS (S ) ⊕ H4(S ,Z) = NS (S ) ⊕ U.

Atsushi Kanazawa (Keio University) MS and rigid str of generalized K3 surfaces Japan-Taiwan Conf. on DG 4 / 20
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K3 surfaces

Mirror symmetry for K3 surfaces

Formulation: Two families of K3 surfaces {S } and {S ∨} are mirror
symmetric if for generic members S and S ∨

NS ′(S ) � T (S ∨), T (S ) � NS ′(S ∨).

This can be realized by lattice polarizations (Dolgachev). Given a lattice M
of sgn (1, ∗) and a primitive embedding M ↪→ H2(S ,Z) such that

M⊥ � N ⊕ U, ∃N (Asm.)

S is called M-polarized if M ⊂ NS (S ). Then

a family of M-polarized K3 surfaces {S },
a family of N-polarized K3 surfaces {S ∨} (N⊥ � M ⊕ U)

are mirror symmetric.

NS ′(S ) � M ⊕ U � T (S ∨), T (S ) � N ⊕ U � NS ′(S ∨).

Atsushi Kanazawa (Keio University) MS and rigid str of generalized K3 surfaces Japan-Taiwan Conf. on DG 5 / 20

K3 surfaces

Drawbacks

This formulation has some drawbacks (although it works beautifully in
many cases).

NS ′(S ) = NS (S ) ⊕ U and T (S ) are not really symmetric:

min{rankNS ′(S )} = 3, min{rankT (S )} = 2.

(Asm.) does not hold in general.

MS for singular K3 surfaces (rankNS (S ) = 20) fails.

singular K3 surface ??
Kähler 20-dim 0-dim

complex 0-dim 20-dim

⇝ These are all solved by generalized CY geometry.

Atsushi Kanazawa (Keio University) MS and rigid str of generalized K3 surfaces Japan-Taiwan Conf. on DG 6 / 20
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Generalized CY structures

Generalized CY structures (2-dim)

M: C∞-manifold underlying a K3 surface,
A2∗
C

(M) = ⊕2
i=0A2i

C
(M): even diff forms with C-coeff with Mukai pairing

⟨φ, ψ⟩ = φ2 ∧ ψ2 − φ0 ∧ ψ4 − φ4 ∧ ψ0 ∈ A4
C(M)

Definiton 4.1 (generalized CY structure (2-dim), Hitchin)

A generalized CY structure on M is a closed form φ ∈ A2∗
C

(M) such that

⟨φ, φ⟩ = 0, ⟨φ, φ⟩ > 0

Example 4.2

symplectic form ω, φ = e
√−1ω = 1 +

√−1ω − 1
2ω

2.

holomorphic 2-form (w.r.t. a complex structure), φ = σ.

Atsushi Kanazawa (Keio University) MS and rigid str of generalized K3 surfaces Japan-Taiwan Conf. on DG 7 / 20

Generalized CY structures

B-field transform

For B ∈ A2
C

(M), eB acts on A2∗
C

(M) by exterior product:

eBφ = (1 + B +
1
2

B ∧ B) ∧ φ.

This action is orthogonal w.r.t. the Mukai pairing

⟨eBφ, eBψ⟩ = ⟨φ, ψ⟩.

A real closed 2-form is called a B-field.

Theorem 4.3

For a B-field B and a gCY structure φ, the B-field transform eBφ is a gCY
structure.

Atsushi Kanazawa (Keio University) MS and rigid str of generalized K3 surfaces Japan-Taiwan Conf. on DG 8 / 20
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Generalized CY structures

Classification of gCY structures

Theorem 4.4 (Hitchin)

Let φ be a gCY structure.

(type A) φ0 , 0: ∃ a symplectic form ω, a B-field B. 　

φ = φ0eB+
√−1ω

(type B) φ0 = 0: ∃ a hol 2-form σ (w.r.t. a complex str) and a B-field B.

φ = eBσ = σ + σ ∧ B0,2

Definiton 4.5
gCY structures φ, φ′ are isomorphic if ∃ an exact B-field B and
f ∈ Diff∗(M) such that φ = eB f ∗φ′.

Diff∗(M) = Ker(Diff(M)→ O(H2(M,Z))).

Atsushi Kanazawa (Keio University) MS and rigid str of generalized K3 surfaces Japan-Taiwan Conf. on DG 9 / 20

Generalized CY structures

Unification of A- and B-structures

The most fascinating aspects of gCY structures is the occurrence of the
classical CY structure σ and symplectic gCY structure e

√−1ω in the same
moduli.

Example 4.6 (Hitchin)

For a hol 2-form σ, the real and imaginary parts Re(σ), Im(σ) are
symplectic forms. A family of gCY structures of type A

φt = te
1
t (Re(σ)+

√−1Im(σ))

converges, as t → 0, to the gCY structure σ of type B. The B-fields
interpolate between gCY structures of type A and B.

Atsushi Kanazawa (Keio University) MS and rigid str of generalized K3 surfaces Japan-Taiwan Conf. on DG 10 / 20
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Generalized CY structures

Kähler structure

For a gCY structure φ, we define a distribution of real 2-planes:

Pφ = RReφ ⊕ RImφ ⊂ A∗(M)

gCY structures φ and φ′ are called orthogonal if Pφ and Pφ′ are pointwise
orthogonal. This is a stronger condition than ⟨φ, φ′⟩ = 0.

Definiton 4.7 (Kähler)

A gCY structure φ is called Kähler if ∃ another gCY structure φ′ orthogonal
to φ. Such φ′ is called a Kähler structure for φ.

A Kähler structure for φ = σ is of the form φ′ = φ′0eB+
√−1ω. The

orthogonality is equivalent to

σ ∧ B = σ ∧ ω = 0.

Therefore B is a closed real (1, 1)-form and ±ω is a Kähler form w.r.t. σ.

Atsushi Kanazawa (Keio University) MS and rigid str of generalized K3 surfaces Japan-Taiwan Conf. on DG 11 / 20

Generalized CY structures

HyperKähler structure

A Kähler form ω on a K3 surface is a hyperKähler form if for some C ∈ R
2ω2 = Cσ ∧ σ.

Definiton 4.8 (hyperKähler)

A gCY structure φ is hyperKähler if ∃ a Kähler structure φ′ such that

⟨φ, φ⟩ = ⟨φ′, φ′⟩.

Such φ′ is called a hyperKähler structure for φ.

Remark 4.9

If φ′ a (hyper)Kähler for φ, then eBφ′ is a (hyper)Kähler structure for eBφ.

Atsushi Kanazawa (Keio University) MS and rigid str of generalized K3 surfaces Japan-Taiwan Conf. on DG 12 / 20
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Generalized CY structures

Classification of hyperKähler structures

(details are not important)

φ = σ: a hyperKähler structure is φ′ = λeB+
√−1ω, where B is a closed

(1, 1)-form and ±ω is a hyperKähler form such that

2|λ|2ω2 = σ ∧ σ.

φ = λe
√−1ω: a hyperKähler structure is either

φ′ = σ, where ±ω is a hyperKähler form,
φ′ = λ′eB′+

√−1ω′ such that
ω ∧ ω′ = ω ∧ B′ = ω′ ∧ B = 0, B′2 = ω2 + ω′2,
|λ|2ω2 = |λ′|2ω′2.

By Remark 4.9, any hyperKähler structure is a B-field transform of one of
the above cases. There are 3 cases:

(type A, type B), (type B, type A), (type A, type A)

Atsushi Kanazawa (Keio University) MS and rigid str of generalized K3 surfaces Japan-Taiwan Conf. on DG 13 / 20

Generalized CY structures

Generalized K3 surfaces

Definiton 4.10
A generalized K3 surface is a pair (φ, φ′) of gCY structures such that φ is a
hyperKähler structure for φ′.

A K3 surface S = Mσ with a chosen hyperKähler structure ω is
considered as a gK3 surface (e

√−1ω, σ).

gK3 surfaces (φ, φ′) and (ψ, ψ′) are called isomorphic if ∃
f ∈ Diff∗(M) and exact B ∈ A2(M) such that

(φ, φ′) = eB f ∗(ψ, ψ′) = (eB f ∗ψ, eB f ∗ψ′).

⇒ isom classes are classified by cohomology classes

Atsushi Kanazawa (Keio University) MS and rigid str of generalized K3 surfaces Japan-Taiwan Conf. on DG 14 / 20
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Generalized CY structures

Period domains and period maps

NgCY = {Cφ}/ �: moduli space of gCY structures of hyperKähler type
NK3 = {Cσ}/Diff∗(M): moduli space of complex structures

Theorem 4.11 (Huybrechts)

NgCY
∪

pergCY

Cφ→[ϕ]
// D̃ = {[φ] ∈ P(H∗(M,C)) | ⟨φ, φ⟩ = 0, ⟨φ, φ⟩ > 0}

∪

NK3
perK3

Cσ→[σ]
// D = {[σ] ∈ P(H2(M,C)) | ⟨σ,σ⟩ = 0, ⟨σ,σ⟩ > 0}

pergCY: étale surjective

Atsushi Kanazawa (Keio University) MS and rigid str of generalized K3 surfaces Japan-Taiwan Conf. on DG 15 / 20

Generalized CY structures

Néron-Severi and transcendental lattices (new!)

We define sublattices of the Mukai lattice H∗(M,Z) � U⊕4 ⊕ E⊕2
8 reflecting

a gCY structure.

Definiton 4.12
The Néron–Severi and transcendental lattices of a gK3 surface X = (φ, φ′)
are defined respectively by

ÑS (X) = {δ ∈ H∗(M,Z) | ⟨δ, [φ′]⟩ = 0},
T̃ (X) = {δ ∈ H∗(M,Z) | ⟨δ, [φ]⟩ = 0}.

ÑS (X) and T̃ (X) are defined on an equal footing.

2 ≤ rank(ÑS (X)), rank(T̃ (X)) ≤ 22.

In general, pt and [M] are no longer ”algebraic”.

Atsushi Kanazawa (Keio University) MS and rigid str of generalized K3 surfaces Japan-Taiwan Conf. on DG 16 / 20
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RIgidity

Complex and Kähler rigidity

Definiton 5.1
A gK3 surface X = (φ, φ′) is called

complex rigid if φ′ is of type B and rank(ÑS (X)) = 22.

Kähler rigid if φ is of type A and rank(T̃ (X)) = 22.

Theorem 5.2

A complex rigid gK3 surface is of the form eB′(λeB+
√−1ω, σ):

Mσ: singular K3 surface

B ∈ H1,1(Mσ,R),

B′ ∈ H2(M,Q),

±ω is a Kähler form w.r.t. σ.

Atsushi Kanazawa (Keio University) MS and rigid str of generalized K3 surfaces Japan-Taiwan Conf. on DG 17 / 20

RIgidity

Mukai lattice polarization and mirror symmetry

κ, λ ≥ 2, κ + λ = 24,
K, L: even lattices of signature (2, κ − 2) & (2, λ − 2)

Definiton 5.3 (Mukai lattice polarization)

Given a primitive embedding K ⊕ L ⊂ H∗(M,Z), a (K, L)-polarization of
X = (φ, φ′) is defined by the conditions:

K ⊂ ÑS (X) and KC contains gCY structure of type A,

L ⊂ T̃ (X) and LC contains gCY structure of type B.

polarization ⊂ lattice polarization ⊂ Mukai lattice polarization

Definiton 5.4
A family of (K, L)-polarized gK3 surfaces and a family of (L,K)-polarized
gK3 surfaces are mirror symmetric.

Atsushi Kanazawa (Keio University) MS and rigid str of generalized K3 surfaces Japan-Taiwan Conf. on DG 18 / 20
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RIgidity

MS for complex and Kähler rgid gK3 surfaces

K = ⟨−2n⟩⊕2 ⊕ U ⊕ E⊕2
8 , L = ⟨2n⟩⊕2, (n > 0)

(K, L)-polarized gK3 surfaces
= singular K3 surfaces {X = (eB+

√−1ω, σ)},
(T (Mσ) = L, B, ω ∈ NS (Mσ)R)

(L,K)-polarized gK3 surfaces
⊃ {X∨ = (e

√−1H , σ∨)}, (NS (Mσ∨) = ZH,H2 = 2n)
(19-dimensional subfamily of classical K3 surfaces)

(K, L)-pol. gK3 (L,K)-pol. gK3
A-deform 20-dim 0-dim
B-deform 0-dim 20-dim

Punchline classical geometry: H2(M,Z), generalized geometry: H∗(M,Z).

Atsushi Kanazawa (Keio University) MS and rigid str of generalized K3 surfaces Japan-Taiwan Conf. on DG 19 / 20
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Derived Differential Geometry and Virtual
Fundamental Classes

Adeel A. Khan (Academia Sinica)

Virtual counts of pseudoholomorphic curves on a symplectic manifold play an
important role in Gromov-Witten theory and Lagrangian Floer theory. These counts
are defined using the virtual fundamental class of the moduli space of pseudoholo-
morphic curves. I will explain a simple new construction of the virtual fundamental
class based on a theory of derived differential geometry.

(A. A. Khan) Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan
Email address : adeelkhan@gate.sinica.edu.tw

The author was partly supported by the grant MOST 110-2115-M-001-016-MY3.
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Pseudoholomorphic curves

The study of pseudoholomorphic curves on symplectic manifolds,

following Gromov (1985), has led to interesting new developments

in symplectic topology through the introduction of invariants such

as:

• Gromov–Witten theory,

• Floer theory,

• Fukaya categories and homological mirror symmetry.

1

Example: Arnold conjecture

• Let M be a closed symplectic manifold and φ : M → M a

nondegenerate Hamiltonian symplectomorphism.

• Arnold conjectured that the number of fixed points of φ is at

least equal to the Morse number of M (the number of critical

points of a smooth function on M).

• By Morse theory, the Arnold conjecture implies in particular

that

#{fixed points of φ} > dimH∗(M,Q).

2
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Example: Arnold conjecture

• Floer used Hamiltonian Floer theory HF∗(M), defined in

terms of a Hamiltonian H : M × S1 → R, to give an approach

to such bounds.

• The main input is an isomorphism HF∗(M) ' H∗(M,Q).

• By construction of Hamiltonian Floer theory, we get: for any

H : M × S1 → R whose time t = 1 Hamiltonian flow

φH : M → M has nondegenerate fixed points, we have

#{fixed points of φH} > dimH∗(M,Q).

• The definition of HF∗(M) involves moduli spaces of “Floer

trajectories” or pseudoholomorphic cylinders.

3

Counting pseudoholomorphic curves

Like Floer theory, the invariants we have in mind are all defined by

“counting pseudoholomorphic maps”.

• Construct a moduli space M of (stable) pseudoholomorphic

maps from Riemann surfaces.

• If M is “cut out transversally”, then there is a fundamental

class [M].

• We get the number
∫

[M] 1.

However, in practice we typically do not have transversality for M.

We only get a virtual fundamental class [M]vir (Kontsevich).

4
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The transversality problem

Augmenting foundations

• In order to construct the virtual fundamental class [M]vir,

some augmentation of the traditional foundations of

symplectic geometry is required.

• That is, the moduli space must be considered with some kind

of additional structure.

5
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Approaches

• In 1999, Fukaya and Ono introduced a so-called Kuranishi

structure on M in order to define its virtual fundamental class.

• A complete account of the technical details of Kuranishi

structures appeared in a book of Fukaya–Oh–Ohta–Ono

(2020). McDuff and Wehrheim have also written some further

details about Kuranishi structures (2016).

• Pardon has introduced a simpler variant called “implicit

atlases”, which is sufficient for many applications (2016).

• Another approach, involving infinite-dimensional manifolds, is

the Polyfolds project (Hofer–Wysocki–Zehnder, 2007–).

6

Kuranishi structures

Definition (Fukaya–Ono)

A Kuranishi chart of a space X consists of:

• a smooth orbifold M,

• an orbibundle E → M (the obstruction bundle),

• a smooth section s : M → E ,

• and a homeomorphism between X and the zero locus s−1(0).

A Kuranishi structure on a space X is, roughly, a compatible

system of local Kuranishi charts.

7
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Strategy for constructing virtual fundamental classes

1. Show that the moduli space M admits a Kuranishi structure.

2. Construct a virtual fundamental class [X ]vir in the presence of

a Kuranishi structure on a space X .

8

Step 1

Theorem (Fukaya–Oh–Ohta–Ono)

Moduli spaces of pseudoholomorphic maps admit Kuranishi

structures.

• Exponential decay estimates and smoothness of the moduli

space of pseudo-holomorphic curves (arXiv:1603.07026)

• Construction of Kuranishi structures on the moduli spaces of

pseudo-holomorphic disks: I (arXiv:1710.01459)

• Construction of Kuranishi structures on the moduli spaces of

pseudo-holomorphic disks: II (arXiv:1808.06106)

9
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Step 2

• When X admits a global Kuranishi chart (M,E → M, s,G ),

[X ]vir should be the localized Euler class e(E , s).

• Given a local Kuranishi structure on X , we have to glue the

local virtual classes to a global one. This is done in:

Fukaya–Oh–Ohta–Ono, Kuranishi structures and virtual

fundamental chains (2020 book).

10

Derived differential geometry
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Grothendieck’s viewpoint on spaces: affine schemes

In algebraic geometry, an affine k-scheme is a formal symbol X

which admits an arbitrary commutative k-algebra A as its ring of

functions. We write X = Spec(A).

• Example: X = An
k = Spec(k[t1, . . . , tn]) is the

scheme-theoretic incarnation of affine space kn.

• Example: X = Spec(k[t1, . . . , tn]/(f1, . . . , fm)), for

polynomials f1, . . . , fm ∈ k[t1, . . . , tn], is the scheme-theoretic

incarnation of the zero locus inside An
k of the system of

polynomial equations {fi = 0}i .
• Roughly speaking, X is a “singular algebraic manifold”.

11

Grothendieck’s viewpoint on spaces: moduli problems

Often we are not given a space not via a presentation as a zero

locus, but as a moduli problem.

• A moduli problem is a functor M : AffSchop
k → Grpd which

assigns to every affine scheme S a groupoid of “objects over

S”.

• Example: X = Spec(k[t1, . . . , tn]/(f1, . . . , fm)) solves the

moduli problem

S = Spec(A) 7→ {(a1, . . . , an) ∈ An satisfying fi (a1, . . . , an) = 0 ∀i}.

In other words we can think of X as the scheme of solutions

to the system {fi = 0}i in all k-algebras of coefficients A.

• Example: curves, and isomorphisms between them, define a

moduli problem S = Spec(A) 7→ {relative curves over S}.
12
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Schemes and stacks

If a moduli problem can be covered by affine schemes (an “atlas”),

then it is called a scheme or a stack.

• Schemes: Zariski covers (⇒ all automorphism groups trivial).

• Deligne–Mumford stacks: étale covers (⇒ all automorphism

groups finite).

• Artin stacks: smooth covers (⇒ infinite automorphism

groups).

13

Derived algebraic geometry

• Around 2004, Toën–Vezzosi and Lurie introduced a theory of

derived algebraic geometry. This is obtained by deriving the

notion of commutative k-algebra.

• Roughly speaking, a derived commutative algebra (∼
commutative dg-algebra) can be thought of as a derived

k-vector space (∼ object of the derived category of k-vector

spaces) with a multiplicative structure (commutative).

• We then get derived affine k-schemes, derived schemes, and

derived stacks.

• Note that the target category of groupoids also has to be

enlarged to ∞-groupoids.

14
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Example: derived intersections

• Let M be a smooth scheme (“algebraic manifold”), E → M

an algebraic vector bundle, and s : M → E a section. Form

the zero locus Z :
Z M

M E .

s

0

When s does not meet the zero section transversely, Z will

not be of the expected dimension dim(M)− rk(E ).

• We can replace Z by the derived fibre product Zder.

Algebraically, this means we replace OZ = OM/s by the

Koszul complex

OZder = [Λrk(E)(E )→ · · · → Λ1(E )→ OM ].

Note that Zder remembers the expected dimension.

15

Quasi-smooth derived stacks

• A derived scheme is called quasi-smooth if it is locally of the

form Zder for some (M,E , s) as above. (Similarly for

quasi-smooth Deligne–Mumford stacks, where M is allowed to

be a smooth Deligne–Mumford stack instead of a smooth

scheme.)

• In 2019, I gave a construction of virtual fundamental classes

for derived Artin stacks which is completely global and

intrinsic to the stack: no choice of local “Kuranishi”

presentation is involved in the construction.

16
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Derived differential geometry

• Differential-geometric variants of DAG have been considered

by Lurie (2009), Spivak (2010), Joyce (2012),

Behrend–Liao–Xu (2020), ...

• I will work in the formalism of “derived C∞-algebraic

geometry”. Roughly speaking, this is constructed by replacing

(derived) commutative rings by (derived) C∞-rings.

• This is similar to Joyce’s formalism, except that he doesn’t

consider Artin stacks (which will be important for us).

• I will explain how to adapt my construction of virtual

fundamental classes to the setting of derived Artin C∞-stacks.

17

C∞-rings

• C∞-rings should be thought of as rings of functions on

“singular manifolds” (C∞-schemes). For example, C∞(Rn)

should be a C∞-ring, but so should all quotients.

• Roughly speaking, the precise definition is: a C∞-ring

structure on a set A is a collection of operations An → A

indexed by C∞-maps Rn → R, n > 0, satisfying certain

relations.

• Note that commutative algebra structures can be defined

similarly, where the Rn are replaced by the affine spaces An
k ,

and C∞-maps by polynomial maps (Lawvere).

• There is also a corresponding derived theory.

18
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Derived C∞-stacks

• We consider moduli problems C∞-Ring→ Grpd, and derived

moduli problems where the source is replaced by derived

C∞-rings and the target by ∞-groupoids.

• We define derived schemes and stacks (Deligne–Mumford and

Artin) similarly as in the algebraic case.

• There is a notion of smoothness (in the algebro-geometric

sense). The category of C∞-manifolds (resp. orbifolds)

embeds as a full subcategory of smooth C∞-schemes (resp.

Deligne–Mumford stacks).

• We define quasi-smooth derived stacks similarly as in the

algebraic case. This is an intrinsic way to speak of spaces with

Kuranishi structures.

19

Virtual fundamental classes
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Deformation to the normal cone

• Let X be a quasi-smooth derived scheme (or Artin stack).

The construction of [X ]vir involves an intermediate geometric

construction called deformation to the normal stack.

• Deformation to the normal stack is a generalization of

Verdier’s deformation to the normal cone.

• Recall that deformation to the normal cone associates, to any

closed immersion i : Z → X , a family of closed immersions

over the affine line A1 which deforms i to the zero section of

the normal cone.

• A differential-geometric analogue is considered e.g. by

Kashiwara–Schapira (for the embedding of a submanifold in a

manifold).

20

The normal stack

• The cotangent complex was introduced in the algebraic

setting by Illusie, building on work of Quillen.

• In derived geometry, we can form “derived vector bundles” as

total spaces of complexes.

• Given a morphism f : X → Y of derived stacks, the normal

stack NX/Y is the total space of the (−1)-shifted cotangent

complex LX/Y [−1]:

NX/Y := VX (LX/Y [−1]).

21
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The normal stack

• This definition makes sense in the C∞-category.

• For the inclusion of a smooth submanifold N inside a smooth

manifold M, NN/M is just the normal bundle.

• If f : X → pt is the projection of a smooth manifold, then

NX/pt = [X/TX ] is an Artin stack, the classifying stack of the

tangent bundle.

22

Deformation to the normal stack

Deformation to the normal stack is an A1-family of algebraic stacks

which deforms f : X → Y to the zero section 0 : X → NX/Y .

Theorem

There exists a commutative diagram of derived Artin stacks

X X × A1 X

NX/Y DX/Y Y

pt A1 pt

0

0

1

f̂ f

0 1

where each square is cartesian.

23
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The construction

Let X be a quasi-smooth derived stack and f : X → pt.

• The long exact sequence for the closed-open decomposition

NX
î−→ DX ← Y × (A1 \ {0})

gives rise to a specialization map

spX : H∗(pt)→ HBM
∗ (NX )

where the target is Borel–Moore homology (extended to

derived Artin stacks).

• By homotopy invariance for derived vector bundles, we have

HBM
∗ (NX ) ' HBM

∗+d(X )

where d is the virtual dimension of X .

24

The virtual fundamental class

• The image of 1 by

H∗(pt)
spX−−→ HBM

∗ (NX ) ' HBM
∗+d(X )

is a canonical element we call

[X ]vir ∈ HBM
d (X ).

• If X is smooth, this is the usual fundamental class in

Borel–Moore homology.

• If X is the derived zero locus of a Kuranishi chart (M,E , s),

then [X ]vir is the localized Euler class e(E , s).

25
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Pseudoholomorphic curves

• Let (X , ω, J) be a closed symplectic manifold with almost

complex structure. Pseudoholomorphic maps C → X from a

Riemann surface C can be organized into a derived moduli

problem, i.e., a derived C∞-stack M.

• To apply this construction to pseudoholomorphic curves, we

need a representability result for M, i.e., that it is

Deligne–Mumford. This part is still highly nontrivial: the only

proof I currently know goes the work of

Hofer–Wysocki–Zehnder on polyfolds.

26
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Lagrangian Mean Curvature Flows with
Perpendicular Symmetries

Akifumi Ochiai (Tokyo Metropolitan University)

We show a method of constructing an invariant Lagrangian mean curvature flow
in a Calabi–Yau manifold with the use of generalized perpendicular symmetries. We
use moment maps of the action of Lie groups, which are not necessarily abelian. By
our method, we construct non-trivial examples in Cn including self-similar solutions
and translating solitons of mean curvature flows.

(A. Ochiai) Department of Mathematical Sciences, Tokyo Metropolitan University, 1-1
Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
Email address : akfm.oc@gmail.com, a-ochiai@tmu.ac.jp
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Lagrangian mean curvature flows

with generalized perpendicular symmetries

Tokyo Metropolitan University, Akifumi Ochiai

November 1, 2021
The 3rd Japan-Taiwan Joint Conference on Differential Geometry

1

§1. Goals

•Goal（general cases）：
To construct mean curvature flows by symmetries of Lie groups in
Riemannian mfds.

•Goal（special cases）：
To construct Lagrangian mean curvature flows by generalized per-
pendicular symmetries of Lie groups in Calabi-Yau mfds.

2
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§2. Previous Researches
•Previous Researches:

Yamamoto(2016)
construct generalized Lag MCF

in toric almost Calabi-Yau mfds
using moment map & toric symm.

Konno(2018)
construct Lag MCF

in Calabi-Yau mfds
using moment map & perp. symm. of abelian actions

•Our Researches:
Ours

(general cases)
construct MCF

in Riem. mfds
using symm. of general actions
Ours

(special cases)
construct Lag MCF

in Calabi-Yau mfds
using moment map & generalized perp. symm. of general actions

3

§3. Overview
How to construct MCF by symm. of Lie groups
M : Riem. mfd, H: Lie grp s.t. H!M,
Σ: H-invariant submfd of M.

Step.1 Find a nice sumfd V0 ⊂ Σ s.t. H · V0 = Σ.

Step.2 Study how V0 is deformed by the MCF of Σ.

Step.3 Have the MCF of Σ by Σt := H · Vt.

4
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§4. Preliminaries

Def. 1 Let φ :
mfd
Σ →mfd

M be an immersion. For a smooth map
{

F : Σ × [0,T)→M; (p, t) $→ Ft(p)

F0 = φ
,

if Ft(·) : Σ → M is an immersion for ∀t ∈ [0,T), then we call F the
deformation of φ (or Σ).

Let φ :
mfd
Σ →

Riem.mfd
(M, g) be an immersion. The mean curvature flow

F = (Ft)t∈[0,T) of φ is the deformation of φ s.t. it is a smooth solution
of the following PDE:

∂
∂t

F(p, t) = H t(p) w/ H t : mcv of Ft.

Fact. 2 MCF preserves the “Lagrangeness” in Kähler-Einstein mfds.

5

§5. Constructions of MCFs
•Setting (∗1):

· (M, g): Riem. mfd,
· H: Lie grp s.t. H!M,
· K: closed subgrp of H,
· V: submfd of M s.t. V ⊂MK.

Def. 3 Under (∗1),

Z(h∗) : the center of the Lie coalgebra h∗,
LK := {p ∈ L | Hp = K}, w/L : any submfd of M,
φV : (H/K) × V →M; (hK, p) $→ hp.

Def. 4 (property (∗)) Under (∗1), if φV is an immersion & its mean
curvature vectors are H-invariant, i.e., it holds that

H(hK, p) = (Lh)∗pH(K, p), (∗)
then we say that V has the property (∗) wrt the H-actions.

6

山)*p 71(KP)
Il

AKP)
^ ^ Hlhkep)

P ・ P

h 印
T

58 OCAMI Reports Vol. 6 (2022)



Def. 5 (preserve the property (∗)) Let V0 is a submfd of M s.t.
V0 ⊂ MK & has the property (∗). Under (∗1), if ∃ a deformation
of V0 in MK & Vt := ft(V) also has the property (∗), we say that f
preserves the property (∗) of V0.

7

Under (∗1), suppose that ∃ a deformation f : V0 × [0,T)→MK.

Def. 6 (expansion of deformation) If φVt is an immersion for ∀t ∈
[0,T), we can define a deformation F of φV0 by

F : (H/K) × V0 × [0,T)→M; (hK, p, t) '→ h ft(p) =: Ft(hK, p).

We call F the expansion of f .
We denote the mean curvature vector of Ft by H t.

8
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•Setting (∗2):

· (M, g): Riem. mfd,
· H: Lie grp s.t. H!M,
· K: closed subgrp of H,
· V0: submfd with (∗) of M ( s.t. V0 ⊂MK).

Thm. 7 Under (∗2), suppose that ∃ a deformation f of V0 with its
expansion F satisfying (i) & (ii):

(i) For ∀t ∈ [0,T),∀p ∈ V0,

∂
∂t

Ft(K, p) = H t(K, p) (“restricted MCF condition′′),

(ii) f preserves the property (∗).
Then, (Ft)t∈[0,T) is the MCF of φV0.

9

H-action

凹i-騫:::竈-聰、

聡

•Setting (∗2):

· (M, g): Riem. mfd,
· H: Lie grp s.t. H!M,
· K: closed subgrp of H,
· V0: submfd with (∗) of M ( s.t. V0 ⊂MK).

Thm. 7 Under (∗2), suppose that ∃ a deformation f of V0 with its
expansion F satisfying (i) & (ii):

(i) For ∀t ∈ [0,T),∀p ∈ V0,

∂
∂t

Ft(K, p) = H t(K, p) (“restricted MCF condition′′),

(ii) f preserves the property (∗).
Then, (Ft)t∈[0,T) is the MCF of φV0.

9
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•Setting (∗2):

· (M, g): Riem. mfd,
· H: Lie grp s.t. H!M,
· K: closed subgrp of H,
· V0: submfd with (∗) of M ( s.t. V0 ⊂MK).

Thm. 7 Under (∗2), suppose that ∃ a deformation f of V0 with its
expansion F satisfying (i) & (ii):

(i) For ∀t ∈ [0,T),∀p ∈ V0,

∂
∂t

Ft(K, p) = H t(K, p) (“restricted MCF condition′′),

(ii) f preserves the property (∗).
Then, (Ft)t∈[0,T) is the MCF of φV0.

9
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•Setting (∗2):

· (M, g): Riem. mfd,
· H: Lie grp s.t. H!M,
· K: closed subgrp of H,
· V0: submfd with (∗) of M ( s.t. V0 ⊂MK).

Thm. 7 Under (∗2), suppose that ∃ a deformation f of V0 with its
expansion F satisfying (i) & (ii):

(i) For ∀t ∈ [0,T),∀p ∈ V0,

∂
∂t

Ft(K, p) = H t(K, p) (“restricted MCF condition′′),

(ii) f preserves the property (∗).
Then, (Ft)t∈[0,T) is the MCF of φV0.
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e.g. 8 (circle, sphere)

φ : Sn→ Rn+1, V0 := single point, H := SO(n + 1).

e.g. 9 (cylinder)

φ : Sm ×Rn−m→ Rn+1,V0 := Sm, H := Rn−m.

10

H-action

H-action

V

^

v

e.g. 10 (generalized cylinder)

φ : Mm ×Rn−m→ Rn+1, V0 :=M, H := Rn−m.

11

H-action
八

v
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Question: How to reduce the restricted MCF eq to an ODE ?

! Additional assumption:

The evolution of the restricted MCF forms a vector field of the mean
curvature vectors.

e.g. 11

(1) The MCF of Sn forms a vector filed of their mcv.

(2) The MCF of Dumbbell-like surfaces do not.
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Cor. 12 Under (∗2), suppose that the restricted MCF of (V0, φV0)forms
a vector filed A, i.e., ∃ a vector field A satisfying (i.a) & (i.b):

(i.a) A generates a deformation f of V0 in MK with F, i.e.,

d
dt

Ft(K, p) = A ft(p) (∀p ∈ V0,∀t ∈ [0,T)) ← ODE

(i.b) For ∀t ∈ [0,T) & p ∈ V0,

H t(K, p) = A ft(p).

Moerover, suppose that

(ii) f preserves the property (∗).
Then, (Ft)t∈[0,T) is the MCF of φV0.

! How to find V0 with A satisfying (i.b) for constructing Lag MCFs
in CY mfds ?

13

H-action獄粉
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§6. Constructions of Lag MCFs
•Setting (∗3):

· (M,ω): 2n-dimR symp. mfd,
· H: Lie grp s.t. H! (M,ω) with moment map µ : M→ h∗,
· K: closed subgrp of H,
· Vc: submfd of M s.t. Vc ⊂MK,
· φVc: immersion.

Prop. 13 Under (∗3), suppose

(i) Vc is isotropic,
(ii) (“moment map condition”) Vc ⊂ µ−1(c) for c ∈ Z(h∗).
(iii) dimH/K + dimVc = n

Then φVc is Lagrangian. Conversely, if φVc is connected & La-
grangian, then (i), (ii) and (iii) hold.

15

Def. 14 (Lagrangian angle) (M, I, g,Ω): Calabi-Yau mfd, L: oriented
Lag submafd of M,

θ : L→ R/2πZ : Lagrangian angle :⇔ ι∗Ω = e
√−1θvolι∗g

w/ ι : L→M: inclusion map.

L : special Lagrangian submfd :⇔ θ ≡ const.

Prop. 15 H(p): mean curvature vector of L at p ∈ L. Then,

H(p) = Iι(p)
{
ι∗p(gradι∗gθ)p

}
.

16
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•Setting (∗4):

· (M, I,ω,Ω): connected Calabi-Yau mfd,
· H: connected Lie grp s.t. H! (M, I,ω)

with moment map µ : M→ h∗,
· K: closed subgrp of H s.t. H/K: orientable & K! Ω,
· Vc: orientable submfd of M s.t. Vc ⊂ µ−1(c) ∩MK,
· φVc: Lag immersion.

Prop. 16 Under (∗4),

(1) θc(hK, p) = ∃θH(hK) + ∃θVc(p), w/ θc: Lag angle of φVc,
↑ defined only by (M,H,K)

(2) Hc(hK, p) = ∃ (AH)hp + (Lh)∗pIp
{
(gradφ∗Vc

gθVc)p
}
,

↑ defined only by (M,H,K)
w/ Hc :MCV of φVc.

If θVc ≡ const.! Hc = AH holds and Vc accomodates to Cor.12

17
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•Setting (∗4):

· (M, I,ω,Ω): connected Calabi-Yau mfd,
· H: connected Lie grp s.t. H! (M, I,ω)

with moment map µ : M→ h∗,
· K: closed subgrp of H s.t. H/K: orientable & K! Ω,
· Vc: orientable submfd of M s.t. Vc ⊂ µ−1(c) ∩MK,
· φVc: Lag immersion.
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(gradφ∗Vc

gθVc)p
}
,

↑ defined only by (M,H,K)
w/ Hc :MCV of φVc.

If θVc ≡ const.! Hc = AH holds and Vc accomodates to Cor.12
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20
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•Setting (∗5):

· (M, I,ω,Ω): connected Calabi-Yau mfd,
· H: connected Lie grp s.t. H! (M, I,ω)

with moment map µ : M→ h∗,
· K: closed subgrp of H s.t. H/K: orientable & K! Ω,
· AH: vector field along MK as in Prop.16
· L: special Lag submfd with Lag angle θ(p) ≡ θ,
· c ∈ Z(h∗),
· Vc:

(
n − dim(H/K)

)
-dim submfd of M s.t. Vc ⊂ µ−1(c) ∩ LK.

Prop. 17 Under (∗5), suppose

∀p ∈ Vc,∀ξ ∈ h, ξ#
p ∈ T⊥p L⊕TpVc & ξ#

p ! TpVc\{0}.
(“generalized perp. condition”)

Then,

(1) θVc(p) = θ − π2 dim(H/K), ← const.
(2) Hc(hK, p) = (AH)hp.

21

generalized

strictly perp

V

! 1
〉

E 」

Thm. 18 Under (∗5), suppose that AH generates a deformation f :
Vc × [0,T) → LK with its expansion F, and for ∀t ∈ [0,T) and Vt :=
ft(Vc), the generalized perpendicular condition holds.
Then, AH and Vc satisfies the condition of Cor.12 and (Ft)t∈[0,T) is a
Lag MCF of φVc.
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§7. Examples

e.g. 19
construct Lag self-similar solution

in C4

using strictly perp. symm. of U(1) × SO(3)

e.g. 20
construct Lag MCF

in C5

using gen. perp. symm. of R × SO(2)

e.g. 21
construct Lag translating soliton

in C5

using strictly perp. symm. of U(1) × SO(3)

e.g. 22
construct Lag translating soliton

in C6

using gen. perp. symm. of R × SO(2)

23

Thank you very much for your attention.

24
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Lagrangian Mean Curvature Flow with Boundary

Albert Wood (National Taiwan University)

The Lagrangian mean curvature flow is the name given to the remarkable fact
that mean curvature flow preserves the class of Lagrangian submanifolds in Kahler-
Einstein manifolds. A natural follow-up question that springs to mind is whether
there exists a suitable boundary condition for this flow, such that the resulting
flow with boundary still preserves the Lagrangian condition. Remarkably, standard
Neumann and Dirichlet boundary conditions do not work, but there is a symplec-
tically natural mixed Dirichlet-Neumann boundary condition involving a boundary
Lagrangian flow which does. In this talk I will describe the condition and give an
overview of the proof, as well as describe some examples of the flow’s behaviour.

(A. Wood) Department of Mathematics, National Taiwan University, No. 1, Section 4,
Roosevelt Rd, Da ’an District, Taipei City, 10617
Email address: albertwood@ntu.edu.tw
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Preliminaries
Mean Curvature Flow

Mean curvature flow is the gradient descent for the volume functional of
submanifolds of Riemannian manifolds.
Let Nn be a smooth manifold, and Mm a smooth Riemannian manifold. A
family of immersions Ft : Nn → (Mm, g) is a mean curvature flow if

dF

dt
= ~H,

where ~H is the vector-valued second fundamental form of the embedding,

~H := trace(g−1 ~A).

Albert Wood (National Taiwan University) Third Japan-Taiwan Joint Conference on Differential GeometryNovember 1, 2021 2 / 27
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Preliminaries
Examples of Mean Curvature Flow

Shrinking Sphere in Rn:

dr

dt
= −n

r

=⇒ r =
√
R − 2nt.

Albert Wood (National Taiwan University) Third Japan-Taiwan Joint Conference on Differential GeometryNovember 1, 2021 3 / 27

Preliminaries
Examples of Mean Curvature Flow

Curve Shortening Flows:

Albert Wood (National Taiwan University) Third Japan-Taiwan Joint Conference on Differential GeometryNovember 1, 2021 4 / 27
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Preliminaries
Examples of Mean Curvature Flow

O(n)-Equivariant Flows in Cn: Flows of the form
L(s, α) = (a(s)α, b(s)α) ∈ Cn for α ∈ Sn−1, a, b real functions.
Quotienting by the spherical symmetry, we obtain the profile curve
γ(s) = a(s) + ib(s) ∈ C. The mean curvature flow reduces to the
following flow of the profile curve:

dγ

dt
= ~k − (n − 1)

γ⊥

|γ|2 .

Albert Wood (National Taiwan University) Third Japan-Taiwan Joint Conference on Differential GeometryNovember 1, 2021 5 / 27

Preliminaries
Examples of Mean Curvature Flow: O(n)-Equivariant Flows in Cn

Here is a self-expanding equivariant flow known as the Anciaux expander:
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Preliminaries
Examples of Mean Curvature Flow: O(n)-Equivariant Flows in Cn

Here is a self-shrinking equivariant flow - the Clifford torus.
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Preliminaries
Examples of Mean Curvature Flow: O(n)-Equivariant Flows in Cn

Finally, here is a static flow (i.e. a minimal submanifold): the Lawlor
Neck.
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Preliminaries
Mean Curvature Flow with Boundary

How may one extend the concept of mean curvature flow
F : N → (Mm, g) for manifolds N with a boundary ∂N?

One natural option is to ask for the boundary F (∂N) = Σn−1 to remain
fixed during the flow - a Dirichlet boundary condition.

Another is to require that F (∂N) ⊂ Σn for a submanifold Σn ⊂ M. We
then must demand one extra condition, for example a perpendicularity
condition at the boundary - this is known as a free boundary condition.
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Preliminaries
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Lagrangian Mean Curvature Flow
Kahler Manifolds

A smooth manifold (M, g , J, ω) with compatible smooth, complex and
symplectic structures is known as a Kähler manifold. A submanifold
L ⊂ M is Lagrangian if ω|L = 0.

J : TL→ TL⊥ is an isomorphism.

H can be considered a 1-form, h a fully symmetric (0, 3)-tensor.

In a Kähler-Einstein manifold, the mean curvature 1-form H is closed.

If M is a Calabi-Yau manifold, there is a holomorphic volume form Ω
which may be used to define a primitive called the Lagrangian angle:

Ω|L = e iθvolL,

dθ = H.

L is special Lagrangian if it is minimal. If M is Calabi-Yau, then this is
equivalent to θ being constant.

Albert Wood (National Taiwan University) Third Japan-Taiwan Joint Conference on Differential GeometryNovember 1, 2021 11 / 27

Lagrangian Mean Curvature Flow
Lagrangian Graphs in Cn

Let f : Rn → Rn. When is f Lagrangian?

f (x) = (x1, . . . , xn, f 1(x), . . . , f n(x))

∂f

∂x i
=

(
0, . . . , 1, . . . , 0,

∂f 1

∂x i
, . . . ,

∂f n

∂x i

)

ω =
∑

dx i ∧ dy i

=⇒ ω(
∂f

∂x i
,
∂f

∂x j
) =

∂f

∂x j
− ∂f

∂x i
.

So, defining α = f idx i , the graph of f is Lagrangian if and only if α is a
closed 1-form.
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Lagrangian Mean Curvature Flow

Theorem (K. Smoczyk)

In a Kähler-Einstein manifold, the class of closed Lagrangian submanifolds
is preserved under MCF.

Proof.

A calculation shows that under a normal variation ~N, dωt
dt = dN, where N

is the associated 1-form to ~N.
Under MCF, since H is closed, initially dω|L

dt = 0. This isn’t enough, as this
calculation only holds while L is Lagrangian, and this may immediately
cease to be true! Instead, work with totally real submanifolds, and show
that

d

dt
|ωt |2 ≤ ∆|ωt |2 + c |ωt |2.
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Lagrangian Mean Curvature Flow
Lagrangian MCF of Graphs in Cn

Let α be a closed form in Rn, so for some u : Rn → R, α = du.

F (x) =

(
x

(uk)nk=1

)

∂F

∂x i
=

(
ei

(uik)nk=1

)

gij = δij + uikujk

hijk =

〈
∂2F

∂x i∂x j
, J
∂F

∂xk

〉
= uijk .

Hk = g ijhijk .
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Lagrangian Mean Curvature Flow
Lagrangian MCF of Graphs in Cn

Remembering that dθ = H for the associated 1-form H of the mean
curvature vector ~H,

Hk = g ijhijk
(
∂F

∂t

)⊥
= ~H ⇐⇒ du = H

⇐⇒ du

dt
= θ + C (t).

Note that θ constant (special Lagrangian condition) implies that u changes
only by a global constant, and therefore the immersion remains static.
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Lagrangian MCF with Boundary

We now ask the question - May the Lagrangian mean curvature flow be
extended to submanifolds with boundary L? In other words, is there a
boundary condition we can put on F (∂L) which preserves the boundary
condition?
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Lagrangian MCF with Boundary

Unfortunately, Dirichlet conditions don’t work. If Neumann is to work,
what should the boundary condition be? Remember that

dθ = H.

So, constant θ means that the submanifold is static under mean curvature
flow (a minimal submanifold). Such Lagrangians are known as special
Lagrangians. So a simple example of a Lagrangian MCF with boundary is
a special Lagrangian immersion with boundary on another special
Lagrangian.
Perhaps demanding a constant Lagrangian angle difference at the
boundary is a way to extend this example?
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Lagrangian MCF with Boundary

Unfortunately this doesn’t work, as we need to prove that the flow remains
Lagrangian for the concept of the Lagrangian angle θL to make sense. We
need a generalised Lagrangian angle.
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Lagrangian MCF with Boundary
Extending the Lagrangian Angle

At p ∈ F (∂L), choose an orthonormal basis {e1, . . . , en−1} of Tp∂L, which
we complete to bases of TpL and TpΣ.
Then, Ω(e1, . . . , en−1, µ) = re iθL defines a Lagrangian angle θL, as long as
r 6= 1 (totally real condition).
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Lagrangian MCF with Boundary
Extending the Lagrangian Angle

Moreover, since Σ is Lagrangian, we may define a ‘relative holomorphic
volume form’,

Ω′ =
n∧

i=1

(ei )
∗ + i(Jei )

∗.

Then Ω′(e1, . . . , en−1, µ) = re i(θL−θΣ) defines the relative Lagrangian
angle θL − θΣ without need for a global holomorphic volume form!
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Lagrangian MCF with Boundary
Main Theorem

Theorem (Evans, Lambert, W.)

Given Σt a Lagrangian MCF in a Kähler-Einstein manifold M, defined on
(0,T ), F0 : L→ M a Lagrangian immersion of a manifold L with boundary
∂L, then the solution to (LMCFwB) exists for short time, is unique, and
remains Lagrangian.
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Lagrangian MCF with Boundary
Proof Sketch

Proof.

From Smoczyk, on the interior ∂
∂t |ω|2 ≤ ∆|ω|2 + C |ω|2.

We must complement this with a boundary estimate of the form
∇µ|ω|2 ≤ C |ω|2.
We are able to achieve this by proving symmetries of the second
fundamental form of L inherited from Σ by the boundary condition.
Then, choosing a distance function ρ from the boundary, and considering
f = |ω|2eAρ−Bt , it follows from the above estimates that at the boundary,
∇µf ≤ |ω|2eAρ−Bt(C − A), which is negative if A is large.
At an interior increasing maximum, 0 ≤

(
∂
∂t −∆

)
f = |ω|2eAρ−Bt(C − B),

which is a contradiction if we pick B sufficiently large. So there is no
increasing maximum.
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Equivariant Examples
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Equivariant Examples
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Equivariant Examples
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Equivariant Examples
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Equivariant Examples

Albert Wood (National Taiwan University) Third Japan-Taiwan Joint Conference on Differential GeometryNovember 1, 2021 27 / 27

The 3rd Japan-Taiwan Joint Conference on Differential Geometry 87



Homotopy Fiber Product of Manifolds

Hsuan-Yi Liao (National Tsing Hua University)

A main motivation of developing derived differential geometry is to deal with
singularities arising from zero loci or intersections of submanifolds. Both zero loci
and intersections can be considered as fiber products of manifolds. Thus, we ex-
tend the category of differentiable manifolds to a larger category in which one has
“homotopy fiber products”. In this talk, I would like to show a construction, using
vector bundles and sections, of homotopy fiber products of manifolds and explain
the structures behind the construction. The talk is mainly based on a joint work
with Kai Behrend and Ping Xu.

(H.-Y. Liao) National Tsing Hua University
Email address : hyliao@math.nthu.edu.tw

The author was partly supported by MOST Grant 110-2115-M-007-001-MY2 and was sup-
ported by KIAS Individual Grant MG072801.
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Homotopy �ber product of manifolds

Hsuan-Yi Liao
joint work with Kai Behrend and Ping Xu

Third Japan-Taiwan Joint Conference on Di�erential Geometry
Nov 1 - 3, 2021
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NOTE:
In this talk, all the manifolds are C∞ manifolds over R,
and all the maps are C∞ maps.

Recall (�ber products):

Given smooth maps X
f−→ Z

g←− Y between manifolds, one can form
the �ber product (as topological spaces)

X ×Z Y = {(x , y) ∈ X × Y | f (x) = g(y)}.

If f or g is a submersion (i.e. the tangent map is surjective at
each point), then X ×Z Y is a manifold.

In general, X ×Z Y is NOT a manifold.
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Example

Let X , Y be submanifolds of M. The intersection X ∩Y of X and
Y in M can be identi�ed with

X ×M Y = {(x , y) ∈ X × Y | ι1(x) = ι2(y)},

where ι1 : X ↪→ M, ι2 : Y ↪→ M are embeddings of submanifolds.

Example

Let f ∈ C∞(M,R). The zero set Z (f ) of f in M can be identi�ed
with M ×M×R M, where the maps are

M → M × R : x 7→ (x , f (x)),

M → M × R : y 7→ (y , 0).
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Purpose of the talk

Want to study: X ×Z Y .

Approach: resolve the singular spaces X ×Z Y by vector
bundles and sections.

Goal of today:

� introduce quasi-smooth derived manifolds (= vector bundle +
a global section)

� construct homotopy �ber products of manifolds
� explain the categorical structure behind the construction, i.e.,

the following theorem:

Theorem (Behrend, L, Xu)

The category of derived manifolds is a category of �brant objects.

Here, derived manifold = �nite-dimensional bundle of curved L∞[1]
algebras of positive amplitudes.
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Quasi-smooth derived manifolds

Idea: Resolve Z (f ) by (M × R, f ).

A quasi-smooth derived manifoldM = (M, L, λ) is a vector
bundle L→ M together with a global section λ ∈ Γ(M, L).

A morphism (f , φ) :M→M′ is a vector bundle map such
that the following diagram commutes:

L L′

M M ′

φ

λ

f

λ′

(f , φ) :M→M′ is called a �bration / submersion if f is a
submersion and φ|p : L|p → L′|f (p) is surjective ∀p ∈ M.

Problem: There are too many (M, L, λ) with same zero locus
Z (λ), so we need a certain notion of equivalence.
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Tangent complex and weak equivalence

Assume p ∈ M is a classical/Maurer-Cartan locus of
M = (M, L, λ), i.e., λ(p) = 0p ∈ L|p. De�ne Dpλ by

Dpλ : TM|p
Tλ|p−−−→ TL|0p ∼= TM|p ⊕ L|p pr−→ L|p

The tangent complex ofM at p ∈ Z (λ) is the two-term complex

TM|p := TM|p
Dpλ0−−−→ L|p

The derived dimension dimh(M) ofM = the Euler characteristic
of TM|p = dim(M)− rk(L).
A morphism (f , φ) :M→M′ of derived manifolds induces a
cochain map

T (f , φ)|p : TM|p → TM′|f (p)
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De�nition

A morphism (f , φ) :M→M′ of derived manifolds is called a
weak equivalence if

f induces a bijection on classical loci, and

T (f , φ)|p : TM|p → TM′|f (p) is a quasi-isomorphism at each
classical locus p ∈ Z (λ).

In particular, if there is a weak equivalenceM→M′, thenM and
M′ have the same derived dimension.

Example

If λ ∈ Γ(M, L) is a regular section (i.e. Dpλ : TM|p → L|p is
surjective ∀p ∈ Z (λ)), then Z (λ) is a manifold of dimension
dimhM = dimM − rk L. And the inclusion map
Z (λ) = (Z (λ),Z (λ)× 0, 0)→ (M, L, λ) is a weak equivalence.

Introduction Quasi-smooth derived manifolds Homotopy �ber product of manifolds Categories of �brant objects

Algebraic model

The function algebra C∞(M) ofM = (M, L, λ) is the
commutative di�erential graded algebra (Γ(Λ−•L∨), ιλ):

· · · ιλ−→ Γ(Λ2L∨)
ιλ−→ Γ(Λ1L∨)

ιλ−→ C∞(M)→ 0

A morphism (f , φ) :M→M′ induces a morphism of cdga's by
pullback: φ∗ : C∞(M′)→ C∞(M).

Proposition

(f , φ) :M→M′ is a weak equivalence i�

φ∗ : C∞(M′)→ C∞(M) is a quasi-isomorphism of cdga's.

The 3rd Japan-Taiwan Joint Conference on Differential Geometry 93



Introduction Quasi-smooth derived manifolds Homotopy �ber product of manifolds Categories of �brant objects

1 Quasi-smooth derived manifolds

2 Homotopy �ber product of manifolds

3 Categories of �brant objects

Introduction Quasi-smooth derived manifolds Homotopy �ber product of manifolds Categories of �brant objects

Homotopy �ber product

Idea of homotopy �ber products:

X ×Z P P

X Z Y

∼

Construction of P:
First construct an important case: diagonal map ∆ : Z → Z × Z

0p ∈ PZ 3 vp

p ∈ Z Z × Z 3 (p, exp∇ vp)
∆

∼

PZ = (TZ ,TZ ×Z TZ , δ), δ(vp) = (vp, vp)
Note: base space TZ is actually a neighborhood of the image of zero
section in TZ where exp∇ is de�ned.
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Z = (Z ,Z , 0)
∼−→ PZ = (TZ ,TZ ×Z TZ , δ) : (p, 0p) 7→

(0p, (0p, 0p)) is a weak equivalence because it induces

� bijection between zero loci: Z (0) = Z → {0p ∈ TZ} = Z (δ)
� quasi-isomorphism between tangent complexes:

0 TZ |p

TZ |p T (TZ )|0p = TZ |p ⊕ TZ |pi1

pr
2

PZ = (TZ ,TZ ×Z TZ , δ)→ Z × Z = (Z × Z ,Z × Z , 0) :
(vp, (vp,wp)) 7→ ((p, exp∇ vp), 0) is a �bration because the
underlying map is a submersion and the linear maps between
�bers are onto.
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General case:

P = PZ ×Z Y

Z Y

∼

P = PZ ×Z Y = (TZ ×Z Y ,TZ ×Z TZ ×Z Y , δ), δ(vp, y) = (vp, vp, y)

base space TZ ×Z Y is a manifold because TZ → Z : vp 7→ exp∇ vp
is a submersion.

P → Z is a �bration: TZ × Y → Z : (vp, y) 7→ p is a submersion.

Y → P is a weak equivalence: Z (δ) = Graph(Y → Z ) ∼= Y , and
its tangent map at y is

0 TZ |p

TY |y T (TZ ×Z Y )|(0p,y) = TZ |p ⊕ TY |yi2

pr
1
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Path space description of PZ

Fix a connection ∇ and �x an open interval I = (c, d) ⊃ [0, 1].

PZ = (PgZ ,PconTZ dt, D), where

� PgZ := {a : I → Z | ∇a′a
′ = 0} consists of short geodesics.

� a �ber PconTZ dt|a over a ∈ PgZ is

PconTZ dt|a = {α dt | α ∈ Γ(I , a∗TZ ), (a∗∇)(α) = 0}

� D : PgZ → PconTZ dt : a 7→ a′ dt is given by derivatives

PZ

Z Z × Z

ev0× ev1

∆

∼
constant
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Homotopy �ber product of manifolds

Given smooth maps X → Z ← Y , the homotopy �ber product
X ×h

Z Y is represented by a quasi-smooth derived manifold

X ×Z PZ ×Z Y = (X ×Z TZ ×Z Y ,X ×Z TZ ×Z TZ ×Z Y , δ),

δ(x , vp, y) = (x , vp, vp, y).

the classical locus Z (δ) ∼= X ×Z Y as sets.

the derived dimension
dimh(X ×Z PZ ×Z Y ) = dimX + dimY − dimZ .

if one of X → Z ← Y is a submersion, then the map
X ×Z Y → X ×Z PZ ×Z Y : (x , y) 7→ (x , 0p, y) is a weak
equivalence.
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Derived intersections

Let X ,Y be submanifolds of a manifold M. The derived
intersection X ∩hM Y of X and Y in M is understood as

X ∩hM Y := X ×h
M Y

which is represented by X ×M PM ×M Y = (N,E , D̃), where

N = X ×M TM ×M Y = X ×M PgM ×M Y
= space of short geodesics which start from a point in X and
end at a point in Y
= an open submanifold of X ×Y consisting of (x , y) ∈ X ×Y
such that x and y are su�ciently close to the set-theoretical
intersection X ∩ Y ;
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the �ber E |a over a ∈ N is

E |a = {α dt | α ∈ Γ(a∗TM), (a∗∇)(α) = 0} ∼= TM|a(0);

the section
D̃ : N → E : a 7→ a′ dt

is given by derivatives.

Furthermore,

classical locus of X ∩hM Y = set-theoretical intersection X ∩Y ;

dimh(X ∩hM Y ) = dim(X ) + dim(Y )− dim(M);

if X and Y intersect transversally, then X ∩ Y → (N,E , D̃) is
a weak equivalence.
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Some problems of quasi-smooth derived manifolds:

The category of quasi-smooth derived manifolds is NOT closed
under homotopy �ber products.

A weak equivalence is NOT necessarily invertible. To get the
expected equivalence relation, we need higher structures.

A solution:
We further extend the category of quasi-smooth derived manifolds
to a larger category � the category of derived manifolds � and
show that this category is a category of �brant objects. This
structure guarantees a solution to the above problems.
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A category of �brant objects is a category C, together with two
subcategories, the category of �brations and the category of weak
equivalences, such that

1 weak equivalences satisfy two out of three, all isomorphisms
are weak equivalences,

2 all isomorphisms are �brations,

3 every pullback of a �bration exists, and is again a �bration,

4 every pullback of a trivial �bration (i.e. a �bration which is a
weak equivalence) is a trivial �bration,

5 C has a �nal object, and all the morphisms ending at the �nal
object are �brations,

6 there exists a path space object for every object, i.e.

∃ PX

∀ X X × X
∆

∼
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Factorization Lemma (Brown)

Let C be a category of �brant objects. Any morphism X → Y in C
can be factored X

∼−→ P � Y , where X
∼−→ P is a section of a

trivial �bration, and P � Y is a �bration.

Idea of homotopy �ber products:

X ×Z P P

X Z Y

∼

In fact, Brown constructed a homotopy �ber product using path
space objects: X ×h

Z Y = X ×Z PZ ×Z Y which is well-de�ned in
the homotopy category.
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Derived manifolds

A derived manifold is a tripleM = (M, L, λ), where

M is a manifold,

L = L1 ⊕ · · · ⊕ Ln is a �nite-dimensional positively graded
vector bundle over M,

λ = (λk)k≥0 is a smooth family of curved L∞[1] structures on
L.

That is,
λk : SkL→ L, k ≥ 0,

are degree one vector bundle maps such that

Qλ ◦ Qλ = 0,

where Qλ ∈ coDer1C∞(M)(Γ(SL)) is the coderivation generated by

λ : SL =
⊕

k≥0 S
kL→ L.
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A morphism of derived manifolds (f , φ) :M→M′ is a smooth
map f : M → M ′ together with a smooth family of morphisms of
curved L∞[1] algebras φ = (φk)k≥1 : L f ∗L′.

That is,
φk : SkL→ L′, k ≥ 1,

are degree zero vector bundle maps such that

Qλ′ ◦ Fφ = Fφ ◦ Qλ,

where Fφ : Γ(SL)→ Γ(SL′) is the coalgbra morphism generated by
φ =

∑
k φk : SL→ L′.

Remark

The degree restrictions imply that there are only �nite nonzero λk
and φk .
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Explicit L∞[1] equations

First few equations in L∞[1]:

λ1(λ0) = 0.

λ2(λ0, x) = λ2
1
(x).

λ3(λ0, x , y) + λ2(λ1(x), y) + (−1)|x ||y |λ2(λ1(y), x) +
λ1(λ2(x , y)) = 0

φ1(λ0) = λ′
0
.

φ2(λ0, x) + φ1(λ1(x)) = λ′
1
(φ1(x)).

Special cases:

Manifold case: L = M × 0.

Quasi-smooth case: L = L1.
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Weak equivalences and �brations

Assume p ∈ M is a classical/Maurer-Cartan locus ofM, i.e.,
λ0(p) = 0 ∈ L1|p. De�ne Dpλ0 by

Dpλ0 : TM|p
Tλ0|p−−−→ TL1|0p ∼= TM|p ⊕ L1|p pr−→ L1|p

The tangent complex ofM at p ∈ Z (λ0) is

TM|p := TM|p
Dpλ0−−−→ L1|p

λ1|p−−→ L2|p
λ1|p−−→ · · ·

The derived dimension dimh(M) ofM = the Euler characteristic
of TM|p = dim(M)− rk(L1) + rk(L2)− · · · .
A morphism (f , φ) :M→M′ of derived manifolds induces a
cochain map

T (f , φ)|p : TM|p → TM′|f (p)
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De�nition

A morphism (f , φ) :M→M′ of derived manifolds is called a
weak equivalence if

f induces a bijection on classical loci, and

T (f , φ)|p : TM|p → TM′|f (p) is a quasi-isomorphism at each
classical locus p ∈ Z (λ0).

In particular, if there is a weak equivalenceM→M′, thenM and
M′ have the same derived dimension.

De�nition

A morphism (f , φ) :M→M′ of derived manifolds is called a
�bration if

f : M → M ′ is a submersion, and

φ1 : L→ f ∗L′ is surjective.
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Theorem (Behrend, L, Xu)

The category of derived manifolds is a category of �brant objects.

Back to the 2 problems:

Existence of homotopy �ber products of derived manifolds is
guaranteed: X ×h

Z Y = X ×Z PZ ×Z Y .
For a derived manifold Z , we construct PZ explicitly by actual
path spaces (short geodesics).

By a property of categories of �brant objects, two derived
manifolds X and Y are isomorphic in the homotopy category
i� there exists the following diagram of derived manifolds:

∃ T

X Y

∼ ∼
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Thank you!
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Kai Behrend, Hsuan-Yi Liao, and Ping Xu, Derived

Di�erentiable Manifolds, arXiv e-prints (2020),
arXiv:2006.01376.

Kenneth S. Brown, Abstract homotopy theory and generalized

sheaf cohomology, Trans. Amer. Math. Soc. 186 (1973),
419�458. MR 341469
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Rigid fibers of integrable systems on cotangent
bundles

Ryuma Orita

Abstract. We deal with classical integrable systems such as the Lagrangian
top and the Kovalevskaya top. Especially, we find a non-displaceable fiber for
each of them. This is a joint work with Morimichi Kawasaki (Aoyama Gakuin
University).

1 Introduction

Let (M,ω) be a symplectic manifold (i.e., ω is a non-degenerate closed 2-form
on M). Then, every smooth function (called Hamiltonian) H : [0, 1]×M → R with
compact support defines a time-dependent vector field on M by the formula

ω(XHt , ·) = −dHt,

where Ht = H(t, ·) for t ∈ [0, 1]. Let {φt
H}t denote the flow of XHt . Namely, it

satisfies
dφt

H

dt
= XHt ◦ φt

H , φ0
H = idM .

The time-one map φH = φ1
H is called the Hamiltonian diffeomorphism with compact

support generated by H.
A subset X ⊂ M is called displaceable from a subset Y ⊂ M if there exists a

Hamiltonian H : [0, 1] ×M → R with compact support such that φH(X) ∩ Y = ∅.
Otherwise, X is called non-displaceable from Y .

Example 1.1. Consider a height function h on the 2-sphere S2 ⊂ R3 equipped
with the standard symplectic (i.e., area) form. Then every fiber of h, other than
the equator, is displaceable from itself. Indeed, there exists a Hamiltonian circle
action which displaces the fiber from itself. On the other hand, the equator is non-
displaceable from itself since every diffeomorphism displacing the equator cannot be
area-preserving. Note that every Hamiltonian diffeomorphism is a symplectomor-
phism, and hence in dimension 2, it is area-preserving.

This work was partly supported by Osaka City University Advanced Mathematical Institute:
MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849.
This work has been supported by JSPS KAKENHI Grant Numbers JP18J00765, JP18J00335.
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Let k be a positive integer. We call a smooth map Φ = (Φ1, . . . ,Φk) : M →
Rk a moment map if {Φi,Φj} = 0 for all 1 ≤ i, j ≤ k, where {·, ·} denotes the
Poisson bracket on (M,ω). Entov and Polterovich [EP] proved the following theorem
(compare to Example 1.1).

Theorem 1.2 ([EP, Theorem 2.1]). Let (M,ω) be a closed symplectic manifold and
Φ = (Φ1, . . . ,Φk) : M → Rk a moment map. Then, there exists y0 ∈ Φ(M) such
that Φ−1(y0) is non-displaceable.

2 Main results

We consider the cotangent bundle (T ∗N,ω0) of a closed smooth n-dimensional
manifoldN where ω0 is the standard symplectic form on T ∗N . Let (q, p) be canonical
coordinates on T ∗N . Let π : T ∗N → N denote the natural projection.

Definition 2.1 ([KO, Definition 1.4]). A (time-independent) HamiltonianH : T ∗N →
R satisfies condition (⋆) if the following conditions hold.

(i) For any c ∈ R the sublevel set H−1
(
(−∞, c]

)
⊂ T ∗N is compact.

(ii) For any q ∈ N ,
H(q, 0) = min

p∈T ∗
q N

H(q, p).

For a Hamiltonian H : T ∗N → R satisfying condition (⋆), we set

mH = max
q∈N

min
p∈T ∗

q N
H(q, p) and SH = H−1(mH) ∩ 0N ,

where 0N denotes the zero-section of T ∗N .
Typical examples of Hamiltonians satisfying condition (⋆) are convex Hamilto-

nians

H(q, p) =
1

2
∥p∥2g + U(q),

where ∥ · ∥g is the dual norm of a Riemannian metric g on N and U : N → R is a
smooth potential. In this case, the value mH equals the Mañé critical value maxN U
(see [Ma]) and

SH =
{
(q, 0) ∈ T ∗N

∣∣∣ U(q) = max
N

U
}
.

Now we are in a position to state the main result.

Theorem 2.2 ([KO, Corollary of Theorem 1,7]). Let N be a closed manifold and
Φ = (Φ1, . . . ,Φk) : T

∗N → Rk a moment map. Assume that Φ1 satisfies condition
(⋆) and that the set Φ(SΦ1) is a singleton, i.e., Φ(SΦ1) = {y0} for some y0 ∈ Rk.
Then, the fiber Φ−1(y0) of Φ is non-displaceable from itself and from the zero-section
0N . Moreover, every fiber of Φ, other than Φ−1(y0), is displaceable from 0N .
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One can apply Theorem 2.2 to a broad class of classical Liouville integrable
systems. Here we provide a sample example of spinning tops. Interested readers are
cordially invited to our recent paper [KO].

Corollary 2.3 ([KO, Examples 2.9 and 2.10]). Let Φ = (Φ1,Φ2,Φ3) : T
∗SO(3)→ R3

be the energy moment map of either Lagrange top or Kovalevskaya top, where Φ1

is the Hamiltonian of the system. Then, the fiber Φ−1
(
Φ(SΦ1)

)
is non-displaceable

from itself and from the zero-section 0SO(3). Moreover, every fiber of Φ, other than
Φ−1

(
Φ(SΦ1)

)
, is displaceable from 0SO(3).
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Geometric Quantization on CR Manifolds

Chin-Yu Hsiao (Academia Sinica)

We consider a compact connected orientable CR manifold with the action of a
connected compact Lie group. Under natural pseudoconvexity assumptions we show
that the CR GuilleminSternberg map is Fredholm at the level of Sobolev spaces of
CR functions. As an application we study this map for holomorphic line bundles
which are positive near the inverse image of zero by the momentum map. We also
show that“quantization commutes with reduction” for Sasakian manifolds. This is
a joint work with Xiaonan Ma and George Marinescu.
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ing, No.1, Sec.4, Roosevelt Road, Taipei, 10617, Taiwan
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Geometric quantization on CR manifolds

Chin-Yu Hsiao

Institute of Mathematics, Academia Sinica, Taiwan

Chin-Yu Hsiao Geometric quantization on CR manifolds

Classical Guillemin-Sternberg quantization commutes with
reduction theorem

(L, hL) : a holomorphic line bundle over a connected compact
complex manifold (M, J),

hL is a Hermitian fiber metric of L.

RL : the curvature of (L, hL).

G : a connected compact Lie group with Lie algebra g.
Assume that

G acts holomorphically on (M, J),
the action lifts to a holomorphic action on L,
hL is preserved by the G -action.
! := i

2⇡RL is a G -invariant form.

Chin-Yu Hsiao Geometric quantization on CR manifolds
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Classical Guillemin-Sternberg quantization commutes with
reduction theorem

µ : M ! g⇤ : the momentum map induced by !. Assume that

0 2 g⇤ is regular,
the action of G on µ�1(0) is free.

MG := µ�1(0)/G : a complex manifold with natural complex
structure induced by J (complex reduced space).

LG := L/G : a holomorphic line bundle over MG .

Chin-Yu Hsiao Geometric quantization on CR manifolds

Classical Guillemin-Sternberg quantization commutes with
reduction theorem

Theorem (Guillemin-Sternberg (1982))

Suppose that RL > 0 on M. We have
dim H0(M, Lm)G = dim H0(MG , Lm

G ), for every m 2 N⇤.

H0(MG , Lm
G ): the space of holomorphic sections on MG with

values in Lm
G .

H0(M, Lm)G : the space of G -invariant holomorphic sections
with values in Lm.

Chin-Yu Hsiao Geometric quantization on CR manifolds
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CR viewpoint

Let X be the circle bundle of (L⇤, hL⇤
), i.e.

X :=
n

v 2 L⇤; |v |2hL⇤ = 1
o

.

X is a compact strongly pseudoconvex CR manifold with a
group action G .

X admits a S1 action e i✓: e i✓ � (z ,�) := (z , e i✓�), where �
denotes the fiber coordinate of X .

H0
b(X )G : G -invariant L2 CR functions.

Chin-Yu Hsiao Geometric quantization on CR manifolds

CR viewpoint

For every m 2 Z, let

H0
b,m(X )G :=

n
u 2 H0

b(X )G ; (e i✓)⇤u = e im✓u, for every e i✓ 2 S1
o

,

H0
b,m(XG ) :=

n
u 2 H0

b(XG ); (e i✓)⇤u = e im✓u, for every e i✓ 2 S1
o

.

H0
b(X )G := �m2ZH0

b,m(X )G , H0
b(XG ) := �m2ZH0

b,m(XG ),

Grauert: For every m 2 Z,

H0(M, Lm)G ⇠= H0
b,m(X )G , H0(MG , Lm

G ) ⇠= H0
b,m(XG ).

Chin-Yu Hsiao Geometric quantization on CR manifolds
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CR viewpoint

From Guillemin-Sternberg theorem,

H0
b,m(X )G ⇠= H0

b,m(XG ), for every m 2 Z.

H0
b (X )G ⇠= H0

b (XG ).

Chin-Yu Hsiao Geometric quantization on CR manifolds

Motivation

Generalize Guillemin-Sternberg theorem to general compact
CR manifolds.

This generalization is improtant in CR, contact and irregular
Sasaki geometry.

Chin-Yu Hsiao Geometric quantization on CR manifolds
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Motivation

µ�1(0) should determine H0(M, L)G .

Does Guillemin-Sternberg theorem holds when L is just
positive near µ�1(0)?

Chin-Yu Hsiao Geometric quantization on CR manifolds

Di�culty

The quantum spaces consist of CR functions and are infinite
dimensional.

H0
b(X ) is infinite dimensional and H0

b(X ) is not a subspace of
C1(X ).

We need new idea and new approach (Szegő kernel method
and G -invariant microlocal F.I.O. calculation).

Chin-Yu Hsiao Geometric quantization on CR manifolds
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CR manifolds

Let X be a smooth and orientable manifold of dimension
2n + 1, n � 1.

Let T 1,0X be a subbundle of CTX the complexified tangent
bundle of X .

Definition

We say that T 1,0X is a CR structure of X if

(i) dim CT 1,0
x X = n, for every x 2 X .

(ii) T 1,0X
T

T 0,1X = {0}, where T 0,1X := T 1,0X .

(iii) [V, V] ⇢ V, V = C1(X , T 1,0X ).

For a 2n + 1 dimensional smooth manifold X , if we can find a
CR structure T 1,0X on X , we call the pair (X , T 1,0X ) a CR
manifold.

Chin-Yu Hsiao Geometric quantization on CR manifolds

CR manifolds

Take a Hermitian metric h · | · i on CTX such that we have
the orthogonal decompositions:

CTX = T 1,0X � T 0,1X � CT , T 2 C1(X , TX ), kTk = 1,
CT ⇤X = T ⇤1,0X � T ⇤0,1X � C!0, !0 2 C1(X , T ⇤X ),
k!0k = 1,
h!0 , T i = �1, T ⇤0,1X = (T 1,0X � CT )?.
!0: Reeb one form, T : Reeb vector field, T ⇤0,1X : bundle of
(0, 1) forms.

Definition

For p 2 X , the Levi form Lp is the Hermitian quadratic form on

T 1,0
p X given by Lp(U, V ) = � 1

2i d!0(p)(U, V ), U, V 2 T 1,0
p X .

Chin-Yu Hsiao Geometric quantization on CR manifolds

The 3rd Japan-Taiwan Joint Conference on Differential Geometry 113



CR manifolds

We say that X is strongly psudoconvex at p 2 X if the Levi
form is positive definite at p 2 X .

We say that X is strongly psudoconvex if the Levi form is
positive definite at each point of X .

Chin-Yu Hsiao Geometric quantization on CR manifolds

CR functions

Let ⌧ : CT ⇤X ! T ⇤0,1X be the orthogonal projection.

@b = ⌧ � d : C1(X )! ⌦0,1(X ): tangential
Cauchy-Riemann(CR) operator, where
⌦0,1(X ) = C1(X , T ⇤0,1X ).

We extend @b to L2 space:
@b : Dom @b ⇢ L2(X )! L2

(0,1)(X ), where

Dom @b =
�
u 2 L2(X ); @bu 2 L2(X )

 
.

For a function u 2 L2(X ), we say that u is a CR function if
u 2 Ker @b.

If X is strongly pseudoconvex at some point of X and @b has
L2 closed range, then dim Ker @b = +1 (Boutet de
Monvel-Sjöstrand, Hsiao-Marinescu).

Chin-Yu Hsiao Geometric quantization on CR manifolds

114 OCAMI Reports Vol. 6 (2022)



CR manifolds with group action

Let (X , T 1,0X ) be a compact connected CR manifold of
dimension 2n + 1, n � 2.

Now, we assume that

X admits a d-dim’l connected compact Lie group action G
with Lie algebra g.
The Lie group action G preserves !0 and CR structure. That
is, g⇤!0 = !0 and dg(T 1,0X ) = T 1,0X , for every g 2 G ,
g : X ! X .

Goal: Study H0
b(X )G the space of global G -invariant L2 CR

functions.

Chin-Yu Hsiao Geometric quantization on CR manifolds

CR momentum map

Definition

The momentum map associated to the form !0 is the map
µ : X ! g⇤ such that, for all x 2 X and ⇠ 2 g, we have

hµ(x), ⇠i = !0(⇠X (x)), (1)

⇠ 2 g, ⇠X : the vector field on X induced by ⇠.

We will work under the following natural assumption.

Assumption

0 is a regular value of µ, the action of G on µ�1(0) is free and the
Levi form of X is positive definite near µ�1(0).

X is not necessarily strongly pseudoconvex.

Chin-Yu Hsiao Geometric quantization on CR manifolds
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CR reduction

Let XG := µ�1(0)/G .

Theorem (H/Huang, H/Ma/Marinescu)

XG is a strongly pseudoconvex CR manifold of dimension
2n � 2d + 1 with natural CR structure T 1,0XG induced from
T 1,0X .

Is H0
b(X )G ⇠= H0

b(XG )?

Chin-Yu Hsiao Geometric quantization on CR manifolds

canonical map �G

◆ : µ�1(0)! X : the natural inclusion.

◆⇤ : C1(X )! C1(µ�1(0)): the pull-back by ◆.

◆G : C1(µ�1(0))G ! C1(XG ): the natural identification.

�G := ◆G � ◆⇤ : H0
b(X )G \ C1(X )G ! H0

b(XG ) \ C1(XG ).

Chin-Yu Hsiao Geometric quantization on CR manifolds
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canonical map �G

The map �G does not extend to a bounded operator on L2.

It necessary to consider its extension to Sobolev spaces.

Chin-Yu Hsiao Geometric quantization on CR manifolds

Sobolev CR functions

For every s 2 R, put

H0
b(X )Gs :=�
u 2 Hs(X ); @bu = 0, h⇤u = u, for every h 2 G

 
.

H0
b(XG )s :=

�
u 2 Hs(XG ); @bu = 0

 
.

Hs(X ): Sobolev space of X of order s.

Chin-Yu Hsiao Geometric quantization on CR manifolds
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canonical map �G

Theorem 0 (H/Ma/Marinescu)

Suppose that @b,XG
has L2 closed range and the Levi form is

positive definite near µ�1(0).

�G extends by density to a bounded operator

�G = �G ,s : H0
b(X )Gs ! H0

b(XG )s� d
4
, for every s 2 R. (2)

Chin-Yu Hsiao Geometric quantization on CR manifolds

Geometric quantization on CR manifolds

Theorem I (H/Ma/Marinescu)

Suppose that @b,XG
has L2 closed range and the Levi form is

positive definite near µ�1(0).

For every s 2 R, the map �G ,s is Fredholm.

Ker�G ,s and (Im�G ,s)
? are finite dimensional subspaces of

C1(X ) \ H0
b(X )G and C1(XG ) \ H0

b(XG ), respectively.

Ker�G ,s and the index dim Ker�G ,s � dim (Im�G ,s)
? are

independent of s.

Chin-Yu Hsiao Geometric quantization on CR manifolds
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Geometric quantization on CR manifolds

Theorem I establishes ”quantization commutes with
reduction” for some contact manifolds.

If dim XG � 5 or X admits a transversal CR R-action or X is
a circle bundle, then @b,XG

has L2 closed range (Kohn,
Yeganefar-Marinescu).

Chin-Yu Hsiao Geometric quantization on CR manifolds

Geometric quantization on CR manifolds

There is a Pseudodi↵erential operator E on XG of order �d
4

such that

�̃G := SXG
� E � �G : H0

b(X )G ! H0
b(XG ) is Fredholm.

Chin-Yu Hsiao Geometric quantization on CR manifolds
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Applications: Complex manifolds

Apply Theorem I to circle bundles, we deduce

Theorem

Suppose that RL is positive near µ�1(0). Then, for |m| large, we
have

dim H0(M, Lm)G = dim H0(MG , Lm
G ).

Chin-Yu Hsiao Geometric quantization on CR manifolds

Examples

Let X = {(z1, z2, z3) 2 C3; |z1|4 + |z2|2 + |z3|2 = 1}.

X is a weakly pseudocovex CR manifold.

X admits a S1-action: e i✓ � (z1, z2, z3) = (e�i✓z1, e
i✓z2, e

i✓z3).

0 is a regular value of µ.

µ�1(0) = {(z1, z2, z3) 2 C3; |z1|4 = 1
3 , |z2|2 + |z3|2 = 2

3}.

X is strongly pseudoconvex near µ�1(0).

Chin-Yu Hsiao Geometric quantization on CR manifolds
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Examples

Let
X = {z 2 C6;

P6
j=1 |zj |2 + z1z3 + z2z4 + z1z3 + z2z4 = 1}.

X is a strongly pseudocovex CR manifold (not come from line
bundles).

X admits a SU(2)-action:
g � z = (g(z1, z2)

t , g(z3, z4)
t , g(z5, z6)

t), g 2 SU(2).

0 is a regular value of µ.

Chin-Yu Hsiao Geometric quantization on CR manifolds

Applications: Sasakian manifolds

Let (X , T 1,0X ) be a compact strongly pseudoconvex CR
manifold.

We say that X is torsion free if there is a Reeb vector field T
on X such that

T preserves the CR structure T 1,0X ,

We call T CR Reeb vector field on X .

Ornea and Verbitsky: A (2n + 1)-dimensional smooth
manifold X is a Sasakian manifold if and only if X is a torsion
free strongly pseudoconvex CR manifold.

Chin-Yu Hsiao Geometric quantization on CR manifolds
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Applications: Sasakian manifolds

X is a quasi-regular (regular) Sasakian manifold if the flow of
T induces a locally free (free) S1-action on X .

X is an irregular Sasakian manifold if there is an orbit of the
flow of T which is non-compact.

In this case, the flow of T induces a transversal CR R-action
on X .

We now assume that X is an irregular Sasakian manifold with
a CR Reeb vector field T and suppose that the Lie group G
preserves T and CR structure on X .

Chin-Yu Hsiao Geometric quantization on CR manifolds

Applications: Sasakian manifolds

Consider the operators

� iT : C1(X )! C1(X ),

� i bT : C1(XG )! C1(XG ),

bT is the CR Reeb vector field on XG ,

We extend �iT and �i bT to L2 spaces in the standard way.

Chin-Yu Hsiao Geometric quantization on CR manifolds
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Applications: Sasakian manifolds

Theorem (Herrmann/H/Li,)

We have that Spec (�iT ) is countable and every element in
Spec (�iT ) is an eigenvalue of �iT , where Spec (�iT ) denotes
the spectrum of �iT .

Put

Spec (�iT ) = {↵1,↵2, . . .} ⇢ R,

Spec (�i bT ) = {�1,�2, . . .} ⇢ R,

H0
b,↵(X )G :=

n
u 2 H0

b(X )G ; �iTu = ↵u
o

, ↵ 2 Spec (�iT ),

H0
b,�(XG ) :=

n
v 2 H0

b(XG ); �i bTv = �u
o

, � 2 Spec (�i bT ).

Chin-Yu Hsiao Geometric quantization on CR manifolds

Applications: Sasakian manifolds

H0
b,↵(X )G and H0

b,�(XG ) are finite dimensional subspaces of

C1(X )G and C1(XG ) respectively, for every ↵ 2 Spec (�iT ),
� 2 Spec (�i bT ).

H0
b(X )G = �↵2Spec (�iT )H

0
b,↵(X )G ,

H0
b(XG ) = ��2Spec (�i T̂ )H

0
b,�(XG ).

Chin-Yu Hsiao Geometric quantization on CR manifolds
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Quantization commutes with reduction for irregular
Sasakian manifolds

Theorem II (H/Ma/Marinescu)

There is a N 2 N such that the map

�̃G : H0
b,↵k

(X )G ! H0
b,↵k

(XG )

is an isomorphism, for every k � N and if �k 6= ↵k , where k � N,
then dim H0

b,�k
(XG ) = 0.

Chin-Yu Hsiao Geometric quantization on CR manifolds

The outline of the proof of Theorem I

Let SG be the orthogonal projection onto G -invariant CR
functions (G -invariant Szegő projection).

Let SG (x , y) 2 D 0(X ⇥ X ) be the distribution kernel of SG

(G -invariant Szegő kernel).

By developing some kind of G -invariant microlocal F.I.O.
method,

Chin-Yu Hsiao Geometric quantization on CR manifolds
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G -invariant Szegő kernel asymptotics

Theorem III (H/Ma/Marinescu)

SG is smoothing outside µ�1(0).

In an open set U of µ�1(0), we have

SG (x , y) ⌘
Z 1

0
e i�(x ,y)ta(x , y , t)dt on U ⇥ U,

a(x , y , t) ⇠P1
j=0 aj(x , y)tn� d

2 �j in S
n� d

2
1,0 (U ⇥ U ⇥ R+),

dx�(x , x) = �dy�(x , x) = �!0(x), 8x 2 µ�1(0),
Im�(x , y) � 0, Im�(x , x) ⇡ d(x , µ�1(0))2.

Chin-Yu Hsiao Geometric quantization on CR manifolds

The outline of the proof of Theorem I

For every s 2 R, consider

b�G : Hs(X )! H0
b(XG )s ⇢ Hs(XG ),

u ! SXG
� E � �G ,s � SG � u.

E : some classical pseudodi↵erential operator on XG of order
�d

4 .

Let b�⇤
G : D0(XG )! D0(X ) be the adjoint of b�G .

Let F := b�⇤
G b�G .

Ker�G ,s ⇢ Ker F \ H0
b(X )Gs .

Chin-Yu Hsiao Geometric quantization on CR manifolds

The 3rd Japan-Taiwan Joint Conference on Differential Geometry 125



The outline of the proof of Theorem I

From Theorem III and by developing some kind of complex
Fourier integral operators calculation, we can show that

F = C0(I � R)SG , C0 is a constant, R is also the same type
of operator as SG .

I � R is Fredholm.

Since Ker�G ,s ⇢ Ker F \ H0
b(X )Gs ⇢ Ker (I � R) \ H0

b(X )Gs ,
Ker�G ,s is a finite dimensional subspace of C1(X )\H0

b(X )G .

Chin-Yu Hsiao Geometric quantization on CR manifolds

The outline of the proof of Theorem I

Take some inner products ( · | · )XG ,s on Hs(XG ), for every
s 2 R.

F̂ := �G ,s�
⇤
G ,s = (I � R̂)SXG

, I � R̂ : Fredholm operator.

Since (Im�G ,s)
? ⇢ Ker (I � R̂) \ H0

b(XG )s� d
4
, (Im�G ,s)

? is

a finite dimensional subspace of C1(XG ) \ H0
b(XG ).

Chin-Yu Hsiao Geometric quantization on CR manifolds
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Algebraicity of Compact Kähler Manifolds via
Dual Positive Cones

Hsueh-Yung Lin (National Taiwan University)

Let X be a compact Kähler manifold. The celebrated Kodaira embedding theo-
rem asserts that if the Kähler cone of X contains a rational cohomology class, then
X admits a holomorphic embedding into a projective space. Instead of considering
Kähler classes, we will study the algebraicity of X when X carries a 1-dimensional
positive rational Hodge class.

(H.-Y. Lin) Department of Mathematics, National Taiwan University, No.1, Sec.4, Roo-
sevelt Rd., Taipei 10617, Taiwan
Email address : hsuehyunglin@ntu.edu.tw
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Curvatures and austere property of orbits of
path group actions induced by Hermann actions

Masahiro Morimoto

It is known that an isometric action of a Lie group on a compact symmetric
space G/K induces an isometric action of a path group on a path space. Let H be
a closed subgroup of G acting on G/K isometrically by left translations

b · (aK) := (ba)K,

where b ∈ H and aK ∈ G/K. Denote by G := H1([0, 1], G) the Hilbert Lie group
of all Sobolev H1-paths from [0, 1] to G and by Vg := L2([0, 1], g) the Hilbert space
of all L2-paths from [0, 1] to the Lie algebra g of G. G acts on Vg via the gauge
transformations

g ∗ u := gug−1 − g′g−1,

where g ∈ G, u ∈ Vg and g′ denotes the weak derivative of g. The subgroup

P (G,H × K) := {g ∈ G | g(0) ∈ H, g(1) ∈ K}

acts on Vg by the same formula. The P (G,H × K)-action is closely related to the
H-action via a natural Riemannian submersion ΦK : Vg → G/K, called the parallel
transport map ([16]). In fact ΦK is equivariant with respect to those actions and
each P (G,H × K)-orbit is the inverse image of an H-orbit under ΦK .

The concept of P (G,H × K)-actions (or more generally P (G,L)-actions for a
closed subgroup L of G×G) was originally introduced by Terng [15] in her attempt
to find infinite dimensional analogues of finite dimensional symmetric spaces and
related concepts (see also [5]). In fact if H is a symmetric subgroup of G then the
P (G,H ×K)-action can be thought of the isotropy representation of an affine Kac-
Moody symmetric space (cf. [4]). Moreover it should be also noted that P (G,H×K)-
actions serve as a tool for studying H-actions on G/K (e.g. [2]). It is a fundamental
problem to study the submanifold geometry of orbits of P (G,H×K)-actions. Notice
that every orbit of the P (G,H × K)-action is a proper Fredholm (PF) submanifold
of the Hilbert space Vg ([14]).

The H-action is called a Hermann action ([6]) if H is a symmetric subgroup of
G, that is, there exists an involutive automorphism τ of G such that H lies between
the fixed point subgroup Gτ and its identity component. We know that any orbit of

The author was partly supported by the Grant-in-Aid for Research Activity Start-up (No.
20K22309) and by Osaka City University Advanced Mathematical Institute (MEXT Joint Us-
age/Research Center on Mathematics and Theoretical Physics JPMXP0619217849).
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a Hermann action is a curvature-adapted submanifold ([1]). Moreover the principal
curvatures of orbits of Hermann actions can be described explicitly via the root
space decompositions ([12]). Furthermore any Hermann action is hyperpolar ([7],
[5]), that is, there exists a closed connected totally geodesic submanifold Σ of G/K
which is flat in the induced metric and meets every orbit orthogonally.

A submanifold is called austere ([3]) if the set of principal curvatures in the
direction of each normal vector is invariant under the multiplication by (−1). By
definition austere submanifolds are minimal submanifolds. There are many exam-
ples of austere submanifolds which are orbits of Hermann actions ([8], [12]). Since
the shape operators of PF submanifolds are compact self-adjoint operators, we can
similarly define a PF submanifold to be austere. It is an interesting problem to give
examples of austere PF submanifolds in Hilbert spaces.

In this talk we introduce the author’s recent results on the principal curvatures
and the austere property of orbits of P (G,H × K)-actions induced by Hermann
actions ([11]). We first show an explicit formula for the principal curvatures of
P (G,H×K)-orbits, which unifies and generalizes some results by Terng [14], Pinkall-
Thorbergsson [13] and Koike [9]. Then using this explicit formula we show the
relation between the following two conditions of austere properties of orbits:

(A) the orbit H · (expw)K through (expw)K is an austere submanifold of G/K,
(B) the orbit P (G,H × K) ∗ ŵ through ŵ is an austere PF submanifold of Vg,

where w ∈ g and ŵ denote the constant path with value w. To explain the results
we write σ and τ for the involutions of G associated with the symmetric subgroups
K and H respectively. Denote by g = k + m (resp. g = h + p) the decomposition
into the (±1)-eigenspaces of the differential of σ (resp. τ). Take a maximal abelian
subspace t in m ∩ p and write ∆ for the root system of t associated to the adjoint
representation of t on gC. We show the following theorem:

Theorem I. If ∆ is a reduced root system then (A) and (B) are equivalent.

Without supposing that ∆ is reduced we show the following theorem:

Theorem II.

(i) Suppose that σ = τ . Then (A) and (B) are equivalent.
(ii) Suppose that σ and τ commute. Then (A) implies (B).
(iii) Suppose that G is simple. Then (A) implies (B).

Here we note that (B) does not imply (A) in the cases (ii) and (iii). In fact we
show the following counterexample: the triple (G,K,H) = (SU(p + q), S(U(p) ×
U(q)), SO(p + q)) with the root system ∆ = {±ei,±2ei}i ∪ {±ei ± ej}i<j of type
BC and w := π

8

∑q
i=1 ei does not satisfy (A) but satisfy (B). Applying examples of

austere orbits of Hermann actions to the above theorems we obtain many examples
of infinite dimensional austere PF submanifolds in Hilbert spaces.

Finally we mention the relation between the above theorems and the author’s
previous result on the austere property of the parallel transport map ΦK . The
author showed:
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Theorem ([10]). Let N be a submanifold of G/K. Suppose that G/K is the standard
sphere. Then the following conditions are equivalent:

(i) N is an austere submanifold of G/K,
(ii) Φ−1

K (N) is an austere PF submanifold of Vg.

Since each P (G,H ×K)-orbits is the inverse image of an H-orbit under ΦK , Theo-
rems I and II are extensions of this theorem.
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Sec. 1 - The path group actions (1/5)

Setting
G: connected compact semisimple Lie group with Lie algebra g,

K: symmetric subgroup of G with Lie algebra k.
i.e. ∃σ : G → G: involutive automorphism s.t. Gσ

0 ⊂ K ⊂ Gσ.

g = k + m: ±1-eigenspace decomposition by σ : g → g.

Equip G with a bi-inv. Riem. metric induced by Killing form,
Equip G/K with the normal homogeneous metric.

Then G/K is a symmetric space of compact type.

The projection π : G → G/K, a 7→ aK is a Riemannian
submersion with totally geodesic fiber.

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5

Sec. 1 - The path group actions (2/5)

Let
H: closed subgroup of G with Lie algebra h.
(Later H is assumed to be a symmetric subgroup of G.)

Isometric actions
Then H acts on G/K by left translation, namely

b · (aK) := (ba)K, b ∈ H, aK ∈ G/K

Moreover the subgroup H × K acts on G by

(b, c) · a := bac−1, (b, c) ∈ H × K, a ∈ G

Furthermore a path group P (G,H ×K) acts on a path space Vg

via the gauge transformations (: next page)
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Sec. 1 - The path group actions (3/5)

Definition (Terng 1989, Pinkall-Thorbergsson 1990, Terng 1995)

G := H1([0, 1], G): the set of all Sobolev H1-paths from [0, 1]
to G with pointwise multiplication.

⇒ G is a Hilbert Lie group (i.e. Hilbert mfd with C∞ group str.)

Vg := L2([0, 1], g): the set of all L2-paths from [0, 1] to g.

⇒ Vg is a separable Hilbert space.

G acts on Vg via the gauge transformations:

g ∗ u := gug−1 − g′g−1, g ∈ G, u ∈ Vg

The subgroup

P (G,H × K) := {g ∈ G | g(0) ∈ H, g(1) ∈ K}
acts on Vg by the same formula.

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5

Sec. 1 - The path group actions (4/5)

Proposition (Terng 1989, Palais-Terng 1988)

(1) The action P (G,H ×K) ↷ Vg is a proper Fredholm (PF) action
i.e. (a) P (G,H × K) × Vg → Vg × Vg, (g, u) 7→ (g ∗ u, u) is proper,

(b) ∀u ∈ Vg，the map P (G,H × K) → Vg, g 7→ g ∗ u is Fredholm.

(2) Every orbit of the P (G,H × K)-actions is a proper Fredholm
(PF) submanifold of the Hilbert space Vg.

i.e. (a) Infinite dimensional Morse theory can be applied,
(b) The shape operators are compact self-adjoint operators.

Motivations
Examples of (homogeneous) PF submanifolds in Hilbert spaces.

P (G,H × K)-actions serve as a tool for studying H-actions.

P (G,H × K)-actions are the isotropy representations of affine
Kac-Moody symmetric spaces (if H is a symmetric subgrp of G)
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Sec. 1 - The path group actions (5/5)

Fundamental Problem
Study the submanifold geometry of orbits of P (G,H ×K)-actions.

In this talk
We study the principal curvatures and the austere property of orbits
of P (G,H × K)-actions.

Here, a submanifold is called austere (Harvey-Lawson 1982) if for
each normal vector ξ the set of eigenvalues with multiplicities of the
shape operator Aξ is invariant under the multiplication by (−1).

To do this, we will (later) suppose that H is a symmetric subgroup
of G. In this case the H-action is called a Hermann action.

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5

Sec. 2 - The parallel transport map (1/7)

Note
G/K: symmetric space of compact type,
π : G → G/K: natural Riemannian submersion.
H: closed subgroup of G acting on G/K by left translation.

Then
(a) π is equivariant with respect to H- and H × K-actions via p1,
(b) orbits satisfy: (H × K) · a = π−1(H · aK) for each a ∈ G.

There is a natural Riemannian submersion Φ : Vg → G ,
which has similar equivariant property (: next page)
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Sec. 2 - The parallel transport map (2/7)

Definition (Terng 1995, Terng-Thorbergsson 1995)

G: conn. compact Lie group with a bi-invariant Riem. met.
G := H1([0, 1], G) and Vg := L2([0, 1], g): as before.
The parallel transport map is defined by

Φ : Vg → G
∈ ∈

u 7→ Φ(u)
def
:= gu(1).

Here, gu ∈ G is defined by the ODE

{
g−1

u g′
u = u,

gu(0) = e ∈ G.

Definition
The map Ψ : G → G×G is defined by Ψ(g) := (g(0), g(1)) for g ∈ G

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5

Sec. 2 - The parallel transport map (3/7)

Theorem (Terng-Thorbergsson 1995)

The parallel transport map Φ : Vg → G satisfies:
(1) Φ is a Riemannian submersion,
(2) any two fibers of Φ are congruent under the isometry of Vg,
(3) Φ is a principal Ωe(G)-bundle. (Ωe(G): the based loop group.)
(4) N : closed submanifold of G =⇒ Φ−1(N): PF submanifold of Vg

Proposition (Terng 1995)

Let H be a closed subgroup of G.
(a) Φ is equivariant with respect to
P (G,H × K)- and H × K-actions via Ψ,

(b) P (G,H × K) ∗ u = Φ−1((H × K) · a) for u ∈ Vg and a := Φ(u).
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Sec. 2 - The parallel transport map (4/7)

Generalization (Terng-Thorbergsson 1995)

The composition ΦG/K := π ◦ Φ : Vg → G → G/K satisfies:
(1) ΦG/K is a Riemannian submersion,
(2) any two fibers of ΦG/K are congruent under the isometry of Vg,
(3) ΦG/K is a principal P (G, {e} × K)-bundle.
(4) N : closed submanifold of G/K =⇒ Φ−1

G/K(N): PF submanifold
of Vg

Generalization (Terng 1995)

Let H be a closed subgroup of G.
(a) ΦG/K is equivariant with resp. to P (G,H × K)- and H-actions,
(b) P (G,H × K) ∗ u = Φ−1

G/K(H · aK) for u ∈ Vg and a = Φ(u).

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5

Sec. 2 - The parallel transport map (5/7)

Theorem (M. 2019)：the second fundamental form

N : closed submanifold of G/K. ∀X, Y ∈ T0̂Φ
−1
G/K(N),

α
Φ−1

G/K
(N)

(X, Y ) = αN
(∫ 1

0 X(t)mdt,
∫ 1
0 Y (t)mdt

)

+1
2

[∫ 1
0 X(t)kdt,

∫ 1
0 Y (t)mdt

]⊥
− 1

2

[∫ 1
0 X(t)mdt,

∫ 1
0 Y (t)mdt

]⊥

+1
2

[∫ 1
0 X(t)dt,

∫ 1
0 Y (t)dt

]⊥
−

(∫ 1
0

[∫ t
0 X(s)ds, Y (t)

]
dt

)⊥
．

Theorem (M. 2019)：the shape operator

N : closed submanifold of G/K. ∀X ∈ T0̂Φ
−1
G/K(N), ξ ∈ T⊥

0̂
Φ−1

G/K(N),

A
Φ−1

G/K
(N)

ξ (X) =

AN
ξ

(∫ 1
0 X(t)mdt

)
− 1

2

[∫ 1
0 X(t)mdt, ξ

]
k
+ 1

2

[∫ 1
0 X(t)kdt, ξ

]⊤

−1
2

[∫ 1
0 X(t)dt, ξ

]⊤
+

[∫ t
0 X(s)ds, ξ

]
−

[∫ 1
0

∫ t
0 X(s)dsdt, ξ

]⊥
．
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Sec. 2 - The parallel transport map (6/7)

Theorem (Koike 2002, M. 2019, M. 2021)：principal curvatures

N：curvature adapted submfd of G/K．
(i.e. ad(ξ)2 : m → m preserves TeKN and commutes with AN

ξ )

{λ}: eigenvalue of AN
ξ ，{

√
−1ν}: eigenvalue of ad(ξ) : g → g.

Then the principal curvatures of Φ−1
G/K(N) in direction ξ is{

0, λ,
ν

nπ
,

ν

arctan ν
λ

+ mπ

}

λ, ν > 0, n ∈ Z\{0}, m ∈ Z.
eigenfunctions and multiplicities are given in the next page:

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5

Sec. 2 - The parallel transport map (7/7)

Theorem (Koike 2002, M. 2019, M. 2021)：principal curvatures

Set µ(ν, λ,m) :=
ν

arctan ν
λ

+ mπ
．

eigenval. basis of eigenfunctions multip.

0 {x0
i sin nπt, y

(0,λ)
j cos nπt, y

(0,⊥)
l cos nπt}n∈Z≥1, λ, i, j, l ∞

λ {y
(0,λ)
j }j m(0, λ)

ν

nπ
{x

(ν,⊥)
r sin nπt − y

(ν,⊥)
r cos nπt}r m(ν, ⊥)

µ(ν, λ, m)
{∑

n∈Z
ν

nπµ+ν (x
(ν,λ)
k sin nπt + y

(ν,λ)
k cos nπt)

}
k

m(ν, λ)
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Sec. 3 - Hermann actions (1/6)

Suppose
H: symmetric subgroup of G
with involution τ : G → G s.t. Gτ

0 ⊂ H ⊂ Gτ .
g = h + p: ±1-eigenspace decomposition
⇒ the action H ↷ G/K is called a Hermann action.

Proposition (Heintze-Palais-Terng-Thorbergsson 1995)

Hermann actions are hyperpolar. That is,
∃Σ: closed connected totally geodesic submanifold Σ of G/K s.t.

(1) Σ meets every H-orbit orthogonally,
(2) Σ is flat in the induced metric.

(Such a Σ is called a section of the action H ↷ G/K.)

In fact, take a maximal abelian subspace t in m ∩ p.
⇒ Σ := π(exp t) is a section of the Hermann action.

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5

Sec. 3 - Hermann actions (2/6)

Two kinds of decompositions
Root space decomposition with respect to
a maximal abelian subspace t in m ∩ p (⊂ m)

k = k0 +
∑

α∈∆+

kα, m = m0 +
∑

α∈∆+

mα,

kα = {x ∈ k | ∀η ∈ t, ad(η)2x = −〈α, η〉2x}.
mα = {y ∈ m | ∀η ∈ t, ad(η)2y = −〈α, η〉2y}.

The eigenspace decomposition of σ ◦ τ : g → g:

gC =
∑

ϵ∈U(1)

g(ϵ),

g(ϵ) = {z ∈ gC | (σ ◦ τ)(z) = ϵz}.
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Sec. 3 - Hermann actions (3/6)

Proposition (Ohno 2021)

Take w ∈ t. Set a := expw. Consider the orbit N := H · aK
through aK. Then

TaKN = dLa(
∑

ϵ∈U(1)≥0

ϵ ̸=1

m0,ϵ +
∑

α∈∆+

∑

ϵ∈U(1)

⟨α,w⟩+ 1
2

arg ϵ/∈πZ

mα,ϵ ),

T⊥
aKN = dLa( t +

∑

α∈∆+

∑

ϵ∈U(1)

⟨α,w⟩+ 1
2

arg ϵ∈πZ

mα,ϵ ).

Moreover the first decomposition is just the eigenspace
decomposition of the family shape operators {AN

dLa(ξ)}ξ∈t :

dLa(m0,ϵ) : the eigenspace of eigenvalue 0,

dLa(mα,ϵ) : the eigenspace of eigenvalue −〈α, ξ〉 cot(〈α,w〉 +
1

2
arg ϵ).
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Sec. 3 - Hermann actions (4/6)

Corollary (Goertsches-Thorbergsson 2007)

Suppose that σ ◦ τ = τ ◦ σ. Then

TaKN = dLa( m0 ∩ h +
∑

α∈∆+

⟨α,w⟩/∈πZ

mα ∩ p +
∑

α∈∆+

⟨α,w⟩+π/2/∈πZ

mα ∩ h ),

T⊥
aKN = dLa( t +

∑

α∈∆+

⟨α,w⟩∈πZ

mα ∩ p +
∑

α∈∆+

⟨α,w⟩+π/2∈πZ

mα ∩ h ),

dLa(m0 ∩ h) : the eigenspace of eigenvalue 0,

dLa(mα ∩ p) : the eigenspace of eigenvalue −〈α, ξ〉 cot〈α,w〉,
dLa(mα ∩ h) : the eigenspace of eigenvalue 〈α, ξ〉 tan〈α,w〉.
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Sec. 3 - Hermann actions (5/6)

Corollary
Suppose that σ = τ . Then

TaKN = dLa(
∑

α∈∆+

⟨α,w⟩/∈πZ

mα ),

T⊥
aKN = dLa( t +

∑

α∈∆+

⟨α,w⟩∈πZ

mα ),

dLa(mα) : the eigenspace of eigenvalue −〈α, ξ〉 cot〈α,w〉.

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5

Sec. 3 - Hermann actions (6/6)

Concerning hyperpolar actions, the following theorem is known:

Theorem (Terng 1995, Heintze-Palais-Terng-Thorbergsson 1995,

Gorodski-Thorbergsson 2002 )

The following conditions are equivalent:

(1) The action H ↷ G/K is hyperpolar (with section π(exp t))

(2) The action H × K ↷ G is hyperpolar (with section exp t)

(3) The action P (G,H × K) ↷ Vg is hyperpolar (with section t̂)

(t: maximal abelian subalg. in m ∩ p, t̂: set of constant paths in t)
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Sec. 4 - The principal curvatures (1/3)

Theorem (M. 2021)

H: symmetric subgroup of G. Take w ∈ t.
Consider the orbit P (G,H × K) ∗ ŵ through ŵ ∈ t̂.
Then the principal curvatures in the direction of ξ̂ ∈ Vg for ξ ∈ t is

{0} ∪
{ 〈α, ξ〉

−〈α,w〉 − 1
2
arg ϵ + mπ

∣∣∣∣
α ∈ ∆+, ϵ ∈ U(1),
〈α,w〉 + 1

2
arg ϵ /∈ πZ, m ∈ Z

}

∪
{ 〈α, ξ〉

nπ

∣∣∣∣
α ∈ ∆+, n ∈ Z\{0},
∃ϵ ∈ U(1) s.t. 〈α,w〉 + 1

2
arg ϵ ∈ πZ

}

The multiplicities are respectively

∞, dim mα,ϵ,
∑

α

dim mα,ϵ
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Sec. 4 - The principal curvatures (2/3)

Corollary
Suppose that σ ◦ τ = τ ◦ σ. Then the principal curvatures of the
orbit P (G,H × K) ∗ ŵ in the direction of ξ̂ ∈ Vg for ξ ∈ t is

{0} ∪
{ 〈α, ξ〉

−〈α,w〉 + mπ

∣∣∣∣ α ∈ ∆+, 〈α,w〉 /∈ πZ, m ∈ Z
}

∪
{ 〈α, ξ〉

−〈α,w〉 − 1
2
π + mπ

∣∣∣∣ α ∈ ∆+, 〈α,w〉 +
π

2
/∈ πZ, m ∈ Z

}

∪
{ 〈α, ξ〉

nπ

∣∣∣∣ α ∈ ∆+, 〈α,w〉 ∈ πZ, n ∈ Z\{0}

or α ∈ ∆+, 〈α,w〉 +
π

2
∈ πZ, n ∈ Z\{0}

}
.

The multiplicities are respectively
∞, dim(mα ∩ p), dim(mα ∩ h), dim(mα ∩ p) + dim(mα ∩ h)
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Sec. 4 - The principal curvatures (3/3)

Corollary
Suppose that σ = τ . Then the principal curvatures of the orbit
P (G,H × K) ∗ ŵ in the direction of ξ̂ ∈ Vg for ξ ∈ t is

{0} ∪
{ 〈α, ξ〉

−〈α,w〉 + mπ

∣∣∣∣ α ∈ ∆+, 〈α,w〉 /∈ πZ, m ∈ Z
}

∪
{ 〈α, ξ〉

nπ

∣∣∣∣ α ∈ ∆+, 〈α,w〉 ∈ πZ, n ∈ Z\{0}
}
.

The multiplicities are respectively

∞, dim mα, dim mα
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Sec. 5 -The austere property (1/4)

Definition (Harvey-Lawson 1982)

N : a submanifold of Riemannian manifold M
N is called austere
⇔
def.

∀p ∈ N , ∀ξ ∈ T⊥
p N , the set of eigenvalues with multiplicities of

the shape operator Aξ is invariant under the multip. by (−1).

Remark

Austere submanifolds are minimal submanifolds.

Problem

Give example of austere submanifolds.

Note

We can define a PF submanifold in a Hilbert space to be austere
by the similar way

142 OCAMI Reports Vol. 6 (2022)



Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5

Sec. 5 -The austere property (2/4)

Question
Let w ∈ t (⊂ m ∩ p).
The relation between the following two conditions? (w ∈ t):

(A) the orbit H · (expw)K is an austere submanifold of G/K,

(B) the orbit P (G,H × K) ∗ ŵ is an austere PF submanifold of Vg

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5

Sec. 5 -The austere property (3/4)

Theorem I (M. 2021)

Suppose ∆ is a reduced root system. Then (A) and (B) are
equivalent.

Theorem II (M. 2021)

(1) Suppose that σ = τ . Then (A) and (B) are equivalent.
(2) Suppose that σ ◦ τ = τ ◦ σ. Then (A) implies (B).
(3) Suppose that G is simple. Then (A) implies (B).

Counterexample to the converse of Theorem II (ii) and (iii) (M. 2021)

Consider the triple
(G,H,K) = (SU(p + q), S(U(p) × U(q)), SO(p + q))

and the orbit through w := π
8
(e1 + · · · + eq).

(Here the root system ∆ = {ei, 2ei}i ∪ {ei ± ej}i<j is of type BC.)
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Sec. 5 -The austere property (4/4)

Remark
Austere orbits of Hermann actions were classified
by Ikawa and Ohno (in the case that G is simple.)

Applying their results to our theorems,
we can obtain austere orbits of P (G,H × K)-actions.

There exist many austere submanifolds
in infinite dimensional Hilbert spaces.
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Thank you very much for your attention !
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Rigidity and Symmetry of Cylindrical
Handlebody-Knots

Yi-Sheng Wang (Academia Sinica)

The theory of handlebody-knots studies handlebodies in three dimensions; in the
case of a genus one handlebody embedded in the 3-sphere, the theory is equivalent to
the classical knot theory. The talk concerns symmetries of a genus two handlebody-
knot measured by its symmetry group, the path components of the space of self-
homeomorphisms of the 3-sphere preserving the handlebody-knot setwise. It follows
from a recent result of Funayoshi-Koda that a genus two handlebody-knot has a
finite symmetry group if and only if it is hyperbolic―the exterior admits a hyperbolic
structure with totally geodesic boundary―or irreducible, atoroidal, cylindrical―the
exterior contains no essential disks or tori but contains an essential annulus. Little
however is known about the structure of these finite groups. The talk will start
with a quick tour through some basics of essential surfaces of non-negative Euler
characteristic in a handlebody-knot exterior, and move on from there, I will survey
some known results on symmetry groups of cylindrical handlebody-knots.

(Y.-S. Wang) Academia Sinica, Institute of Mathematics, 106 Taipei City, Taiwan
Email address : yisheng@gate.sinica.edu.tw

The author was partly supported by the Ministry of Science and Technology, Taiwan 110-2115-
M-001-004-MY3. .
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Symmetries of Handlebody-Knots

Yi-Sheng Wang
Academia Sinica, Institute of Mathematics

at Japan-Taiwan Joint Conference on Di↵erential Geometry

November 2, 2021
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1 Handlebody-knot symmetries

2 Symmetries and essential surfaces

3 Cylindrical handlebody-knots with finite symmetries
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Handlebody-knots

- A handlebody: a 3-ball with some 1-handles attached.

genus 2 genus 1

a donut

''

a handcu↵

Definition

A handlebody-knot (S3, HK) is an embedded handlebody HK in the
3-sphere S3.

- A knot is a genus one handlebody-knot.
- Today: genus two handlebody-knots.

Y.-S. Wang Symmetries 3 / 1
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3-sphere S3.
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Symmetries of handlebody-knots

Examples:

– A self-homeomorphism of S3 preserving HK is a symmetry.

Chiral: no orientation-reserving homeomorphism of S3 preserving HK.

Examples:

How to compute them?

Are they all finite groups?

Y.-S. Wang Symmetries 4 / 1

Symmetries of handlebody-knots

Examples:

orientation-preserving. mirror (orientation-reversing).

– A self-homeomorphism of S3 preserving HK is a symmetry.

Chiral: no orientation-reserving homeomorphism of S3 preserving HK.

Examples:

How to compute them?

Are they all finite groups?

Y.-S. Wang Symmetries 4 / 1
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Symmetries of handlebody-knots

Definition (Symmetry Group)

Given (S3, HK), the symmetry group Sym(S3, HK) is the group of
connected components ⇡0(Homeo(S3, HK)) of the space Homeo(S3, HK)
of homeomorphisms of S3 preserving HK setwise.

- The group of isotopy classes of self-homeomorphisms of (S3, HK).

- Orientation-preserving: 7! positive symmetry group Sym+(S3, HK).

- Sym(S3, HK)/Sym+(S3, HK) is trivial , (S3, HK) is chiral.

Examples:

How to compute them?

Are they all finite groups?

Y.-S. Wang Symmetries 4 / 1

Symmetries of handlebody-knots

Definition (Symmetry Group)

Given (S3, HK), the symmetry group Sym(S3, HK) is the group of
connected components ⇡0(Homeo(S3, HK)) of the space Homeo(S3, HK)
of homeomorphisms of S3 preserving HK setwise.

- Orientation-preserving: 7! positive symmetry group Sym+(S3, HK).
Examples:

Sym(S3, HK) = Sym+(S3, HK) = Z2.

How to compute them?
Are they all finite groups?

Y.-S. Wang Symmetries 4 / 1
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Symmetries of handlebody-knots

Definition (Symmetry Group)

Given (S3, HK), the symmetry group Sym(S3, HK) is the group of
connected components ⇡0(Homeo(S3, HK)) of the space Homeo(S3, HK)
of homeomorphisms of S3 preserving HK setwise.

Examples:

Sym(S3, HK) = Sym+(S3, HK) = Z2 ⇥ Z2.

How to compute them?

Are they all finite groups?

Y.-S. Wang Symmetries 4 / 1

Symmetries and essential surfaces

Essential surfaces in the knot exterior E (HK) := S3 �HK.

Essential disks in E (HK):

An essential disk. An inessential disk.

Essential torus in E (HK):

9 essential disk or torus in E (HK) ) |Sym+(S3, HK)| =1.

Y.-S. Wang Symmetries 5 / 1
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Symmetries and essential surfaces

Essential surfaces in the knot exterior E (HK) := S3 �HK.

Essential disks in E (HK):

Essential torus in E (HK):

Essential torus.
Inessential torus.

9 essential disk or torus in E (HK) ) |Sym+(S3, HK)| =1.
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Symmetries and essential surfaces

Essential surfaces in the knot exterior E (HK) := S3 �HK.

Essential disks in E (HK):

Essential torus in E (HK):

Inessential torus.
Inessential torus.

9 essential disk or torus in E (HK) ) |Sym+(S3, HK)| =1.
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Symmetries and essential surfaces

Essential surfaces in the knot exterior E (HK) := S3 �HK.

Essential disks in E (HK):

Essential torus in E (HK):

9 essential disk or torus in E (HK) ) |Sym+(S3, HK)| =1.

An essential disk. An inessential torus.
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Symmetries and essential surfaces

Essential annulus in E (HK):

Essential annulus. Inessential annulus.

Y.-S. Wang Symmetries 6 / 1
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Symmetries and essential surfaces

Essential annulus in E (HK):

Essential annulus. Inessential annulus.

Y.-S. Wang Symmetries 6 / 1

Symmetries and essential surfaces

Essential annulus in E (HK):

An essential disk.

Definition

A handlebody-knot (S3, HK) is called

irreducible if E (HK) contains no essential disks,

atoroidal if E (HK) contains no essential tori, and

acylindrical if E (HK) contains no essential annuli.

Y.-S. Wang Symmetries 6 / 1
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Symmetries and essential surfaces

Essential annulus in E (HK):

Definition

A handlebody-knot (S3, HK) is called

irreducible if E (HK) contains no essential disks,
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acylindrical if E (HK) contains no essential annuli.
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Symmetries and essential surfaces

Essential annulus in E (HK):

Definition

A handlebody-knot (S3, HK) is called

irreducible if E (HK) contains no essential disks,

atoroidal if E (HK) contains no essential tori, and

acylindrical if E (HK) contains no essential annuli.
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Why disks, tori and annuli?

Theorem (Hyperbolization)

If (S3, HK) is irreducible, atoroidal and acylindrical, E (HK) admits a
hyperbolic structure of finite volume with totally geodesic boundary.

) If (S3, HK) irreducible, atoroidal and acylindrical, Sym(S3, HK) is
finite.

Theorem (Funayoshi-Koda, ’20)

Sym(S3, HK) is finite , (S3, HK) is hyperbolic or irreducible, atoroidal
and cylindrical.

Can we classify these finite symmetry groups?

e.g. Genus= 1, a finite symmetry group is either cyclic or dihedral.

Today: irreducible, atoroidal, cylindrical handlebody-knots.

i.e. E (HK) contains an essential annulus but no essential disks or tori.
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Cylindrical handlebody-knots

Cylindrical handlebody-knots could be reducible or toroidal.

Toroidal, cylindrical (S3, HK). Essential torus and annulus.

When is a cylindrical handlebody-knot irreducible and atoroidal
(recognition problem)?
Annular operation:

1 A ⇢ E (HK) an essential annulus,
2 HKA := HK [N(A),
3 E (HKA) := S3 �HKA.

Annular operation often simplifies (S3, HK):
– especially when HKA is also a handlebody.
– A is called unknotting if (S3, HKA) is trivial.

Y.-S. Wang Symmetries 8 / 1

Cylindrical handlebody-knots

Cylindrical handlebody-knots could be reducible or toroidal.

Essential torus and annulus.

When is a cylindrical handlebody-knot irreducible and atoroidal
(recognition problem)?
Annular operation:

1 A ⇢ E (HK) an essential annulus,
2 HKA := HK [N(A),
3 E (HKA) := S3 �HKA.

Annular operation often simplifies (S3, HK):
– especially when HKA is also a handlebody.
– A is called unknotting if (S3, HKA) is trivial.

Y.-S. Wang Symmetries 8 / 1

160 OCAMI Reports Vol. 6 (2022)



Cylindrical handlebody-knots

When is a cylindrical handlebody-knot irreducible and atoroidal
(recognition problem)?
Annular operation:

1 A ⇢ E (HK) an essential annulus,
2 HKA := HK [N(A),
3 E (HKA) := S3 �HKA.

Annular operation often simplifies (S3, HK):
– especially when HKA is also a handlebody.
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Y.-S. Wang Symmetries 8 / 1

Cylindrical handlebody-knots

When is a cylindrical handlebody-knot irreducible and atoroidal
(recognition problem)?
Annular operation:

1 A ⇢ E (HK) an essential annulus,
2 HKA := HK [N(A),
3 E (HKA) := S3 �HKA.

Annular operation often simplifies (S3, HK):
– especially when HKA is also a handlebody.
– A is called unknotting if (S3, HKA) is trivial.

Y.-S. Wang Symmetries 8 / 1

The 3rd Japan-Taiwan Joint Conference on Differential Geometry 161



Cylindrical handlebody-knots

When is a cylindrical handlebody-knot irreducible and atoroidal
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Cylindrical handlebody-knots

When is a cylindrical handlebody-knot irreducible and atoroidal
(recognition problem)?
Annular operation:

1 A ⇢ E (HK) an essential annulus,
2 HKA := HK [N(A),
3 E (HKA) := S3 �HKA.

Annular operation often simplifies (S3, HK):
– especially when HKA is also a handlebody.
– A is called unknotting if (S3, HKA) is trivial.
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Cylindrical handlebody-knots

When is a cylindrical handlebody-knot irreducible and atoroidal
(recognition problem)?

Annular operation:
1 A ⇢ E (HK) an essential annulus,
2 HKA := HK [N(A),
3 E (HKA) := S3 �HKA.

Annular operation often simplifies (S3, HK):

– especially when HKA is also a handlebody.
– A is called unknotting if (S3, HKA) is trivial.

Theorem (W. ’21)

E (HKA) contains no essential disks ) (S3, HK) is irreducible.

E (HKA) contains no essential tori; @A is not an (2m, 2n)-torus link,
|m|, |n| > 1 ) (S3, HK) is atoroidal.

Y.-S. Wang Symmetries 8 / 1
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Cylindrical handlebody-knots

 

Theorem (W. ’21)

E (HKA) contains no essential disks ) (S3, HK) is irreducible.
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|m|, |n| > 1 ) (S3, HK) is atoroidal.
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Cylindrical handlebody-knots

Irreducible, atoroidal.

Theorem (W. ’21)

E (HKA) contains no essential disks ) (S3, HK) is irreducible.

E (HKA) contains no essential tori; @A is not an (2m, 2n)-torus link,
|m|, |n| > 1 ) (S3, HK) is atoroidal.
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Cylindrical handlebody-knots

Irreducible, atoroidal.

(

Irreducible, atoroidal.

Theorem (W. ’21)

E (HKA) contains no essential disks ) (S3, HK) is irreducible.

E (HKA) contains no essential tori; @A is not an (2m, 2n)-torus link,
|m|, |n| > 1 ) (S3, HK) is atoroidal.

Y.-S. Wang Symmetries 8 / 1

Classify essential annuli

p
Recognition problem: determine the irreducibility and atoroidality.

– Assume (S3, HK) is irreducible, atoroidal, and cylindrical.

Computation problem: determine the structure of Sym(S3, HK).

Classification of essential annuli.

Y.-S. Wang Symmetries 9 / 1
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Classify essential annuli

Computation problem: determine the structure of Sym(S3, HK).

Classification of essential annuli.

Theorem (Koda-Ozawa ’15)

Essential annuli A in E (HK) are classified into four types:

I. Exactly one component of @A bounds a disk in HK.

Y.-S. Wang Symmetries 9 / 1

Classify essential annuli

Computation problem: determine the structure of Sym(S3, HK).
Classification of essential annuli.

Theorem (Koda-Ozawa ’15)

Essential annuli A in E (HK) are classified into four types:

I. Exactly one component of @A bounds a disk in HK.

II. @A bound no disks in HK and non-parallel in @HK and 9 a disk in
HK disjoint from A.

Y.-S. Wang Symmetries 9 / 1
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Classify essential annuli

Computation problem: determine the structure of Sym(S3, HK).

Classification of essential annuli.

Theorem (Koda-Ozawa ’15)

Essential annuli A in E (HK) are classified into four types:

I. Exactly one component of @A bounds a disk in HK.

II. @A bound no disks in HK and non-parallel in @HK and 9 a disk in
HK disjoint from A.

III. @A bound no disks in HK and parallel in @HK, and 9 a disk in HK
disjoint from A.

IV. @A bound no disks in HK and parallel in @HK, and no disks in HK
disjoint from A.

HKA is a handlebody ) A is of type I or II.

Y.-S. Wang Symmetries 9 / 1

Why classification?

Possible configurations of A in relation to HK.

– Apply spatial graph theory, knot tunnel theory, and mapping class
groups of surfaces.

Theorem (W. ’21)

If A is a unique unknotting annulus of type I, then Sym(S3, HK) is trivial.

Theorem (W. ’21)

If A is a unique annulus of type II with a boundary slope pair (p, p), p 6= 0,
then (S3, HK) is chiral, and Sym(S3, HK) is trivial, Z2 or Z2 ⇥ Z2.

Y.-S. Wang Symmetries 10 / 1
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Boundary slope pair of a type II annulus

Theorem (W. ’21)

If A is a unique annulus of type II with a boundary slope pair (p, p),
p 6= 0, then (S3, HK) is chiral, and Sym(S3, HK) is trivial, Z2 or Z2 ⇥ Z2.

Y.-S. Wang Symmetries 11 / 1

Boundary slope pair of a type II annulus

– Cut HK along the disjoint disk D.

– HK� N̊(D) are two tori.

– The slope pair is the slopes of @A on the two solid tori.

Slope pair can only be (p
q , q

p ) or (p
q , pq), p, q 2 Z.

Y.-S. Wang Symmetries 11 / 1
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Boundary slope pair of a type II annulus

– Cut HK along the disjoint disk D.

– HK� N̊(D) are two tori.

– The slope pair is the slopes of @A on the two solid tori.

Slope pair can only be (p
q , q

p ) or (p
q , pq), p, q 2 Z.

– HKA is a handlebody , the slope pair is (p
q , pq).

Y.-S. Wang Symmetries 11 / 1

170 OCAMI Reports Vol. 6 (2022)



Boundary slope pair of a type II annulus

– Cut HK along the disjoint disk D.
– HK� N̊(D) are two tori.
– The slope pair is the slopes of @A on the two solid tori.

Slope pair can only be (p
q , q

p ) or (p
q , pq), p, q 2 Z.

Theorem (W. ’21)

If A is a unique annulus of type II with a boundary slope pair (p, p), p 6= 0,
then (S3, HK) is chiral, and Sym(S3, HK) is trivial, Z2 or Z2 ⇥ Z2.
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Boundary slope pair of a type II annulus

– Cut HK along the disjoint disk D.

– HK� N̊(D) are two tori.

– The slope pair is the slopes of @A on the two solid tori.

Slope pair can only be (p
q , q

p ) or (p
q , pq), p, q 2 Z.

Theorem (W. ’21)

If A is a unique annulus of type II with a boundary slope pair (p, p), p 6= 0,
then (S3, HK) is chiral, and Sym(S3, HK) is trivial, Z2 or Z2 ⇥ Z2.

1 Sym+(S3, HK)! MCG(A) is injective.

– MCG(A) ' Z2 ⇥ Z2.

2 (S3, HK) is chiral.

Q. How to show uniqueness?

Y.-S. Wang Symmetries 11 / 1
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The Jacobi Spectrum of Null-Torsion
Holomorphic Curves in the 6-Sphere

Jesse Madnick (National Center for Theoretical Sciences)

Minimal surfaces are area-minimizing to first order, but not necessarily to second-
order. The extent to which a minimal surface is (or isn’t) area-minimizing to second-
order is encoded by its Jacobi operator. However, for a given minimal surface,
computing the spectrum of the Jacobi operator ― i.e., the eigenvalues and their
multiplicities ― is a non-trivial task. In this talk, I will discuss a class of minimal
surfaces in the round 6-sphere known as “null-torsion holomorphic curves.” These
surfaces are of interest to G2 geometry and exist in abundance. Indeed, by a re-
markable theorem of Bryant, extended by Rowland, every closed Riemann surface
may be conformally embedded into S6 as a null-torsion holomorphic curve. For
nulltorsion holomorphic curves of low genus, we will compute the multiplicity of the
first Jacobi eigenvalue. Moreover, for all genera, we will give a simple lower bound
for the nullity in terms of the area and genus. We expect that these results will have
implications for the deformation theory of asymptotically conical associative 3-folds
in euclidean R7 .

(J. Madnick) National Center for Theoretical Sciences, National Taiwan University, Taipei,
Taiwan
Email address : jmadnick@ncts.ntu.edu.tw
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The Jacobi Spectrum of
Null-Torsion Holomorphic Curves in S6

Jesse Madnick
National Center for Theoretical Sciences

3rd Japan-Taiwan Joint Conference
on Di↵erential Geometry

Jesse Madnick Jacobi Spectrum of Holomorphic Curves in S6

Outline

I. Minimal Surfaces; Jacobi Spectra

Definition

Context: Some results in S3, S4, and S2k

II. The Round 6-Sphere

III. Holomorphic Curves in S6

Definition

Holomorphic Frenet Frame

Null-Torsion Condition

IV. Null-Torsion Holomorphic Curves in S6

Theorem A and Theorem B

Open Questions

Ideas of the Proofs: Theorem A0 and Theorem B0

Jesse Madnick Jacobi Spectrum of Holomorphic Curves in S6
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Minimal Surfaces

• ⌃2 closed orientable surface of genus g, area A.

• (Mn, h·, ·i) Riemannian manifold.

An immersion u : ⌃2 ! (Mn, h·, ·i) is a minimal surface if: For all
variations ut : ⌃!M with u0 = u:

d

dt

����
t=0

Area(ut) = 0.

Notation: Let u : ⌃2 !Mn immersion.
• r = Levi-Civita connection of M .
• r> = Tangential connection = Levi-Civita connection of ⌃.
• r? = Normal connection.
• II = Second fundamental form.

Jesse Madnick Jacobi Spectrum of Holomorphic Curves in S6

Minimal Surfaces

Second Variation of Area: Let u : ⌃2 !Mn be a minimal surface, and
ut : ⌃

2 !Mn be a variation of u with normal variation vector field
⌘ 2 �(N⌃). Then:

d2

dt2

����
t=0

Area(ut) =

Z

⌃

⌦
��?⌘ � B⌘ �R⌘, ⌘

↵
vol⌃

where

�?⌘ = r?
ei
r?

ei
⌘ �r?

r>
ei

ei
⌘ (connection Laplacian of r?)

B⌘ = hII(ei, ej), ⌘i II(ei, ej) (0th-order term)

R⌘ = (R(⌘, ei)ei)
? (0th-order term)

Here, (ei) = (local orthonormal frame on ⌃) and R = (curvature of M).

The Jacobi operator of u is the second-order linear di↵erential operator
L : �(N⌃)! �(N⌃) given by

L = ��? � B �R.
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Minimal Surfaces

The Jacobi operator of u is the second-order linear di↵erential operator
L : �(N⌃)! �(N⌃) given by

L = ��? � B �R.

The eigenvalues of L form an increasing sequence of real numbers

�1 < · · · < �s < 0 = �s+1 < �s+2 < · · ·!1

with finite multiplicities

m1, . . . , ms, ms+1, ms+2, . . . .

The Jacobi spectrum of u is the set of eigenvalues �1,�2, . . . and their
multiplicities m1, m2, . . .

The Morse index and nullity of u are:

Index(u) := m1 + · · · + ms

Nullity(u) := ms+1

Notice that u is stable i↵ �1 � 0, and unstable i↵ �1 < 0.
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Minimal Surfaces in Round Spheres

Suppose (Mn, h·, ·i) = (Sn(1), round).

Simons (’68): Every minimal surface u : ⌃2 ! Sn satisfies:

� = �2 is a Jacobi eigenvalue.

Ind(u) � n� 2. Equality i↵ u(⌃) totally-geodesic 2-sphere.

Nullity(u) � 3(n� 2). Equality i↵ u(⌃) totally-geodesic 2-sphere.

Karpukhin (’19): Suppose n = 2k even and g = 0 and u linearly full
(but allowing branch points). Let A = 4⇡d denote the area. Then

Ind(u) � (n� 2)
⇣
2d + 2� [

p
8d + 1]odd

⌘
,

where [x]odd is the largest odd number  x.

Ejiri (’83): Suppose n = 2k even and g = 0. Every minimal 2-sphere
u : S2 ! S2k of area A has �1 = �2 and

m1 =
A

⇡
+ 2(k � 3).
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Some Results in S3

Suppose n = 3. Let u : ⌃2 ! S3 minimal surface, where ⌃2 closed,
orientable.

Urbano (’90): If u not totally-geodesic, then

Ind(u) � 5.

Equality i↵ u(⌃) is the Cli↵ord torus.

Application: Used by Marques-Neves (’12) in their solution of the
Willmore Conjecture.
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Some Results in S4

Suppose n = 4. Let u : ⌃2 ! S4 minimal surface, where ⌃2 closed,
orientable, Euler characteristic �(⌃) = 2� 2g, area A.

Micallef-Wolfson (’93):

Ind(u) � 1

2

✓
A

⇡
� �(⌃)

◆
.

Montiel-Urbano (’97): If u is infinitesimally holomorphic (a.k.a.
superminimal) (i.e.: II has the same symmetries as a complex curve),
then

Ind(u) = m1 =
A

⇡
� �(⌃) Nullity(u) = m2 �

A

⇡
+ �(⌃)

Also, for g = 0, 1: Equality holds in the nullity bound.

Kusner-Wang (’18): If g = 1, then

Ind(u) � 6.

Equality i↵ u(⌃) is a Cli↵ord torus in a totally-geodesic S3.
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The 6-Sphere

Fact: The n-sphere Sn admits an almost-complex structure if and only if

n = 2 or n = 6.

View S6 ,! R7 = Im(O). The standard almost-complex structure is

Jp : TpS6 ! TpS6

Jp(v) = p⇥ v = 1
2 (pv � vp),

where pv and vp denote multiplication in O. Note that J is compatible
with the round metric h·, ·i:

hJX, JY i = hX, Y i.

Define a non-degenerate 2-form ! 2 ⌦2(S6) by !(X, Y ) := hJX, Y i.
The triple (h·, ·i, J,!) is a U(3)-structure on S6. That is, we are viewing
S6 as an almost-Hermitian manifold.
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The 6-Sphere: Its Standard U(3)-Structure

The triple (h·, ·i, J,!) on S6 is a U(3)-structure (almost-Hermitian
structure).

Let r the Levi-Civita connection on S6.

Warnings:
• ! is not closed.
• J is not integrable.
• J is not r-parallel: rJ 6⌘ 0.

Good News: The U(3)-structure (h·, ·i, J,!) is nearly-Kähler, meaning:

(rXJ)(Y ) = �(rY J)(X), 8X, Y 2 TS6.

Also: The unitary connection

DXY := rXY +
1

2
(rXJ)(JY )

preserves the U(3)-structure (h·, ·i, J,!), e.g.:

DJ = 0 and D! = 0.
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The 6-Sphere: Its Standard SU(3)-Structure

The U(3)-structure (h·, ·i, J,!) on S6 is nearly-Kähler, but not Kähler.
Therefore, S6 admits an S1-family of compatible complex volume forms.
For concreteness, let’s choose one as follows:

View S6 ,! R7. The associative 3-form �0 2 ⌦3(R7) is:

�0(X,Y, Z) := hX ⇥ Y, ZiR7 .

Let @r = radial vector field on R7.

Fact: The (3, 0)-form ⌥ 2 ⌦3,0(S6) given by

⌥ := (@r y ⇤�0 + i�0)|S6

is a complex volume form, meaning that

i

8
⌥ ^⌥ = volS6 .

The quadruple (h·, ·i, J,!,⌥) is the standard SU(3)-structure on S6.
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Holomorphic Curves in S6

An immersion u : ⌃2 ! S6 is a holomorphic curve if:

Jp(Tp⌃) = Tp⌃, 8p 2 ⌃.

Equivalently:
!|⌃ = vol⌃.

Fact: Holomorphic curves in S6 are minimal surfaces.

Proof 1:

u(⌃) holo curve =) Extra symmetries in II =) tr(II) = 0.

Proof 2:

u(⌃) ⇢ S6 holo curve () Cone(u(⌃))3 ⇢ R7 is associative.

Associative 3-folds are calibrated submanifolds. So:

u(⌃) holo curve =) Cone(u(⌃)) homol. vol-minim. =) u(⌃) minimal.
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Holomorphic Curves in S6

Question: What can we say about the Jacobi spectrum of closed
holomorphic curves in S6?

Simons (’68):

� = �2 is a Jacobi eigenvalue.

Ind(u) � 4. Equality i↵ u(⌃) totally-geodesic 2-sphere.

Nullity(u) � 12. Equality i↵ u(⌃) totally-geodesic 2-sphere.

Ejiri (’83): If g = 0, then �1 = �2 and

m1 =
A

⇡
.

What if g � 1?

Observation: Let u : ⌃2 ! S6 holomorphic curve of any genus g � 0.
If u is null-torsion, then Ejiri’s argument yields �1 = �2 and

m1 �
A

⇡
.

Defining “null-torsion” requires some preparation.
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Digression: Curves in R3

Let ↵ : I ! R3 immersed, oriented, unit-speed curve. Let (e1, e2, e3)
oriented orthonormal frame along ↵. Let’s adapt frames:

1st Adaptation: Arrange

(
e1 2 TI

e2, e3 2 NI.

2nd Adaptation: At s 2 I with ↵00(s) 6= 0, arrange:

(
e2 2 span(↵00(s))

e3 = e1 ⇥ e2

Such a local frame (T, N, B) := (e1, e2, e3) is called a Frenet frame.
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Digression: Curves in R3

Frenet Equations: For any local Frenet frame (T, N, B) on U ⇢ I,
there are functions , ⌧ : U ! R s.t.:

d

ds

2
4

T
N
B

3
5 =

0
@

0 � 0
 0 �⌧
0 ⌧ 0

1
A
2
4

T
N
B

3
5.

• Call  the curvature of ↵. It is a 2nd-order invariant.
•  = 0 () ↵(I) is a line.

• Call ⌧ the torsion of ↵. It is a 3rd-order invariant.
• ⌧ = 0 () ↵(I) lies in a 2-plane.

Jesse Madnick Jacobi Spectrum of Holomorphic Curves in S6

The Holomorphic Frenet Frame

Let u : ⌃2 ! S6 immersed, oriented, holomorphic curve. Complexify

TS6 ⌦R C = T 1,0S6 � T 0,1S6.

Decompose the (1, 0)-vectors along ⌃ into tangent and normal parts:

u⇤(T 1,0S6) = T 1,0⌃�N1,0⌃.

Let (e1, . . . , e6) special unitary local frame on U ⇢ ⌃. Set

f1 =
1

2
(e1 � ie2) f2 =

1

2
(e3 � ie4) f3 =

1

2
(e5 � ie6)

so f1, f2, f3 are (1, 0)-vectors along ⌃. Let’s adapt to the geometry of
the holomorphic curve.
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The Holomorphic Frenet Frame

1st Adaptation: Arrange

(
f1 2 T 1,0⌃

f2, f3 2 N1,0⌃.

One can show that {p 2 ⌃ : IIp = 0} is finite or all of ⌃.

2nd Adaptation: At p 2 ⌃ with IIp 6= 0, arrange:

n
f2 2 spanC(II(f1, f1))

where we extended II by C-linearity.

Call such a frame (f1, f2, f3) an adapted frame.
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The Holomorphic Frenet Frame

Frenet Equations (Bryant ’82): For any adapted local frame
(f1, f2, f3) on U ⇢ ⌃, there are (local) holomorphic functions
, ⌧ : U ! C and connection 1-forms �11, �22, �33 s.t.:

D

2
4

f1

f2

f3

3
5 =

0
@

�11 ⇣ 0

�⇣ �22 ⌧⇣

0 �⌧⇣ �33

1
A⌦

2
4

f1

f2

f3

3
5.

Here, ⇣ = e1 + ie2 2 ⌦1,0(⌃).

Note: Both , ⌧ depend on the choice of adapted frame, but the
conditions  = 0 and ⌧ = 0 are well-defined.

Analogy:
•  =“curvature” (2nd order).
•  = 0 i↵ u(⌃) totally-geodesic.
• ⌧ =“torsion” (3rd order).

Say u is null-torsion if ⌧ = 0 for some (all) adapted frames.
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Null-Torsion Holomorphic Curves in S6

What does “null-torsion” mean?

On N⌃ = spanR(e3, e4, e5, e6), we have:

Je3 = e4 Je5 = e6.

Define a new complex structure bJ on N⌃ via:

bJe3 = e4
bJe5 = �e6.

Fact: The following are equivalent:
• u is null-torsion.
• r? bJ = 0.
• D? bJ = 0.
• The binormal Gauss map

bu : ⌃2 ! CP6

bu(p) := spanC(e5 � ie6)

is holomorphic.

Corollary: Null-torsion holomorphic curves have area A = 4⇡d, where
d = deg(bu) 2 Z+. Moreover, d = 1 or d � 6.
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Null-Torsion Holomorphic Curves in S6

Are there any interesting null-torsion holomorphic curves?

Bryant ’82:
• Every holomorphic curve of genus g = 0 is null-torsion.

• Weierstrass representation formula for null-torsion holomorphic
curves.

• Every closed Riemann surface admits a conformal branched
immersion into S6 as a null-torsion holomorphic curve (with arbitrarily
many branch points).

Rowland ’99: Every closed Riemann surface admits a conformal
embedding into S6 as a null-torsion holomorphic curve.
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Results: Closed Null-Torsion Curves

Let u : ⌃2 ! S6 immersed null-torsion holomorphic curve.
Let g = genus(⌃) and A = Area(⌃) = 4⇡d. Recall: Ejiri’s argument
gives �1 = �2 and

m1 �
A

⇡
= 4d.

Also, if g = 0, then equality holds.

Theorem A (M. ’21): If g  6, then

m1 =
A

⇡
= 4d 2 4Z+.

Theorem B (M. ’21): For any g � 0:

Nullity(u) � 2d + �(⌃).
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Expected Application

Holomorphic curves in S6 are the links of associative cones in R7.

Lotay (’10): Studied (non-compact) associative 3-folds in R7 that are
asymptotic to cones.

Expectation: Theorems A and B likely have consequences for the
deformation theory of asymptotically conical associative 3-folds in R7.
This is work in progress.
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Open Questions: Closed Holomorphic Curves S6

• Closed holomorphic curves in S6: Can one find a lower bound for �2?

Simplest case: Compute �2 of the Boruvka sphere, the unique
holomorphic curve with K = 1

6 . Explicitly, the Boruvka sphere is

u : S2 ! S6 ⇢ R7

u(x, y, z) = (p1(x, y, z), . . . , p7(x, y, z))

where {p1, . . . , p7} is a basis of the harmonic homogeneous cubic
polynomials on R3. It is an orbit of the maximal SO(3)  G2  R7.

I have shown that the Boruvka sphere has �2 � � 5
3 , but surely we can be

more precise.

Ejiri’s result (’83), together with a result of Karpukhin (’19), implies

24 + m2 + · · · + ms = Ind(Boruvka sphere)� 36

so the Boruvka sphere has

m2 + · · · + ms � 12 > 0,

and hence �2 < 0.
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Open Questions: Closed Superminimal Surfaces in S2k

• In S2k with k � 2: If u : ⌃2 ! S2k is superminimal, then Ejiri’s
arguments show that:

m1 �
A

⇡
+ (k � 3)�(⌃).

Supposing u is superminimal, when does equality hold?

Ejiri ’83: Equality if g = 0.

Montiel-Urbano ’97: Equality if k = 2.

Theorem A: Equality if k = 3, g  6 and u holomorphic curve.
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Theorems A and B are Special Cases

Let u : ⌃2 ! S6 immersed null-torsion holomorphic curve.
Let g = genus(⌃) and A = Area(⌃) = 4⇡d.

Theorem A (M. ’21): If g  6, then

m1 =
A

⇡
= 4d 2 4Z+.

Theorem B (M. ’21): For any g � 0:

Nullity(u) � 2d + �(⌃).

Theorem A is a special case of a more precise result (called Theorem A0).
Theorem B is a special case of a more precise result (called Theorem B0).

To state Theorems A0 and B0, we need to recast the holomorphic
Frenet frame as a splitting

u⇤(T 1,0S6) = LT � LN � LB

into complex line subbundles LT , LN , LB . To Do: Define LT , LN , LB .
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Defining LT , LN , LB: Step 1 of 2

Let u : ⌃2 ! S6 immersed, oriented, holomorphic curve. Decompose the
(1, 0)-vectors along ⌃ into tangent and normal parts:

u⇤(T 1,0S6) = T 1,0⌃�N1,0⌃.

Recall the unitary connection D on TS6. It yields a connection on
u⇤(T 1,0S6). Equip u⇤(T 1,0S6)! ⌃ with the Koszul-Malgrange
holomorphic structure for D.

Def: Set LT := T 1,0⌃ ⇢ u⇤(T 1,0S6). Note that LT is a holomorphic
line subbundle. Define

QNB :=
u⇤(T 1,0S6)

LT
,

so that QNB ! ⌃ inherits a holomorphic structure.

Warning: The subbundle N1,0⌃ ⇢ u⇤(T 1,0S6) is not a holomorphic
vector subbundle unless u is totally-geodesic. The isomorphism
QNB ' N1,0⌃ holds in the smooth (but not holomorphic) category.
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Defining LT , LN , LB: Step 2 of 2

Let (e1, . . . , e6) special unitary local frame on ⌃. Set

f1 = 1
2 (e1 � ie2) f2 = 1

2 (e3 � ie4) f3 = 1
2 (e5 � ie6)

so f1, f2, f3 are (1, 0)-vectors along ⌃. Let’s adapt frames to the curve.

1st Adaptation: Arrange f1 2 T 1,0⌃ = LT and f2, f3 2 N1,0⌃. Then
the (C-linearly extended) second fundamental form can be written

II(f1, f1) = f2 + µf3

for some (frame-dependent) functions , µ : ⌃! C.

Fact (Bryant ’82): The section �II 2 H0(L⇤
T ⌦ L⇤

T ⌦QNB) given by

�II := (e1 + ie2)⌦ (e1 + ie2)⌦ ([f2] + µ[f3])

is a well-defined (frame-independent) holomorphic section.

Def: There exists a unique holomorphic line subbundle LN ⇢ QNB for
which �II 2 H0(L⇤

T ⌦ L⇤
T ⌦ LN ). Finally, define

LB :=
QNB

LN
.
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Theorems A0 and B0

Let u : ⌃2 ! S6 immersed null-torsion holomorphic curve.
Let g = genus(⌃) and A = Area(⌃) = 4⇡d.

Let K⌃ = ⇤1,0(⌃) be the canonical line bundle of ⌃.

Theorem A0 (M. ’21): For any g � 0, we have

A

⇡
 m1 

A

⇡
+ h0(LB ⌦K⇤

⌃).

Moreover, if g  6, then h0(LB ⌦K⇤
⌃) = 0.

Theorem B0 (M. ’21): For any g � 0, the null space of the Jacobi
operator

Null(u) := {⌘ 2 �(N⌃) : L⌘ = 0}
contains a vector subspace isomorphic to H0(LN ⌦K⇤

⌃). Consequently,

Nullity(u) � dimR[H0(LN ⌦K⇤
⌃)] � 2d + �(⌃).

(The last inequality is Riemann-Roch.)
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Sketch of Theorem A0

Theorem A0 (M. ’21): For any g � 0, we have

A

⇡
 m1 

A

⇡
+ h0(LB ⌦K⇤

⌃).

Moreover, if g  6, then h0(LB ⌦K⇤
⌃) = 0.

Sketch: Equip N⌃ with the complex structure bJ , so N⌃ ' LN � L⇤
B . Both

r? and D? endow (N⌃, bJ) with holomorphic structures, say @
r

and @
D

.

Ejiri’s argument shows: The first eigenspace E(�1) of L is isomorphic to

E(�1) ⇠= {⇠ 2 �(N⌃) : @
r
⇠ = 0}.

Consider the di↵erence tensor S(⇠) := @
r
⇠ � @

D
⇠. So:

E(�1) ⇠= {⇠ 2 �(N⌃) : @
D
⇠ = �S(⇠)}.

Small miracle: The system @
D
⇠ = �S(⇠) decouples into a system of the form

(
@

LN ⇠N = �T (⇠B)

@
L⇤

B ⇠B = 0.

Solution space has max. R-dim = 2(h0(LN ) + h0(L⇤
B)) =

A

⇡
+ h0(LB ⌦ K⇤

⌃).
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Sketch of Theorem B0

Theorem B0 (M. ’21): For any g � 0, the null space of the Jacobi
operator

Null(u) := {⌘ 2 �(N⌃) : L⌘ = 0}
contains a vector subspace isomorphic to H0(LN ⌦K⇤

⌃). Consequently,

Nullity(u) � dimR[H0(LN ⌦K⇤
⌃)] � 2d + �(⌃).

Sketch: Equip N⌃ with complex structure bJ and holomorphic structure @
r

.
Identify N⌃ ' LN � L⇤

B , and let ⇡B : N⌃ ! L⇤
B denote projection.

For ⇠ 2 �(N⌃), regard @
r
⇠ 2 �(N⌃⌦ K⇤

⌃).

Main Claim: The map

{⇠ 2 Null(u) : ⇡B(@
r
⇠) = 0} ⇠= H0(LN ⌦ K⇤

⌃)

⇠ 7! @
r
⇠

is well-defined and an isomorphism. (Injectivity is easy. However, surjectivity
and well-definedness are more complicated.) ⇤

Rmk: This argument is a direct analogue of that in Montiel-Urbano ’97.
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Fin

Thanks for your attention!
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An Example of the Noncompact Yamabe Flow
having the Infinitetime Incompleteness

Hikaru Yamamoto (University of Tsukuba)

I explain a recent result on the noncompact Yamabe flow which is joint work
with Jin Takahashi at Tokyo Institute of Technology. The noncompact Yamabe
flow is complicated compared to the compact case. There are many unexpected
phenomena from the viewpoint of the compact Yamabe flow. One of the remaining
questions is the following. If each Riemannian metric is complete under the Yamabe
flow on a noncompact manifold for all time and the long time limit exists, then is
the limit also complete? I give the negative answer to this question by giving a
counterexample.

(H. Yamamoto) Department of Mathematics, Faculty of Pure and Applied Science, Uni-
versity of Tsukuba, Ibaraki 305-8571, Japan
Email address : hyamamoto@math.tsukuba.ac.jp
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Transversal Properties for Period Maps on
Moduli Space of Triply Periodic Minimal Surfaces

Toshihiro Shoda (Kansai University)

Triply periodic minimal surfaces are mathematical objects for surfactant, and
they have been studied in many fields. We focus on the genus three case and
many one-parameter families have been constructed in physics. In the previous
work, we computed Morse indices and nullities for the families, and some bifurcation
phenomena, that is, the existence of new one-parameter families issuing from the
original one-parameter families were pointed out. The key point is the point where
the nullity is greater than three. In this talk, we introduce recent works related to
classification of nullities from which a new one-parameter family does not issue, in
terms of singularities theory. It is a joint work with Norio Ejiri.

(T. Shoda) Faculty of Engineering Science Department of Mathematics, Kansai University
3-3-35 Yamate-cho, Suita-city, Osaka, 564-8680, Japan
Email address : tshoda@kansai-u.ac.jp

The author was partly supported by JSPS Grant-in-Aid for Scientific Research (C) 20K03616.
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First-eigenvalue Maximization and Embedding
Optimization

Shin Nayatani (Nagoya University)

Maximization problem for the first eigenvalue of the Laplacian began with the
seminal work of Hersch (1970), who proved that on the two-sphere the first eigen-
value (multiplied by area for scale invariance) was maximized by the round metrics
(and by them only). Since then, this subject has been studied by many geome-
ters and enriched by many interesting results. Among them, I mention a beautiful
theorem of Nadirashvili (1996), which states that a metric maximizing the first
eigenvalue of the Laplacian admits an isometric minimal immersion into a round
sphere of some dimension. Meanwhile, in graph theory, Fiedler (1989) considered a
similar maximization problem, and more recently Göring–Helmberg–Wappler (2008,
2011) formulated a problem which is dual (in the framework of mathematical pro-
gramming) to Fiedler’s problem and concerns embeddings of a graph into Euclidean
spaces. In this talk, I will introduce an analogue of GHW formalism in differential
geometry. In fact, it turns out that the relevant eigenvalue maximization problem
concerns the Bakry–Emery Laplacian on a weighed Riemannian manifold rather
than the usual Laplacian. I will discuss examples and an analogue of the above
mentioned Nadirashvili theorem.

(S. Nayatani) Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya
464-8602, Japan
Email address : nayatani@math.nagoya-u.ac.jp

The author was partly supported by JSPS KAKENHI Grant Number JP17H02840.
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First-eigenvalue maximization
and embedding optimization
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Graduate School of Mathematics, Nagoya University

November 3, 2021

Shin Nayatani First-eigenvalue and embedding 1 / 20

Berger problem

Let M be a compact manifold of dimension n (connected, orientable).

Let g be a Riemannian metric on M .

Denote by λ1(g) the first eigenvalue of the Laplacian

−∆g = −
n∑

i,j=1

gij

(
∂2u

∂xi∂xj
−

n∑

k=1

Γ k
ij

∂u

∂xk

)
.

λ1(g) = min {λ > 0 | ∃u ∈ C∞(M), u 6= 0 s.t. − ∆gu = λu}

= inf
u̸=const.

∫
M |du|2g dvg∫

M (u − u)2 dvg
, u =

∫

M
u dvg.
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Set
Λ1(g) := λ1(g)Vol(g)2/n.

Example 1

For the metric gS2 of the unit 2-sphere,

Λ1(gS2) = 2 × 4π = 8π.

Theorem 1 (Hersch 1970)

For any metric g on S2, one has Λ1(g) ≤ 8π.

The equality sign holds if and only if g = gS2 up to scaling.

Shin Nayatani First-eigenvalue and embedding 3 / 20

Problem 1 (cf. Berger 1973)

Determine
Λ1(M) := sup

g
Λ1(g)

and find g such that Λ1(g) = Λ1(M) (if exists).
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Known results.

1 (Urakawa 1979)
Λ1(S

3) = ∞.

2 (Yang-Yau 1980) Let Σγ be a compact surface of genus γ. Then

Λ1(Σγ) ≤ 8π

[
γ + 3

2

]
.

3 (Colbois-Dodziuk 1994) If n ≥ 3, then

Λ1(M) = ∞.

Colbois-Dodziuk’s proof relies on the results of Urakawa, Tanno,
H. Muto for Sn.

Shin Nayatani First-eigenvalue and embedding 5 / 20

4 (Nadirashvili 1996)

Λ1(T
2) = 8π2/

√
3 ( < 16π),

attained by the flat metric of R2/Z(1, 0) ⊕ Z(1/2,
√

3/2), uniquely up
to scaling.

5 (Petrides 2014) If Λ(Σγ) > Λ(Σγ−1), then Λ(Σγ) is attained by a
metric possibly with finitely many conical singularities.

6 (N.-Shoda 2019)
Λ1(Σ2) = 16π,

attained by a certain singular conformal metric on the Bolza Riemann
surface.

7 (Ros 2021)
Λ1(Σ3) ≤ 16(4 −

√
7)π ≈ 21.688π.
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The 3rd Japan-Taiwan Joint Conference on Differential Geometry 213



Theorem 2 (Nadirashvili 1996)

Let M be a compact surface. Suppose that g attains Λ1(M).
Then there exist first eigenfunctions φ1, . . . , φd of −∆g such that

φ = (φ1, . . . , φd) : M → Rd

is an isometric immersion.
Therefore, φ is a minimal immersion into Sd−1(

√
2/λ1(g)) by the

Takahashi theorem.

Shin Nayatani First-eigenvalue and embedding 7 / 20

Analougue in weighted Riemannian geometry

Let (M, dv, g) be a weighted Riemannian manifold, where dv is a volume
form. Write dvg = efdv.

The Bakry-Émery Laplacian −∆(dv,g) is given by

−∆(dv,g)u = −∆gu + g(df, du), u ∈ C∞(M).

The first eigenvalue λ1(dv, g) of −∆(dv,g) is characterized by

λ1(dv, g) = inf
u̸=const.

∫
M |du|2g dv∫

M (u − u)2 dv
,

where u =

∫

M
u dv.
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Problem 2 (Eigenvalue maximization)

Fix a volume form dv and a metric h on M (e.g. dv = dvh).

Determine

Λ1(M ; dv, h) := sup
g

λ1(dv, g)∫

M
trgh dv

/
Vol(dv)

and find g which attains Λ1(M ; dv, h).

Note that

trgh =
n∑

i,j=1

gijhij .

Shin Nayatani First-eigenvalue and embedding 9 / 20

Embedding optimization

Göring-Helmberg-Wappler (2008, 2011) formulated an embedding
optimization problem for finite graphs.

Problem 3 (Embedding optimization)

Let dv, h be as in Problem 2.

Consider all C∞-maps φ : M → RN (N is arbitrary) such that

φ∗gRN ≤ h (⇔ φ is 1-Lipschitz).

Determine

Var(M ; dv, h) := sup
φ

1

Vol(dv)

∫

M
‖φ − φ‖2 dv,

where φ =
1

Vol(dv)

∫

M
φdv, and find φ which attains Var(M ; dv, g).
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Duality

Proposition 3

Problems 2, 3 are dual to each other: There exists a function

L : RM(M) × C∞(M, R∞)1-Lip → R,

where R∞ = lim−→ RN , such that

inf
g

sup
φ

L(g, φ) ⇔ Problem 2,

sup
φ

inf
g

L(g, φ) ⇔ Problem 3.

Shin Nayatani First-eigenvalue and embedding 11 / 20

Since
sup

φ
inf
g

L(g, φ) ≤ inf
g

sup
φ

L(g, φ),

we obtain

Corollary 4 (Weak duality)

Var(M ; dv, g) ≤ 1

Λ1(M ; dv, h)
.
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The corollary can be proved directly:

∫

M
‖φ − φ‖2 dv ≤ 1

λ1(dv, g)

∫

M
‖dφ‖2

g dv

≤

∫

M
trgh dv

λ1(dv, g)
,

since

‖dφ‖2
g = trgφ

∗gRN ≤ trgh.
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Therefore,

1

Vol(dv)

∫

M
‖φ − φ‖2 dv ≤

∫

M
trgh dv

/
Vol(dv)

λ1(dv, g)
.

The equality sign holds if and only if

(#)

{
−∆(dv,g)(φ − φ) = λ1(dv, g)(φ − φ),

φ∗gRN = h.
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Riemannian inequality

Let g be a metric on M , and let φ : M → RN be a C∞-map such that
φ∗gRN ≤ g. Then

∫

M
‖φ − φ‖2 dvg ≤ 1

λ1(g)

∫

M
‖dφ‖2

g dvg ≤ nVol(g)

λ1(g)
,

since
‖dφ‖2

g = trgφ
∗gRN ≤ trgg = n.

Therefore,
1

Vol(g)

∫

M
‖φ − φ‖2 dvg ≤ n

λ1(g)
.

The right-hand side depends only on g, but the left-hand side depends on
both φ and g.
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Examples

Observation 1

Let
φ = (φ1, . . . , φd) : (M, h) → Sd−1 ⊂ Rd

be an isometric minimal immersion by first eigenfunctions.

Consider Problems 2 and 3 by choosing (dv, h) = (dvh, h).

Then by (#), g = h and φ are optimal solutions to Problems 2 and 3,
respectively, and

Var(M ; dvh, h) =
1

Λ1(M ; dvh, h)

holds.
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Example 2

Isotropy irreducible Riemannian homogeneous spaces.
E.g. Symmetric spaces of compact type.

Many compact minimal hypersurfaces in the unit spheres by the Yau
conjecture.

But still rare... The flat metrics of

R2/Z(1, 0) ⊕ Z(0, 1) and R2/Z(1, 0) ⊕ Z(1/2,
√

3/2)

are the only metrics on T 2 which admit such an isometric immersion.
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Example 3

Let h be the flat metric of R2/Z(1, 0) ⊕ Z(0, 1). Then the map

φ : (x, y) ∈ R2/Z(1, 0) ⊕ Z(0, 1) 7→ 1

2π
(e2πix, e2πiy) ∈ C2

is an isometric immersion by first eigenfunctions.

For c > 0, c 6= 1, let

φc(x, y) =
1

2π
(e2πix, c2e2πiy).

Then hc = φc
∗gC2 is isometric to the flat metric of R2/Z(1, 0) ⊕ Z(0, c)

and dvhc = c2 dvh.

By (#), g = h and φc are optimal solutions to Problems 2 and 3 for
(dvhc , hc).
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Nadirashvili-type theorem

Theorem 5

Suppose that g is an optimal solution to Problem 2.

Then there exist first eigenfunctions φ1, . . . , φd of −∆(dv,g) such that

φ = (φ1, . . . , φd) : M → Rd

is an isometric immersion with respect to h.

In particular, φ is an optimal solution to Problem 3, and

Var(M ; dv, h) =
1

Λ1(M ; dv, h)
“Strong duality”

holds.
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Thank you for your attention.

謝謝.

有難うございます.
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