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CHART DESCRIPTIONS OF REGULAR BRAIDED

SURFACES

SEIICHI KAMADA AND TAKAO MATUMOTO

Abstract. Braided surfaces are surfaces embedded or immersed in the
bidisk D2 ×D2 which are projected onto the second factor of the bidisk
as branched covering maps. A simple and embedded braided surface
is described by a graph in the 2-disk, called a chart. We generalize
the chart description method so that one can consider braided surfaces
which are not necessarily simple or embedded. We show that if a braided
surface is regular, then it can be described by a chart called regular, and
that such a chart is unique up to regular chart move equivalence.

1. Introduction

A graphical method, called the chart description method, was introduced
in [5] in order to describe a simple and embedded 2-dimensional braid, which
is a special case of braided surfaces. Later, it was proved in [9] that the basic
moves (called chart moves) introduced in [5] are sufficient moves. The chart
description method was extended to simple and immersed braided surfaces
in [10] (cf. Chapter 34 of [11]). It has been used for the study of simple 2-
dimensional braids, simple braided surfaces and knotted surfaces in 4-space,
cf. [3, 4, 11]. Applying a result of [12], we have the following. (The C-moves
are explained later in § 3.)

Theorem 1.1. Any (embedded or immersed) braided surface is described by
a chart. Such a chart description is unique up to chart move equivalence.
More precisely, let Γ and Γ′ be chart descriptions of braided surfaces S and
S′. The braided surfaces S and S′ are isomorphic (or equivalent, resp.) if
and only if Γ and Γ′ are related by a finite sequence of C-moves of type W,
C-moves of type B, C-moves of type ∂ and isotopies of D2

2 rel {y0}∪∆Γ (or
isotopies of D2

2 rel {y0}, resp.).

A braided surface is called regular if for each singular value there exists
exactly one singular point. Since any braided surface is ambiently isotopic to
a regular braided surface by an isotopy of D2

1 ×D2
2 (cf. [11]), it is sufficient

to consider regular braided surfaces for study of ambient isotopy classes
of braided surfaces and surface-links in 4-space. In order to describe a
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regular braided surface effectively, we introduce the notion of a regular chart.
Any regular braided surface is described by a regular chart. Let Γ and Γ′

be regular chart descriptions of regular braided surfaces S and S′. The
braided surfaces S and S′ are isomorphic (or equivalent) if and only if Γ
and Γ′ are related by a sequence of moves and isotopies of D2

2 as stated in
Theorem 1.1. However, in such a sequence, the regularity condition of a
chart is not preserved in general. Some C-moves of type B may change a
regular chart to an irregular one.

The following is our main result.

Theorem 1.2. Any regular braided surface is described by a regular chart.
Such a chart description is unique up to regular chart move equivalence.
More precisely, let Γ and Γ′ be regular chart descriptions of regular braided
surfaces S and S′. The braided surfaces S and S′ are isomorphic (or equiva-
lent, resp.) if and only if Γ and Γ′ are related by a finite sequence of C-moves
of type W, C-moves of type B keeping the condition of regularity, label shift
moves, passing moves, C-moves of type ∂, and isotopies of D2

2 rel {y0}∪∆Γ

(or isotopies of D2
2 rel {y0}, resp.).

In § 2 we recall the definition of braided surfaces and monodromy rep-
resentations. In § 3 the chart description method is explained, and in § 4
the notion of regular charts is introduced. In § 5 regular chart moves, in-
cluding label shift moves and passing moves, are defined and Theorem 1.2
is proved. In § 6 we recall chart moves for simple (embedded or immersed)
2-dimensional braids introduced in [5, 9, 10] are interpreted in terms of our
regular chart moves.

2. Braided surfaces

We work in the PL category. An immersed surface S in a 4-manifold W
is said to be proper if S ∩ ∂W is equal to the boundary of the surface S.
It is said to be locally flat if every point x ∈ S has a regular neighborhood
N(x) in W such that (N(x), S ∩N(x), x) is homeomorphic to (D4, D2, O),
(D4, D2

xy ∪ D2
zw, O) or (D4

+, D
2
+, O), where D4 is the standard 4-disk in

Euclidean 4-space coordinated with x, y, z, w, D2 = D2
xy is the 2-disk on the

xy-plane in D4, D2
zw is the one on the zw-plane, O is the origin, and D4

+ and
D2

+ are restrictions of D4 and D2 with x ≥ 0, respectively. In the second
case where (N(x), S ∩N(x), x) is homeomorphic to (D4, D2

xy ∪D2
zw, O), we

call x a node of S or a self-intersection of S.
Let D2

1 and D2
2 be 2-disks and pri : D2

1 × D2
2 → D2

i (i = 1, 2) the ith
factor projection. Let Xm be a fixed set of m interior points of D2

1, which
are assumed to be on the real line when we regard D2

1 as {z ∈ C; |z| ≤ 1}.
We identify the braid group Bm with the fundamental group π1(Cm, Xm) of
the configuration space Cm = Cm(IntD2

1) of m distinct points of the interior,
IntD2

1, of D
2
1 (cf. [1, 11]).
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We assume that spaces have base points and that the base point of D2
2 is

a point of ∂D2
2, which we denote by y0 throughout this paper.

Definition 2.1 (cf. [13, 14]). A braided surface of degree m is a compact
oriented immersed surface S in D2

1 × D2
2, which is proper and locally flat,

satisfying the following conditions (i) – (iv), where ι : S0 → D2
1 × D2

2 is
an underlying immersion for S (i.e., ι(S0) = S) and p : S0 → D2

2 is the
composition of ι and the second factor projection pr2.

(i) The map p : S0 → D2
2 is a branched covering map of degree m.

(ii) For each branch point x ∈ S0 of p, the image ι(x) is not a node of
S.

(iii) ∂S ⊂ IntD2
1 × ∂D2

2.

(iv) pr1(S ∩ pr−1
2 (y0)) = Xm.

The boundary ∂S of S is a closed m-braid in the solid torus D2
1 × ∂D2

2.

The m-braid obtained from ∂S by cutting off along pr−1
2 (y0) = D2

1 × {y0}
is called the boundary braid of S.

Definition 2.2 (cf. [5, 10, 16]). A 2-dimensional braid of degree m, or
a 2-dimensional m-braid, is a braided surface of degree m satisfying the
following condition (v).

(v) The boundary ∂S of S is the trivial closed m-braid Xm × ∂D2
2 in

D2
1 × ∂D2

2, i.e., pr1(S ∩ pr−1
2 (y)) = Xm for all y ∈ ∂D2

2.

A branch point of S means the image ι(x) in S of a branch point x ∈ S0

of p. A singular point of S is a branch point of S or a node of S. A singular
value of S is a point of D2

2 which is the image under pr2 of a singular point
of S. The set of singular values of S is denoted by ∆S .

Definition 2.3. A braided surface is regular if the following condition (vi)
is satisfied.

(vi) For each singular value y ∈ D2
2, there exists exactly one singular

point of S.

A braided surface is simple if both of (vi) and (vii) are satisfied.

(vii) For each branch point x ∈ S, the local degree of the branched cov-
ering at x is 2.

If a braided surface S is an embedded surface (i.e., if there exist no nodes),
then we say that S is an embedded braided surface.

Remark 2.4. We may define a braided surface alternatively as follows: An
immersed surface S in D2

1 ×D2
2 is a braided surface if, for each point x ∈ S,

there exists a regular neighborhood N(x) in D2
1 ×D2

2 satisfying one of the
following.

(1) (N(x), S ∩ N(x), x) is homeomorphic to (D4, D2, O), and when we
put E = S ∩ N(x), the restriction pr2|E : E → pr2(E) is a homeo-
morhism. (In this case, we call x a regular point of S.)



4 S. KAMADA AND T. MATUMOTO

(2) (N(x), S ∩ N(x), x) is homeomorphic to (D4, D2, O), and when we
put E = S ∩N(x), the restriction pr2|E : E → pr2(E) is a branched
covering map with branch point x. (In this case, we call x a branch
point of S.)

(3) (N(x), S ∩ N(x), x) is homeomorphic to (D4, D2
xy ∪ D2

zw, O), and
when we put E1 ∪ E2 = S ∩N(x) such that E1 and E2 are 2-disks
intersecting each other at x transversely, the restriction pr2|Ei : Ei →
pr2(Ei) is a homeomorphism for i = 1, 2. (In this case, we call x a
node of S.)

(4) (N(x), S ∩ N(x), x) is homeomorphic to (D4
+, D

2
+, O), and x is a

point of IntD2
1 × ∂D2

2. (In this case, we call x a boundary point of
S.)

Two braided surfaces S and S′ of degree m are said to be equivalent if
there exists an isotopy {ht : D2

1×D2
2 → D2

1×D2
2}t∈[0,1] of the ambient space

D2
1 ×D2

2 satisfying the following (i) – (iii).

(i) h0 = id and h1(S) = S′. (S and S′ are ambiently isotopic by {ht}.)
(ii) For each t ∈ [0, 1], ht : D2

1 × D2
2 → D2

1 × D2
2 is fiber-preserving;

namely, there exists an isotopy {ht : D2
2 → D2

2}t∈[0,1] of D2
2 rel {y0}

with ht ◦ pr2 = pr2 ◦ ht.
(iii) For each t ∈ [0, 1], ht fixes the distinguished fiber pr−1

2 (y0) = D2
1 ×

{y0} over the base point y0.

Moreover, if

(iv) ht = id : D2
2 → D2

2 for all t in the condition (ii),

then we say that S and S′ are isomorphic.

Remark 2.5. It is not difficult to see that two braided surfaces S and S′

with the same boundary ∂S = ∂S′ are equivalent if and only if there exists
an isotopy {ht}t∈[0,1] of the ambient space D2

1 × D2
2 satisfying (i), (ii) and

the following (iii)′.

(iii)′ For each t ∈ [0, 1], ht fixes the solid torus D2
1 × ∂D2

2 pointwise.

Moreover, S and S′ with ∂S = ∂S′ are isomorphic if and only if there
exists an isotopy {ht}t∈[0,1] of the ambient space D2

1 ×D2
2 satisfying (i), (ii),

(iii)′ and (iv).

Now we recall the monodromy representation of a braided surface.
Let S be a braided surface and ∆S the singular value set of S. For a path

c : [0, 1] → D2
2 \∆S , we define a path

ρS(c) : [0, 1] → Cm

in the configuration space Cm = Cm(IntD2
1) by

ρS(c)(t) = pr1(S ∩ pr−1
2 (c(t))) for t ∈ [0, 1].

By (iv) of Definition 2.1, for a loop c in D2
2 \∆S with base point y0, the

path ρS(c) is a loop in Cm with base point Xm. The mapping

ρS : π1(D
2
2 \∆S , y0) → π1(Cm, Xm) = Bm; [c] 7→ [ρS(c)]
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is a well-defined homomorphism and is called the monodromy representation
or the braid monodromy of S.

Monodromy representations ρS of S and ρS′ of S′ are said to be equivalent
if there exists a homeomorphism g : D2

2 → D2
2 satisfying the following (i)

and (ii).

(i) g(∆S) = ∆S′ and g|∂D2
2
= id.

(ii) ρS = ρS′ ◦ g∗, where g∗ : π1(D
2
2 \∆S , y0) → π1(D

2
2 \∆S′ , y0) is the

isomorphism induced by g.

Propositions 2.6 and 2.7 are proved by the same argument with those in
[8] and [11], whose proofs are left to the reader.

Proposition 2.6 (cf. [8, 10, 11, 13, 14]). Two braided surfaces are isomor-
phic (or equivalent, resp.) if and only if their monodromy representations
are the same (or equivalent, resp).

We define two subsets Gm and Greg
m of the braid group Bm as follows:

An m-braid b belongs to Gm if and only if it is conjugate in Bm to a braid
b′ = b1⨿b2⨿· · ·⨿bc which is the split sum of somemk-braids bk (k = 1, . . . , c)
with

∑c
k=1mk = m satisfying the following.

(i) The closure of each bi (i = 1, . . . , c) in the 3-sphere S3 is either
(a) a trivial knot, or
(b) a Hopf link.

(ii) In case (b) of (i), bi is a 2-braid.
(iii) c ̸= m, i.e., b is not the identity element of Bm.

An m-braid b belongs to Greg
m if and only if it is conjugate in Bm to a braid

b1 ⨿ b2 ⨿ · · · ⨿ bc satisfying the above (i), (ii) and (iii) and the following;

(iv) b1, . . . , bc are 1-braids except exactly one of them.

When we do not allow the case (b) of (i) of the definition of Gm, we have
the subset Am defined in [8, 11].

Let y be an interior point of D2
2. A sufficiently small simple loop sur-

rounding y, which is oriented anticlockwise, is called a meridian loop around
y. A meridional loop around y means a loop with base point y0 which is
obtained from a meridian loop around y by using a path connecting the
meridian loop with y0.

Proposition 2.7 (cf. [8, 10, 11, 13, 14]). Let ∆ be a finite set of interior
points of D2

2 and let b0 be an m-braid. A homomorphism ρ : π1(D
2
2\∆, y0) →

Bm is the monodromy representation ρS : π1(D
2
2\∆S , y0) → Bm of a braided

surface S whose boundary braid is b0 if and only if the following two condi-
tions are satisfied.

(i) If η ∈ π1(D
2
2 \∆, y0) is represented by a meridional loop, then ρ(η) ∈

Gm.
(ii) For the element [∂D2

2] ∈ π1(D
2
2 \∆, y0), the image ρ([∂D2

2]) = b0 in
Bm.
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Moreover this is still valid for embedded braided surfaces S when we replace
Gm by Am in (i). It is also valid for regular braided surfaces S when we
replace Gm by Greg

m .

3. Chart description

We assume that the m points of Xm are lying on the real line when
we regard D2

1 as {z ∈ C; |z| ≤ 1}, so that Artin’s standard generators,
σ1, . . . , σm−1, of the braid group Bm = π1(Cm, Xm) are defined (cf. [1]).

Let Γ be a finite graph in the 2-diskD2
2 such that each edge is oriented and

labeled by an integer in {1, 2, . . . ,m−1}. We say that a path η : [0, 1] → D2
2

is in general position with respect to Γ if the following conditions are satisfied.

(i) The image of η is disjoint from the vertices of Γ.
(ii) The preimage η−1(Γ) is empty or consists of a finite number of in-

terior points of [0, 1], say t1, . . . , ts, and assume t1 < · · · < ts.
(iii) For each j (j = 1, . . . , s), the path η is locally an immersion nearby

tj which intersects an edge of Γ transversely.

In this situation, we define the intersection word along η with respect to Γ,
denoted by wΓ(η), to be σϵ1

i1
· · ·σϵs

is
where ij (j = 1, . . . , s) is the label of the

edge of Γ containing the jth intersection η(tj), and ϵj is +1 (or −1, resp.)
if the path η at t = tj intersects the oriented edge of Γ from right to left (or
left to right, resp.).

Let Λ be a set of points of ∂D2
2 (possibly empty) which is disjoint from

y0, and each point is labeled by an integer in {1, 2, . . . ,m − 1} and signed
by +1 or −1.

Definition 3.1. An m-chart, or simply a chart, in D2
2 with boundary Λ is

a finite graph Γ in the 2-disk D2
2 such that each edge is oriented and labeled

by an integer from {1, 2, . . . ,m− 1}, and such that the following conditions
(i) and (ii) are satisfied.

(i) Γ ∩ ∂D2
2 is Λ (with respect to labels and signs).

(ii) For each vertex v of Γ, let wv be the intersection word along a
meridian loop of v with respect to Γ. Then one of the following
occurs.
(a) wv ∈ Gm, where we regard wv as an element of the braid group

Bm.
(b) wv = σ−1

i σ−1
j σiσj (as a word) for some i, j with |i− j| > 1.

(c) wv = σ−1
i σ−1

j σ−1
i σjσiσj (as a word) for some i, j with |i−j| = 1.

A vertex of a chart is called a black vertex, a crossing or a white vertex if
the case (a), (b) or (c) occurs, respectively. (See Figure 1.) The set of black
vertices of Γ is denoted by ∆Γ.

The homomorphism associated with Γ is a homomorphism

ρΓ : π1(D
2
2 \∆Γ, y0) → Bm, [η] 7→ [wΓ(η)].
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j
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= –  > i j | |–i j1 1 

Figure 1. Vertices

Note that wv = 1 in the braid group Bm for every crossing or white vertex
v. Thus, we see that the map ρΓ is a well-defined homomorphism.

Lemma 3.2. (1) For an m-chart Γ, the homomorphism ρΓ : π1(D
2
2 \

∆Γ, y0) → Bm satisfies the conditions (i) and (ii) of Proposition 2.7, where
∆ = ∆Γ and b0 is the m-braid determined by the intersection word along
∂D2

2 with respect to Γ.
(2) Let Λ be a set of labeled and signed points on ∂D2

2 and let b0 be the
m-braid determined by the intersection word along ∂D2

2 with respect to Λ.
For a homomorphism ρ : π1(D

2
2 \ ∆, y0) → Bm satisfying the conditions

(i) and (ii) of Proposition 2.7, there exists an m-chart Γ with ρΓ = ρ and
Γ ∩ ∂D2

2 = Λ.

Proof. (1) For each black vertex v ∈ ∆Γ, the braid wv belongs to Gm.
For any meridional element ηv for v, ρΓ(ηv) is a conjugate of [wv], which
belongs to Gm. The condition (ii) is obvious by definition. (2) By the same
argument with that in [9, 11] (cf. [12]), we can obtain a desired m-chart. □

Let S be a braided surface of degree m, and Γ an m-chart with ρS = ρΓ.
Then we call Γ a chart description of S. (For a given S, such a chart exists
by Proposition 2.7 and Lemma 3.2, although it is not unique.) Conversely,
we call S a braided surface described by Γ or a braided surface associated
with Γ. (For a given Γ, such a braided surface exists and it is unique up to
isomorphism by Propositions 2.6, 2.7 and Lemma 3.2.)

Chart moves of type W, of type B, and of type ∂ are defined in [12] for
chart descriptions of G-monodromies in a general setting. In our situation,
these moves are described as below.

(1) A C-move of type W is a replacement of a chart Γ with a chart Γ′

such that Γ and Γ′ are identical outside a disk region E in D2
2 and such that

Γ and Γ′ have no black vertices in E. (Some typical C-moves of type W
are illustrated in Figure 2. It is known that every C-move of type W is a
consequence of the moves depicted in Figure 2, cf. [2, 3, 15].)

(2) A C-move of type B is a local replacement nearby a black vertex
v of a chart Γ illustrated in Figure 3, which changes the word wv with
insertion/deletion of σ−1

i σi, or σiσ
−1
i for i = 1, . . . ,m−1, or σ−1

i σ−1
j σiσj for

i, j with |i−j| > 1, or σ−1
i σ−1

j σ−1
i σjσiσj for i, j with |i−j| = 1, respectively.
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(3) A C-move of type ∂ is a local replacement nearby the boundary ∂D2
2

of a chart Γ illustrated in Figure 4, which changes Λ = Γ ∩ ∂D2
2 so that the

intersection word along ∂D2
2 with respect to Γ changes by insertion/deletion

of σ−1
i σi, or σiσ

−1
i for i = 1, . . . ,m−1, or σ−1

i σ−1
j σiσj for i, j with |i−j| > 1,

or σ−1
i σ−1

j σ−1
i σjσiσj for i, j with |i− j| = 1, respectively. (We assume that

C-moves of type ∂ are applied away from y0 ∈ ∂D2
2.)

i

j

i

i

i

i

i i

j

j

j

j

i i
i

ii

ji
i j

i
j k

i j
k

i j i

j i j

k

i ij

j ji

k

(1) (2)

(3) (4)

(5) (6)

i

j

k

i

j

i

j
i

j
k

j

k
k

j

i

j

k

j

j

j
ik

j

j(7)

i

j

k

i

j

i

k

j

k

i

j

k

| |–  > i j 1 

| |–  > i j 1 | |–i j 1 = 

| |–i j 1 = 

| |–i j 1 = 

| |–  > j k 1 | |–  > j k 1 

| |–  > k i 1 

| |–  > k i 1 | |–  > k i 1 

| |–j k 1 = 

Figure 2. C-moves of type W

i

i

i

i

j

j

i

i
j

j

i

i

j

j

j

i

i

i

i

i

i

i

i

i

j

j

j

i
| |–  > i j 1 | |–i j 1 = 

Figure 3. C-moves of type B

Definition 3.3. Twom-charts Γ and Γ′ are chart move isomorphic (or chart
move equivalent, resp.) if they are related by a finite sequence of C-moves
and isotopies of D2

2 rel {y0} ∪∆Γ (or isotopies of D2
2 rel {y0}, resp.).
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i

i

i

i

j

j

i

i

j

j

i

i

j

j

j

i

i

i

i

i

i

i

j

j

j

i

∂D 2

2
∂D 2

2 ∂D 2

2

i

i
∂D 2

2

∂D 2

2
∂D 2

2
∂D 2

2
∂D 2

2

| |–  > i j 1 | |–i j 1 = 

Figure 4. C-moves of type ∂

Remark 3.4. The C-moves of type B (Figure 3) are equivalent to the moves
illustrated in Figure 5 up to C-moves of type W and isotpies of D2

2 rel
{y0}∪∆Γ, and the C-moves of type ∂ (Figure 4) are equivalent to the moves
in Figure 6. Thus we may add these moves as C-moves in Definition 3.3.

i

i

i

j

j

i

j

i
i j

j

j

i

j

j

i

i

| |–  > i j 1 | |–i j 1 = 

Figure 5. C-moves of type B

Proof of Theorem 1.1. By Proposition 2.7 and Lemma 3.2, any braided
surface has a chart description. Let S and S′ be braided surfaces of degree
m, ρS and ρS′ their monodromy representations, Γ and Γ′ their chart de-
scriptions, and ρΓ and ρΓ′ the associated homomorphisms, respectively. The
following conditions (1), (2), (3) and (4) are mutually equivalent.

(1) S and S′ are isomorphic (or equivalent, resp.).
(2) ρS = ρS′ (or ρS and ρS′ are equivalent, resp.).
(3) Γ and Γ′ are chart move isomorphic (or chart move equivalent, resp.).
(4) ρΓ = ρΓ′ (or ρΓ and ρΓ′ are equivalent, resp.).

The equivalence between (1) and (2) is given in [8] (Lemma 2.6). By defi-
nition, (2) and (4) are equivalent. The equivalence between (3) and (4) is
proved in [12] (Theorem 12 and § 8 of [12]). □
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Figure 6. C-moves of type ∂

4. Regular charts

Let S be a braided surface of degree m. For a point x of S, the local degree
of x means the local degree at x of the branched covering if x is not a node.
We define the local degree of x to be 2 if x is a node. (For a regular point of
S, the local degree is 1.) The local degree of x is denoted by degS(x). For
a point x of S, we define the singular index, τS(x), to be degS(x)− 1. Then
x is a singular point of S if and only if τS(x) > 0. For a point y ∈ D2

2, we

define the singular index, τ∗S(y), of y to be m−#(S ∩ pr−1
2 (y)). Then y is a

singular value of S if and only if τ∗S(y) > 0. Note that, for any point y ∈ D2
2,

τ∗S(y) =
∑

x∈S∩pr−1
2 (y)

τS(x).

Let Γ be a chart description of S, and y a black vertex of Γ, which is a
singular value of S. The label set of y, denoted by LabelΓ(y) is the set of
labels of the edges which are incident to y. Note that #LabelΓ(y) ≥ τ∗S(y).
(See the proof of the theorem below.)

Definition 4.1. In the above situation, Γ is range-reduced at y if #LabelΓ(y)
= τ∗S(y). A chart is range-reduced if it is range-reduced at every black vertex.

Lemma 4.2. Any braided surface has a range-reduced chart description.

Proof. Let S be a braided surface of degree m, and y a singular value.
Let {x1, . . . , xc} be S ∩ pr−1

2 (y), where c = #(S ∩ pr−1
2 (y)) = m − τ∗S(y).

Modifying S up to isomorphism, we may assume that pr1(x1), . . . , pr1(xc)
are on the real line and pr1(x1) < · · · < pr1(xc) where we regard D2

1 as
{z ∈ C; |z| ≤ 1}. Let N1, . . . , Nc be regular neighborhoods of the points
pr1(x1), . . . , pr1(xc) in D2

1. Taking a regular neighborhood N(y) of y in D2
2

sufficiently small, we may assume that the restriction of S to D2
1 × N(y)

is contained in ∪c
k=1Nk × N(y). The boundary of S ∩ (D2

1 × N(y)) is an
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m-braid in the solid torus D2
1×∂N(y), say ℓ, such that ℓ = ℓ1⨿· · ·⨿ℓc, with

ℓk ⊂ Nk×∂N(y), and S∩(D2
1×N(y)) is a multiple cone over ℓ = ℓ1⨿· · ·⨿ℓc,

i.e., S ∩ (D2
1 × N(y)) is the disjoint union ⨿c

k=1S ∩ (Nk × N(y)) such that
for each k, S ∩ (Nk ×N(y)) is a cone over ℓk with cone point xk. (Refer to
[8] or § 16.4 of [11] for the terminology “multiple cone”.) Each ℓk is a trivial
knot or a Hopf link in the 3-sphere ∂(Nk × N(y)), and the latter case the
braid degree of ℓk is 2. (The former case occurs when the point xk satisfies
(1) or (2) of Remark 2.4, and the latter case occurs when xk satisfies (3) of
Remark 2.4. This is the reason why the local monodromy at y is an element
of Gm.) Let mk be the braid degree of ℓk for k = 1, . . . , c, which is the local
degree degS(xk) of xk. The singular index of xk of S is mk−1. By definition
τ∗S(y) = m− c =

∑c
k=1(mk − 1).

If mk = 1, then ℓk is a trivial closed 1-braid. If mk > 1, then ℓk can be
described by a braid word, say wk, in

{σm1+···+mk−1+1, σm1+···+mk−1+2, . . . , σm1+···+mk−1}.
Since ℓk is a trivial knot or a closed 2-braid representing a Hopf link, all
generators in this set must appear in this word wk. A braid word for ℓ
is described by the concatenation w1 · · ·wc. When we construct a chart Γ
using such a braid word description for ℓ in the method used in Theorem 5
of [12], the label set LabelΓ(y) of the black vertex y is

∪c
k=1{σm1+···+mk−1+1, σm1+···+mk−1+2, . . . , σm1+···+mk−1}.

Hence #LabelΓ(y) = τ∗S(y). Applying the same argument to each singular
value of S, we have a range-reduced chart. □
Definition 4.3. A chart Γ is range-connected at a black vertex y if LabelΓ(y)
consists of consecutive integers.

A black vertex y of a chart Γ is called a nodal black vertex if it is a singular
value of a braided surface S = S(Γ) described by Γ such that there exists
exactly one singular point of S in the fiber over y and the singular point is
a node.

If y is a nodal black vertex of a regular chart Γ and if Γ is range-reduced
and range-connected at y, then LabelΓ(y) consists of a single integer.

Definition 4.4. A nodal black vertex y of a chart Γ is simple if exactly two
edges of Γ are incident to y (see Figure 7), otherwise it is called nonsimple.

Definition 4.5. A chart is regular if every black vertex is range-reduced
and range-connected and if every nodal black vertex is simple.

i i i i

Figure 7. Simple nodal black vertex
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Lemma 4.6 (Regular chart description). Any regular braided surface has
a regular chart description. Conversely, a braided surface described by a
regular chart is a regular braided surface.

Proof. Let S be a regular braided surface. For each singular value, there
exists exactly one singular point. Thus, a range-reduced chart obtained by
the argument of the proof of Lemma 4.2 has range-connected black vertices.
When y is a nodal black vertex which is not simple, then more than 2 edges
are incident to y and their labels are all the same, say i. Since ℓk in the
proof of Lemma 4.2 is a Hopf link represented by a 2-braid, wy is equal to σ2

i

or σ−2
i in the braid group Bm. Apply C-moves of type B to make y simple.

The coverse is obvious. □

5. Regular chart moves

Let Γ be a regular chart. Let y be a black vertex of Γ and let LabelΓ(y) =
{s, s + 1, . . . , t} be the label set of y. Each move illustared in Figure 8
shifts the label set by +1 or −1, where the box means a chart without black
vertices. Note that {i1, i2, . . . , in} = {s, s + 1, . . . , t}. For (A) of Figure 8,
combining fundamental pieces as in Figure 9, we see that the box can be
always filled by a chart without black vertices. For example, see Figures 10
and 11. Boxes in the cases (B), (C) and (D) can be filled similarly.

We call the moves illustrated in Figure 8 label shift moves. When it shifts
the labels by +1, it is called an upper shift, otherwise a lower shift.

A passing move is a move illustrated in Figure 12, where j is an integer
with j < s− 1 or j > t+ 1. (Note that {i1, i2, . . . , in} = {s, s+ 1, . . . , t}.)

The moves in Figure 12 are equivalent to the moves in Figure 13 modulo
chart moves of type W.

For the sake of convenience in the proof of Theorem 1.2, we introduce
notations for the moves illustrated in Figures 8 and 12. Recall that we are
assuming that LabelΓ(y) = {s, s + 1, . . . , t}. The moves (A), (B), (C) and
(D) in Figure 8 are denoted by Ls,t[σs], Ls,t[σ

−1
s ], Ls,t[σs−1] and Ls,t[σ

−1
s−1],

respectively. The move (E) in Figure 12 is denoted by Ls,t[σj ] if j < s − 1
and by Ls,t[σj−(t+1−s)] if j > t + 1. The move (F) in Figure 12 is denoted

by Ls,t[σ
−1
j ] if j < s − 1 and by Ls,t[σ

−1
j−(t+1−s)] if j > t + 1. Note that the

notation Ls,t[·] depends on LabelΓ(y).

Definition 5.1. Two regular charts are regularly chart move isomorphic
(or regularly chart move equivalent, resp.) if they are related by a finite
sequence of C-moves of type W, C-moves of type B keeping the condition of
regularity, label shift moves, passing moves, C-moves of type ∂, and isotopies
of D2

2 rel {y0} ∪ ∆Γ (or isotopies of D2
2 rel {y0}, resp.). These moves are

called regular chart moves.

Remark 5.2. C-moves of type B keeping the condition of regularity, label
shift moves and passing moves are ‘chart moves of transition’ in the sense
of [12].
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Figure 8. Label shift moves Ls,t[σs], Ls,t[σ
−1
s ], Ls,t[σs−1]

and Ls,t[σ
−1
s−1]

i

+1

i

iii it s+2 -1

+1

+1

Figure 9. A fundamental piece

2 2 3

3

2

Figure 10. Label shift move L2,2[σ2]

Proof of Theorem 1.2. Any regular braided surface has a regular chart
description (Lemma 4.6). Suppose that Γ and Γ′ are regularly chart move
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−1
j ]
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−1
j−(t+1−s)] for j > t+ 1
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Figure 13. Passing moves

isomorphic (or regularly chart move equivalent, resp.). Label shift moves
and passing moves are ‘chart moves of transition’ in the sense of [12], which
are consequence of C-moves of type B and type W (Remark 15 of [12]).
Therefore, if two regular charts are regularly chart move isomorphic (or
regularly chart move equivalent, resp.), then they are chart move isomorphic
(or chart move equivalent, resp.). By Theorem 1.1, S and S′ are isomorphic
(or equivalent, resp.).

We show the converse.
We say that a singular value y of a braided surface S satisfies ‘the condition

(∗)’ if
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(∗) pr1(S ∩ pr−1
2 (y)) is on the real line where we regard D2

1 as {z ∈
C; |z| ≤ 1}.

(1) First we consider a case where every singular value of S and S′ satisfies
the condition (∗) and that S′ is isomorphic to S keeping the condition (∗).
Then the label sets LabelΓ(y) (y ∈ ∆Γ) are preserved. By an argument in
[12], we see that Γ and Γ′ are related by a finite sequence of C-moves of type
W, C-moves of type B preserving the label sets LabelΓ(y) (y ∈ ∆Γ), passing
moves, C-moves of type ∂, and isotopies of D2

2 rel {y0} ∪∆Γ. Thus Γ and
Γ′ are regularly chart move isomorphic.

(2) Next we consider a case where every singular value of S and S′ satisfies
the condition (∗) and that S′ is isomorphic to S. Let {St}t∈[0,1] be a 1-
parameter family of braided surfaces between S and S′. Let y be a singular
value of S. Without loss of generality we may assume that pr1(S∩pr−1

2 (y)) =

pr1(S
′ ∩ pr−1

2 (y)). The motion {pr1(St ∩ pr−1
2 (y))}t∈[0,1] is a classical braid

of degree c = #(S ∩ pr−1
2 (y)) = m − τ∗S(y). Let w = σϵ1

i1
· · ·σϵℓ

iℓ
be a word

description of this braid. We consider a sequence of regular charts, Γ =
Γ0,Γ1, · · · ,Γℓ, as follows: Suppose that Γk is defined. Let LabelΓk

(y) =
{s(k), s(k) + 1, · · · , t(k)}. Apply Ls(k),t(k)[σ

ϵk
ik
] to the chart Γk at y and let

Γk+1 be the result. Let Γ
′′ be the final result Γiℓ . By definition Γ is regularly

chart move isomorphic to Γ′′.
On the other hand, let S′′ be a braided surface with chart description

Γ′′ satisfying the condition (∗). Note that S and S′′ are isomorphic. Let
{S′

t}t∈[0,1] be a 1-parameter family of braided surfaces between S and S′′.

Without loss of generality we may assume that pr1(S ∩ pr−1
2 (y)) = pr1(S

′′ ∩
pr−1

2 (y)). The motion {pr1(S′
t ∩ pr−1

2 (y))}t∈[0,1] is a classical braid of degree

c = #(S∩pr−1
2 (y)) = m−τ∗S(y). This braid is eqaul to the braid repesented

by the word w above. Then S′ and S′′ are braided surfaces satisfying the
condition (∗), and there is a 1-parameter family of braided surfaces between
S′ and S′′, say {S′′

t }t∈[0,1], such that the motion {pr1(S′′
t ∩ pr−1

2 (y))}t∈[0,1] is
a classical braid of degree c such that it is isotopic to the trivial braid. By re-
placing {S′′

t }t∈[0,1], we may assume that the motion {pr1(S′′
t ∩pr−1

2 (y))}t∈[0,1]
is the trival braid of degree c. Apply the same argument to each singular
value of S. Then by (1), we see that Γ′ is regularly chart move isomorphic
to Γ′′. Therefore Γ is regularly chart move isomorphic to Γ′.

(3) Let S and S′ be isomorphic. By definition, Γ (or Γ′, resp.) is a regular

chart description of some braided surface S̃ (or S̃′) such that S̃ (or S̃′) is
isomorphic to S (or S′) and satisfies the condition (∗). By (2) we see that
Γ and Γ′ are regularly chart move isomorphic.

(4) Let S and S′ be equivalent and let Γ and Γ′ be their regular chart
descriptions. Let {ht} be an isotopy of D2

1 × D2
2 carrying S to S′, and let

{ht} be the isotopy of D2
2 rel {y0} with ht ◦ pr2 = pr2 ◦ ht. The chart h1(Γ)

is a regular chart description of h1(S). The chart Γ is isotopic to h1(Γ) by
an isotopy of D2

2 rel {y0}. On the other hand, since h1(S) is isomorphic to
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S′, by (3), h1(Γ) and Γ′ are regularly chart move isomorphic. Thus Γ and
Γ′ are regularly chart move equivalent. □

6. On simple chart description

A chart is simple if it satisfies the conditions of Definition 3.1 such that
(a) is replaced with the following condition (a′).

(a′) wv = σi, σ
−1
i , σ2

i or σ−2
i as a word for some i.

In other words, a chart is simple if every black vertex is one of Figure 14.
(We call a black vertex is simple if it is as in Figure 14.) By definition, a
simple chart is a regular chart.

The following theorem was proved in [10] for simple (immersed) 2-dimensional
braids and in [12] for embedded braided surfaces.

Theorem 6.1 (Simple chart description). Any simple braided surface has a
simple chart description. Conversely, a braided surface described by a simple
chart is a simple braided surface.

Proof . Let S be a simple braided surface. Apply the argument in the
proof of Lemma 4.2 and obtain a regular chart description of S. If y is a
nodal singular value, then wy is equal to σ2

i or σ−2
i as a word for some i.

If y is a branch value, then wy is equal to σi or σ−1
i in Bm for some i. By

C-moves of type B we can change the black vertex y to be simple. The
coverse is obvious. □

i i i ii i

Figure 14. Simple black vertices and simple nodal black vertices

In [5, 10] (cf. [11]), chart moves (CI-moves, CII-moves, CIII-moves, CIV-
moves and CV-moves) for simple charts are introduced. CI-moves are the
same with C-moves of type W in this paper. CII-moves, CIII-moves, CIV-
moves and CV-moves are illustrated in Figures 15, 16, 17 and 18, respec-
tively. (In the figures, we illustrated an example of possible orientations of
the edges. See [5, 9] or [11] for details on the moves.)

i ij j

ij

 > 1| –i j |

Figure 15. A CII-move

Two simple m-charts Γ and Γ′ describe isomorphic (or equivalent, resp.)
simple braided surfaces if and only if they are related by a finite sequence
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i ij j
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1| –i j | =

Figure 16. A CIII-move

i ij j

ij

 > 1| –i j |

Figure 17. A CIV-move

i ij j

j

ji i

i
i

1| –i j | =

Figure 18. A CV-move

of C-moves and isotopies of D2
2 rel {y0} ∪ ∆Γ (or isotopies of D2

2 rel {y0},
resp.).

The following theorem is proved in [10] for (immersed) 2-dimensional
braids (cf. [11]) and in [12] for embedded braided surfaces.

Theorem 6.2. Two simple m-charts Γ and Γ′ describe isomorphic (or
equivalent, resp.) simple braided surfaces S and S′ if and only if they are re-
lated by a finite sequence of CI-moves, CII-moves, CIII-moves, CIV-moves,
CV-moves,C-moves of type ∂ and isotopies of D2

2 rel {y0}∪∆Γ (or isotopies
of D2

2 rel {y0}, resp.).

Proof . Suppose that S and S′ are isomorphic (or equivalent). In (1) –
(3) of the proof of Theorem 1.2, we do not need C-moves of type B. C-moves
of type W are CI-moves. Label shift moves are CIII-moves and CV-moves
modulo CI-moves, and passing moves are CII-moves and CIV-moves mudulo
CI-moves. Thus, by the argument of the proof of Theorem 1.2, we see that Γ
and Γ′ are related by a finite sequence of CI-moves, CII-moves, CIII-moves,
CIV-moves, CV-moves,C-moves of type ∂ and isotopies of D2

2 rel {y0} ∪∆Γ

(or isotopies of D2
2 rel {y0}, resp.). The converse is obvious. □
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Remark 6.3. In Theorems 1.1, 1.2 and 6.2, if Γ and Γ′ have the same
boundary then we do not need C-moves of type ∂. In particular if Γ and Γ′

be chart descriptions of 2-dimensional braids, then we do not need C-moves
of type ∂.
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