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INTRODUCTION 

Central nervous system (CNS) complications after allogeneic hematopoietic cell 

transplantation (allo-HCT) are still one of the important causes of allo-HCT-related 

morbidity and mortality (1, 2). Many studies reported risk factors for a composite of 

multiple CNS complications after allo-HCT (2-4). However, for a more precise and 

targeted approach, risk factor analysis for each CNS outcome is needed. Several 

studies have performed risk factor analyses for each CNS complication. They have 

included analyses for cerebrovascular disease (5), posterior reversible 

encephalopathy syndrome (PRES) in children (6, 7), viral encephalitis (8), and human 

herpesvirus-6 (HHV-6) encephalitis (9). However, further exploration on each CNS 

event is required to improve the management and prognosis of CNS complications 

after allo-HCT. 

Post-transplant acute limbic encephalitis (PALE) is a rare, severe inflammatory 

disorder in the bilateral limbic system, including the hippocampus, and has not been 

examined comprehensively (10). Seeley et al. reported that although the 

development of PALE could be associated with the presence of HHV-6 in the 

cerebrospinal fluid (CSF), the study included CSF HHV-6-negative cases, too (10). 

Hill et al. showed that factors associated with increased risk of developing CSF 

HHV-6-positive PALE include the following: unrelated cord blood transplantation 
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(CBT), acute graft-versus-host disease (aGVHD) grades II–IV, and adult mismatch 

donor (11). Although HHV-6 encephalitis after allo-HCT may be defined based on the 

positivity of HHV-6 on the CSF (9), the diagnostic cut-off levels of CSF HHV-6 viral 

load discriminating HHV-6 encephalitis from HHV-6 reactivation in the CSF (i.e., 

HHV-6 present in CSF but not HHV-6 infectious disease) has not yet been 

established; furthermore, the pathogenic role of HHV-6 has not yet been fully 

understood. CSF HHV-6 negative cases defined by quantitative polymerase chain 

reaction (qPCR) can unlikely mean HHV-6 encephalitis (12). To our knowledge, only a 

few cases of CSF HHV-6-negative PALE were reported (10). This may be because of 

difficulty of awareness of PALE or wrong diagnosis as herpes simplex encephalitis. 

Historically, the CNS had been considered as an “immune privileged” site because it 

did not appear to express major histocompatibility complex (MHC) class 1 (13, 14). 

However, recent studies have reported that MHC class 1 protein could be expressed 

in hippocampal neurons (14-16); thus, the limbic system could be targeted by 

alloimmune reactions. This supports a speculation that alloimmune reactions, derived 

from HLA mismatch, may have a crucial role in the pathogenesis of CSF 

HHV-6-negative or HHV-6-reactivated PALE. In addition, preclinical (17, 18) and case 

report (19, 20) evidence on aGVHD of the CNS supports that the CNS could be 

targeted by alloimmune reaction including donor T cells. To our knowledge, no study 
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has examined the risk factors and long-term outcomes of PALE including CSF 

HHV-6-negative cases. 

Calcineurin inhibitor-induced encephalopathy (CNIE) following allo-HCT is 

characterized by PRES or transplantation-associated thrombotic microangiopathy 

(21-24). Only two studies in children conducted risk factor analyses for PRES, mainly 

in non-malignant diseases including mostly hemoglobinopathies (6, 7). A few reports 

showed a poor prognosis of pediatric patients with CNIE after allo-HCT (6, 7, 22). 

However, evidence is lacking on risk factors and long-term prognosis for CNIE in 

adults with hematological malignancies after allo-HCT. 

  On the basis of these observations, we conducted a retrospective cohort study to 

investigate risk factors and long-term outcomes of PALE and CNIE after allo-HCT. 

MATERIALS AND METHODS 

Patients 

We retrospectively examined consecutive patients who underwent allo-HCT at our 

institute between January 2005 and November 2017. In this study, opt-out consent 
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was selected since it was difficult to obtain written informed consent given the 

retrospective design of the study. This observational study was announced to the 

public by displaying a notice at the hospital and on its website. The protocol was 

carried out in accordance with the “Ethical Guidelines for Medical and Health 

Research Involving Human Subjects” by the Ministry of Education, Culture, Sports, 

Science and Technology, and Ministry of Health, Labor and Welfare in Japan (25). 

The study was approved by the Human Subjects Review Committee of Osaka City 

University. 

Transplantation Procedures 

Detailed transplantation procedures employed at our institute have been 

described previously (26-29). Briefly, HLA allele typing was performed at HLA-A, 

HLA-B, HLA-C, and HLA-DRB1. The conditioning regimens consisted of 

myeloablative conditioning (MAC) and reduced-intensity conditioning (RIC). MAC 

regimens included total-body irradiation greater than fractionated 800 cGy; oral or 

intravenous administration of busulfan at a dose of 9 mg/kg or more and 7.2 mg/kg or 

more, respectively; melphalan dose at 140 mg/m2 or more; or a thiotepa dose at 10 

mg/kg or more, according to a previous report (30). Other regimens were defined as 
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RIC (30). Donor sources included HLA-matched or one-antigen-mismatched related 

bone marrow (BM) or peripheral blood (PB), HLA-matched unrelated BM/PB donor 

(URD), HLA-mismatched URD, haplo-identical PB donor, and umbilical cord blood 

(CB) donor. To prevent aGVHD, we mainly used CNIs with methotrexate (MTX) or 

CNIs with mycophenolate mofetil (MMF). Post-transplantation cyclophosphamide 

was used only for haplo-identical PB (27, 29). Supportive care included granulocyte 

colony-stimulating factor administration to neutrophil engraftment, and levofloxacin, 

fluconazole, and acyclovir prophylaxis for infections as reported previously (26). 

Disease risk was categorized into low, intermediate, high, or very high risk by the 

refined disease risk index (DRI) (31). We defined engraftment as an absolute 

neutrophil count of at least 500/𝜇l for three consecutive days. aGVHD was defined 

based on standard criteria (32). 

Diagnosis of CNIE and PALE and Outcome Measure 

As a rule, according to the allo-HCT manual of our transplantation unit, the 

following evaluations were performed for all patients who developed some new CNS 

symptoms, except for the presence of certain reasons such as clinically severe cases, 

along with consultation with a neurologist: brain computed tomography; brain 
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magnetic resonance imaging including apparent diffusion coefficient map; 

electroencephalography; CSF examination including bacterial, fungal, and 

Mycobacterium tuberculosis cultures; and qPCR testing for the presence of herpes 

simplex virus, varicella zoster virus, Epstein-Barr virus (EBV), HHV-6, and 

cytomegalovirus. 

PALE was defined as presence of acute onset of neurological symptoms mainly 

consisting of memory deficits, altered mental status, or seizures, and displayed 

hyperintensities of selective bilateral medial temporal lobe structures, particularly 

including the hippocampus in T2-weighted or fluid-attenuated inversion recovery 

(FLAIR) sequences (10, 33). In this study, PALE included cases with HHV-6-positive 

CSF, but not other members of the herpesvirus family according to a previous report 

(10). CSF HHV-6 DNA was measured by real-time qPCR (reference value, <2×102 

copy/mL). CSF HHV-6 negative PALE was defined by negative results of HHV-6 

qPCR using the CSF sample. In addition, PALE did not include cases with malignant 

cell-positive CSF (10). Considering the retrospective assessment, treatment 

response to steroid and/or immunosuppressants was judged at day 90 after the start 

of intravenous methylprednisolone (mPSL) therapy at 1 g dosage for three 

consecutive days with reference to previous reports (34, 35), in similar context as 

follows: 1) the documented neurological status, as recorded by the attending 
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physician, was graded by two independent investigators according to the modified 

Rankin Scale (mRS) (36) and Common Terminology Criteria for Adverse Events 

(CTCAE) v5.0 (37); 2) complete response was defined by the resolution of all clinical 

signs and symptoms and radiological findings; partial response was defined by score 

improvement of mRS ≥1 or CTCAE grade ≥1 and no worsening radiological and 

clinical findings; stable response was defined by the absence of change from 

baseline; and failure of therapy was defined by worsening disease. As necessary, 

mPSL 1 g pulse therapy was repeated weekly according to the judgment of the 

attending physicians. Other treatments including intravenous immunoglobulin and 

plasmapheresis were not used in the present study. 

CNIE was defined as the presence of acute-onset neurological symptoms of 

PRES (e.g., headache, seizures, disorders of consciousness, and visual disturbance) 

with hyperintense lesions in T2-weighted or FLAIR sequences frequently presenting 

symmetric pattern in the parieto-occipital lobe, reflecting vasogenic edema, or 

neurological manifestations of thrombotic microangiopathy (TMA) during cyclosporin 

A or tacrolimus administration, after ruling out other possible causes (22, 38). TMA 

was diagnosed with reference to two previous consensus criteria (39, 40). 

Statistical Analysis 
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Blood pressure (BP) values at onset of CNIE were compared with those at 

baseline using the Wilcoxon signed rank test. Landmark analysis was performed to 

evaluate the influence of all CNS complications on overall survival (OS), according to 

EBMT statistical guideline (41). To exclude the bias of early death before engraftment, 

30 days after allo-HCT was set as landmark time with reference to previous reports 

(29, 41, 42); we compared patients divided by prior history of all CNS complications 

using this timepoint. The probability of OS was estimated by the Kaplan-Meier 

method and compared by the log-rank test. Non-relapse mortality (NRM) was 

calculated by Gray’s method with disease relapse as a competing risk (41). We used 

univariable and multivariable Cox proportional hazards models with time-dependent 

covariates to find risk factors for all CNS complications, CNIE, and PALE and to 

reveal the influence of all CNS complications on OS (41). aGVHD was treated as a 

time-dependent covariate. We evaluated the proportional hazards assumption using 

Schoenfeld residuals. To evaluate the influence of missing information on CSF HHV-6 

on outcome, sensitivity analysis was performed (43, 44). 

  All statistical tests were interpreted at a 5% significance level. All P values and 95% 

confidence intervals (CIs) were two-sided. Statistical analyses were performed using 

R version 3.6.0 (The R Foundation for Statistical Computing, Vienna, Austria) and 
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EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan) (45). 

RESULTS 

Patient Characteristics and All CNS Complications 

A total of 485 patients between 16 and 69 years old (median, 46 years) were 

eligible for this study. Detailed patient characteristics at allo-HCT are shown in Table 1. 

The median follow-up time among the survivors was 1,836 days (range, 45–4,860 

days) after allo-HCT. A total of 33 CNS complications (6.8% of the entire cohort) were 

identified: 11 CNIE (33%), 14 PALE (42%), three transverse myelitis (9.0%), two drug 

encephalopathy (6.0%), one aseptic meningitis (3.0%), one fungal brain abscess 

(3.0%), and one acute epidural hematoma (3.0%). The median onset day of all CNS 

complications was 30 days (range, 2–251 days). By landmark-time analysis, the 

prognosis of patients who developed any CNS complications within 30 days was 

significantly worse than those who did not (1-year OS, 37.5% vs. 67.2%, Log-rank P < 

0.001). A multivariable time-dependent Cox model revealed that all CNS 

complications were an independent poor prognostic factor for OS (hazard ratio [HR] 
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2.60, 95% CI 1.72–3.94, P < 0.001), adjusted for age and DRI. 

Risk Factors and Long-term Outcomes for PALE 

Since the number of each PALE and CNIE events was not enough for employing a 

stable multivariable analysis within one model, we constructed several multivariable 

models to limit the degree of freedom of each statistical model from the viewpoint of 

stability (27, 46). 

PALE included seven HHV6-negative CSF cases (two alive at last follow-up), five 

HHV6-positive CSF cases (one alive), and two unknown cases (one alive). All case 

presentations are described in Table 2 and Supplementary Table 1. The median onset 

day of PALE was 25.5 days (range, 14–122 days). In these 14 patients, in addition to 

foscarnet or ganciclovir, 11 received mPSL pulse therapy, two received 

moderate-dose mPSL therapy, and one did not receive steroid therapy. mPSL was 

administered by the judgment of the attending physicians, when clear CNS infections 

including bacteria, fungi, and tuberculosis were not found apart from HHV-6 detection. 

Among the 13 mPSL-treated patients, except for patient no. 3, six (46%) responded 

and three (23%) achieved complete remission (CR) at day 90 after mPSL 

administration (Supplementary Table 2). Out of five patients with CSF 
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HHV-6-negative PALE, three and one achieved CR and PR at day 90 after a 

high-dose mPSL therapy, respectively (Table 2). Concerning patient no. 3, the 

attending physician did not use steroids considering the possibility of HHV-6 

encephalitis (CSF HHV-6 viral load, 9 × 103 copy/mL). In the multivariable Cox 

models, older age, HLA-mismatched URD, and grade II to IV aGVHD were 

significantly associated with increased risk of PALE (Table 3, Models 1–3). In addition, 

GVHD prophylaxis with CNI and MMF showed a significantly higher incidence of 

PALE than CNI and MTX (Table 3, Models 1c, 2b, and 3). The estimated 5-year NRM 

rate was 50% (95% CI, 21%–73%) for all patients with PALE (N = 14) (Figure 1A). 

The estimated 5-year OS rate was 19% (95% CI, 3.6%–44%) for all patients with 

PALE (Figure 1B). 

  In addition, considering the potential bias due to CSF HHV-6-unknown cases, 

although we performed sensitivity analysis by treating the unknown cases as 

non-PALE controls, we observed similar risk associations of the above-identified 

factors and PALE development (Supplementary Table 3) (44, 47). In the other 

sensitivity analysis treating CSF HHV-6-higher-level cases (≥50 percentile of viral 

load: 9 × 103 copy/mL) as control cases; we observed almost similar risk associations 

(Supplementary Table 3). 
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Risk Factors and Long-Term Outcomes for CNIE 

CNIE cases included eight cyclosporin A-induced and three tacrolimus-induced 

cases, of which four (36%) patients were alive at the last follow-up. All case 

presentations are described in Supplementary Table 4. The median onset day of 

CNIE was 26 days (range, 2–251 days). In the multivariable Cox models, 

myelodysplastic syndrome (MDS) was significantly associated with increased risk of 

CNIE, compared with acute myeloid leukemia/acute lymphoblastic leukemia (Table 4, 

Models 1–3). In addition, HLA-mismatched URD was significantly associated with 

increased risk of CNIE, compared with HLA-matched related and unrelated donors 

(Table 4, Models 2 and 3). Furthermore, grade II to IV aGVHD, a post-transplant 

factor, showed a significantly higher incidence of CNIE (Table 4, Models 1 and 2). In 

addition, although each BP measure at baseline was not associated with elevated 

risk of CNIE, systolic BP, diastolic BP, pulse pressure, and mean arterial pressure 

median levels at CNIE onset were significantly higher than those at baseline in 

patients with CNIE (158 mmHg at onset, 108 mmHg at baseline, P = 0.013; 90 mmHg 

at onset, 66 mmHg at baseline, P = 0.016; 60 mmHg at onset, 44 mmHg at baseline, 

P = 0.036; and 113 mmHg at onset, 81 mmHg at baseline, P < 0.01, respectively). 

The estimated 5-year NRM rate was 63% (95% CI, 21%–83%) for all patients with 
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CNIE (N = 11) (Figure 1C). The estimated 5-year OS rate was 36% (95% CI, 11%–

63%) for all patients with CNIE (Figure 1D). 

DISCUSSION 

In this study, CNS complications after allo-HCT were confirmed to be an 

independent risk factor for OS in agreement with previous reports (2, 4). In addition, 

we found that older age, HLA-mismatched URD, GVHD prophylaxis with CNI and 

MMF, and grade II to IV aGVHD were significantly associated with increased risk of 

PALE. Among patients with PALE and on high-dose mPSL therapy, 46% showed a 

response and 23% achieved complete remission at day 90 after initiation of mPSL 

therapy. Furthermore, we demonstrated that MDS, HLA-mismatched URD, and grade 

II to IV aGVHD were significantly associated with increased risk of CNIE after 

allo-HCT. Each BP component level at CNIE onset was significantly higher than that 

at baseline in patients with CNIE, as reported previously (48), whereas each BP 

component level at baseline was not significantly associated with the development of 

CNIE. Long-term NRM, that is, more than the median 5-year-follow-up, indicated poor 

prognosis of both PALE and CNIE. 
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It remains unclear how HHV-6 contributes to the development of PALE, what 

cut-off value of CSF HHV-6 viral load can discriminate HHV-6 reactivation from HHV-6 

encephalitis, and what etiologies other than HHV-6 cause PALE. In this study, 

HLA-mismatched URD increased the risk of PALE. This supports the finding that 

MHC class I in limbic structures (14-16) may be targeted by alloimmune response. It 

is well known that activated T cells including CD8+ T cells have a key role in the 

development of aGVHD (49). Experimental models suggested that CD8+ T cells have 

the potential to recognize and attack MHC class 1-expressing neuronal cells (50, 51). 

Furthermore, in an MHC-disparate murine allo-HCT model, the hippocampus was 

one of the targeted lesions by donor T cells (18). In addition, in this study, as seen in 

reported cases of autoimmune limbic encephalitis, out of five patients with CSF 

HHV-6-negative PALE, three and one showed CR and PR responses to high-dose 

mPSL therapy, respectively (Table 2) (35, 52, 53). During the last follow-up, three out 

of five patients were deceased not due to NRM but relapse of primary disease. In 

CSF HHV-6 negative PALE cases, high-dose steroids may have the potential to 

improve or cure PALE. These observations suggest that alloimmune reaction derived 

from HLA mismatch could contribute to the development of PALE, especially in CSF 

HHV-6-negative or HHV-6-reactivated cases. However, the prognosis of entire PALE 

cases was very poor. Recent evidence suggests that in non-transplant patients with 
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autoimmune, especially autoantibodies-associated, limbic encephalitis, when first 

immunotherapies including steroids, intravenous immunoglobulin, and/or plasma 

exchange did not show clinical improvement, rituximab, cyclophosphamide, 

bortezomib, and/or tocilizumab could contribute to better outcome (34, 35, 54-56). 

Therefore, exploring novel treatment strategy including these for PALE is required. In 

vitro data showed that interferon-γ and tumor necrosis factor-α, both associated with 

aGVHD (49), upregulated MHC expression in neural stem/progenitor cells (57). 

Grade II to IV aGVHD might contribute to the development of PALE through MHC 

upregulation in limbic structures. To our knowledge, no study has reported on 

MMF-induced neurotoxicity. Ogata et al. reported that the group with CNI and MMF 

showed a clearly higher cumulative incidence of HHV-6 encephalitis than that with 

CNI and MTX (9). GVHD prophylaxis with CNI and MMF might contribute to the 

emergence of HHV-6 in the CSF. We were unable to find the reason why older age 

increased the risk of PALE. Further study is warranted to confirm these findings. 

Although with little evidence, causes of PALE may possibly include EBV or 

autoantibodies apart from HHV-6 (58-60). Further mechanistic studies are needed to 

elucidate the etiology and pathophysiology of PALE development. 

  A study in pediatric recipients including approximately 40% of non-malignancies 

showed that CB transplantation increased the risk of PRES in the multivariable 
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analysis (7). Another study in children with hemoglobinopathies reported that sickle 

cell disease, post-allo-HCT hypertension, and grade II to IV aGVHD were associated 

with increased risk of PRES (6). Only one study in adults showed several associated 

factors including the polymorphisms in CYP3A5 and ABCB1 genes for the composite 

outcome consisting of CNI-induced peripheral neuropathy and CNIE (61). To our 

knowledge, no pretransplant risk factor analysis for CNIE alone has been reported in 

adults. Although the exact mechanism on CNIE has not been completely elucidated, 

in addition to the direct injuring effect of CNIs to oligodendrocytes and neurons (62), 

endothelial dysfunction by multiple CNI-mediated factors including direct injury by 

CNIs (63, 64), impaired nitric oxide and endothelin-1 homeostasis (65, 66), and 

decreased prostacyclin production (67, 68) appears to have a crucial role in the 

development of CNIE. Considering autoimmune disorders associated with PRES 

development (38), we can explain that alloimmune reactions during aGVHD may 

cause endothelial damage due to excessive cytokine release (24, 49). In addition, the 

finding that MDS was a risk factor of CNIE may be partly explained by the fact that a 

subset of MDS may be predisposed to vascular endothelial damage (e.g., vasculitis) 

(69, 70). However, we did not identify why HLA-mismatched URD might be 

associated with CNIE risk. Considering CB transplantation, predominantly comprised 

of HLA-mismatched donor-recipient pairs, reported as a risk factor of PRES (7), 
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further study is needed to examine the association of HLA mismatch on CNIE 

development for a more personalized allo-HCT management. 

  The interpretation of the results may be limited by the retrospective nature of this 

study, single-center setting, and small number of outcome events. However, all study 

participants had been treated homogeneously according to our institution’s manual 

on allo-HCT procedure, leading to a reduced bias. In addition, we did not demonstrate 

the significance of CBT on the development of PALE as previously reported (11); 

however, this could be affected by the difference in the study population and/or an 

inadequate sample size. Further, larger sample size study is necessary to confirm 

this. 

  In conclusion, these results provide evidence that HLA-mismatched URD and 

aGVHD may independently contribute to the development of PALE possibly partly 

through HLA-mismatch-derived alloimmune responses. In addition, other than 

aGVHD, we identified MDS and HLA-mismatched URD as novel predictors of CNIE 

after allo-HCT. Future validation studies including focus on GVHD prophylaxis and 

donor source selection are warranted to improve the management and long-term 

prognosis of PALE and CNIE. 



18 

ACKNOWLEDGMENTS 

Financial disclosure: This work was supported by JSPS KAKENHI Grant number 

17K09017 and 20K07788. 

Conflict of interest statement: There are no conflicts of interest to disclose. 

Authors’ Contributions 

NT, HK, MH, and HN contributed to the concept and design of the study. HO, AH, and 

MNa contributed to the acquisition of the data. NT and HK analyzed the data, 

interpreted the results, and wrote the manuscript. HO, KY, YM, MK, TT, SK, SN, MNi, 

AH, MNa, YN, TN, MH, and HN interpreted the results and reviewed critically and 

revised the manuscript. All authors read and approved the final version. 



19 

Figure Legends 

Figure 1. Cumulative incidence curves of non-relapse mortality (NRM) and relapse 

and overall survival curve in patients with PALE (n = 14) and CNIE (n = 11), and 

patients without CNSC (n = 452). (A, B) Patients with PALE. (C, D) Patients with CNIE. 

(E, F) Patients without CNSC. Estimated 5-year NRM and relapse rates were 29% 

(95% CI, 25%–34%) and 29% (95% CI, 25%–33%) for patients without CNSC (n = 

452), respectively (Figure 1E). The estimated 5-year OS rate was 46% (95% CI, 

41%–50%) for patients without CNSC (n = 452) (Figure 1F). 

PALE, post-transplant acute limbic encephalitis; CNIE, calcineurin inhibitor-induced 

encephalopathy; CNSC, central nervous system complications. 
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Table 1. Baseline characteristics of study patients who underwent allogeneic hematopoietic 1 

cell transplantation 2 

Characteristics Total PALE (+) CNIE (+) 

Number of patients, n 485 14 11 

Male, n (%) 274 (56.5) 11 (78.6) 6 (54.5) 

Median age at transplantation (range), 

years 
46 (16–69) 56.5 (32–66) 43 (18–55) 

Primary diseases, n (%) 

Acute leukemia (AML/ALL) 292 (60.0) 8 (57.1) 3 (27.3) 

Myelodysplastic syndrome 59 (12.1) 1 (7.1) 5 (45.5) 

Malignant lymphoma 93 (19.1) 5 (35.7) 2 (18.2) 

Others* 41 (8.5) 0 (0.0) 1 (9.1) 

Disease Risk Index, n (%) 

Low 21 (4.3) 0 (0.0) 0 (0.0) 

Intermediate 209 (43.0) 8 (57.1) 5 (45.5) 

High 178 (36.7) 3 (21.4) 4 (36.4) 

Very high 49 (10.1) 3 (21.4) 1 (9.1) 

Unknown 28 (5.8) 0 (0.0) 1 (9.1) 

Number of allo-HCT, n (%) 

First 394 (81.2) 13 (92.9) 9 (81.8) 

Second 76 (15.7) 1 (7.1) 1 (9.1) 

Third 15 (3.1) 0 (0.0) 1 (9.1) 

Donor, n (%) 

HLA-matched or -one 

allele-mismatched sibling PB or BM 

and HLA-matched URD 

191 (39.4) 2 (14.3) 0 (0.0) 

HLA-mismatched URD 36 (7.4) 3 (21.4) 2 (18.2) 

Umbilical cord blood 110 (22.7) 4 (28.6) 5 (45.5) 

Haplo-identical PB 118 (24.3) 5 (35.7) 2 (18.2) 

Allele unknown URD 30 (6.2) 0 (0.0) 2 (18.2) 

Conditioning regimen, n (%) 

Total-body irradiation-based MAC 113 (23.3) 0 (0.0) 4 (36.4) 

Busulfan, melphalan, or 

thiotepa-based MAC 
177 (36.5) 5 (35.7) 4 (36.4) 

Reduced-intensity conditioning 195 (40.2) 9 (64.3) 3 (27.3) 
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GVHD prophylaxis 

CNI with MTX 261 (53.8) 2 (14.3) 9 (81.8) 

CNI with MMF 68 (14.0) 4 (28.6) 0 (0.0) 

Others† 156 (32.2) 8 (57.1) 2 (18.2) 

Blood pressure components before 

allo-HCT, mmHg (range) 

Systolic blood pressure 112 (80–164) 115 (84–156) 108 (98–154) 

Diastolic blood pressure 67 (40–102) 70 (46–84) 66 (54–76) 

Pulse pressure 45 (18–93) 45 (30–76) 44 (26–82) 

Mean arterial pressure 82 (59–119) 86 (59–105) 81 (72–99) 

Acute GVHD prior to diagnosis of CNSC 

Grade II to IV, n (%) 245 (50.5) 9 (64.3) 9 (81.8) 

Abbreviations: AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; BM, bone 1 

marrow; CNI, calcineurin inhibitor; CNIE, calcineurin inhibitor-induced encephalopathy; 2 

CNSC, central nervous system complications; GVHD, graft-versus-host disease; HCT, 3 

hematopoietic cell transplantation; HLA, human leukocyte antigen; MAC, myeloablative 4 

conditioning; MMF, mycophenolate mofetil; MTX, methotrexate; PALE, post-transplant acute 5 

limbic encephalitis; PB, peripheral blood; URD, unrelated PB or BM donor. 6 

* Others included adult T-cell leukemia/lymphoma, chronic myelogenous leukemia, aplastic7 

anemia, chronic active Epstein-Barr virus infection, myelofibrosis, chronic neutrophilic 8 

leukemia. 9 

† Others included calcineurin inhibitor alone and post-transplantation cyclophosphamide. 10 

11 
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Table 2. Patients’ characteristics at onset and outcomes in patients with post-transplant acute limbic encephalitis (PALE) (N = 14) 

Pt 

no. 

Age 

(y)/ 

sex 

Disease Donor 
Conditioning 

regimen 

GVHD 

prophyla-

xis 

LE 

onset 

(days) 

Symptoms 

aGVHD 

grade (days, 

organ) prior 

to PALE 

onset 

HHV-6 DNA 

in CSF/PB 

(copy/mL) 

Antiviral 

therapy 

mPSL 

pulse 

therapy 

Day 90 

treatment 

response* 

Outcome/

follow-up 

(cause of 

death) 

1 59/M AML Haplo RIC 
CNI/MMF

/PTCY 
94 

Depressed 

level of 

conscious-

ness/ 

amnesia/ 

confusion 

None 7×104/2×102 
FCN+ 

GCV 
Yes PD 

Death, 

130 d 

(relapse) 

2 59/M AML Haplo RIC 
CNI/MMF

/PTCY 
22 

Confusion/

amnesia 

G3 (11, 

skin 2/gut 3) 
3×104/NA 

FCN+ 

GCV 
Yes PR 

Alive, 

2.8 y 

3 45/M AML 

HLA-mis

matched 

URD 

Busulfan- 

based MAC 
CNI/MMF 26 

Depressed 

level of 

conscious-

ness 

G4 (14, 

skin 3/ 

gut 3/liver 4) 

9×103/NA FCN None NE 

Death, 

77 d 

(acute 

GVHD) 

4 60/F AML uCB RIC CNI/MMF 24 

Depressed 

level of 

conscious-

ness/ 

amnesia 

G4 (9, 

gut 3/liver4) 
2×103/NA 

FCN+ 

GCV 
Yes PD 

Death, 

48 d 

(acute 

GVHD) 
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5 57/M ATL 

HLA-mis

matched 

URD 

Busulfan- 

based MAC 

CNI 

alone 
25 

Amnesia/ 

depressed 

level of 

conscious-

ness 

G2 (12, 

skin 3) 
9×102/NA GCV Yes† PR 

Death, 

3.8 y 

(relapse) 

6 32/F ALL Haplo RIC 
CNI/MMF

/PTCY 
34 

Amnesia/ 

tremors 

G3 (13, 

skin 2/gut 4) 
Neg/Neg FCN Yes PR 

Death, 

191 d 

(relapse) 

7 49/M MDS rPB 
Busulfan- 

based MAC 
CNI/MTX 23 Amnesia None Neg/Neg FCN Yes CR 

Alive, 

3.8 y 

8 34/M AML 

HLA-mis

matched 

URD 

Busulfan- 

based MAC 
CNI/MTX 30 Amnesia 

G2 (13, 

skin 3) 
Neg/NA GCV Yes CR 

Alive, 

10.6 y 

9 56/M AML Haplo 
Busulfan- 

based MAC 

CNI/MMF

/PTCY 
34 

Amnesia/ 

confusion 
None Neg/NA GCV Yes CR 

Death, 

342 d 

(relapse) 

10 55/M ATL uCB RIC CNI/MMF 21 

Amnesia/ 

confusion/

depressed 

level of 

conscious-

ness 

G3 (13, 

skin 3/ 

gut 3/liver 1) 

Neg/NA FCN Yes PD 

Death, 

94 d 

(relapse) 
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11 66/M ML uCB 
Melphalan- 

based MAC 
CNI/MMF 27 

Depressed 

level of 

conscious-

ness/ 

amnesia 

G3 (2, gut 3) NA/Neg FCN Yes PD 

Death, 

78 d 

(hepatic 

SOS) 

12 61/F ML rPB RIC 
CNI 

alone 
122 

Depressed 

level of 

conscious-

ness 

None NA/NA GCV Yes PD 

Death, 

163 d 

(relapse) 

13 61/M ATL uCB RIC 
CNI 

alone 
17 

Depressed 

level of 

conscious-

ness 

None NA/NA None Yes† PD 

Death, 

36 d 

(relapse) 

14 50/M AML Haplo RIC 
CNI/MMF

/PTCY 
14 

Depressed 

level of 

conscious-

ness 

G4 (4, 

skin 1/gut3/ 

liver 4) 

NA/NA GCV Yes PD 

Death, 

34 d 

(acute 

GVHD) 

Abbreviations: CNI, calcineurin inhibitor; CR, complete remission; FCN, foscarnet; GCV, ganciclovir; GVHD, graft-versus-host disease; MAC, 

myeloablative conditioning; MMF, mycophenolate mofetil; MTX, methotrexate; NA, not applicable; NE, not evaluable; Neg, negative; PB, 

peripheral blood; PTCY, post-transplant cyclophosphamide; RIC, reduced-intensity conditioning; SOS, sinusoidal obstruction syndrome; TMA, 

thrombotic microangiopathy; uCB, umbilical cord blood; URD, unrelated PB or BM donor. 

* Treatment response to mPSL was judged at day 90 after the start of mPSL therapy except for Pt. No.3 not receiving mPSL.

† Two received moderate-dose mPSL (1 mg/kg/body). The others received mPSL pulse therapy at 1 g dosage for three consecutive days. 
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Table 3. Risk factors for the development of post-transplant acute limbic encephalitis (PALE) 

by univariable and multivariable Cox models (n = 485) 

Factors 
Hazard ratio 

(95% CI) 
P value 

Univariable analysis 

Age at transplantation 1.70 (1.07–2.73) 0.026 

Gender 

Male 1.00 (reference) 

Female 0.47 (0.19–1.16) 0.10 

Primary diseases 

Acute leukemia (AML/ALL) 1.00 (reference) 

Myelodysplastic syndrome 0.60 (0.08–4.81) 0.63 

Malignant lymphoma 2.00 (0.65–6.09) 0.23 

Donor 

HLA-matched or -one allele-mismatched sibling PB 

or BM and HLA-matched URD 
1.00 (reference) 

HLA-mismatched URD 8.16 (1.36–48.8) 0.022 

Umbilical cord blood 3.72 (0.68–20.3) 0.13 

Haplo-identical PB 4.21 (0.82–21.7) 0.086 

Conditioning regimen 

Reduced-intensity conditioning 1.00 (reference) 

Myeloablative conditioning 0.34 (0.12–1.00) 0.049 

GVHD prophylaxis 

CNI with MTX 1.00 (reference) 

CNI with MMF 8.31 (1.52–45.4) 0.015 

Acute GVHD prior to development of PALE 

No 1.00 (reference) 

Grade II to IV 6.19 (1.89–20.3) 0.003 

Multivariable analysis 

Model 1a 

Age at transplantation 1.69 (1.04–2.75) 0.034 

Donor 

HLA-matched or -one allele-mismatched sibling 

PB or BM and HLA-matched URD 
1.00 (reference) 

HLA-mismatched URD 7.52 (1.26–45.0) 0.027 

Umbilical cord blood 3.51 (0.64–19.2) 0.15 

Haplo-identical PB 4.16 (0.81–21.5) 0.09 
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Model 1b 

Age at transplantation 1.66 (1.04–2.66) 0.034 

Conditioning regimen 

Reduced-intensity conditioning 1.00 (reference) 

Myeloablative conditioning 0.37 (0.13–1.08) 0.068 

Model 1c 

Age at transplantation 1.59 (0.98–2.57) 0.059 

GVHD prophylaxis 

CNI with MTX 1.00 (reference) 

CNI with MMF 6.87 (1.25–37.7) 0.027 

Model 1d 

Age at transplantation 1.71 (1.07–2.75) 0.025 

Acute GVHD prior to development of PALE 

No 1.00 (reference) 

Grade II to IV 6.21 (1.90–20.2) 0.003 

Model 2a 

Donor 

HLA-matched or -one allele-mismatched sibling 

PB or BM and HLA-matched URD 
1.00 (reference) 

HLA-mismatched URD 7.99 (1.33–47.8) 0.023 

Umbilical cord blood 3.49 (0.64–19.1) 0.15 

Haplo-identical PB 2.16 (0.36–12.8) 0.40 

Conditioning regimen 

Reduced-intensity conditioning 1.00 (reference) 

Myeloablative conditioning 0.34 (0.10–1.16) 0.084 

Model 2b 

Donor 

HLA-matched or -one allele-mismatched sibling 

PB or BM and HLA-matched URD 
1.00 (reference) 

HLA-mismatched URD 16.7 (2.56–109) 0.003 

Umbilical cord blood 3.08 (0.52–18.1) 0.21 

Haplo-identical PB 0.51 (0.005–53.3) 0.78 

GVHD prophylaxis 

CNI with MTX 1.00 (reference) 

CNI with MMF 9.81 (1.62–59.4) 0.013 
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Model 2c 

Donor 

HLA-matched or -one allele-mismatched sibling 

PB or BM and HLA-matched URD 
1.00 (reference) 

HLA-mismatched URD 5.74 (0.95–34.8) 0.058 

Umbilical cord blood 3.30 (0.60–18.1) 0.17 

Haplo-identical PB 3.61 (0.70–18.7) 0.13 

Acute GVHD prior to development of PALE 

No 1.00 (reference) 

Grade II to IV 5.08 (1.54–16.7) 0.008 

Model 3 

Conditioning regimen 

Reduced-intensity conditioning 1.00 (reference) 

Myeloablative conditioning 0.58 (0.18–1.95) 0.38 

GVHD prophylaxis 

CNI with MTX 1.00 (reference) 

CNI with MMF 6.43 (1.11–37.3) 0.038 

Acute GVHD prior to development of PALE 

No 1.00 (reference) 

Grade II to IV 5.90 (1.81–19.2) 0.003 

Abbreviations: AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; BM, bone 

marrow; CNI, calcineurin inhibitor; GVHD, graft-versus-host disease; HCT, hematopoietic cell 

transplantation; HLA, human leukocyte antigen; MAC, myeloablative conditioning; MMF, 

mycophenolate mofetil; MTX, methotrexate; PALE, Post-transplant acute limbic encephalitis; 

PB, peripheral blood; URD, unrelated PB or BM donor. 
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Table 4. Risk factors for the development of calcineurin inhibitor-induced encephalopathy 

(CNIE) after allogeneic hematopoietic cell transplantation by univariable and multivariable 

Cox models (n = 485) 

Factors 
Hazard ratio 

(95% CI) 
P value 

Univariable analysis 

Age at transplantation 0.78 (0.51–1.21) 0.27 

Gender 

Male 1.00 (reference) 

Female 1.03 (0.44–2.37) 0.95 

Primary diseases 

Acute leukemia (AML/ALL) 1.00 (reference) 

Myelodysplastic syndrome 8.22 (1.96–34.4) 0.04 

Malignant lymphoma 2.24 (0.37–13.4) 0.47 

Donor 

HLA-matched or -one allele-mismatched sibling PB 

or BM and HLA-matched URD 
1.00 (reference) 

HLA-mismatched URD 14.2 (2.75–73.1) 0.002 

Umbilical cord blood 1.89 (0.27–13.4) 0.53 

Haplo-identical PB 1.76 (0.25–12.5) 0.57 

Conditioning regimen 

Total-body irradiation-based MAC 1.00 (reference) 

Busulfan, melphalan, or thiotepa-based MAC 0.66 (0.17–2.65) 0.56 

Reduced-intensity conditioning 0.49 (0.11–2.17) 0.34 

Blood pressure components before allo-HCT, mmHg 

(per standard deviation) (range) 

Systolic blood pressure 1.03 (0.57–1.88) 0.91 

Diastolic blood pressure 0.81 (0.44–1.51) 0.51 

Pulse pressure 1.26 (0.72–2.19) 0.42 

Mean arterial pressure 0.89 (0.48–1.64) 0.70 

Acute GVHD prior to development of CNIE 

No 1.00 (reference) 

Grade II to IV 35.4 (4.00–313) 0.001 
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Multivariable analysis 

Model 1 

Primary diseases 

Acute leukemia 1.00 (reference) 

Myelodysplastic syndrome 9.00 (2.15–37.7) 0.003 

Malignant lymphoma 1.92 (0.32–11.5) 0.48 

Acute GVHD prior to development of CNIE 37.7 (4.07–348) 0.001 

Model 2 

Donor 

HLA-matched or -one allele-mismatched sibling 

PB or BM and HLA-matched URD 
1.00 (reference) 

HLA-mismatched URD 9.13 (1.76–47.5) 0.004 

Umbilical cord blood 1.46 (0.20–10.4) 0.71 

Haplo-identical PB 1.25 (0.17–9.28) 0.83 

Acute GVHD prior to development of CNIE 33.5 (3.03–370) 0.004 

Model 3 

Primary diseases 

Acute leukemia/malignant lymphoma 1.00 (reference) 

Myelodysplastic syndrome 6.49 (1.88–22.5) 0.003 

Donor 

HLA-matched or -one allele-mismatched sibling 

PB or BM and HLA-matched URD 
1.00 (reference) 

HLA-mismatched URD 15.7 (2.99–82.4) 0.001 

Umbilical cord blood/haplo-identical PB 1.89 (0.34–10.3) 0.47 

Abbreviations: AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; BM, bone 

marrow; CNI, calcineurin inhibitor; CNIE, calcineurin inhibitor-induced encephalopathy; 

GVHD, graft-versus-host disease; HCT, hematopoietic cell transplantation; HLA, human 

leukocyte antigen; MAC, myeloablative conditioning; MMF, mycophenolate mofetil; MTX, 

methotrexate; PB, peripheral blood; URD, unrelated PB or BM donor. 
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