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Preface

This volume of OCAMI Reports summarizes the workshop “Hessenberg varieties
2021 in Osaka by Zoom” held from February 20th online because of the COVID-19
pandemic. This workshop was supported by “Osaka city University Advanced Mathe-
matical Institute MEXT Joint Usage/Research Center on Mathematics and Theoretical
Physics.” The main focus of this workshop is subvarieties of the flag variety including
Hessenberg varieties and torus orbit closures. This workshop consisted of a 100 min-
utes talk on “Pearson Conjecture: Regular Hessenberg varieties and Toric orbifolds”
by Jongbaek Song (KIAS), a 100 minutes talk on “Coxeter matroids and the torus
orbit closures in the flag varieties” by Seonjeong Park (KAIST), and a 100 minutes
talk on “Bases of the cohomology spaces of regular semisimple Hessenberg varieties” by
Jaehyun Hong. There were 25 participants in this workshop. This workshop conducted
international research exchanges on Hessenberg varieties and related topics.

May 2021

Hiraku Abe
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Pearson Conjecture: Regular Hessenberg varieties
and Toric orbifolds

JONGBAEK SONG

A regular nilpotent Hessenberg variety and a regular semisimple Hessenberg variety
with a fixed Hessenberg space have a cohomological relationship, namely the cohomol-
ogy ring of the former is isomorphic to the ring of invariant of the latter with respect
to the Weyl group action. One extreme case of this relationship is given by Peterson
varieties and permutohedral varieties, where the latter are smooth toric varieties. In
this talk, we introduce a certain family of toric varieties having orbifold singularities
and discuss how these objects interact with regular Hessenberg varieties from the co-
homological point of view. This is a joint work with T. Horiguchi, M. Masuda and J.
Shareshian.
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Coxeter matroids and the torus orbit
closures in the flag varieties

SEONJEONG PARK

A subset M of a finite Coxeter group W is a Coxeter matroid if it satisfies the
maximality property, that is, for every u in W, there is a unique element in v in M
such that = 'v > w 'w in Bruhat order. A Coxeter matroid is a generalization of a
matroid, and it is known that the torus fixed point set of any torus orbit closure in the
flag varieties is a Coxeter matroid. However, not every Coxeter matroid can be realized
as a torus orbit closure. In this talk, I will first introduce the notion of matroids and
the relation with Coxeter matroids, and then we discuss some geometric and algebraic
properties of Coxeter matroids. This talk is based on joint work with Eunjeong Lee
and Mikiya Masuda.
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Coxeter makroids and korus orbit
closures in the flag varieties

Seown jeong Park (KAIST)

(Joint work with £, Lee and M. Masuda)

Hessenberq varieties 2021 i Osaka by Zoom
F?ebru,m*j 20, 2021

Overview

- G: semisimple algebraic group over C
- B: Borel subgroup of G
- T: maximal torus of G conkained in B

- W: Weyl group of G

The torus T acts on the flag variety G/B and (G/B)! can be identified with W. For

each x € G/B, it is kown that (T - x)T C W is a Coxelter matroid.

Seonjeong Park (KAIST) Torus orbit closures in flag varieties
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Conkenks

Makbroids

Flag matroids

Coxelter matroids and Matroid retraction
Greometbric retraction

Algebraic retraction
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Makroids

Makroids

Let V be the vector space spanned by the columns of

1. 12050
01 1 0

Vi Y2 V3 V4] = [
Let M := {{1,2},{1,3},{2,3}, {2,4}, {3.4}}. Then for each [ € M, the set {v;|i €]} is a
basis of V.
The set M sotisfies the exchange property, that is, for oll I,J €M and i € I\J, there

exists j € J\I such that I\{i} U {j} € M.

Definition. Let [n] := {1,2,...,n}. A nonemply collection M of finite subsets of [n] is
called a matroid on [n] if it satisfies the exchange property:

For all A,B in M and a € A\B there exists b € B\A such that A\{a} U {b} lies in M,

Every member of M has the same size, rank(M),

The members of M are called bases of the matroid.

Seonjeong Park (KAIST) Torus orbit closures in flag varieties
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Exampt&s

o Let A=[v,....V,] be a kXn maktrix. Then M = {I C [n] | det(4,) # 0} is a matroid.
- Not every matroid M is represented as matrix.

o (Fano matroid) M = {124,135,167,236,257,347,456}.

- Mis represeh&abte only over a field K with char(K) = 2.

o (Non-Fano matroid) M = {124,135,167,236,257,347}.

- Mis re[presev&abte ov\Lj over a field K with char(K) # 2.

o (Pappus matroid) M = {123,456,789,148,159,247,269,357,368 }

- M is representable over any field.

® (Non-Pappus matroid) M = {123,789,148,159,247,269,357,368}

- M is not representable over any field.

Seonjeong Park (KAIST) Torus orbit closures in flag varieties

Makroid Pot:j&c)pe

A malroid polytope Ay is the convex hull of the points Zei €R" for I € M.

i€l

M = {13,14.23.24} M={cHl|lVI=2)

Comnsider a mabroid M = {J C [n] | |J| = k}. Then the matroid polytope A, is the

hypersimplex Ay .

Seonjeong Park (KAIST) Torus orbit closures in flag varieties
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Torus orbit closures in Gr, (C")

Cownsider the Grassmannian manifold Gr(C"). Set I, = {J C [n] | |J]| = k}.
For x € Gry(C"), then the Pliccker embedding Gry(C") - CP)~! maps x to

(det(A)))sej,,» where A is o matrix representing x.

For x € Gri(CY), sek M, :={J € I, | det(4)) # 0}, where A is a malrix representing x.

For example, M, = {13,142324] for x € Gr,(C*) representing by [(1) (1) (1) (1)]

[Gatfand—(“:orask\j—Mc?herson—Serganova] Define the moment map u: Gr,(C") - R"
ZJ:jeJ | der(4;) £

by u(x) = >
) Y, ldet(a))

, where A is a makbrix raprasav&ihg X. Then the moment map

image of T-X is the polytope is the matroid polytope Ay,

Seonjeong Park (KAIST) Torus orbit closures in flag varieties

Torus orbit closures in Gr, (C")

1 100 1 1
050 1 1 {9

[Noji-Ogiwara (2019)] A matroid polytope is simple if and only if it is a product of
simplices. So, every smooth torus orbit closure in Gr(C") is a product of complex

Frcjacbiva spaces,

Seonjeong Park (KAIST) Torus orbit closures in flag varieties
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Geometry of matroids

Geomekrj Makroids

rank-k, R-—represev&abte

POEMES (17N Grk(C ) moakbroids

Schubert variekies nested matroids

Richardsown varieties Laktice Fo&h maktroids

For axampta, lebk n=4,k=2,5={13}, and T= {34}, For a generic Foi.v\& X €E XST, the

nmatroid M, is

(%)
{Be 5 | S <B LT}

Seonjeong Park (KAIST) Torus orbit closures in flag varieties

Flag matroids
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Grale ordering

For a permutation w € €, we give an order <" on [n] as follows:
w(l) <" w2) <" < --- <" w(n).
Then the Gale ordering <" on [, is a partial order defined as follows:
For A,B€e [, lek A={a; <" a, <" - <"} and B = {b; <" b, < - <" D }. Then

A SW B E.‘F ag Sw bl’ [25) SW bz, cees Oy SW bk‘

Comsider I, = {12,13,14,23,24,34} and w = 2314 € ©,. Then we qget
203 <<,
For A; = {1,3},A; = {1,4},A; = {2,3},A, = {24} in L4, we get
A =3<VI), A= {1 <74}, A;={2<"3}, and A, = {2 <4},
Hence we get
Ay <V A <A, and A3 <V A, <A,

Note that A and A, are not comparable.

Seonjeong Park (KAIST) Torus orbit closures in flag varieties

Gale ordering

[Gale (196%)] Let M C [;,. Then M is a matroid if and only if M satisfies the
following Maximality property:
for every w € ©,, the collection M contains a unique member A € M maximal in M

with respect to <". e, B<" A for all B€ M.

Equivalently, M satisfies the Minimality property:
for every w € ©,, the collection M contains a unique member A € M minimal in M

with respect to <". ie, B<" A for all BE€ M.

Note that i <" j if and only f w™'(i)) <w™'(j). Hence
A <" B if and only if w'A <w'B.

Seonjeong Park (KAIST) Torus orbit closures in flag varieties
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Flag matbroids

For w € ©,, the Gale ordering < on &, is defined as follows:
Foru and v in ©,, we set u <" v if {u(l) <" ... <" uk)} <” {v(1) < ... <" v(k)} with

respect to the Gale order <" on [, for all k=1,...,n.

Therefore, u <" v if and only if wlu < w™v in Bruhat order.

A subset M of ©, is called a flag matroid f and only if A satisfies the Maximality
property:

For every w € ©,, the subset M contains a unique element maximal in A with

ns

respect to the ordering <",

Equivalently, / satisfies the Minimality property:

For every w € ©,, the subset ./ conkains a uhique element minimal in A with

ns

respect to the ordering <",

Seonjeong Park (KAIST) Torus orbit closures in flag varieties

Eixamgte

o {123,321} is a Coxeter maktroid,

w 123 | 213 | 132 | 231
i 123 | 123 | 123 | 321

e For a flag matroid # C ©,, the set A, = {{v(1),....,v(k)} | v E M} is o matroid
for each k= 1,...,n— 1. We call /, the k-th constituent of /.

o {213,132,231} is not a flag matroid even though {1,2,3}, {12,13,23}, and
{123} are matroids,

Seonjeong Park (KAIST) Torus orbit closures in flag varieties
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Flag matroid polytope

Recall that a matroid polytope Ay is the convex hull of the points Zef e R",

i€l

Let A/ be a flag matroid. The flag matroid polytope A 4 is defined to be the
m
Minlowski sum Z Ay, where M; is the i-th constituent of /.

i=1
Example.
A = {123,213,132,231,312,321}
M, = {123}, M, = {12,13,23}, M5 = {123}

Seonjeong Park (KAIST) Torus orbit closures in flag varieties

Flag variety 77,

The flag variety F7, is the space consisting of all sequences
V.= Vs & Gl

2=

where V; is a C-linear subspace of C", dimc V; =i, for all i=1,...,n.

ford=ili. n=1 sl Slit=G,,...,iyeZ’| 1 <i < <ig<n]
For x € GL,(C), we define p;(x) is the minor given by the rows ij,...,i; and the

columns 1,...,d.

v cp()-1
1

=

[,

d=1

Exam'ola.

() =([1,0,1],[1,-1,-1],[-1D

Seonjeong Park (KAIST) Torus orbit closures in flag varieties
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Torus orbit closures in #7,

The torus T = (C*)" acts on F¢, and

(FE)" = {WB 1= ({0} & (1)) G (€t €u2)) & = & (Bt -+ Cu))) | W € &,

[Gelfand-Serganova] For x € F£,, we set L = U {ie€l, | pix) # 0}, the List of x.

1<d<n-1

Then (T- 0" = {wB | {w),...wD}' €L, for all i=1,....,n—1}, and it is a flag

matroid, dencted by A . Define the moment map u: F¢, - R" b
ey P n b,

p(x) = Zn: B A ) S

k=1 ZEEIM | i | 1€l nel,

Then u(T-x) =4 ,.
Note that u(wB) = (w™'(n), ...,w™'(1)) and u(F7,) is the permutohedron Perm,_;.

& A non-realizable flag maktroid is obtained from the Fano matroid using Higgs Lifts.

Seonjeong Park (KAIST) Torus orbit closures in flag varieties 19/40

Geometry of flag matroids

Geome&ry Maktroids

points in F7, R-representable flag matroids

Schubert varieties flag of nested matroids

Richardson varieties flag of lattice path matroids

Seonjeong Park (KAIST) Torus orbit closures in flag varieties
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Coxeker makroids
and
Makroid rekraction

Coxeker matroid

Recall that for a subset ./ of &, the following are equivalent:
o M is a flag matroid;
o M sokisfies the Maximality property; and

® M sotisfies the Maximality property,

Let W be a finite Coxeter group. Note that for we W, u <"v if wlu < wly,
A subset M of W is a Coxeter matroid f M satisfies the Maximaliky property:
For every w € W, the subset ./ conkains a unique element maximal in M wikh

raspeck to the ordering <",

Equivalently, / satisfies the Minimality property:
For every w € W, the subset M contains a unique element minimal in /A

respect to the ordering <",
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W--permu&ohedrom

Note that W is a reflection group on a Euclidean space V. Choose a point v €V
which is not fixed bj any reflection in W, The W=-permutohedron s

Ay := ConvHull{w - v | w € W},

We identify w- v with w for each w € W, Then the vertices v and w are joined by an

edge of Ay if and only if viwisa simple reflection.

In general, for a subset / of W, we can construct a convex polytope

A, =ConvHull{w -v |w € M}.

Seonjeong Park (KAIST) Torus orbit closures in flag varieties

Characterizabkion

[Gelfand-Serganoval A subset # of W is a Coxeter matroid if and only if every

edge of A is parallel to a root of W.

ExamFLe.

(a) M = {123,213,132,312}. (b) M = {231,321} (c) M = {213,132}.
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Distance on a Coxeter group

Define o mebric d on a finite Coxeter group W bj
dv,w) :=£0v"'w) = 2w™) for v,w € W,
Hence the metric d is the graph metric on the 1-skeleton of Ay.
For a subset M of W, we define
dv, #) = min{d(v,w) | w € M}.
ExamFLe.
o M, = {123,321} = d(213,.#,) = d(213,123) = 1, d(132,.4#,) = d(132,123) = 1,
d231,.#,) = d(231,321) = 1, d(312,.#,) = d(312,321) = 1
o M,= {123,231} = d(213,.4#,) = d(213,123) = d(213,231) = 1, d(132,.#,) = d(132,123) = 1,
d(321,4,) = d(321,231) = 1, d312,.4,) = d(312,123) = d(312,231) = 2
For a Coxeter mabroid ./, there is a unique element g € A such that d(v,q) = d(v, #)
for all v € W.
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Malbroid rebraction

Define a map R, W — M bj sending u to the unique minimal element wrt. the

order <", which we call a matroid retraction, (Also knowih as a makroid ma[a.)

Proposition. If M is a Coxeter matroid of W, then
1. for each v € W, there is a unique g € A such that d(v,q) = d(v, M), and
2. g=R",0).

Seonjeong Park (KAIST) Torus orbit closures in flag varieties




Topology and Combinatorics of Hessenberg Varieties

Creomelbric rebraction

Torice varie&v

A toric variety is an irreducible variety X equippzd with an action of T such that

there is a Zariski open orbik isomorphic to T. Here, T = (C*)".

o C" is a smooth toric vami.ef:j.

(C*)n x C" » cr

((tl’ "'ytn)’ (Zlv CERS) Zn)) (tlzl’ ""tnzf’l)

o CP"is a Projec&ive swmooth toric vomn‘.ebj.

(C*)'x CP" > CP’ T W% T ey

(Gent) [go: st =i z,l) (20 012 ¢ - 2 5,2,]

o Torus orbit closures in flag varicties are projective toric varieties.
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Orbib-Cone torrc&spomd&mae

For a toric variety Xy, there is a one-to-one correspondence between cones o and

orbits O such bhat

c corraspo\r\ds to O

i and only if lim 2,(1) € O for all u € Relint(o).
=0

Moreover, if u € Relint(o), thewn lim 4,(t) = 7,, called the distinguished point
t—0

corrasloot«\di.ng to o.

CP?is a projective toric variety,

(C*PRCPE ————r——r—— Bl T (G [l [0 — R )

(1, 1), [20 2 21 : 22)) =2

ﬁ'(a.b)(” = [1 :

Seonjeong Park (KAIST)

[z : 112y & b2l

- I‘b]

Torus orbit closures in flag varieties

Orbib-Cone torrespomdemae

CP2is a Projeckive toric voxrie&j.

(C*E X CE
((Tl, tz,)y [10 GG Zz])
(C*?-[1:0:0]={[1:0:0]}

(CH0 1 00— 1100 T 0]
(C*?-[0:0:1]={[0:0:1]}

lim[1
)

Seonjeong Park (KAIST)

cp? (C*)z'[l i 1] = {1 ;1‘2]}%(@*)2

[zo: 4121 : B2]

CH2 151 0=t g Ul =G
(€*)?- [1:0: 1 =40 1]} ~CH
(C%2:[0: 11 0F={[0: 1 vy ‘o) HieE

if a,b>0,

if a=b<0, For (a,b),(a,b) € Zz,
if a>0&b=0, lim[1 : 7 ¢ 2= limfl {2 50 ]

5 556 —0 t—0
fa=0&b>0, if and only if (a,b) and (a’,b’)
fa<0&b>a,

belong to the interior of the same
i{: b<0&a>b, cone,

fa=b=0.

Torus orbit closures in flag varieties
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Greomebric rebraction

Let G be a semisimple algebraic group, B a Borel subgrour of G, and T a maximal

torus of G contained in B. Then G/B is a flag variety,

For each u € W, ek C(u) = {4 € t | (u(a),1) <0 for all simple roots al.

Proposition. Let x be a point of G/Bond Y=T x. For u € W and 1, € Int(C(w)) Nt,,

the Limit point lim 4,(7) - x is an element of ¥’ depending only on u and Y.
-0

Furthermore, if u € Y7, then lim 4,(¢) - x = u.
t—0

Let x be a point of G/B and Y =T x. A geometric retraction is a map RE:W - YT
defined by Fi(u) = lim 2,(1) - x.
=0

Corollary. The maximal cone Cy(y) corresponding to y € YT in the fan of (the

normalization of) Y is given bj U C(u).
ue(.’:Z"';'v)'l(.\*)
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Greomebric rebraction

11 0
Take x = <1 0 1)3 € SLy(C) and comsider ¥ =T-x. Then Y7 = {123,132,213,312}.
e

Choose 4 = (A, 4y, 43) € Int(C(231)) Nty Then 4, < 4; < 4.

1 thz 05 0 Eic ! Pl th=h 1 thh
l(f)-<l 0 t2 0 '(1 0] O>B= th 0 0|B= 1.¢.20:t 018

1 0 0 £0 1 A g, A anh g

0
——*(1 (as 1> 0)
0

R (u) = R (u) for all u € S;.
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Greomebric rebraction

Theorem. Let G be a semisimple algebraic group, B a Borel subgrou.lo of G, and T a

maximal torus of G contained in B. Then R = R}, for any T-orbit closure Y in G/B.

(Skekch of Prcof}
Set B, := uB~'u! for u € W. Then we get a Bruhat dacomrosibioh

G/B= | | B,- wBIB.

weWw
For x € G/B, we have x € B, - wB/B if and only if Rfu) =w.
Since Y=T-xC B, -wB/B and (B,-wB/B)l = {ve W |w <" v <" uw,},

w is the unique minimal element in YT with respect to <. ®

Seonjeong Park (KAIST) Torus orbit closures in flag varieties

Algebraic retraction




Topology and Combinatorics of Hessenberg Varieties

Algebraic retraction

Now we assume that W is the Weyl group of classical Lie type. Le,
S, i Wis of bype A,_,,
w=1<_(Z122)"xS, f Wis of type B, or C,,
(ZRzZ"'xe, if Wis of type D,.

We define a Linear order <“ on [n] U [71] b‘J
u(l) <" - <" u(n) <" u(i@) <* - < u(l).
Define a Linear order < on W as follows:

v<'"w if and only £ v(D)--v(n) <L w(l)--w(n).

lex

Definition, Let W be a Weyl group of classical Lie type and .# an arbitrary subset of
W, Then we define a map Ry W — M bj sending u to the unique minimal element

wrt the order <, which we call an algebraic retraction,

Seonjeong Park (KAIST) Torus orbit closures in flag varieties

Algebraic retraction

Note that for any u,v,w € W, f v <'w, then v <" w,

k
Let W= HWJ’ where each W, is a Weyl group of classical Lie type.
j=1

k
Let M = H/%j, where /; is an arbitrary subset of W, Then we define
=1
Ry ) = (Ry (), ... RY () € M for u= (uy,...,u) € W.

Proposition. Let W and / be as above. 1If / is a Coxeter matroid, then %%, = R",.

Therefore, if Y is a torus orbit closure in G/B, then X5 = Ry, = Ry,
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Diskance Prmperﬁj

Recall that the matroid retraction image is the unique element sakisfjing
d(u, R",)) = d(u, M). Rowever, the atgebmic rebraction may not give a closest

element,

Seonjeong Park (KAIST) Torus orbit closures in flag varieties

Characterization of Coxeter matroids

Let W be a Weyl group of classical Lie bype. Suppose that a subset .# of
W satisfies the following two conditions:
1. for each u € W, there is a unique g € M such that d(u,q) = d(u, M), and
2. g=RYWw.

Is M o Coxebter matroid?

The guestion above is brue when

1. M consists of two elements of &,. consisting of two elements, or

2. n<6.
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Further ques&ions

Coan we extend our resulks to partial flag varieties?

Can we find the normal fan of a general Coxeter matroid polytope

using a matroid retraction?

Note that a Bruhat interval polytope Q,, is a flag matroid polytope.
Tsukerman and Williams provided a dimension formula and gave a way to
debermine which subset of [v,w] is realizable as a face. Can we find such a

formula for flag matroid polytopes?

When is a flag matroid polytope simple?

When does a flag matroid polytope admit a (smooth) rebraction

sec\u.ey\ce.?
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Bases of the cohomology spaces of regular
semisimple Hessenberg varieties

JAEHYUN HONG

Regular semisimple Hessenberg varieties started getting attention in combinatorics
after Shareshian and Wachs proposed a conjecture relating their cohomology spaces
with chromatic quasi-symmetric functions of the incomparability graphs of (3+1)-free
posets, and Brosnan and Chow, and independently Guay-Paquet confirmed it to be
true. These works transformed Stanley-Stembridge conjecture on the positivity of
chromatic symmetric functions into the decomposability of the cohomology spaces of
regular semisimple Hessenberg varieties by permutation submodules.

In this talk, we consider the Bialynicki-Birula decomposition of regular semisimple
Hessenberg varieties which induces bases for their equivariant cohomology spaces. For
type A, we give an explicit combinatorial description of the support of each class and
provide a way to compute the symmetric group action on the classes in our bases.
If time permits, we explain how to apply the results to the permutohedral variety to
obtain a permutation module decomposition of its cohomology space. This resolves the
problem posed by Stembridge on the geometric construction of permutation module
decomposition of the cohomology space and the conjecture posed by Chow on the
construction of bases for the equivariant cohomology space. This talk is based on joint
work with Soojin Cho and Eunjeong Lee.



