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Abstract: 
Engineering materials usually exhibit heterogeneity such as that observed in the polycrystalline structure of metals, and 

this heterogeneity affects the nonuniform deformation of a material. In this study, the micro- to macroscopic nonuniform 

deformation of polycrystalline copper specimen with a curved gage section is evaluated by a finite element method (FEM) 

simulation based on the second-order homogenization method (2nd-HM). The effects of the microstructure size and 

macroscopic stress gradient on the nonuniform deformation of the material are then investigated by comparing the 

simulation and experimental results. A two-dimensional plane strain polycrystalline microstructure was periodically 

applied to all the integration points in the macrostructure; the anisotropic deformation of the crystal grains is represented 

by the conventional crystalline plasticity constitutive equation. The computational results indicate that the interaction 

between nonuniform deformation on the micro and macroscopic scales induces a slight size effect in the material. However, 

the FEM simulation based on the 2nd-HM could not predict the decrease in the macroscopic strain concentration in the 

specimens with large crystalline grains, which was observed in the experimental studies, because of random strain 

localization resulting from the microscopic heterogeneity.  
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1. INTRODUCTION 

It is very important to evaluate and model the nonuniform deformation of engineering materials in the 
continuum mechanics of solids. Engineering materials usually exhibit heterogeneity such as that observed in the 
polycrystalline structure of metals, and this heterogeneity affects the nonuniform deformation of a material. The 
nonuniform deformation of various materials can be precisely evaluated by optical measurement methods, e.g., digital 
image correlation (DIC). The main concept of DIC was proposed by Sutton [1, 2], and many related papers have been 
published, e.g., [3-5]. The author’s research group has also quantified the micro and macroscopic nonuniform 
deformations of polycrystalline copper using DIC [6-8]. A method for evaluating the strain and stress fields using the 
virtual field method has also been established [9, 10]. 

Quantitative information about the strain and stress fields facilitates the development of a theoretical model of 



the nonlocal mechanical behavior of engineering materials. To directly use the experimentally obtained strain and 
stress fields to model nonuniform deformation, physical quantities characterizing these fields should be included in 
the constitutive equation of the material. The strain gradient is usually employed as a barometer of nonuniform 
deformation. Furthermore, its work-conjugate higher-order stress is sometimes introduced to predict the nonuniform 
deformation of materials. 

Constitutive models including the strain gradient (and its work-conjugate higher-order stress) have been 
developed in nonlocal continuum mechanics. The development of a framework for nonlocal continuum mechanics 
began in the 19th century. The Cosserat brothers [11] described nonlocal elastic deformation behavior involving a 
rotation gradient by introducing the couple stress. In the 1960s, Toupin [12] and Mindlin [13, 14] developed more 
general gradient theories of elastic deformation behavior. Since the 1980s, the strain gradient theory has been 
extended to plastic deformation, and various engineering problems have been studied using the gradient theory. 

One of the major streams of strain gradient plasticity was developed to describe the shear band and deformation 
localization of materials showing softening during plastic deformation. Aifantis [15, 16] introduced the Laplacian of 
the equivalent shear strain and a gradient coefficient into the constitutive equation for the flow stress to represent the 
scale-dependent deformation localization. The gradient coefficient had to be calibrated using scale-dependent 
experimental data such as the width of the shear band. These models quantified the localized deformation and reduced 
the mesh dependence in simulations of nonuniform deformation using discretized numerical methods, such as the 
finite element method (FEM) [17-19]. 

Another important gradient theory is the description of the size effect on the mechanical behavior of crystalline 
materials. In this framework, a plastic nonlocal model based on the dislocation kinetics was constructed. Fleck and 
Hutchinson [20, 21] introduced a geometrically necessary dislocation caused by the strain gradient into models of 
plastic deformation behavior. Gao et al. [22, 23] proposed a mechanism-based theory of the strain gradient plasticity 
that linked statistically stored and geometrically necessary dislocations to the plastic strain and strain gradient. Gurtin 
[24-26] proposed a unique gradient theory by introducing microforces for each slip system that maintained a 
consistent balance among themselves. 

Micro- to macroscopic modeling of nonlocal deformation was also performed using the second-order 
homogenization method (2nd-HM). In this framework, the scale-dependent deformation behavior of materials with 
periodic heterogeneous microstructure was evaluated by minimizing the microscopic energy changes caused by both 
the macroscopic strain and the strain gradient [27, 28]. FEM simulation based on the 2nd-HM enables evaluation of 
the size-dependent mechanical behavior of any engineering material having microscopic heterogeneity. 
Computational procedures for the 2nd-HM have been developed in many studies, e.g., generalization of the periodic 
boundary condition for the representative volume element (RVE) [29, 30], introduction of the microscopic 
perturbation function for the macroscopic displacement field [31-33], addition of the integral condition on the RVE 
for the C1-C0 continuity transition between the micro- and macroscales for the finite element [34], establishment of 
the rate-form large-deformation scheme for the 2nd-HM [35, 36], and development of statistical homogenization of 
random microstructure [37]. Furthermore, the 2nd-HM has been applied to engineering problems, e.g., bending and 
twisting of thin sheets [38], anisotropic and dispersive wave propagation of heterogeneous materials [39-41], and 
fracture prediction of brittle materials [42].  

A nonlocal model can be developed by comparing the predicted and experimentally quantified strain fields. 
The author’s research group is investigating the interaction of micro- and macroscopic nonuniform deformations of 
polycrystalline copper. The strain and stress fields during uniaxial tensile tests of a curved specimen in which a stress 



gradient was introduced during testing were quantitatively evaluated using DIC [6, 8]. The key result obtained by 
this experiment is that the macroscopic strain concentration in specimens with larger crystalline grains is smaller than 
that in specimens with smaller crystalline grains. This result shows that the resistance to the macroscopic stress 
gradient may be increased by the nonuniform deformation caused by heterogeneity in the larger microstructure. 

To theoretically describe such nonuniform deformation that depends on the microstructure size, it is necessary 
to establish a framework of the nonlocal mechanical model, into which the experimentally observed strain and stress 
fields can be incorporated. The author’s group proposed using the higher-order stress, which can be evaluated from 
the stress field obtained experimentally, and formulated the nonlocal constitutive equation, which relates the strain, 
strain gradient, stress, and higher-order stress [43]. The nonlocal mechanical behavior of elastic material having 
heterogeneous local strength can be evaluated using the proposed model. The development of a model for the inelastic 
strain range is important for experiment-based modeling of the size-dependent nonuniform deformation. 

The goal of the present study is to establish an experiment-based procedure for modeling the nonlocal 
properties of engineering materials with microscopic heterogeneity. Many nonlocal models of crystalline materials 
[20-26] have been were proposed to capture the effect of the absolute size on the mechanical property, e.g., the Hall-
Petch effect. These models are usually based on the dislocation kinetics and can be applied only to crystalline 
materials. However, to predict the nonuniform deformation of various heterogeneous engineering materials, it is 
important to evaluate the effect of the relative size at the micro- and macroscales on the nonuniform deformation of 
the material. 

Computational simulation based on the 2nd-HM enables evaluation of the scale-dependent nonuniform 
deformation of any microscopically heterogeneous material [27-41]. However, care must be taken in such a 
simulation because the obtained results depend strongly on the choice of RVE. To show the ability of the 2nd-HM to 
represent the strain field of a heterogeneous material, it is important to compare the simulated and experimentally 
obtained strain fields. Experimental validation of the strain field in stainless steel having regularly distributed voids 
has been reported [44]. Comparison of the strain fields in inelastic material having random microstructure may 
provide an important direction for modeling of the scale-dependent nonuniform deformation of engineering materials. 

In this manuscript, the micro- to macroscopic nonuniform deformation of polycrystalline copper is evaluated 
by a numerical simulation based on the rate-form 2nd-HM. To investigate size-dependent nonuniform deformation, 
FEM simulations of a mechanical test conducted in an experimental study are performed. The effects of the 
microstructure size on the macroscopic response and the nonuniform deformation under tensile testing of a 
polycrystalline copper specimen are investigated by computational simulation. Finally, the accuracy of the 2nd-HM 
is discussed by comparing the strain field development obtained from the simulation and the experimental results. 

 

2 FORMULATION OF HIGHER-ORDER CONSTITUTIVE EQUATION 

The higher-order rate form constitutive equation that relates the first- and second-order gradients of the 

velocity, stress rate, and higher-order stress rate is formulated in this section. Even if the mechanical properties are 

macroscopically uniform, engineering materials generally exhibit microscopic heterogeneity, which affects their 

deformation behavior. Now, we consider an elasto-viscoplastic material having the periodically heterogeneous 

microstructure shown in Fig. 1. First, a local evaluation region of the macrostructure having a finite volume V  

centered at 0
ix  is defined. The coordinate 0

ix  in this region satisfies the following condition: 



( ) 00 ==− ∫∫ V iV ii dVxdVxx ∆ . (1) 

Next, we consider the microscopic deformation. The microscopically heterogeneous material is modeled 

using the periodic structure with a finite volume Y . The RVE is chosen from within the microstructure, and the 

microscopic coordinates of the Ith RVE are defined using the microscopic relative coordinate m
ix∆  , which is a 

periodic coordinate, and the relative center of the Ith RVE ( )IM
ix∆  (see Fig. 1). The relationship between the micro- 

and macroscopic coordinates is 

( )0 0 M I m
i i i i i ix x x x x x= + ∆ = + ∆ + ∆ . (2) 

The microscopic relative coordinate also satisfies the following condition: 

0=∫Y
m
i dYx∆ . (3) 

In a way similar to that used in a previously proposed second-order computational homogenization scheme 

[27, 28], the velocity iv  is decomposed into the macroscopic velocity M
iv  and the microscopic velocity fluctuation 

m
iv  as 

M m
i i iv v v= + . (4) 

The macroscopic velocity M
iv  in this region can be expressed by second-order Taylor expansion as follows: 

0 0 0
, ,

1
2

M
i i i j j i jk j kv v v x v x x= + ∆ + ∆ ∆ , (5) 

where 0
iv , 0

, jiv  and 0
, jkiv  are the velocity, and the first and second-order gradients of the velocity at the center of 

the evaluation region, respectively. Note that the parameters with superscript 0 are constant in the evaluation region. 

As in the first-order homogenization method, the microscopic velocity fluctuation m
iv  is given as a function 

of the macroscopic deformation. To satisfy the continuity of the microscopically periodic deformation under a 

macroscopic strain and strain gradient, the microscopic fluctuation is separated into two unknown functions, namely, 

 
Fig. 1 Schematics of micro- to macroscopic structure 



those for the macroscopic strain and the macroscopic strain gradient [31-33]. In this study, the unknown function for 

the constant term is further added to the two functions above to formulate the rate-form elasto-viscoplastic 

constitutive relationships for the macroscopic field [35, 36], as 

( )( )0 1 0 0 2 0
, , ,

M Im m m m
i i ilm l m l mn n ilmn l mnv v v v v x v v= + + ∆ + , (6) 

where 0m
iv , 1m

ilmv , and 2m
ilmnv  are the unknown periodic functions of the constant term and the first and second-order 

gradients of the macroscopic velocity, respectively. From Eqs. (4) to (6), the velocity gradient is given by 

( )( )
( )( ) ( )

0 1 2
0 0 0 0 0

, , , , , ,

20 1
0 0 0
, , , .

m m m
M Ii ilm ilmn

i j i j i jk k l m l mn n l mnm m m
j j j

m mm m ilmnM I mi ilm
il jm l m l mn n il jm n l mnm m m

j j j

v v v
v v v x v v x v

x x x

vv v
v v x x v

x x x
δ δ δ δ

∂ ∂ ∂
= + ∆ + + + ∆ +

∂ ∂ ∂

 ∂ ∂ ∂   = + + + ∆ + ∆ +   
∂ ∂ ∂      

x
 (7) 

We consider the elasto-viscoplastic constitutive equation for a material point. In the updated Lagrangian 

formulation, the relationship between the nominal stress rate ijπ  and velocity gradient .i jv  is given by 

{ } , ,
ˆ

ij ijkl ijkl li jk k l ij ijkl k l ijD F v P D v Pπ σ δ= − + − = − , (8) 

where ijklD  is the elasto-viscoplastic tangent modulus tensor, ijσ  is the Cauchy stress, ijP  is the viscoplastic term, 

and { } 2ijkl lj ki kj li li kj ki ljF σ δ σ δ σ δ σ δ= + + + . 

The unknown periodic functions 0m
iv , 1m

ilmv , and 2m
ilmnv  can be obtained by solving the microscopic boundary 

problem (see Appendix A). For simplicity, the microscopic velocity gradient and nominal stress rate are rewritten as 

( ){ }0 1 0 1 2 0
, , ,

M Im m m m
i j ij ijlm l m ijlm n ijlmn l mnv v x vη η η η= + + ∆ + . (9) 

( ){ }00 1 0 1 2 0
, ,.

ˆ m Im m m m
ij ijpq pq pqrs r s pqrs t pqrst r st ijD v x v Pπ η η η η = + + ∆ + −  
 , (10) 

where 0 0m m m
ij i jv xη = ∂ ∂ , 1 1m m m

ijlm il jm ilm jv xη δ δ= + ∂ ∂ , and 2 2m m m m
ijlmn il jm n ilmn jx v xη δ δ= ∆ + ∂ ∂ . 

Subsequently, we obtain the virtual work of the macroscopic evaluation region. The microscopic virtual 

velocity gradient associated with the macroscopic virtual strain and strain gradient is given by 

( ){ }1 0 1 2 0
, , ,

M Im m m
i j ijlm l m ijlm n ijlmn l mnv v x vδ η δ η η δ= + ∆ + . (11) 

The virtual work of the macroscopic evaluation region can be obtained as follows.  
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where ( )11 1 1ˆm m
pqij pqrs rsklijkl Y

D D dY Yη η= ∫  , ( )12 1 2ˆm m
pqij pqrs rsklmijklm Y

D D dY Yη η= ∫  , ( )21 2 1ˆm m
pqijn pqrs rsklnijkl Y

D D dY Yη η= ∫  , 
( )22 2 2ˆm m

pqijn pqrs rsklmnijklm Y
D D dY Yη η= ∫  , ( ) { }1 1 0ˆm m

ij pqij pq pqrs rsY
P P D dY Yη η= −∫  , ( ) { }2 2 0ˆm m

nij pqijn pq pqrs rsY
P P D dY Yη η= −∫  , and 

∫=
V jiij dVxx

V
J ∆∆1 , ∫=

Y

m
j

m
i

m
ij dYxx

Y
J ∆∆1 . Eq. (12) is derived in Appendix B. 

The rates of nominal stress 0
ijπ  and higher-order nominal stress 0

nijτ  in the macroscopic evaluation region 

are defined as the quantities work conjugate to 0
,i jvδ   and 0

,i jkvδ   respectively. Therefore, the higher-order 



constitutive equation for the macroscopic evaluation region having periodic microstructure is given by 
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The macroscopic boundary problem can be solved using the macroscopic virtual work for the evaluation region. 
 

3 COMPUTATIONAL SIMULATION 

3.1 Simulation Model 

To represent the elasto-viscoplastic deformation of the microscopic crystalline structure, we employed the classical 

crystalline plasticity theory [45], in which the rate-form constitutive equation is given by 

( ) ( )

( )
ij ijkl kl ijS D d R α α

α
γ

∇
= −∑  , (14) 

where ijS
∇

  is the Jaumann rate of the Kirchhoff stress, ijd   is the strain rate tensor, ( ) ( )
ij ijkl klR D Pα α=

( ) ( )
kj ikik kjW Wα ασ σ+ − , ( ) ( ) ( ) ( ) ( )( )* * * * 2ij i j j iP s m s mα α α α α= +  is the Schmid tensor, ( ) ( ) ( ) ( ) ( )( )* * * * 2ij i j j iW s m s mα α α α α= − , 

( ) ( )* *
i ij js F sα α= , ( ) ( )* * 1

i i ijm m Fα α −= , *
ijF  is the deformation gradient for elastic deformation and rotation, and ( )α

is  and 
( )α
im  are unit vectors in the slip direction and normal to the slip plane of the α slip system, respectively. The equivalent 

shear strain rate ( )αγ  is given by a power law [46] as 

( ) ( )( )
( )

( )

1

0 sgn
m

g

α
α α

α

τγ γ τ
 
 =
 
 

  , (15) 

where ( ) ( )
ij ijP αατ σ=  is the shear stress on the slip plane, and 0γ  and m  are material constants. Further, ( )g α  is the 

resistance to the slip, which is given by following equation; 

( ) ( ){ } ( )

( )
1g qh q hα β

αβ
β

δ γ= + −∑  , (16) 

where ( ){ }0 0 0sech sh h h γ τ τ= − ; q , 0h , sτ , and 0τ  are material constants; and γ  is the sum of the slip for all slip 

systems. As mentioned, the objective of this study is to evaluate the effect of the relative size caused by interaction between 

micro- and macroscopic nonuniform deformation. To eliminate the effect of the absolute-size in a crystalline material, the 

size-independent hardening equation is employed in this study. The material parameters employed in this study are shown 

in Table 1.  
The author’s research group quantitatively evaluated the strain field on a polycrystalline copper specimen under 

tensile deformation associated with a stress gradient. In this experiment, a tensile load was applied to a specimen having a 

curved gage section, and the effects of the curvature and grain size on the nonuniform deformation were discussed [6, 8]. 

These studies revealed that the strain concentration caused by the macroscopic stress gradient decreased with increasing 

grain size because the microscopic strain was localized owing to the anisotropic strength distribution of the coarse grains. 

Table 1 Material parameters for the crystalline plasticity constitutive equation 
m  0γ  0τ  sτ  0h  q  

0.05 0.001 s−1 15 MPa 55 MPa 250 MPa 1.2 

 



To investigate this size-dependent nonuniform deformation, FEM simulations of the mechanical test conducted in the 

experimental study are performed.  

Fig. 2(a) shows the shapes of specimens with different curvatures in the gage section. The minimum cross-section 

and the curvature of the shoulder area were kept constant, whereas the length and curvature of the gage section were 

different for each specimen. Specimens with curvature radii of 1 and 5 mm and a specimen without curvature were prepared 

and are referred to hereafter as specimens R1, R5, and Rinf, respectively. A constant tensile velocity of V = 1 mm/s was 

applied to each specimen. The macrostructure was meshed using a six-node second-order triangular element with an 

integration point. The macroscopic strain gradient of the element could thus be estimated from the nodal displacements. 

The polycrystalline microstructure illustrated in Fig. 2 (b) was applied to all the integration points of the 

macrostructure. The polycrystalline structure employed in this study consisted of grains with uniform size and shape, to 

which random crystalline orientations were applied. A plane strain two-slip system model [45] was applied to represent the 

slip deformation of the two-dimensional polycrystalline structure. This model is a simplified model of in-plane slip 

deformation of a FCC metal. For each grain, 24 second-order finite elements were used, and the separation and slip at the 

grain boundary were constrained. Therefore, nonuniform deformation occurs through the grain boundaries owing to the 

differences in crystalline orientation between adjacent grains. When the macroscopic strain gradient is not applied to the 

microstructure, the nonuniform deformation in the RVE is independent of the RVE size. However, when the macroscopic 

strain gradient is given, the RVE size affects the nonuniform deformation of the polycrystalline structure because the change 

in the shape of the RVE owing to the macroscopic strain gradient depends on its relative size. To investigate the effect of 

the microstructure size, microstructures with different scales, d = 1, 10, and 100 µm were prepared. 

Note that the mechanical conditions modeled in the simulation are not exactly the same as the experimental 

conditions. The plastic deformation of the crystal grain to limited in the plane, and the heterogeneity in thickness direction 

cannot be incorporated into this model. Therefore, it is difficult to directly compare the quantitative results for the 

mechanical response and strain field. However, the size effect on the nonuniform deformation of the polycrystalline 

 
Fig. 2 Micro- to macroscopic computational models for 2nd-HM 



material can be evaluated from the simulation results for different microstructure sizes and different macroscopic stress 

gradients. We discuss the characteristics of nonlocal deformation of a material with microscopic heterogeneity by 

comparing the size effects obtained in the simulation with those observed in the experiment. 

3.2 Simulation Results 

This section presents computational results obtained from FEM simulations based on the 2nd-HM. Fig. 3 shows 

the relationships between the tensile load divided by the minimum cross-section and the tensile displacement for specimens 

R1, R5, and Rinf for different grain sizes. Because the size of the gage section is different for each specimen, the increase 

in the tensile load due to the applied displacement depends on the curvature radius. A specimen with a smaller curvature 

radius shows a larger maximum stress even though the minimum cross-section is the same for different specimens. The 

reasons are that i) the multiaxial stress increases at the gage section for specimens with a smaller curvature, ii) bending 

deformation, in addition to tensile deformation, increases with decreasing curvature radius, and iii) the decrease in thickness 

associated with strain concentration is constrained owing to the plane strain condition. 

Results for different microstructure sizes are plotted in different colors. The responses of the Rinf specimen for 

different microstructure sizes are similar. By contrast, the tensile loads for specimens R1 and R5 with d = 100 are slightly 

smaller than those for the specimens with smaller grains. When the macroscopic strain gradient is given to the 

microstructure, the difference in the macroscopic strain is enlarged by increasing microstructure size. The decreasing tensile 

load for the larger grain specimens indicates that the nonuniform deformation enhanced by the macroscopic strain gradient 

decreased the resistance to the tensile deformation. The microscopic strain field is described later in this section. 

In actual polycrystalline metals, an apparent size effect on the macroscopic response usually appears as the Hall-

Petch effect, which is related to the dislocation kinetics at more microscopic scales. The computational results indicate that 

the interaction between nonuniform deformation at the micro- and macroscopic scales also induces a slight size effect on 

the response of the material. 

 
Fig. 3 Relationships between tensile force divided by minimum cross-section and tensile displacement 
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Fig. 4 presents the development of the macroscopic strain field. Obvious strain concentration is observed in 

specimens R1 and R5. In specimen R1, an inclined deformation band develops in the curved area; however, the deformation 

band tends to occur in the direction transverse to the load. Almost uniform strain occurs in specimen Rinf. These differences 

in the development of the strain field affect the increase in the tensile load as shown in Fig. 3. As shown in the figure, the 

microstructure size has little effect on the macroscopic strain distribution. Although the magnitude of the strain increases 

with the microstructure size, the distribution patterns are similar for specimens with different microstructure sizes. 

Fig. 5 illustrates the development of the strain field in the microstructure allocated at macroscopically strain 

concentrated area (Point A in Fig. 5) for specimens R1 and R5. The nonuniform deformation accompanying the microscopic 

shear band is due to the anisotropy of the grains. Although the crystalline orientation pattern of the microstructure is the 

same, the development of the strain distribution depends on the microstructure size when a larger macroscopic strain 

gradient is applied to the microstructure. The corresponding periodic boundaries are almost parallel for the microstructures 

with d = 1 µm, whereas they become divergent owing to the macroscopic strain gradient for the microstructures with d = 

100 µm. This effect enhances the nonuniformity of the deformation slightly, and it results in a decrease in the tensile load 

for the specimens with the larger grains. 

 

 

Fig. 4 Development of equivalent strain distribution in the macrostructure 

 



4 DISCUSSION 

The interaction between micro- and macroscopic nonuniform deformation of polycrystalline copper was 

numerically investigated in Section 3. As mentioned above, the author’s research group also evaluated the nonuniform 

deformation of pure copper experimentally [6, 8]. In the experimental studies, a development of the strain field on the 

surface of specimens having the same shapes as those in the FEM simulations was quantitatively evaluated using DIC. In 

this section, the nonuniform deformation of polycrystalline copper is investigated by comparing the simulated and 

experimental strain field results. Fig. 6 shows the distributions of the equivalent strain obtained by the FEM simulation and 

the corresponding experiment for (a) specimen R1 with small grains, (b) specimen R1 with large grains, (c) specimen R5 

with small grains, and (d) specimen R5 with large grains. The specimens with small and large grains used in the 

experimental study were obtained at the annealing temperatures of 450 and 850 oC, and the average grain sizes were 

approximately 27 and 121 µm, respectively. 

As shown in Figs. 6 (a) and (c), the simulated and experimental strain fields in specimens with small grains are 

 

Fig. 5 Development of equivalent strain distributions in the microstructure 



similar except for the magnitude of the strain. However, the strain field evaluated by DIC for specimens with large grains 

(Figs. 6 (b) and (d)) are quite different from those obtained from the FEM simulation. Random strain localization owing to 

the anisotropic strength distribution of coarse grains can be observed in the experimental results for specimens with large 

grains, whereas the simulation shows that the strain field following the macroscopic stress gradient. 

In the FEM simulation based on the 2nd-HM, we can evaluate the effect of heterogeneous microstructure with a 

specific size on the nonuniform deformation of the macrostructure. The effect of the microstructure size is greater when 

the size difference between the micro- and macrostructures is small. However, because the macrostructure in the 

homogenization method is assumed as a homogeneous material having the periodic heterogeneous microstructure, the 

randomly distributed strain localization caused by the aperiodicity of the microstructure, which is also observed when the 

size difference is small, may not be apparent. If different microstructures are assigned to different macroscopic integration 

points to represent the randomness of the material strength, the simulation result depends strongly on the mesh division of 

the macrostructure.  

Here we discuss the strain field in the specimen further. Fig. 7 presents the development of the equivalent strain 

distribution in specimen R1 around the evaluation points along the line A-A’ in Fig. 7. The simulated and experimental 

strain fields for the specimens with smaller and larger grains are compared. Although both the experimental and simulation 

results show a strain concentration around the minimum cross-sectional area, the magnitude of the concentration in the 

 
Fig. 6 Comparison of simulated and experimentally observed equivalent strain distributions 

 



experimental result is smaller than that in the simulation result. In the experiment, random strain localization owing to the 

microscopic heterogeneity occurs independent of the macroscopic stress gradient, and it decreases the strain concentration 

around the minimum cross-sectional area. The local strain gradient is increased by random strain localization in the 

experimental results for the specimens with large grains. In the FEM simulation, a steeper strain gradient is also observed 

for the specimen with d = 100 µm. However, the decrease in strain concentration with the macroscopic stress gradient 

cannot be represented because random strain localization caused by microscopic heterogeneity does not occur in the FEM 

simulation based on the 2nd-HM. 

A series of computational results revealed that the local strain gradient is enhanced because the local resistance to 

the macroscopic strain gradient decreases with increasing crystalline grain size, as observed in the experimental study. This 

result provides important information for predicting the localization of the strain in engineering structures. In the 

experimental result, however, the randomness of the microstructure caused many strain localization sites, which decreased 

the global strain gradient caused by the macroscopic stress gradient. The FEM model could not represent this random strain 

distribution because a periodic microstructure was employed in the homogenization scheme. 

Therefore, although the 2nd-HM may be able to evaluate the scale-dependent nonuniform deformation of materials 

having regular periodic microstructure [44], it is difficult to represent the development of the nonuniform deformation in 

terms of the microstructure size when the material has highly random microstructure. The introduction of discontinuous 

randomness in the material into the macroscopic simulation model is a possible strategy. However, it is unrealistic to 

construct a full-scale simulation model of a large structure with microscopic randomness. 

An important characteristic indicated by the comparison of the simulation and experimental results is the difference 

in the direction of the stress and strain gradients. In the simulation result, when the directions coincide, the strain gradient 

is enhanced by the stress gradient. However, the strain gradient in the stress gradient direction is decreased when the 

 
Fig. 7 Comparison of the equivalent strain distribution on line A-A’ 



directions are different owing to the randomness of the microstructure in the actual material. This indicates that engineering 

materials with microscopic heterogeneity have an intrinsic nonlocal strength corresponding to the randomness of the 

microstructure. Quantitative evaluation of the effect of the randomness of the microstructure on the relationship between 

the stress and strain gradients may characterize this nonlocal strength of the material.  

 

5. CONCLUSION 

The effect of the size difference between the micro and macroscopic scales on the nonuniform deformation of a 

polycrystalline material was numerically investigated using the rate-form 2nd-HM. FEM simulations of tensile tests of 

polycrystalline pure copper specimens having curved gage sections with different curvatures and different grain sizes, 

which correspond to the experimental studies, were performed.  

When macroscopic nonuniform deformation accompanied by a stress gradient occurred in the curved gage section 

of the specimens with large crystalline grains, the macroscopic tensile load decreased slightly compared to that for the 

specimens with small grains. This decrease in tensile load is related to the nonuniform deformation of the polycrystalline 

microstructure, which was slightly enhanced by the macroscopic strain gradient in the larger microstructure. The results 

indicated that the interaction between the nonuniform deformation at the micro- and macroscopic scales induces a slight 

size effect on the mechanical response. 

The nonuniform deformation obtained in the FEM simulation was compared to that evaluated experimentally. The 

simulated and experimental strain fields for the specimens with small grains were similar, whereas random strain 

localization was observed in the specimens with large grains only in the experimental study. This random strain localization 

was caused by the anisotropic strength distribution of coarse grains, which could not be represented in the macroscopic 

simulation model of the 2nd-HM. Furthermore, the experimental results showed that the strain concentration accompanied 

by the stress gradient in the curved gage section of the specimen was decreased by the random strain localization owing to 

the microscopic heterogeneity. However, the strain concentration around the gage section was enhance in the FEM 

simulation because random strain localization did not occur in the macrostructure. 

Therefore, although the 2nd-HM may be able to evaluate the scale-dependent nonuniform deformation of material 

having regular periodic microstructure, it is difficult to represent the development of nonuniform deformation in terms of 

the microstructure size when the microstructure of material is highly random. Quantitative evaluation of the effect of the 

randomness of the microstructure on the relationship between the stress and strain gradients may determine this nonlocal 

strength of the material. 
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Appendix A: Boundary problem for microstructure 



We estimate three unknown functions 0m
iv , 1m

ilmv , and 2m
ilmnv  by minimizing the microscopic virtual work. 

The virtual work of the Ith RVE for an arbitrary microscopic deformation is given by 

( )
,

m I
i j ijY

W v dYδ δ π= ∫  . (A.1) 

By substituting Eqs (7) and (8) into Eq. (A.1), we obtain 
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Because the microscopic fluctuation is assumed to be periodic, the three unknown functions should be obtained 

without defining the macroscopic deformation and the location of the RVE center. Therefore, three unknown 

functions minimizing the virtual work of arbitrary micro- and macroscopic deformation states can be obtained by 

solving the following equations under a periodic condition for RVE. 
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Solving processes of 0m
iv   and 1m

ilmv   are similar to the first-order homogenization method based on the updated 

Lagrangian formulation. As shown in Eqs. (A.3) to (A.5), the three unknown functions describing the microscopic 

velocity fluctuation can be obtained only in the RVE.  
 

Appendix B: Formulation of macroscopic constitutive equation 

The macroscopic constitutive equation is formulated using the microscopic velocity fluctuation functions, 
0m

ijη , 1m
ijlmη , and 2m

ijlmnη .  The microscopic virtual velocity gradient associated with the macroscopic virtual strain 

and strain gradient is given by 

( ){ }1 0 1 2 0
, , ,

M Im m m
i j ijlm l m ijlm n ijlmn l mnv v x vδ η δ η η δ= + ∆ + . (B.1) 

Therefore, the virtual work of the Ith RVE is calculated as 
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where ( )11 1 1ˆm m
pqij pqrs rsklijkl Y

D D dY Yη η= ∫  , ( )12 1 2ˆm m
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To estimate the macroscopic virtual work, the Hill-Mandel condition is usually employed in the second-order 

computational homogenization [27, 28]. Under this condition, the virtual work of a macroscopic point is considered 

to be equal to the volume average of the virtual work of the RVE assigned to the macroscopic point. However, the 

virtual work of the RVE depends on the coordinates of the center of the RVE, ( )IM
ix∆ , as shown in Eq. (B.2). In this 

study, the macroscopic virtual work is calculated by summing the virtual work of all the RVEs in the evaluation 

region: 
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where N  is the number of RVEs in the evaluation region, which is estimated as 

Y
VN = . (B.4) 

Here, we consider the first and second moments of the volume of a macroscopic evaluation region having a 

microscopically periodic structure as 
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Considering that the first moments on the macroscopic and microscopic scales are zero in Eq. (B.5), we obtain 
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Furthermore, the following relationship can be obtained from Eqs. (B.5), (B.6), and (B.7): 
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are the second-moments of the volume of the evaluation region and the RVE, respectively. Finally, the virtual work 

of the macroscopic evaluation region can be obtained as follows. 

( )
( ) ( )

( ) ( ) ( ) ( )

( )

( ) 

























−
























+−
=

2

1

0
,

0
,

221121

1211
0
,

0
,

nij

ij

lmk

lk

nijklm
m
nmnmijklnijkl

ijklmijkl
jniji

P

P

v

v

DJJDD

DD
vv

V
W δδδ

. (B.11) 



The macroscopic boundary problem can be solved using the macroscopic virtual work of the evaluation region. 
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