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On Gaussian Group Convex Models*

Hideyuki Ishi

Osaka City University, OCAMI, 3-3-138 Sugimoto, Sumiyoshi-ku, 558-8585 Osaka,
Japan
hideyuki@sci.osaka-cu.ac.jp

Abstract. The Gaussian group model is a statistical model consisting
of central normal distributions whose precision matrices are of the form
gg", where g is an element of a matrix group G. When the set of gg ' is
convex in the vector space of real symmetric matrices, the set forms an
affine homogeneous convex domain studied by Vinberg. In this case, we
give the smallest number of samples such that the maximum likelihood
estimator (MLE) of the parameter exists with probability one. Moreover,
if the MLE exists, it is explicitly expressed as a rational function of the
sample data.

Keywords: Gaussian group model - affine homogeneous convex domain
- maximum likelihood estimator - Riesz distribution

1 Introduction

Let G be a subgroup of GL(N,R), and M the set { gg' g€ @ } C Sym(N,R).
The Gaussian group model associated to G is a statistical model consisting of
central multivariate normal laws whose precision (concentration) matrices be-
long to Mg ([1]). It is an example of a transformation family, that is, an ex-
ponential family whose parameter space forms a group (see [2]). A fundamental
problem is to estimate an unknown precision matrix § = gg' € Mg from sam-
ples X1, Xo,..., X,, € RY. In [1], the existence and uniqueness of the maximum
likelihood estimator (MLE) 0 of § are discussed in connection with Geometric
Invariant Theory. In the present paper, under the assumption that Mg # {Iy}
is a convex set, we compute the number ng for which MLE exists uniquely with
probability one if and only if n > ng (Theorem 4). In this case, an expression of
the MLE as a rational function of the samples Xy, ..., X,, is given (Theorem 3).

Since M is convex, it is regarded as a convex domain in an affine space I+
V', where V is a linear subspace of the vector space Sym(N, R) of real symmetric
matrices of size N. Moreover Mg is contained in the cone Sym™ (N, R) of posi-
tive definite symmetric matrices, so that M does not contain any straight line
(actually, we shall see that M is exactly the intersection (Iy+V)NSym™ (N, R),
see Proposition 2 and Theorem 2). Thus M is an affine homogeneous convex
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domain on which G acts transitively as affine transforms. Then we can apply
Vinberg’s theory [9] to M. In particular, using the left-symmetric algebra struc-
ture on V explored in [6], we give a specific description of M as in Theorem
2, where the so-called real Siegel domain appears naturally. On the other hand,
every homogeneous cone is obtained as Mg by [6]. In particular, all the sym-
metric cones discussed in [3] as well as the homogeneous graphical models in [8,
Section 3.3] appear in our setting.

The rational expression of MLE is obtained by using the algebraic structure
on V, whereas the existence condition is deduced from the previous works [4]
and [5] about the Wishart and Riesz distributions on homogeneous cones. It
seems feasible to generalize the results of this paper to a wider class of Gaussian
models containing decomposable graphical models based on [7] in future.

The author should like to express his gratitude to Professor Fumihiro Sato for
the information of the paper [1] as well as the interest to the present work. He is
also grateful to Professors Piotr Graczyk, Bartosz Kolodziejek, Yoshihiko Konno,
and Satoshi Kuriki for the collaboration about applications of homogeneous
cones to mathematical statistics. The discussions with them yield most of the
featured ideas and techniques in this paper. Finally, the author sincerely thanks
the referees for their valuable comments and suggestions.

2 Structure of the convex parameter set

In what follows, we assume that M is a convex set in the vector space Sym(N, R)
and that Mg # {In}. The affine subspace spanned by elements of Mg is of
the form Iy 4+ V, where V is a linear subspace of Sym(N,R), and Mg is an
open connected set in Iy + V. Let G be the closure of G in GL(N,R). Then we
have Mg = M. Indeed, for § € G, the set gMgg' = {§0§T; 0 e ./\/l(;}
is contained in the closure Mg of Mg. On the other hand, since § is in-
vertible, the set gMgg' is open in the affine space Iy + V. Thus the point
Gg" € gMgg"' C Mg is an relatively interior point of the convex set Mg,
so that §gg' € Mg, which means that Mg C Mg. Therefore we can assume
that G is a closed linear Lie group without loss of generality. Furthermore, we
can assume that G is connected. Following Vinberg’s argument [9, Chapter 1,

Section 6], we shall show that Mego = Mg, where Gglg is the identity com-
alg

ponent (in the classical topology) of the real algebraic hull of G in GL(N,R).
Let g be the Lie algebra of G. For h € GY, , we have hh' € Iy + V and

alg?
hgh™! = g because these are algebraic conditions that are satisfied by all
the elements of G. The second condition together with the connectedness of
G tells us that hGh™! = G. Let U be a neighborhood of Iy in GY, such that

alg
hhT € Mg for all h € U. Then for any § = gg' € Mg (g € G), we have

hORT = (hgh~Y)hhT (hgh™H)T € goMggy = Mg, where gy := hgh™! € G.

Thus, if A is the product hihs:--h,, € Gglg with hy,..., hy € U, we see that

hh' € Mg inductively. Therefore we conclude that Mcplg = Mg.
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By Vinberg [9], we have the generalized Iwasawa decomposition

GO, =T - (GO, NO(N)),

alg — alg

where T is a maximal connected split solvable Lie subgroup of Gglg. Moreover,
T is triangularized simultaneously by an orthogonal matrix U € O(N), which
means that a group 7V = {U‘th; h e T} is contained in the group Ty
of lower triangular matrices of size N with positive diagonal entries. Let MY,
be the set {UTOU; § € Mg }, which is equal to Myv. By the uniqueness of
the Cholesky decomposition, we have a bijection 7V > h + hh' € Mg The
tangent space of MY at Iy is naturally identified with V¥ := { UlyU;yeV }

In general, for x € Sym(N,R), we denote by z the lower triangular matrix

zi; (> ])
for which z =  + (%")T Actually, we have (av:)” = ¢ zii/2 (i=7) Then we
0 (i < j).

define a bilinear product A on Sym(N,R) by
TNy = zy + y(:g)T (z,y € Sym(N,R)).

The algebra (Sym(N,R),A) forms a compact normal left-symmetric algebra
(CLAN), see [9, Chapter 2] and [6].

Lemma 1. The space VY is a subalgebral of (Sym(N,R), A). Namely, for any
z,y € VY, one has xAy € VY.

Proof. Let tV be the Lie algebra of TV. In view of the Cholesky decomposition
mentioned above, we have a linear isomorphism tV 3 T — T+ T € VU. Thus
we obtain

tU:{g;xGVU}. (1)

Let us consider the action of h € TV on the set MY given by MY > 6 —
hOhT € MY. This action is naturally extended to the affine space In + VU
as affine transformations. The infinitesimal action of T = z ctVonly+yc
In+ VYU (ye VY is equal to T(Ixy +y) + (Ixn +y)TT = z + vy which must
be an element of VV. Therefore zAy € VU, a

Proposition 1 ([6, Theorem 2 and Proposition 2] ). If VY contains the
identity matriz Iy, after an appropriate permutation of the rows and columns,
VU becomes the set of symmetric matrices of the form

Yip Yo ... Y]
Yo1 Yoo Y;g Ykk:ykkfyk, Yk € R, (k:].,...ﬂ’)
=1 . o (szevm 1<k<l<r) >
Yii Yoo oo Yo
where N = vy + -+ + v, and Vi, are subspaces of Mat(v, vi; R) satisfying
(V1) A€ Vi, = AAT €RI,, for1<k<I<r,
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(V2) A€ Vi;,BEVyj = ABT €Vl for 1<j<k<I<r,
(V3) Ae Vi, Be Vi =ABeVjj for1<j<k<l<r.

Clearly Iy € VY if and only if Iy € V. In this case, Proposition 1 together
with [6, Theorem 3] tells us that 7V =tV N Ty and MY% = Mpv = VU N
Sym™ (N, R). It follows that we obtain:

Proposition 2. If Iy € V, one has Mg =V N Sym™ (N, R).
Here we remark that every homogeneous cone is realized as Mg this way by
[6]. For example, if U = Iy, 11 =+ =v, =2 and Vj; = { (Z _ab) ; mbeR}

(1<k<1<r), then Mg =V NSym™ (N,R) is linearly isomorphic to the cone
Herm™ (7, C) of positive definite r x r Hermitian matrices, which is a realization
of the symmetric space GL(r,C)/U(r). See [4] and [6] for other examples.

If VU does not contain Iy, we consider the direct sum VU .= RIy @ VY,
which is also a subalgebra of (Sym(N,R),A). Then we apply Proposition 1
to VU. Since VV is a two-sided ideal of VU of codimension one, after some
renumbering of indices k and [, we see that VU equals the subspace of VU
costing of elements y with y1; = 0. Namely, we have the following.

Theorem 1. If VY does not contain the identity matriz In, after an appro-
priate permutation of the rows and columns, VU becomes the set of symmetric
matrices of the form
0 Y3} ... Y5

_ Y51 Yoo Yvr—g Ykk:ykkfuka ykkER, k:2,...77’
o : P Yir €Vig, 1<k<i<r ’
le }/7"2 v Yrr
where Vi, are the same as in Proposition 1.

In what follows, we shall consider the case where Iny & MY because our
results below for the case Iy € Mg will be obtained formally by putting 11 =0
and V41 = {0}, as is understood by comparing Proposition 1 and Theorem 1.
Put N/ :=vo+---+v, = N—vq. Let W and V' be the vector spaces of matrices
w and 3y’ respectively of the forms

}/21 }/22 Yr—g
w=| : | eMat(N,v;;R), o' =1 - € Sym(N',R).
Y;"l Yr2 oo Yrr

Let P’ be the set V' NSym™ (N’,R). Then P’ forms a pointed open convex cone
in the vector space V.

Theorem 2. Under the assumptions above, one has
_ [,,1 w’ T. / ro T /
Mag=4qU w Y U sweW, eV, y—-—ww €P ;.
Moreover Mg equals the intersection of Sym™ (N, R) and the affine space In+V .
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Proof. Let t' be the set of the lower triangular matrices 3y’ with ¢y’ € V'. Then
v

we see from [6] that t' is a Lie algebra, and that the corresponding Lie group

T':=expt C GL(N',R) equals t' N Tx-. Namely, 7 is the set of h’ of the form

Taa
/ . Tk = terdy,, tew >0, k=2,...,r
h = L. GTN/ .
T 'T T € Vi, 2<k<i<r

r2 -« 4Lrr

2 T’> s LeW, T'et } by (1), the corresponding Lie

121 }(L)/ with L € W and 1/ € T'. Therefore, MY =

T T
M+u is the set of matrices <I£1 }(L),) (I’“ L > = (IVl L ,> with o’ =

Since we have tV = { (

group TV is the set of

0 (BT L LLT +a
R'(W)T € P’. On the other hand, as is discussed in [6, Theorem 3], the map
T' > 1+ h'(W)T € P’ is bijective, which completes the proof. O

3 Existence condition and an explicit expression of MLE

Let X;,...,X,, be independent random vectors obeying the central multivari-
ate normal law N(0,Y) with 6 := Y71 € Mg. The density function f of
(X1,...,X,) is given by

N
f(@1,. .. w0 0) = (QW)’”NN(detG)"/?He’:”;e:”j/z (z; eRY, j=1,...,n).
j=1
Let 7 : Sym(N,R) — V be the orthogonal projection with respect to the trace
inner product. Putting y := W(Z;\f:l :cjij/Z) € V, we have f(z1,...,2,;0) =
c(x)(det )2~ where c(z) := (2m) "V 2 exp(tr {(In—7(IN)) Zjvzl a:j:ch/Q}),
which is independent of §. Thus, given Y := n(}_;_; X; X' /2) € V, the max-
imum likelihood estimator 6 is an element of M at which the log likelihood
function F(6;Y) := (n/2)logdet § — tr(Y0) attains the maximum value.
In what follows, we shall assume that U = Iy. Indeed, a general case is easily
reduced to this case. For k =2,...,r, let V3 and Wy_; be the vector spaces of
matrices yx) and Zj_1 respectively of the forms

Ykk Y;—lz Yk,kfl
yw = - € Sym(Ng,R), Zp_1 = : € Mat(Ng, ve—1;R),
Yr'k N }/7, )/r,k—l

where Ny := v 4 --- + 1. Note that V' = Vjyy and W = W in the previous
notation. We have an inductive expression of y € V' as

0 ZF) (ykkIIJ}c Z];r )
= ) = k':277“—1 s r = TTIVT_ 2
Y <21 Y2 YIk] Zi Ypern] ( ) Yp =Y (2)
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Let Tj C Th,, be the group of lower triangular matrices y) (Y@ € Vixy) with
v
positive diagonal entries. Then 7" = Tpy. Any element h € T is expressed as

I, 0 tredy 0
b= (In by = : eTy (k=2 r—1
(Ll hm) o ( Ly, h[k+u> i ( r=1)

with Ly € Wy and hj,) = t.-1,,. € Tj,). We observe that

hiahT — tendu, tu Ly, eV
(k] [k] ten Ly LiL) + h[k+1lh?z;+u -

We shall regard V}; as a subspace of V' = V) by zero-extension. Define a map
2 T

qrk - R>0 X Wy — V' for k = 2,...,7“ -1 by Qk(tkkaLk) = < tkk tkkLkp) S
trr L LkLk
Vi C V', and define also q,(t,.) :=t2,1,, € Vi C V/.If 6 = hhT, we have

r—1
I, L
o= (7 i) P Salw ) tat). @
k=2

Fory' € V! =Vjgand k =2,...,7 — 1, we have

tr (y/qk (tk/w Lk)) = kakktik + 2t tr (ZI;FL;C) + tr (y[kJrl]LkLZ). (4)

Let my (k= 1,...,7 — 1) be the dimension of the vector space Wy, and take
an orthonormal basis {egq }n’, of Wy with respect to the trace inner product.
For L, € Wy, let A\p = ()\kl,...,)\k,mc)—r € R™k be the column vector for
which L = 221:’”1 Aka€ka- Defining (. € R™* for Z; € W), similarly, we have
M =tr (Z] Li). Let by, : V! — Sym(my, R) be a linear map defined in such
a way that tr (v' Ly L] ) = A\ ¥r(y') Ak, and define ¢, : V! — Sym(1 + my, R) by
N (vkysr G
or(y) = G Yr(y)

. In view of (4), we have

/ _ n ot tAL
tr(y qr (tew, Li)) = tr ( on(y') b Al ) ) (5)

Let ¢} : Sym(1 + my,R) — V' be the adjoint map of ¢, which means that
tro;(S)y’ = tr So(y') for S € Sym(1 + my, R). Define also ¢.(y') := vpyrr €
R = Sym(1,R) and ¢;(c) = cl,, € Vj;j C V' for ce R.

Let @' € V'’ be the dual cone of P’ C V', that is, the set of ' € V' such
that tr (y'a) > 0 for all a € P’ \ {0}. If ¢/ € Q’, then ¢x(y') and ¥,_1(y’) are
positive definite for k = 2,...,r. Moreover, it is known (see [4, Proposition 3.4
(iii)]) that

O ={y eV'detgp(y) >0forall k=2,...,7}. (6)

Y :=n(3"7_, X;X/2) is expressed as in (2), then we can show that Y’ :=
Yo belongs to the closure of Q', so that ¢ (Y’) and 5 _1(Y’) are positive
semidefinite for k = 2,...r.
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Theorem 3. (i) If Y’ € @, then 0 = arg nax F(0;Y) exists uniquely, and it
EMa

I, LT
Ly LiLT + 6

the column vector corresponding to ﬁl, and

v =G ank‘bk< 7= Q) @

(i) If Y’ & Q', then F(0;Y) is unbounded, so that § does not exist.

is expressed as 0 = ( ) with A\, = — 1 (Y71 € R™, which is

Proof. (i) Keeping (2), (3) and (det 8)"/? = []}_,(txx)™* in mind, we define

Fi(L1;Y) == —2tr(Z] L) — tr(Y'L, L] ),
Fi.(tek, Li; Y) := nyy log tep — tr (g (tew, L)Y') (E=2,...,7 = 1),
Fr(trr; Y) =Ny IOg try — l/ryrrtzra

so that F(6;Y) = Fi(L;Y)+ Fe(te; V) + Z;;; Fy(tgr, Li; Y). Tt is easy to see

that F,.(t,,;Y) takes a maximum value at £,, = /Qy%. Then ¢, (t,,) = %%L,T =

2 g (¢ (Y') ™). On the other hand, Fi(L1;Y) = —2¢ A\ = A{ ¢1(Y')\1 equals

Gr(Y) M = M+ (Y)TH) T (Y (M 4+ 91 (Y) 1),

which attains a maximum value when \; = —1(Y’)71¢; because 1 (Y”) is
positive definite. Similarly, we see from (5) that

Fy(tur, L) =nwvi log ter — (kyre — o ¥i(Y) ™ o) tin

Nn—1 T / Nn—1 (8)
— (M F e (Y7 C) (Y (A + trathr (YY) ™ C)-

Since kakk—(,;rwk(Y’)’lgk = det ¢ (Y’)/ det Y (Y') > 0, we see that Fy (txr, Lr; Y"')

attains at (Eklm fjk) with Ltkk = \/2(kakk C:”:ﬁk(Y') ) and ;\k = —fkkwk(yl)_lck S

R™*k which is the column vector corresponding to L. By a straightforward cal-
culation, we have

t tkk)\ . m/k 0 0
<tk:§\k )\k)\:) o <¢k( ) (0 1/1k(Y/)_1>> € Sym(l + mkaR)7

which maps to g (fx, ﬁk) by ¢ : Sym(1+4+my, R) — V' thanks to (5). Therefore
the assertion (i) is verified.

(ii) By (6), there exists k for which det ¢, (Y”') = 0. If det ¢,.(Y') = y¥r = 0, then
FE.(t,r;Y'") = nyplogt,, — 400 in ¢, — 400. Let us consider the case where
det ¢;(Y’) >0 for l=k+1,...,r and det ¢5(Y’) = 0. Then one can show that
Yr(Y") is positive definite because in this case Y[41] € Vjz41) belongs to the
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dual cone of Ppp1) := Vjggq N Sym™ (N, R) by the same reason as (6). Since
vkyrk — ¢ vk (Y') 71 = det ¢1(Y”)/ det ¢ (Y') = 0, we see from (8) that

max Fk(tkk; Lg; Y/) = nvg log tgr — +00 (tkk — +OO),
LieWy
which completes the proof. a
We remark that a generalization of the formula (7) is found in [5, Theorem
5.1]. By Theorem 3, the existence of the MLE 6 is equivalent to that the random
matrix Y’ belongs to the cone Q" with probability one. On the other hand, the
distribution of Y’ is nothing else but the Wishart distribution on Q' studied in
[4] and [5]. The Wishart distribution is obtained as a natural exponential family
generated by the Riesz distribution p,, on V' characterized by its Laplace trans-
form: [i,, e""W' @y, (dy') = (deta)~"/2 for all a € P'. Note that, if a € P’ is a

diagonal matrix, we have (deta)™"/2 =[]} _, a;k"w“/? As is seen in [5, Theorem

4.1 (ii)], the support of the Riesz distribution pu,, is determined from the parame-
ter (nva/2,...,nv,/2) € R"~1. In fact, supp pu,, = Q' if and only if nvy /2 > my, /2
for k=2,...,7, and Y’ € Q' almost surely in this case. Otherwise, supp p,, is
contained in the boundary of @', so that Y’ never belongs to Q'. Therefore, if

ng is the smallest integer that is greater than max{ T—: i k=2,...,r }, we have
the following final result.

Theorem 4. The mazimum, likelihood estimator = arg JDax F(6;Y) exists
EMa

with probability one if and only if n > ng. If n < ng, then the log likelihood
function F(6;Y) of 0 € Mg is unbounded.
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