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研究のポイント 

◇動物の生存にとって重要な空間認識において、海馬で処理される空間情報が下流の

脳領域群へどのように分配・伝達されるかについてはこれまで不明であった。 

◇「場所」「移動スピード」「道順」といった多様な空間情報は、海馬から海馬台を経

て下流の 4箇所の脳領域へと、領域選択的・非選択的に伝達されることを解明した。 

◇海馬を中心とした記憶・学習システムの動作原理解明や、海馬の機能異常が原因で

起きる疾病の解明につながることが期待される。 
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概要 

研究グループは、さまざまな空間情報が海馬から海馬台を経て下流の 4 箇所の脳領域

（側坐核・視床・乳頭体・帯状皮質）へと分配される脳情報の流れを世界で初めて明ら

かにしました。 

 空間認識に関わる情報は海馬で処理され、海馬で処理された情報は他の脳領域へと伝

達され活用されることで脳機能を支えると考えられていますが、どのように分配・伝達

されるかはこれまで不明でした。 

 そこで本研究では、ラットの海馬台において、情報の伝達先を網羅的に同定しつつ神

経活動を計測する大規模電気生理学解析を行いました。その結果、海馬台は、海馬に比

べてノイズに強い頑健な情報表現を持つことを見いだしました。さらに、「移動スピード」

と「道順」の情報はそれぞれ帯状皮質と側坐核に選択的に伝達され、「場所」の情報は側

坐核・視床・乳頭体・帯状皮質の 4領域に均等に分配されることを明らかにしました。 

 これは、海馬台から下流の脳領域への情報分配の様式を明らかにした世界初の成果で、

海馬を中心とした記憶システムの動作原理の解明や、認知症における記憶力低下の病態

の理解につながることが期待されます。 

 

Description 

＜研究の背景＞ 

「いま自分がどこにいて、どこへ向かっているか？」という空間認識は、動物の生存に

とって重要な能力です。空間認識に関するさまざまな情報－例えば、自分のいる場所・

移動スピード・道順などの情報は、海馬という脳領域で処理されます。海馬の一部の神

経細胞は、動物のいる場所に応じて神経活動の頻度が変化し、この活動パターンにより

場所の情報を表します（これらの細胞は場所細胞と呼ばれます）。同様に、移動スピード

や道順により活動が変化する神経細胞も存在し、それぞれの情報を表現します。こうし

た多様な空間情報は、海馬で処理された後に、海馬の下流の脳領域へと分配されて活用

されることで、脳機能を支えていると考えられます。海馬は、隣接した海馬台という脳

領域に投射し、海馬台は 4箇所以上のさまざまな下流の脳領域へと投射します。このこ

とから、海馬の持つ情報の分配には、海馬台が重要な役割を果たす可能性があります。

しかし、海馬の持つ情報が下流の脳領域群へと具体的にどのように分配・伝達されるか

については、これまで分かっていませんでした。 

 

＜研究の内容＞ 

本研究では、さまざまな空間情報が海馬から海馬台を経て下流の 4箇所の脳領域へと

分配される、一連の情報伝達の様式を世界で初めて明らかにしました。一般的に用いら

れる 神経活動の計測手法では、活動を計測している神経細胞がどの脳領域に情報を伝達

するかを知ることができません。そこで、256個の多点電極を用いて神経細胞の活動を

記録する大規模電気生理計測と、光により神経活動を引き起こす光遺伝学の手法を組み

合わせて解析しました。この手法により、ラット海馬台の 100個程度の神経細胞の活動

を一斉に計測しつつ、さらに、これらの神経細胞の情報の伝達先を網羅的に調べること

が可能になりました。 

https://doi.org/10.1126/sciadv.abf1913
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この手法を用いて、ラットが空間探索の課題を行う際の海馬と海馬台の神経活動を収

集し、情報伝達の様式を調べました。その結果、主に 3つの事柄を発見しました。 

第一に、海馬台は海馬に比べて、ノイズに強い頑強な情報表現を持つことを見いだ し

ました。海馬にはこれまでに知られていたように、場所細胞のような鋭い反応選択性を

示す神経細胞が多く存在しました。一方で、海馬台の神経細胞では一見したところ反応

選択性は緩いものの、神経活動の頻度が高いために海馬と同等の情報量を持ち、さらに

神経回路に生じるノイズの影響を受けにくいことが分かりました。この正確で頑強な情

報表現は、海馬台から長距離の神経投射を通じた下流の脳領域への情報伝達に適してい

ると考えられます。 

第二に、多様な 空間情報は海馬台から下流の脳領域群へと、領域選択的・非選択的に

伝達されることを見いだしました。具体的には、「移動スピード」と「道順」の情報はそ

れぞれ帯状皮質と側坐核に選択的に伝達され、「場所」の情報は側坐核・視床・乳頭体・

帯状皮質の 4領域に均等に分配されることを明らかにしました。このことから、海馬台

が、情報の種類と標的脳領域に応じて、情報を分配・伝達する役割を持つことが分かり

ました。 

第三に、海馬台から下流の脳領域への情報伝達のタイミングは、ミリ秒の時間精度で

正確に制御されることを見いだしました。海馬や海馬台では、動物が活動しているとき

やレム睡眠中にはシータ波、休んでいるときやノンレム睡眠中にはシャープウェーブ・

リップル波と呼ばれる脳波のリズムが発生します。海馬台から下流領域へと投射する神

経細胞は、標的とする脳領域によって、シータ波やシャープウェーブ・リップル波 のリ

ズム に対して特定のタイミングで神経活動を生じたり、活動の頻度が変化したりするこ

とが分かりました。 

以上の結果から、多様な空間情報が海馬から海馬台を経て、下流の 4領域へと分配さ

れる一連の情報分配の様式を明らかにしました。 

 

＜今後の展開＞ 

海馬は、空間情報を含めたさまざまな情報を取り扱い、記憶・学習に重要な役割を果

たす脳領域であり、その機能低下は認知症の要因となります。今回の成果は、海馬を中

心とした記憶システムの動作原理の解明や、認知症における記憶力低下の病態の理解、

海馬 の機能異常が原因で起きる疾病の解明につながると期待できます。 

  

‘認知症などの病態解明に期待 世界初、空間認識を支える脳情報の流れを解明’.  

大阪市立大学. https://www.osaka-cu.ac.jp/ja/news/2020/210311. (参照 2021-3-11) 
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N E U R O S C I E N C E

Robust information routing by dorsal  
subiculum neurons
Takuma Kitanishi1,2*, Ryoko Umaba3, Kenji Mizuseki1*

The dorsal hippocampus conveys various information associated with spatial navigation; however, how the infor-
mation is distributed to multiple downstream areas remains unknown. We investigated this by identifying axonal 
projections using optogenetics during large-scale recordings from the rat subiculum, the major hippocampal output 
structure. Subicular neurons demonstrated a noise-resistant representation of place, speed, and trajectory, which 
was as accurate as or even more accurate than that of hippocampal CA1 neurons. Speed- and trajectory-dependent 
firings were most prominent in neurons projecting to the retrosplenial cortex and nucleus accumbens, respectively. 
Place-related firing was uniformly observed in neurons targeting the retrosplenial cortex, nucleus accumbens, 
anteroventral thalamus, and medial mammillary body. Theta oscillations and sharp-wave/ripples tightly controlled 
the firing of projection neurons in a target region–specific manner. In conclusion, the dorsal subiculum robustly 
routes diverse navigation-associated information to downstream areas.

INTRODUCTION
The hippocampus is crucially involved in spatial navigation and 
memory. Through interactions with intra- and extrahippocampal 
areas (1–7), hippocampal neurons diversely represent a variety of 
spatial navigation parameters, such as place (8), speed (9), trajectory 
(10–12), head direction (9, 13), and time (14–16). The spike timing 
of these neurons is secured by multiple hippocampal neural oscilla-
tions, including theta oscillations, gamma oscillations, and sharp-
wave/ripples (SPW-Rs) (17–19), thus facilitating temporally precise 
information transmission within and between brain regions. To sup-
port navigational behavior output, hippocampal information is 
likely distributed to extrahippocampal areas. However, little is 
known about how diverse hippocampal information is distributed 
to downstream areas.

The subiculum (SUB) is the major hippocampal output structure, 
receiving hippocampal CA1 and entorhinal cortical output and pro-
jecting to various cortical/subcortical areas, including the nucleus 
accumbens (NAC), anteroventral thalamic nucleus (AV), interantero-
medial thalamic nucleus (ITN), retrosplenial cortex (RSC), and 
medial mammillary body (MMB) (20). The CA1-SUB projection 
is topographically organized so that proximal and distal CA1 areas 
project to the distal (far from CA1) and proximal (close to CA1) 
SUB, respectively (20). The CA1 area shows graded spatial tuning 
along its proximodistal axis (21). In addition, SUB neurons located 
at proximal and distal areas innervate different target areas (22), 
suggesting that these projections potentially convey distinct infor-
mation. Consistent with this idea, suppression of the proximal or 
distal SUB has a distinct impact on memory acquisition (23). Analogous 
to CA1 neurons, SUB neurons represent multiple variables associ-
ated with spatial navigation, such as place (24–26), axis (27), boundary 
(28), reward (29), and memory (30). Such anatomical and physio-
logical evidence imply a pivotal role for the SUB in the distribution 
of multimodal information; however, little is known about the nature 

of information distribution from this structure. An enigmatic point 
of subicular representation is that the overall subicular spatial firing 
is apparently dispersed (24, 25). Thus, it remains elusive whether 
the SUB fails to inherit the information content from the CA1 area 
or whether it inherits the information but converts it into a distinct 
form of representation suitable for interregional distribution to 
downstream areas. Moreover, it is unknown whether the SUB routes 
multiple types of information uniformly to all target areas or selec-
tively routes distinct information to different targets. We anticipated 
that the SUB processes navigational information received from the 
CA1 area and routes the information to downstream targets in a 
projection-specific manner.

We investigated the above hypothesis by identifying axonal pro-
jections using optogenetics (31) while performing large-scale extra-
cellular recordings (32, 33) of the rat dorsal SUB and CA1 area 
during multiple spatial tasks and sleep. We found that the SUB 
has a noise-resistant, accurate representation of multiple types of 
navigation-associated information and routes this information 
uniformly or selectively to target areas depending on the type of 
information.

RESULTS
The SUB comprises projection neurons targeting distinct 
downstream areas
Anterograde tracing revealed that the major projection targets of the 
rat dorsal SUB include the NAC, AV, anterodorsal thalamic nucleus, 
ITN, nucleus reuniens, RSC, and MMB (Fig. 1, A to E). A moderate 
projection was also observed in the dorsal tenia tecta and dorsal 
peduncular cortex (Fig. 1B). These projections were consistent with 
those reported by a previous study (22). Next, we determined the 
somata locations of SUB projection neurons by injecting the retro-
grade tracer cholera toxin B subunit conjugated with Alexa Fluor 488 
(CTB488) into one of the above target areas. In addition to the 
well-characterized differences between the proximal and distal SUB 
areas (22), we observed robust differences between the superficial 
and deep locations of SUB projection neurons (Fig. 1F and fig. S1) 
(34). Deeply located SUB neurons have been recently reported to 
have different gene expression patterns from other SUB neurons 

1Department of Physiology, Osaka City University Graduate School of Medicine, 
Osaka 545-8585, Japan. 2PRESTO, Japan Science and Technology Agency (JST), 
Kawaguchi, Saitama 332-0012, Japan. 3Department of Neurosurgery, Osaka City 
University Graduate School of Medicine, Osaka 545-8585, Japan.
*Corresponding author. Email: kitanishi.takuma@med.osaka-cu.ac.jp (T.K.); mizuseki.
kenji@med.osaka-cu.ac.jp (K.M.)
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(23, 35). Projection-specific visualization of neuronal morphology 
(Fig. 1, G to L) revealed that dendritic spine density was lower in AV-
projecting (AV-p) and ITN-projecting (ITN-p) neurons than in NAC-
projecting (NAC-p) and RSC-projecting (RSC-p) neurons (Fig. 1M). 
These results, together with accumulating previous evidence (22, 23, 36), 
indicate that SUB projection neurons comprise at least partly sep-
arated groups of neurons that target distinct downstream areas.

Optogenetic identification of projection targets
The anatomical observations led us to hypothesize that SUB projec-
tion neurons convey distinct information depending on the projection 
targets. To investigate this, we combined large-scale extracellular 
recordings (32, 33) from the SUB and CA1 area of freely behaving 
rats with optogenetic identification of the projection targets (31) of 
the recorded SUB neurons (Fig. 2A). We stereotaxically introduced 
adeno-associated virus (AAV) expressing channelrhodopsin-2 under the 
control of synapsin promoter, AAV1-hSyn-hChR2(H134R)-enhanced 

yellow fluorescent protein (EYFP), into the dorsal SUB, inserted a 
256-channel silicon probe into the dorsal SUB and CA1 area, and
implanted up to four optical fibers to each projection target (NAC,
AV, RSC, and MMB) in each rat (Fig. 2, B to F, and fig. S2). We se-
lected these four target areas because they were strongly innervated
by the SUB (Fig. 1) while being anatomically distant from each other, 
which would maximize the anatomical specificity of optical simula-
tion. Rats performed multiple spatial tasks, including an open-field,
a linear-track, and an alternating T-maze task, and rested/slept in
a small enclosure before and after the tasks. We monitored and
analyzed a total of 315 and 319 putative principal cells in the CA1
and SUB, respectively, from 22 recording sessions in 11 rats (fig. S3,
A to C, and table S1).

To identify the projection targets of activity-monitored neurons 
with antidromic spikes (31), we irradiated blue light pulses sequen-
tially to each target area during the rest sessions. In response to the 
light pulses, a proportion of SUB neurons generated short-latency 
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Fig. 1. The subiculum comprises projection neurons targeting distinct downstream areas. (A to E) After the injection of AAV1/2-EF1-EGFP into the left dorsal SUB 
(A), EGFP-labeled axons were observed in the ipsilateral NAC, ipsilateral dorsal tenia tecta (DTT), ipsilateral dorsal peduncular cortex (DP) (B), bilateral AV, anterodorsal 
thalamic nucleus (AD), ITN, nucleus reuniens (Re) (C), the superficial layer of the ipsilateral granular RSC (D), and MMB (E). All images show coronal sections. Numbers, 
approximate distances of the sections from the bregma. (F) SUB coronal sections containing cholera toxin B subunit conjugated with Alexa Fluor 488 (CTB488)–labeled 
projection neurons (left) and the corresponding cell counting (right). Left: Dotted curves, borders of the SUB cell layer. Right: Segmented SUB cell layer (mesh) and detected 
CTB488-positive neurons (dots). (G to M) Dendritic morphology of SUB projection neurons. (G) Schematic of visualization of projection-specific neuronal morphology. (H to L) 
SUB coronal sections containing EYFP-labeled projection neurons (top) and apical dendrites (bottom). The AAV6-pgk-Cre was injected in one of the following areas: NAC 
(H), AV (I), ITN (J), RSC (K), and MMB (L). (M) Dendritic spine density per unit length of the apical dendrite. n = 17, 17, 25, 21, and 20 cells for NAC-p, AV-p, ITN-p, RSC-p, and 
MMB-p SUB neurons, respectively. *P < 0.05, Tukey test. Means ± SD.
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(<25 ms; 8.7 ± 4.0 ms, means ± SD), low-jitter (<0.5 ms, 0.18 ± 0.09 ms) 
spikes with high fidelity (>20%, 51.8 ± 30.2%), and these neurons 
were identified as projection neurons innervating the irradiated area 
(Fig. 2, G to K, and fig. S3D). The locations of the identified projection 
neurons in the SUB cell layer were consistent with the distribution 
of retrogradely labeled CTB488-positive neurons (fig. S3E). RSC-p 
neurons had a shorter latency than NAC-p neurons (Fig. 2H), pre-
sumably reflecting differences in the anatomical distance between the 
SUB and these target areas. Among SUB principal cells, we identi-
fied 11 AV-p (3.4% of SUB principal cells), 28 MMB-p (8.8%), 
18 NAC-p (5.6%), and 16 RSC-p (5.0%) SUB neurons (table S1). 
Previous anatomical studies demonstrated that moderate proportions 
of SUB neurons have collateral projections to more than one area 
with several combinations of target areas (22, 23, 36, 37). Consistently, 
several SUB neurons were identified as projecting to more than one 
area (fig. S3E).

The SUB represents place information as accurately 
as the CA1, and subicular projection neurons uniformly carry 
this information
The hippocampal CA1 area and the SUB contain spatially tuned cells 
that fire whenever animals move through particular places in an 
environment (8, 24–26). We compared place representation in CA1 
and SUB neurons while rats were running on a linear track. While 
many CA1 neurons fired at specific places along the track, SUB 

neurons fired at broader locations (Fig. 3A). Rate maps of eastbound 
and westbound trials were uncorrelated both in the CA1 and SUB 
(CA1: r = −0.03 ± 0.46, SUB: r = −0.07 ± 0.44; t414 = 0.96, P = 0.34, 
CA1 versus SUB). This is consistent with the known directionality 
of place representation on a linear environment (9, 26). Per-spike 
spatial information, expressed by the Ispike value, a measure of the 
spatial specificity of individual cells (38), was lower in SUB than 
in CA1 neurons (means ± SD: CA1, 0.94 ± 0.77 bits/spike; SUB, 
0.34 ± 0.46 bits/spike; Z = 9.73, P < 0.0001, Wilcoxon rank sum test; 
Fig. 3B and fig. S4A). In contrast, SUB neurons had higher mean 
firing rates (during trials in the preferred direction; CA1, 3.7 ± 5.4 Hz; 
SUB, 9.8 ± 12.9 Hz; Z = 7.78, P < 0.0001; Fig. 3C and fig. S4A) and 
peak firing rates (in the preferred direction; CA1, 9.3 ± 9.0 Hz; SUB, 
17.1 ± 17.0 Hz; Z = 5.83, P < 0.0001; Fig. 3D) than CA1 neurons. 
Because of this high firing rate, per-second spatial information, Isec 
(38), which is equal to Ispike multiplied by the mean firing rate, was 
comparable between CA1 and SUB neurons (CA1, 1.43 ± 1.69 bits/s; 
SUB, 1.39 ± 1.87 bits/s; Z = 0.98, P = 0.33; Fig. 3E and fig. S4A). 
Moreover, SUB and CA1 neurons showed similar mutual informa-
tion (39) of firing rates and places (CA1, 0.26 ± 0.17 bits; SUB, 
0.29 ± 0.23 bits; Z = 0.51, P = 0.61; Fig. 3F). The mutual information 
correlated with Isec (CA1: r = 0.87, P < 0.0001; SUB: r = 0.84, 
P < 0.0001) but not with Ispike (CA1: r = 0.004, P = 0.96; SUB: 
r = 0.11, P = 0.08). These results suggest that, despite the apparent 
decrease in spatial specificity shown by the lower Ispike value, SUB 
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neurons convey a comparable amount of spatial information per unit 
time with that conveyed by CA1 neurons owing to the subicular 
high firing rate. The idea that SUB neurons robustly represent place 
information is further supported by the observation that their firing 
was anchored more to place than to the elapsed time from the start 
of trials (fig. S5, A to D) and by the fact that SUB rate maps were 
more temporally stable than the CA1 rate maps (fig. S5E).

Next, we investigated whether the SUB also represents place in-
formation as accurately as the CA1 at a cell population level using 
Bayesian decoding of animal position (Fig. 3, G and H) (40). The 
decoding errors obtained from CA1 and SUB neuronal populations 
were both smaller than those obtained using shuffled data, even 
when single neurons were used for decoding (P < 0.001, Tukey test), 
and became even smaller by increasing the number of neurons used 
[F19, 700 = 90.87, P < 0.001, two-way analysis of variance (ANOVA); 
Fig. 3H, solid lines]. The decoding errors were comparable between 
the CA1 and SUB, irrespective of the number of neurons used 
(P > 0.2, Bonferroni test after two-way ANOVA; Fig. 3H, solid lines), 
suggesting that CA1 and SUB neuronal populations of the same size 

convey a comparable amount of decodable spatial information. 
Randomly removing spikes from SUB neurons to match the mean 
firing rate of SUB neurons to that of CA1 neurons increased the 
decoding errors (F1, 917 = 220.10, P < 0.001; Fig. 3H, dashed-dotted 
line), suggesting that the SUB high firing rate supports its accurate 
spatial representation.

To clarify how the spatial firing of single neurons relates to pop-
ulation coding, we estimated the contribution of single neurons to 
the decoding performance. The decoding improvement obtained by 
adding single units (see Materials and Methods) correlated with Isec 
(CA1: r = 0.76, P < 0.0001; SUB: r = 0.69, P < 0.0001) and mutual 
information (CA1, r = 0.78, P < 0.0001; SUB, r = 0.73, P < 0.0001) 
but not with Ispike (CA1, r = 0.06, P = 0.46; SUB, r = 0.04, P = 0.40) in 
both the CA1 and SUB, highlighting the tight association between 
Isec and population coding.

We hypothesized that the subicular representation gains robust-
ness against noise owing to its high firing rate. We tested this idea 
by adding noise to the original spike trains before proceeding with 
the decoding analysis. In response to simple additive noise (41), we 
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found a smaller increase in the decoding error in the SUB than in 
the CA1 (Fig. 3I), suggesting that population spatial coding in the 
SUB is more resistant to additive noise than that in the CA1.

Next, we asked how spatial information is conveyed by SUB pro-
jection neuron groups targeting distinct downstream areas (Fig. 3J). 
The proportions of place cells (defined by Isec) were similar in the 
CA1 and SUB (2 = 0.02, P = 0.88, 2 test; Fig. 3K and fig. S4A), as 
well as among the groups of SUB projection neurons targeting the 
AV, MMB, NAC, or RSC (2 = 1.99, P = 0.57; Fig. 3L). Neither peak 
nor centroid positions of rate maps were significantly different among 
the four SUB projection neuron groups (P > 0.1, Steel-Dwass test; 
Fig. 3J). These results suggest that the SUB projection neurons targeting 
these four downstream areas uniformly display place-related firing. 
The results for the spatial representation were consistent, irrespective 
of the sizes of a position bin and a time window, and were consistent 
across animals (fig. S6, A to K). We observed a similar spatial repre-
sentation in a two-dimensional (2D) open field (figs. S4B and S7).

The SUB represents speed information more accurately than 
the CA1, and this information is most prominently conveyed 
by RSC-p neurons
The hippocampus contains neurons that respond to the running 
speed of animals (9). We thus investigated speed representation in 
CA1 and SUB neurons while rats foraged in an open field. Both the 
CA1 and SUB contained neurons with instantaneous firing rates that 
correlated with the rat’s instantaneous running speed (Fig. 4A). To 
estimate the amount of speed information, as in the case of spatial 
information, we calculated per-spike speed information Ispike and 
per-second speed information Isec (42). The Ispike value was lower 
in SUB than in CA1 neurons (CA1, 0.054 ± 0.057 bits/spike; SUB, 
0.028 ± 0.059 bits/spike; Z = 9.12, P < 0.0001, Wilcoxon rank sum 
test), while the mean firing rate of SUB neurons was higher than 
that of CA1 neurons (CA1, 1.5 ± 1.9 Hz; SUB, 5.6 ± 5.2 Hz; Z = 11.48, 
P < 0.0001) (Fig. 4, B and C, fig. S4C). Consequently, the Isec value was 
similar between all CA1 and SUB neurons (CA1, 0.046 ± 0.052 bits/s; 
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SUB, 0.077 ± 0.114 bits/s; Z = 1.12, P = 0.26; Fig. 4D and fig. S4C). 
However, when comparing only neurons with an Isec value exceed-
ing the 99th percentile of the shuffled data, the Isec value was higher 
for SUB than for CA1 neurons (CA1, 0.118 ± 0.060 bits/s; SUB, 
0.205 ± 0.137 bits/s; Z = 5.19, P < 0.0001; Fig. 4D). To distinguish 
positively and negatively modulated speed cells, we calculated the 
speed score (43). The absolute speed score was tightly correlated with 
Isec (CA1, r = 0.75, P < 0.0001; SUB, r = 0.80, P < 0.0001) but was 
only modestly correlated with Ispike (CA1, r = 0.32, P < 0.0001; SUB, 
r = 0.32, P < 0.0001). The speed score was higher for SUB than for 
CA1 neurons (CA1, 0.141 ± 0.043; SUB, 0.201 ± 0.087; Z = 5.74, 
P < 0.0001, Wilcoxon rank sum test) when comparing neurons with 
a speed score exceeding the 99th percentile of the shuffled data dis-
tribution (Fig. 4E). Conversely, the speed score was smaller for SUB 
than for CA1 neurons (CA1, −0.100 ± 0.006; SUB, −0.142 ± 0.041; 
Z = 2.34, P = 0.019) when comparing neurons with a speed score smaller 
than the first percentile of the shuffled data distribution (Fig. 4E). 
The speed scores obtained from the first and second halves of the 
sessions were positively correlated both for the CA1 and the SUB 
(CA1, r = 0.51, P < 0.0001; SUB, r = 0.79, P < 0.0001). These results 
suggest that, despite the broader speed tuning, as shown by the lower 
Ispike values, SUB neurons convey a larger amount of speed infor-
mation per unit time than that conveyed by CA1 neurons.

We asked whether the stronger speed representation in individual 
SUB neurons is reflected by the speed representation at the population 
level. To this end, we constructed a linear decoder of speed (Fig. 4, 
F and G) (43). The decoding accuracy was higher in the SUB than 
in the CA1 irrespective of the number of neurons used (P < 0.05, 
Bonferroni test after two-way ANOVA; Fig. 4G and fig. S6L). 
The SUB decoding accuracy decreased when spikes were randomly 

removed from SUB neurons to match the CA1 mean firing rate 
(P < 0.001, Bonferroni test after two-way ANOVA; Fig. 4G, dashed-
dotted line); however, it was still higher than the CA1 decoding 
accuracy (P < 0.001). The single-unit decoding accuracy better cor-
related with the Isec (CA1: r = 0.68, P < 0.0001; SUB: r = 0.75, 
P < 0.0001) than with the Ispike (CA1: r = 0.27, P < 0.0001; SUB: 
r = 0.28, P < 0.0001) value both in the CA1 and SUB (CA1: Z = 5.85, 
P < 0.0001; SUB: Z = 8.03, P < 0.0001; test of the difference between 
two correlation coefficients). Speed decoding by the SUB was 
more resistant to additive noises than that by the CA1 (Fig. 4H and 
fig. S6L).

We then investigated the proportion of positively (p-speed cells) 
and negatively (n-speed cells) modulated speed cells (see Materials 
and Methods). While the proportion of p-speed cells was similar be-
tween the SUB and CA1 (2 = 1.12, P = 0.29; Fig. 4I), that of n-speed 
cells was higher in the SUB than in the CA1 (2 = 13.71, P = 0.0002; 
Fig. 4I and fig. S4C). The Isec value was higher in the p-speed SUB 
cells than in the n-speed SUB cells and p-speed CA1 cells (n-speed 
cells, CA1, 0.062 ± 0.037 bits/s, SUB, 0.096 ± 0.099 bits/s; p-speed cells, 
CA1, 0.086 ± 0.066 bits/s, SUB, 0.153 ± 0.143 bits/s; P < 0.05, Steel-
Dwass test). The proportion of p-speed cells among RSC-p neu-
rons was larger than that among the entire SUB cell population 
(P < 0.05, bootstrap analysis; Fig. 4J), indicating that speed-dependent 
firing is most prominent in RSC-p neurons.

The SUB represents trajectory information as accurately 
as the CA1, and this information is most prominently 
conveyed by NAC-p neurons
Next, we investigated trajectory-dependent firing at the start point 
of an alternating T-maze task (Fig. 5A) (12). A fraction of CA1 and 
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SUB neurons showed different firing rates in the start box according 
to the next choice of arm (Fig. 5B). To measure the information 
encoded regarding the next choice (left or right), as signaled by the 
firing rate in the start box, we defined the trajectory Ispike and Isec. 
Compared with CA1 neurons, SUB neurons showed lower Ispike values 
(Z = 5.73, P < 0.0001, Wilcoxon rank sum test; Fig. 5C and fig. S4D) 
and a lower rate change ratio (see Materials and Methods, Z = 5.72, 
P < 0.0001; Fig. 5D). However, SUB neurons had a higher mean firing 
rate in the start box (Z = 10.16, P < 0.0001; Fig. 5E and fig. S4D) and 
consequently had comparable Isec values to those of CA1 neurons 
(Z = 0.02, P = 0.99; Fig. 5F and fig. S4D). In addition, the area under 
the receiver operating characteristic (auROC), indicating the good-
ness of fit of the binary classifier, was similar between CA1 and SUB 
neurons (Z = 0.92, P = 0.36; Fig. 5G). We performed trajectory de-
coding from the firing rates in the start box, as described previously 
(5). SUB neurons showed moderately higher decoding accuracy than 
did CA1 neurons (F1, 432 = 17.02, P < 0.001; Fig. 5H and fig. S6M) 
and were more resistant to additive noise (Fig. 5I and fig. S6M). 
Random spike removal from SUB neurons to match the CA1 firing 
rate decreased the decoding accuracy (F1, 495 = 46.36, P < 0.001; 
Fig. 5H, dashed-dotted line).

Both the CA1 and SUB contained ~20% of trajectory-dependent 
cells (2 = 0.72, P = 0.40; Fig. 5J and fig. S4D). Among the groups 
of SUB projection neurons, NAC-p neurons contained a higher 
proportion of trajectory-dependent cells than the other groups of 

projection neurons (2 = 9.06, P = 0.03) and the entire population of 
SUB neurons (P < 0.05, bootstrap analysis; Fig. 5K).

In the stem, only small proportions of cells showed trajectory-
dependent firing (CA1, 9.6%; SUB, 7.7%; 2 = 0.53, P = 0.47). This 
is consistent with a previous study demonstrating that CA1 neurons 
exhibit trajectory-dependent firing in the start box but not in the 
stem when a delay is introduced between trials (12).

Weak head-direction tuning in subicular projection neurons
Although neuronal firing associated with head direction emerges in 
the CA1 and SUB in cue-rich (13) and multipath environments (27), 
respectively, head-direction tuning is generally weak in both re-
gions in non–cue-rich open fields (25, 27, 44). Consistently, CA1 
and SUB neurons displayed weak head-direction tuning in an open 
field (Fig. 6A). While per-spike directional information, Ispike (CA1, 
0.120 ± 0.122 bits/spike; SUB, 0.047 ± 0.089 bits/spike; Z = 11.55, 
P < 0.0001, Wilcoxon rank sum test; Fig. 6B and fig. S4E) and mean 
vector length (CA1, 0.134 ± 0.095; SUB, 0.078 ± 0.076; Z = 8.47, 
P < 0.0001; Fig. 6C) were higher in CA1 neurons than in SUB 
neurons, per-second directional information, Isec, was comparable 
between them (CA1, 0.081 ± 0.058 bits/s; SUB, 0.099 ± 0.110 bits/s; 
Z = 0.28, P = 0.78; Fig. 6D and fig. S4E). Bayesian decoding of head 
direction (45) revealed statistically significant (P < 0.001, CA1 versus 
shuffled, SUB versus shuffled, Bonferroni test after two-way ANOVA) 
but marginal decoding performance for both CA1 and SUB neurons 
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(Fig. 6, E and F). While the proportion of head-direction cells was 
higher in the SUB than in the CA1 (2 = 10.88, P = 0.001; Fig. 6G 
and fig. S4E), all four groups of SUB projection neurons contained 
only small proportions of head-direction cells (Fig. 6H).

Projection-specific phase locking to theta oscillations
Next, we asked whether the CA1, SUB, and SUB projection neurons 
have specific temporal firing patterns during theta oscillations. 
During running, we observed robust theta oscillations both in the 
CA1 and SUB (Fig. 7, A to C). Using theta oscillations at the center 
of the SUB cell layer as a reference (recording site location, 47 ± 13% 
and 51 ± 15% along proximal [0%]–distal [100%] and superficial 
[0%]–deep [100%] axes of the SUB cell layer, respectively), we ex-
amined theta phase locking of neuronal firing during RUN periods. 
Virtually, all CA1 and SUB neurons were significantly phase-locked 
(P < 0.05, Rayleigh test) to subicular theta oscillations (CA1, 100%; 
SUB, 99.0%; Fig. 7D). The preferred theta phases of SUB neurons 
were at earlier phases of theta cycles than those of CA1 neurons 
(CA1, 46.1 ± 45.4°; SUB, 332.6 ± 54.7°; circular mean ± angular de-
viation; U2 = 4.30, P < 0.001, Watson U2 test; Fig. 7, D and E, and fig. 
S4F). We measured the strength of phase locking using pairwise 
phase consistency (PPC) (46). While CA1 neurons locked to the 
ascending phase of theta oscillations showed higher PPC than those 
locked to the descending phase (F9,267 = 4.80, P < 0.0001, one-way 
ANOVA), SUB neurons locked to the peaks of theta oscillations 
showed higher PPC than those locked to troughs (F9, 290 = 2.69, 
P = 0.005) (Fig. 7D). For the entire population, PPC was modestly 
smaller in the SUB than in the CA1 (CA1, 0.060 ± 0.058; SUB, 
0.052 ± 0.065; Z = 2.94; P = 0.003, Wilcoxon rank sum test).

SUB neurons had distinct preferred theta phases depending on 
the location of their somata. SUB neurons located at the distal-deep 
part (distal two-thirds and deep one-third of the cell layer) of the 
SUB cell layer fired at the earliest phases of theta cycles (285.4 ± 63.2°), 
followed by neurons at the distal-superficial part (distal two-thirds 
and superficial two-thirds of the cell layer, 321.2 ± 39.6°), and lastly 
neurons at the proximal part (proximal one-third of the cell layer, 
9.6 ± 54.8°; Fig. 7F and fig. S4F). These three distributions of pre-
ferred theta phases were different from each other (P < 0.01, Watson 
U2 test with Bonferroni correction). In agreement with this location-
dependent sequential firing, SUB projection neurons showed dif-
ferences in theta phase locking (Fig. 7, G and H). The earliest 
preferred theta phases were observed in AV-p neurons (250.8 ± 50.0°), 
followed by RSC-p neurons (292.1 ± 53.6°), MMB-p neurons 
(297.8 ± 57.0°), and lastly NAC-p neurons (29.3 ± 48.6°). The pre-
ferred phases of NAC-p neurons were different from those of MMB-p, 
RSC-p, and AV-p neurons (P < 0.02, Watson U2 test with Bonferroni 
correction). AV-p neurons were more strongly phase-locked to theta 
oscillations than RSC-p neurons (t = 2.64, P = 0.041, Steel-Dwass test; 
Fig. 7I). To assess which of the cell location and projection target 
better explain the preferred theta phases, we performed multiple 
regression analysis of preferred phases using the following six param-
eters as predictor variables: proximal-distal cell location, superficial-
deep cell location, AV-p or not, MMB-p or not, NAC-p or not, and 
RSC-p or not (Fig. 7J). Among them, only the following four vari-
ables significantly predicted the preferred theta phase: proximal-
distal location (standardized coefficient : −0.30, P < 0.001), AV-p 
or not (: −0.20, P < 0.001), MMB-p or not (: −0.23, P < 0.001), and 
NAC-p or not (: 0.20, P = 0.001), suggesting that preferred theta 
phase is conjunctively determined by these factors. These results 

demonstrate that theta oscillations robustly control the spike timing 
of SUB neurons in a target-specific manner. We observed similar 
patterns of theta phase locking during rapid eye movement (REM) 
sleep in both the CA1 and SUB (figs. S8 and S4F).

Projection-specific firing modulation by SPW-Rs
Next, we investigated the temporal firing patterns along SPW-Rs 
during slow-wave sleep (SWS). We observed synchronous SPW-Rs 
in the CA1 and SUB areas (Fig. 8, A and B). Using the ripple events 
detected at the center of the SUB cell layer as a reference, we exam-
ined the peri-ripple event firing rates of individual neurons. While 
most CA1 (92.7%) and SUB (73.7%) neurons showed significantly 
higher firing rates during ripple events than during baseline periods 
(P < 0.01, t test), a small fraction of SUB neurons, but not of CA1 
neurons, were significantly (P < 0.01, t test) suppressed during rip-
ples (CA1, 0%; SUB, 4.4%; 2 = 14.11, P = 0.0002; Fig. 8, C and D) 
(47). These suppressed neurons were mostly localized in the distal-
deep part of the SUB cell layer (proximal: 2.3%, distal-superficial: 
1.5%, and distal-deep: 16.7%; P < 0.001 by 2 test; Fig. 8E and fig. 
S4G). Consistent with this location-dependent firing modulation, 
73% of AV-p neurons were significantly suppressed during ripples, 
while only 18% of them were activated (Fig. 8F). In contrast, nearly 
all MMB-p (93%) and NAC-p (100%) neurons were activated during 
ripples (Fig. 8F). RSC-p neurons comprised a mixture of activated 
(63%) and suppressed (31%) neurons (Fig. 8F). Consequently, AV-p 
neurons showed the lowest normalized peak height among all pro-
jection neuron groups, while RSC-p neurons showed a lower 
normalized peak height than did MMB-p neurons (Fig. 8G). The 
ripple-triggered activation/suppression was maintained regardless 
of the variations in ripple power (P < 0.01 by Bonferroni test after 
two-way repeated-measures ANOVA, AV-p versus all other projec-
tion neuron groups, MMB-p versus RSC-p; P = 0.017, NAC-p versus 
RSC-p; Fig. 8H), duration (P < 0.01, AV-p versus all other projec-
tion neuron groups, MMB-p versus RSC-p; P = 0.024, NAC-p versus 
RSC-p; Fig. 8I), or frequency (P < 0.01, AV-p versus all other pro-
jection neuron groups, MMB-p versus RSC-p; Fig. 8J). Essentially 
the same pattern of firing modulation was observed in SPW-Rs 
during the awake rest periods (figs. S4G and S9).

DISCUSSION
To the best of our knowledge, this is the first report demonstrating 
the pathway-specific information routing from the SUB. Three main 
findings were noted. First, SUB neurons robustly represented mul-
tiple types of navigation-associated information as accurately as or 
even more accurately than CA1 neurons. Second, depending on the 
type, the information was carried either uniformly or selectively by 
SUB projection neurons targeting distinct areas. Third, the firing of 
SUB projection neurons was distinctly controlled by theta oscillations 
and SPW-Rs in a target region–specific manner. These three find-
ings address “how,” “which,” and “when” information is emitted from 
the SUB to downstream targets, respectively, providing a compre-
hensive view of information routing from the dorsal hippocampal 
formation.

A key feature of the subicular representations was that SUB neu-
rons conveyed comparable (i.e., place and trajectory) or even greater 
(i.e., speed) information per unit time than that conveyed by CA1 
neurons, despite their broader tuning. A previous study using a 
U-shaped track task suggested that SUB neurons carry more positional 
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information per unit time than do CA1 neurons (26). They used 
model neurons derived from experimental data to estimate informa-
tion content, partly because they could simultaneously record only 
a few SUB neurons. A limitation of their study is that it modeled 

neither bursting and history dependence in the spike trains (48, 49) 
nor transient synchrony between neurons (50), which is a hallmark 
of “cell assembly” (51). Such spike timing correlations both in single 
neurons and among multiple neurons are known to affect the amount 
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of information encoded (52). In contrast, we measured spatial in-
formation directly from the experimental data by simultaneously 
monitoring a larger number of SUB neurons using 256-channel sil-
icon probes. Further, by using multiple behavioral tasks, we found 
that SUB neurons have accurate representations for speed and 
trajectory, which expands the concept of SUB place representation 
(26) to that of multiple navigation-associated variables.

Our results suggest that the sharply tuned, low–firing rate repre-
sentation in the CA1 area is converted into a broadly tuned, high–
firing rate representation in the SUB without losing the information 
content. This change in representation may be caused by the con-
verging inputs onto single SUB neurons from multiple CA1 neurons, 
as proposed by previous studies (24, 25). In addition, the richer 
speed information in the SUB might be due to further convergence 
of entorhinal speed signals (42, 43). The high firing rate in the SUB 
is crucially important for supporting per-second information rate 
in single neurons, decoding performance as a population, and the 
noise-resistant robust coding, which may be suitable for long-range 
projections suffering from substantial noise (41). These coding strat-
egies were common across place, speed, and trajectory information. 
Thus, we propose that a key role of the SUB is to generate noise-
resistant, accurate representations for multiple types of navigation-
associated information. The coding strategy of constructing such a 
high–firing rate, noise-resistant representation may apply not only 
for the SUB but also for the entire hippocampal circuit. The mean 
firing rates of principal cells progressively increase as they pass through 
the feed-forward network of the hippocampal formation (i.e., dentate 
gyrus ➔ CA3 ➔ CA1 ➔ SUB) (24, 53–55). Thus, one of the roles of 
the hippocampal circuit might be to convert the sparse firing in the 

dentate gyrus (55–58) to progressively denser and more robust 
representations.

We found that groups of SUB projection neurons uniformly 
(i.e., place) or selectively (i.e., speed and trajectory) carry informa-
tion. Place information may be used in all target areas; in particular, 
the AV, MMB, and RSC are all implicated in spatial learning (59). 
As SUB neurons showed comparable spatial coding with CA1 neu-
rons both at single-cell and population levels, we predict that SUB 
neurons projecting to regions other than the four that we identified 
also show strong place coding. Speed information prominently routed 
to the RSC may interact with visual-locomotion integration in this 
area (60, 61). Trajectory information routed to the NAC may help 
goal-directed action to obtain a reward, which is thought to be the 
major function of the NAC (62). Head-direction tuning was weak 
in all four groups of SUB projection neurons, suggesting that 
head-direction information in the AV (63) and RSC (64) is derived 
not from the SUB but from other regions innervating these areas. 
Considering that the ventral CA1 routes information related to 
anxiety, goal approach, and task engagement to distinct target areas, 
including the prefrontal cortex, amygdala, and NAC (31), the entire 
dorsoventral axis of the hippocampal formation might route distinct, 
relevant information to different target areas. Note that such dis-
cussion of functional allocations to different projections is based on 
the assumption that projection neurons sampled by optogenetics 
represent the neuronal population in the target pathways (31, 65). 
In addition, the information routed to downstream areas is not 
necessarily passed on to the neurons in the target areas. To precisely 
link the information routing to its network and behavioral functions, 
deliberate future studies would be necessary. For instance, whether 
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the NAC-routed trajectory information is required for spatial working 
memory remains unknown. In line with our result, the disconnec-
tion of the SUB-NAC pathway has been shown to impair spatial 
working memory in a radial arm maze task but only when no delay 
was inserted between the training and test phases (66). In contrast, 
inactivation of the distal SUB, but not the proximal SUB containing 
NAC-p neurons, has been shown to impair spatial working memory 
in a Morris water maze task (23). In addition, Nelson et al. (67) found 
that the reciprocal connection between the SUB and anterior thalamic 
nuclei, including the AV, is required for a modified T-maze task, in 
which animals could not use intramaze cues. Collectively, while 
multiple SUB projections are recruited in spatial working memory 
tasks, their necessity appears to depend on various factors, including 
the type of behavioral task, task difficulty, delay length, and richness 
of available cues.

SUB projection neurons showed different preferred spike timing 
during theta oscillations, suggesting that distinct information is sent 
out sequentially to different target areas in each theta cycle. A po-
tential determinant of the preferred spike timing is the topographically 
graded input from the entorhinal cortex. The medial and lateral 
entorhinal cortex (MEC and LEC, respectively) preferentially inner-
vate the distal and proximal SUB, respectively (68). MEC layer 3 
neurons, which project to the SUB (69), fire maximally around the 
peaks of theta oscillations measured in the CA1 pyramidal cell layer 
(70, 71), which matches the observed phase preference of distal SUB 
neurons. Therefore, the spike timing of distal SUB neurons during 
theta oscillations may be under strong control of MEC layer 3 inputs. 
By contrast, the LEC displays weaker theta oscillations/modulation 
(72). Thus, the theta phase preference of proximal SUB neurons may 
be mainly determined by CA1 inputs, which show a theta phase 
preference similar to that of proximal SUB neurons. All four down-
stream areas examined in this study exhibit theta-modulated ac-
tivity, which is often coherent with hippocampal theta oscillations 
(59, 63, 73, 74). Thus, the SUB potentially coordinates theta-paced 
activity in multiple downstream areas with fine temporal precision. 
SUB projection neurons were also distinctly activated or suppressed 
during ripples. Because of the widespread projections of the SUB, 
precisely timed activity broadcasted from the SUB might organize 
the brain-wide activity (75) through the modulation of downstream 
areas (47, 74, 76, 77). Exactly how the routed information from the 
SUB is used in the target areas remains to be elucidated. Further 
studies are warranted to investigate the impact of SUB activity on 
information processing in downstream areas.

MATERIALS AND METHODS
All procedures of animal care and use were approved by the Institu-
tional Animal Care and Use Committee of Osaka City University 
and were performed in accordance with the National Institutes of 
Health Guide for the Care and Use of Laboratory Animals.

Anatomical tracing
AAVs for anatomical tracing were produced by cotransfecting plasmids 
into 293T cells (RCB2202, Riken BRC), purified with heparin 
columns (HiTrap, GE Healthcare), and titered via quantitative 
polymerase chain reaction, as described previously (6). Plasmids 
used for AAV production were as follows: pAAV-EF1-EGFP (6), 
pAAV-EF1-DIO-EYFP (no. 20296, Addgene), pAAV-pgk-Cre 
(no. 24593, Addgene), pXR1 (National Gene Vector Biorepository), 

pAAV2/6 (PL-T-PV0004, Penn Vector Core), pAAV-RC (AAV 
Helper-Free System, Stratagene), and pHelper (AAV Helper-
Free System).

Stereotaxic injections were performed on male Long-Evans rats 
(n = 2, 13, and 12 rats for anterograde tracing, retrograde tracing, 
and projection-specific labeling, respectively; 262 to 382 g; 7.9 to 
10 weeks old on the day of surgery; SLC, Japan) under ~2% isoflurane 
anesthesia. For anterograde tracing, 400 nl of AAV1/2-EF1-EGFP 
[2.9 × 1013 genome copies (GC)/ml] was injected into the left dorsal 
SUB [anterior-posterior from bregma (AP): −6.1 mm, mediolateral 
from the midline (ML): 3.0 mm, dorsoventral from the cortical 
surface (DV): 2.8 mm]. For retrograde tracing, either 400 or 1200 nl 
per site of 0.5% (w/v) CTB488 (C34775, Thermo Fisher Scientific) 
was injected into one of the following brain areas: bilateral NAC 
(n = 4 rats; AP: +2.4 mm, ML: ±1.8 mm, DV: 6.4 mm), bilateral AV 
(n = 2 rats; AP: −2.0 or −1.7 mm, ML: ±1.6 mm, and DV: 5.2 mm), 
ITN (n = 2 rats; AP: −2.0 mm, ML: 1.0 mm, DV: 6.6 mm, inserted 
from the right hemisphere at an angle of 10° in the coronal plane with 
the tip pointing toward the medial direction), bilateral RSC (n = 2 rats; 
AP: −3.8 mm, ML: ±0.4 mm, DV: 1.6 mm), and MMB (n = 3 rats; 
AP: −4.7, −4.2, or −3.2 mm; ML: 1.5 mm; DV: 8.9, 9.1, or 9.3 mm, 
at a 10° angle as described above). For projection-specific labeling, 
1000 nl per site of AAV1/2-EF1-DIO-EYFP (9.2 × 1011 GC/ml) 
was injected into the bilateral dorsal SUB (AP: −6.1 mm, ML: ±3.0 mm, 
DV: 2.8 mm), and 400 nl per site of AAV6-pgk-Cre (2.4 × 1012 GC/ml) 
was injected into one of the following brain areas: bilateral NAC 
(n = 3 rats; AP: +2.4 mm, ML: ±1.8 mm, DV: 6.4 mm), bilateral AV 
(n = 2 rats; AP: −2.0 mm, ML: ±1.6 mm, DV: 5.2 mm), ITN (n = 2 
rats; AP: −2.0 mm, ML: 1.0 mm, DV: 6.4 mm, at a 10° angle as 
described above), bilateral RSC (n = 3 rats; AP: −3.8 mm, ML: ±0.4 mm, 
DV: 2.0 mm), and MMB (n = 2 rats; AP: −4.7 mm, ML: 1.5 mm, DV: 
8.9 mm, at a 10° angle as described above).

Immunohistochemistry was performed as described in the 
“Histology” section. Cells positive for CTB488, NOS, or PCP4 were 
counted manually using Fiji software at four or five AP levels of the 
SUB (350 to 2150 m posterior to the posterior commissure). In 
individual images, 10 × 2 and 10 × 5 grids were placed on the deep 
cell layer, rich in PCP4-positive cells (35), and the superficial cell 
layer, scarce in PCP4-positive cells, of the SUB, respectively. The 
density of CTB488-positive cells in each grid was obtained as the 
number of CTB488-positive cells in the grid divided by the grid area. 
Dendritic spines of EYFP-labeled dendrites were semiautomatically 
detected and measured from confocal image stacks (voxel size, 
0.1 m × 0.1 m × 0.5 m) using the NeuronStudio software, as 
described previously (78). Spines were classified into three groups 
according to their shape: mushroom, thin, and stubby. Spine 
density was calculated as the number of spines divided by the 
dendrite length.

Materials for extracellular recordings
We used three types of 256-channel silicon probes (NeuroNexus). 
All types had eight shanks, with each shank containing linearly 
aligned 32 recording sites (160 to 177 m2 per site, 0.61 ± 0.23 megohm 
at 1 kHz) but differing in their horizontal shank separation and ver-
tical site spacing. Buzsaki256 probes had 300-m shank separation 
and 50-m vertical site spacing. A8x32-5mm-35-300-160 probes 
had 300-m shank separation and 35-m site spacing. A8x32-Edge-
5mm-25-200-177 probes had 200-m shank separation and 25-m 
site spacing. The silicon probes were mounted on a 3D-printed 
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microdrive with a movable screw (R0090B500, J.I. Morris), with 
which the silicon probe was gradually lowered to the SUB/CA1 area 
after implantation. For 8 of the 11 implantations, all recording sites 
were coated with poly(3,4-ethylenedioxythiophene) conducting poly-
mer (79) with a 1-A direct current for 3 s (nanoZ, White Matter) 
to lower the impedance (0.44 ± 0.20 megohm at 1 kHz after coating).

Laser diodes (450-nm light; PL450B, Osram) were coupled with 
a short optic fiber of 105-m (FG105LCA, Thorlabs) or 200-m 
(FP200URT, Thorlabs) core diameter (3.0 to 22.0 mm length de-
pending on the target brain area). Light emission was controlled by 
a laser diode driver (LD202C, Thorlabs) and was measured before 
surgery from the tip of the optic fibers to reach 24 to 31 mW (with 
FG105LCA) and 42 to 88 mW (with FP200URT) with 100% laser 
output power.

Surgery for recordings
Eleven male Long-Evans rats (293 to 490 g; 8.9 to 15.3 weeks old on 
the day of surgery; SLC) were used. Under 1.6 to 2.0% isoflurane 
anesthesia, eight rats were stereotaxically implanted with four laser 
diode–coupled optic fibers targeting the left NAC (AP: +2.4 mm, 
ML: 1.8 mm, DV: 6.3 mm), left AV (AP: −2.0 mm, ML: 1.6 mm, DV: 
4.6 to 4.8 mm), left RSC (AP: −3.8 mm, ML: 0.4 mm, DV: 1.5 mm), 
and MMB (AP: −4.7 mm, ML: 1.5 mm, DV: 8.7 mm, inserted from 
the right hemisphere at an angle of 10 degrees in the coronal plane 
with the tip pointing toward the medial direction) and were then 
injected with 800 nl per site of AAV1-hSyn-hChR2(H134R)-EYFP 
(2.3 × 1013 GC/ml; Penn Vector Core; diluted 1:1 to 1:5 before injec-
tion) using a pulled glass pipet (G-1, Narishige) into two sites in the 
left dorsal SUB (AP: −5.7 mm, ML: 2.2 to 2.5 mm, DV: 2.9 to 3.0 mm 
and AP: −6.1 mm, ML: 3.2 to 3.5 mm, DV: 2.9 to 3.0 mm). Rats were 
lastly implanted with a silicon probe targeting above the left dorsal 
SUB and distal CA1 area (center of the eight shanks at AP: −5.9 to 
−6.1 mm, ML: 2.7 to 3.3 mm, DV: 2.4 mm, with shanks parallel to
the coronal plane). Two stainless steel screws (B000FN0J58, Antrin
Miniature Specialties) inserted above the cerebellum served as in-
different and ground electrodes. A faraday cage connected to the
ground electrode was placed around the implants. One rat was sub-
jected to the same surgery, but the optic fiber implantation to the
MMB was omitted for a technical reason. Two rats were implanted
only with a silicon probe above the dorsal SUB and distal CA1 area
(center of shanks at AP: −5.9 mm, ML: 2.8 to 3.3 mm, DV: 2.4 mm). 
All rats were housed individually after surgery.

Data collection
Electrophysiological data from behaving rats were acquired using a 
256-channel, multiplexed recording system (KJE-1001, Amplipex)
during behavioral tasks and sleep. Neurophysiological signals were
amplified on a pre-amplifier module (HS-10, Amplipex) and acquired
continuously at 20 kHz with 16-bit resolution. The silicon probe
was lowered daily toward the SUB/CA1 area until large-amplitude
units appeared approximately at the center of vertically aligned re-
cording sites at a depth of 2.7 to 3.8 mm from the cortical surface.
Characteristic features (power, phase, and polarity) of theta oscilla-
tions and SPW-Rs were used as additional guides to determine the
approximate locations of the recording sites relative to the SUB/
CA1 cell layer (17, 19). The animal’s position and head direction
were tracked by monitoring two small light-emitting diodes (LEDs;
green and red, 5-cm separation) mounted above the head-stage us-
ing an overhead camera (c930e, Logicool) at ~30-Hz sampling rate.

Single camera pixels corresponded to 0.41 cm for linear track and 
0.52 cm for open-field, T-maze, zigzag maze, and rest sessions. LED 
positions were extracted and resampled to 39.0625 Hz for fur-
ther analysis.

After the recording, to identify the location of recording sites, 
small electric lesions were made by passing anodal DC current (3 A 
for 10 s; A365, World Precision Instruments) through the most dorsal 
and ventral recording sites of each shank under anesthesia. Immuno
histochemistry was performed as described in the “Histology” 
section. The tracks of silicon probe shanks and optic fibers were 
reconstructed from the images of serial sections.

The acquired local field potential (LFP) signals were downsampled 
to 1250 Hz for further analysis. Positive polarity is plotted upward 
throughout the study. Spike sorting was first performed automati-
cally using the Kilosort software (https://github.com/cortex-lab/
KiloSort and https://github.com/MouseLand/Kilosort2), and then, 
clusters were adjusted manually using the phy gui (https://github.
com/cortex-lab/phy), according to the developers’ instructions. We 
measured cluster quality via the isolation distance and interspike 
interval (ISI) index, defined as the number of ISIs less than 2 ms 
divided by the number of ISIs between 2 and 10 ms multiplied by 4 
(6, 32). Units satisfying all the following criteria were included for 
further analysis: isolation distance > 20, ISI index < 0.2, trough-to-
peak amplitude > 50 V, and overall mean firing rate > 0.1 Hz. 
Although we set these stringent criteria for unit quality, we cannot 
exclude that some units recorded in different sessions could have 
been identical, since spikes from sessions recorded on different days 
were clustered separately (table S1). We confirmed that even when 
single sessions per animal were used for analysis to remove this 
potential double counting, the statistical significance of pathway-
specific information routing (Figs. 4J and 5K) was maintained.

Behavioral procedures
Rats were trained to perform four types of water-rewarded spatial 
tasks—namely, open-field, linear track, alternating T-maze, and 
zigzag maze tasks—daily for 7 to 9 days before and 4 to 8 days after 
surgery. During training, the experimenter gave water drops ran-
domly in the arena (for the open-field task) or at the reward ports 
(for the other tasks, see below) to motivate animal movement. In the 
alternating T-maze task, only correct trials were rewarded. Then, 13 
to 22 days after surgery (6 to 13 days for two rats not injected with 
AAV), the recording sessions were carried out for two to three con-
secutive days, with the four behavioral tasks performed each day for 
20 min each, and intertask rest sessions performed for 40 to 80 min 
each. Rest sessions were also carried out before the first behavioral 
task and after the final task. On the recording days, optical stimula-
tion sessions to identify axonal projections were performed once 
(after all recording sessions of the day; one of the nine rats) or thrice 
(before, in the middle of, and after the recording sessions of the day; 
eight of the nine rats) while rats were resting in a small enclosure. 
During the periods of the behavioral experiments, rats were water-
deprived in a way to maintain ~90% of their free-feeding body 
weight. All behavioral experiments were performed during the light 
period of the 12-hour light/dark cycle.

The open-field task was performed using a square black arena 
(118 cm by 118 cm, 40 cm deep, with an A4-sized white cue card on 
one of the walls), in which rats freely foraged for randomly dispersed 
drops of water. The linear track task was performed on an elevated 
black linear track (234-cm long, 6.5-cm wide, 54-cm high) on which 

https://github.com/cortex-lab/KiloSort
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rats were required to run back and forth to receive a 30-l water 
drop supplied alternately at the edges of the track.

The alternating T-maze task was performed in a square black 
arena (118 cm by 118 cm, 40-cm deep) consisting of a start box 
(30 cm by 10 cm), central runway (stem, 98-cm long, 10-cm wide), 
and left/right arms (10-cm wide). Rats were enclosed by doors in 
the start box for ~8 s before allowed to run through the stem and 
arm. Rats were subjected to trials continuously and had to choose 
the other arm from that chosen in the previous trial to be rewarded 
with a 30-l water drop at the end of the arm.

The zigzag maze task was performed in a square black arena 
(118 cm by 118 cm, 40-cm deep), in which seven additional parti-
tions (101-cm long, 30-cm high) were placed to form eight runways 
(118-cm long, 14-cm wide) connected with hairpin curves. Rats were 
rewarded with an 80-l water drop alternately placed at the edges of 
the entire runway. During rest sessions, rats were placed in a small 
black enclosure (18 cm by 18 cm, 40-cm deep) not containing a water 
reward; optical stimulation to identify axonal projections was also 
performed in this enclosure.

Optogenetic identification of projection targets
To identify the projection targets of recorded cells with antidromic 
spikes (31), we sequentially irradiated blue light pulses to the pro-
jection targets of the SUB while recording from the SUB and CA1. 
A single stimulation train consisted of 200 light pulses (10 pulses at 
5 Hz repeated for 20 times with ~1-s intervals) and was repeated for 
combinations of 1- or 5-ms pulse durations with 12.5, 25, 50, 75, or 
100% laser output power. Following these stimulation trains, closed-
loop stimulation was performed to efficiently detect spike collisions. 
For this, spikes were detected online by high-pass filtering the ex-
tracellular signals at 300 Hz and by thresholding at 3 × root mean 
square, using a multi I/O processor (RX8, Tucker-Davis Technologies). 
Triggered by the detected spikes, a single light pulse (1-ms duration, 
100% laser output power) was delivered to the target region with 
1.8-ms delay. To avoid burst stimulation, the minimum interstimu-
lation interval was set to 200 ms.

We identified projection neurons offline as follows. The peri-
stimulus time histogram (0.5-ms bins) of individual cells was con-
structed for each stimulation train. Spikes in the first peak bin after 
stimulation onset (≥10 spikes and >mean + 3 SD of the prestimulus 
baseline period) and in its contiguous bins (>mean + 1 SD of the 
baseline period) were regarded as optically evoked spikes. Stimula-
tion trains that gave low waveform correlation between the evoked 
and spontaneous spikes (r < 0.9) were excluded from further analysis. 
Fidelity for each stimulation train was calculated as the number of 
evoked spikes divided by that of stimulation trials (i.e., 200). Jitter 
was defined as the SD of time from stimulation onset to the evoked 
spikes. Latency was defined as the mean time from stimulation onset 
to the evoked spikes. In the stimulation train with the highest fidelity, 
the units satisfying all following criteria were defined as the neurons 
projecting to the stimulated area: fidelity > 20%, jitter < 0.5 ms, and 
latency < 25 ms. These criteria were determined on the basis of the 
units that passed the spike collision test (see below).

Spike collision test was performed as follows. For a given evoked 
spike latency t ms, optical stimulation trials were divided into two 
types: collision trials that had one or more spontaneous spikes 
between −t + 1 ms and t − 1 ms (i.e., shortly before the expected 
evoked spike latency t) and the rest of the trials (noncollision trials). 
If the fidelity of optical spike generation in the collision trials was 

significantly less than that in noncollision trials (P < 0.05, 2 test), 
the unit was regarded to pass the collision test. We used units that 
passed the spike collision test to define the criteria to identify pro-
jection target areas, so that 80% of the test-passed units were in-
cluded in the criteria described above (fidelity > 20%, jitter < 0.5 ms, 
latency < 25 ms) (fig. S3).

Histology
At specific days after the surgery for anatomical tracing (anterograde 
tracing: 15 days, retrograde tracing: 7 days, projection-specific la-
beling: 20 to 21 days) or soon after the electric lesions for localizing 
silicon probes, rats were transcardially perfused with 0.9% saline, 
followed by 4% paraformaldehyde in 0.1 M phosphate buffer. The 
implanted silicon probe was pulled out before the brain was removed 
from the skull. Brains were stored in the same fixative overnight at 
4°C and then sectioned using a vibratome (VT1200S, Leica) at a 50-m 
thickness parallel to the coronal plane. Sections were incubated 
sequentially with 5% bovine serum albumin (BSA)/0.3% Triton 
X-100 in phosphate-buffered saline (PBS) for 30 min at room tem-
perature, primary antibodies in 5% BSA/PBS overnight at 4°C, and
the corresponding secondary antibodies conjugated with Alexa Fluor 
dyes in 5% BSA/PBS for either 2 hours at room temperature or
overnight at 4°C. Some sections were counterstained with DAPI
(4′,6-diamidino-2-phenylindole; 0.5 g/ml; D1306, Thermo Fisher
Scientific) and/or NeuroTrace Red fluorescent Nissl (1:200; N21482,
Thermo Fisher Scientific). Between the incubation procedures, sec-
tions were washed with PBS. The primary antibodies used were as
follows: chicken anti-GFP (green fluorescent protein) (1:2000;
ab13970, Abcam), mouse anti-Cre recombinase (1:2000; MAB3120, 
Millipore), mouse anti-NeuN (1:2000; MAB377, Millipore), rabbit
anti-PCP4 (1:200; HPA005792, Sigma-Aldrich), and sheep anti-NOS
(1:10,000; gift from T. Fukuda, originally from P. C. Emson) (35).
The following secondary antibodies were used at 1:800 dilution: goat 
anti-chicken immunoglobulin Y (IgY) conjugated with Alexa Fluor
488 (A-11039, Thermo Fisher Scientific), goat anti-mouse IgG with
Alexa Fluor 594 (A-11032, Thermo Fisher Scientific), donkey anti-
mouse IgG with Alexa Fluor 405 (ab175659, Abcam), donkey anti-
rabbit IgG with Alexa Fluor 594 (A-21207, Thermo Fisher Scientific),
and donkey anti-sheep IgG with Alexa Fluor 647 (A-21448, Invitrogen). 
Stained sections were mounted on coverslips with antifade mountant
(P36961, Thermo Fisher Scientific). Tiled fluorescent images were
taken using a confocal microscope (LSM700, Zeiss) equipped with
10× [numerical aperture (NA) = 0.45, for anterograde tracing and
for localizing silicon probe and optic fibers], 20× (NA = 0.8, for retro-
grade tracing), and 63× (NA = 1.2, for dendritic spines) objectives.

Cell classification
We recorded a total of 791 well-isolated, large-amplitude units. Of 
these, 353 and 339 units were histologically identified to be localized 
in the CA1 area and SUB, respectively. Putative CA1 principal cells 
were defined as units that had >0.4-ms trough-to-peak spike width 
and <10-Hz overall mean firing rate. Putative SUB principal cells 
were defined as units that had >0.4-ms trough-to-peak spike width. 
The threshold of the mean firing rate was omitted when classifying 
SUB principal cells because a proportion of these cells shows high 
firing rates (fig. S3) (25). Accordingly, 315 and 319 units were iden-
tified as CA1 principal cells and SUB principal cells, respectively.

We verified the criteria of principal cell classification of CA1 and 
SUB neurons by detecting putative monosynaptic interactions (80). 
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Cross-correlograms (CCGs) of spike timing were constructed for 
all pairs of simultaneously recorded cells (0.1-ms bins, Gaussian 
smoothing with 0.5-ms ). For each pair, 199 surrogate CCGs were 
also constructed from data with random jittering of spike timing 
by −5 to 5 ms in one of the paired cells. The 99% global band signif-
icance level was calculated as described previously (80). CCGs with 
a peak or trough crossing the 99% significance level between 0 and 
5 ms were taken as the candidate pairs of monosynaptic excitation 
or inhibition, respectively. Of these, dull peaks and troughs unlikely 
to be due to monosynaptic spike transmission and suppression were 
excluded by visual inspection. Nearly all CCG-based putative excit-
atory cells (CA1: 44 of 45 neurons, SUB: 40 of 40 neurons) were 
confirmed to meet the criteria of principal cells described above, and 
all CCG-based putative inhibitory cells (CA1: 6 of 6 neurons, SUB: 
5 of 5 neurons) had <0.4-ms spike width (fig. S3, A to C). Hereafter, 
we analyzed only the CA1 and SUB principal cells.

Place representation on a linear track
We examined the spatial firing patterns on a linear track by con-
structing 1D rate maps for individual cells. A rate map consisted of 
firing rates at position bins (2-cm long, excluding the edges of the 
track), calculated by dividing the number of spikes in each position 
bin by the duration spent in that bin, after having individually 
smoothed both the numerator and denominator with a Gaussian 
filter ( = 2 cm). For each cell, rate maps were constructed separately 
for eastbound and westbound trials, and the rate map with the higher 
peak firing rate (i.e., the rate map of the cell’s preferred direction) 
was used for further analysis. Cells with peak firing rates less than 
1 Hz in the preferred direction were excluded from the analysis. The 
mean rate was defined as the mean firing rate during trials in the 
preferred direction. Spatial information per spike (Ispike, bits/spike) 
and spatial information per second (Isec, bits/s) were calculated by

	​​​I​ spike​​  = ​ ∑ 
i
​ ​​ ​ p​ i​​ ​ 

​​ i​​ ─ 


​ ​log​ 2​​​(​​ ​ ​​ i​​ ─ 
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where pi is the proportion of time spent in the ith position bin, i is 
the firing rate in the ith position bin, and  is the mean firing rate 
during trials (38).

The chance level of Isec was obtained by a trial-wise shuffling pro-
cedure, by which the rate map of every trial was circularly shifted 
relative to the track position by a random interval, with the end of 
the trial wrapped to the beginning before obtaining the rate map 
averaged over trials. The shuffling was repeated 1000 times for each 
cell. A cell was defined as a place cell if its Isec value exceeded the 
99th percentile of the Isec value from the shuffled data obtained from 
all CA1 and SUB cells.

Mutual information (bits) of firing rates and places was estimated 
according to a previous study (39) by

	​​Mutual information  = ​ ∑ 
i
​ ​​​ ∑ 

j
​ ​​ ​ p​ ij​​ ​log​ 2​​​(​​ ​ 
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where pi is the probability that the animal is in the ith position bin 
(bin size, 2 cm), pj is the probability that the instantaneous firing 
rate of a cell is in the jth firing rate bin (four bins, see below), and pij 

is the joint probability between the ith position bin and jth firing 
rate bin. The instantaneous firing rate of a cell was obtained by sort-
ing the cell’s spike timing into 25.6-ms bins, followed by Gaussian 
smoothing ( = 128 ms) of the binned firing rate. The instantaneous 
firing rates were sorted into four firing rate bins with threshold 
values at 25, 50, and 75 percentiles of the nonzero instantaneous 
firing rate values.

Place decoding on a linear track
We performed memoryless Bayesian decoding of the rat’s position 
to estimate the positional information conveyed by CA1 and SUB 
cell populations (40). The probability of the rat’s position (pos) across 
M total position bins in time window  (250 ms) containing neural 
spikes (spikes) was

	​Pr(pos ∣  spikes ) = U / ​ ∑ 
i=1

​ 
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 ​​U​	
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The fj(pos) is the rate map of the jth unit, nj is the number of 
spikes of the jth unit in the time window, and N is the number of 
units used for decoding. Decoding performance was estimated using 
leave-one-out cross-validation as follows. From a given set of trials 
in the recording session, a trial was chosen as test data, and the 
rest of the trials were used as training data. The decoding result, 
Pr(pos | spikes), was obtained using rate maps fj(pos) constructed 
from the training data and spike train nj in the test data. The posi-
tion with the highest Pr(pos|spikes) across the position bins was 
defined as the decoded position of the given time window. The de-
coding error of the test data was calculated as the mean Euclidean 
distance between the decoded and the observed positions. The de-
coding error was calculated either from all time bins, irrespective of 
the number of spikes in the bins, or from time bins containing one 
or more spikes, both of which gave essentially the same results 
(Fig. 3H). This procedure was repeated to assign every trial as test 
data, and the decoding errors from all test data were averaged to 
obtain the decoding error of the session. The chance-level distribu-
tion of the decoding error was estimated by a shuffling procedure 
repeated 100 times: The decoded positions were randomly permuted 
along time windows, and the decoding error was calculated.

Dependency of the decoding performance on the number of 
used cells was measured by random cell subsampling. Of the total 
simultaneously recorded CA1 or SUB cells (Ntotal), decoding was 
performed using a certain number of random cell subsets, and the 
decoding error was calculated. This procedure was repeated 100 times 
(or for all possible combinations of the cell group if the number of 
combinations was less than 100), and the obtained decoding errors 
were averaged over the repetition. By changing the number of units 
supplied for the decoding from 1 to Ntotal, we obtained the decoding 
error for each number of units.

To control the decoding performance for SUB high firing rate, 
the mean firing rate of SUB neurons was matched to that of CA1 
neurons by randomly removing (1 − CA1/SUB) × 100% of spikes 
out of all spikes generated by SUB neurons, where CA1 and SUB 
were the mean firing rates averaged across CA1 and SUB neurons, 
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respectively. We then performed the decoding analysis as described 
above using these subsampled SUB spikes.

To estimate the contribution of single units to the decoding per-
formance, we performed a Jackknife procedure after random sub-
sampling of the units. Of the total simultaneously recorded CA1 or 
SUB units, one unit was chosen as a test unit, and nine were ran-
domly chosen from the remaining units. Recording sessions with 
less than 10 simultaneously recorded CA1 or SUB units were ex-
cluded from this analysis. Decoding was performed using the nine 
units with or without the test unit, and the decoding improvement 
of the test unit was calculated as the difference in the decoding error 
between the two decoding error values. The random choice of nine 
units was repeated 100 times from all possible combinations of 
nine units without replacement (or for all possible combinations of 
choices if the number of combinations was less than 100), and the 
decoding improvement of the test unit was averaged over the repe-
tition. This procedure was further repeated to assign every recorded 
unit as a test unit once.

The robustness of the decoding performance against noise was 
estimated by randomly removing (up to 99% of the number of spikes 
of each unit) or adding spikes to every unit at a fixed frequency over 
the entire recording session before performing the decoding procedure 
with all simultaneously recorded CA1 or SUB cells. The removal/
addition procedure was repeated 100 times to obtain the decoding 
error, averaged over the repetition. Recording sessions with less than 
five simultaneously recorded units were excluded from this analysis. 
The entire decoding procedure was performed separately for east-
bound and westbound runs, which were pooled later.

Place representation in an open field
We analyzed the spatial firing patterns in the open field similarly to 
those on the linear track. A rate map was constructed by 2 × 2 cm 
position bins using a 2D Gaussian filter ( = 4 cm) for smoothing. 
Units with a mean firing rate less than 0.1 Hz in the open field were 
excluded from the analysis. Spatial information per spike (Ispike, 
bits/spike) and that per second (Isec, bits/s) was calculated exactly as 
those on the linear track. A session-wise shuffling procedure was 
performed, by which the spike train of the whole open-field session 
was circularly time-shifted relative to the rat’s position by a random 
interval between 30 s and the length of the session minus 30 s, with 
the end of the trial wrapped to the beginning.

We performed memoryless Bayesian decoding ( = 1 s) as in the 
case of the linear track. Decoding performance was estimated using 
fivefold cross-validation as follows. The four-fifth periods of the re-
cording session (e.g., 0 to 960 s of the 1200-s session) were chosen 
as the training data, and the remaining periods (e.g., 960 to 1200 s) 
were assigned as the test data. The probability of the rat’s position 
across position bins, Pr(pos|spikes), was calculated from rate maps 
fj(pos) constructed from the training data and spike train nj in the 
test data, as described above. This procedure was repeated five times 
to decode from all periods of the recording session, and the decod-
ing errors from the five periods were averaged to obtain the decoding 
error of the session. The chance-level distribution of the decoding 
error was estimated by a shuffling procedure (100 repetitions), by 
which the decoded positions were randomly permuted along time 
bins, and the decoding error was calculated from the shuffled de-
coded positions and the observed positions. To control the decoding 
performance for SUB high firing rate, spikes were randomly removed 
from SUB neurons as described above, before performing the 

decoding analysis. Dependency of the decoding performance on the 
number of used cells and the robustness of the decoding performance 
against noise were also estimated as described for the linear track.

Speed representation in an open field
Speed representation in the open field was analyzed as described 
previously (42, 43). Neuronal spikes were sorted into 25.6-ms time 
bins. The instantaneous firing rate was obtained by dividing the 
numbers of spikes for each cell by the bin size and smoothed with a 
Gaussian filter ( = 256 ms). Units with mean firing rate less than 
0.1 Hz in the open field were excluded from the analysis. Each rat’s 
positions were smoothed with a Gaussian filter ( = 256 ms). In-
stantaneous running speed was calculated by dividing the distance of 
the smoothed position between adjacent bins by the bin size (25.6 ms). 
Changing the SD of Gaussian filters to 128 or 512 ms for both firing 
rate and position gave similar results. Periods slower than 2 cm/s and 
faster than 50 cm/s were removed from the analysis. Speed scores 
were defined for each cell as the Pearson product-moment correla-
tion coefficients between the cell’s instantaneous firing rate and the 
rat’s instantaneous running speed. We calculated speed information 
as follows (42). First, for each cell, the speed tuning curve of the 
firing rate against speed was constructed using bins of 4 cm/s, from 
2 to 50 cm/s. Then, speed information per spike (Ispike, bits/spike) 
and speed information per second (Isec, bits/s) were obtained by 
Eqs. 1 and 2, respectively, where pi is the proportion of time spent in 
the ith speed bin, i is the firing rate in the ith speed bin, and  is the 
mean firing rate in the open field.

Chance-level statistics were calculated by a shuffling procedure 
(100 repetition), by which the spike train was circularly time-shifted 
relative to the rat’s position by a random interval between 30 s and 
the length of the session minus 30 s, with the end of the trial wrapped 
to the beginning. A cell was defined as a positive speed (p-speed) 
cell or negative speed (n-speed) cell if its speed score exceeded the 
99th percentile or was lower than the 1st percentile, respectively, of 
the distribution of speed scores from the shuffled data from all CA1 
and SUB principal cells. We used bootstrap analysis to determine 
whether a SUB projection neuron group contained a significantly 
higher proportion of p-speed cells (31).

Decoding of running speed
Decoding of running speed was performed using fivefold cross-
validation similar to a previous study (43). Of the 1200-s recording 
session in the open field, one-fifth of the period (e.g., 0 to 240 s) was 
assigned as test data, and the remaining four-fifths (e.g., 240 to 1200 s) 
were used as training data. A linear relationship between the firing 
rate and running speed averaged over 1-s bins was expressed as

	​​S​ tr​​  = ​ R​ tr​​ f​	

where Str is a column vector with the speed bins of the training data, 
Rtr is a matrix containing the corresponding firing rate bins for each 
neuron as columns and an additional column of 1s to account for y 
intercepts, and f is a linear filter used as a column vector with a length 
equal to the number of cells plus 1. The linear filter f was obtained by

f  = ​ ​R​ tr​​​​ +​ ​S​ tr​​	

where Rtr
+ is the Moore-Penrose pseudoinverse of Rtr. Once f was 

obtained, the decoded speed Sdec was calculated by
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	​​S​ dec​​  = ​ R​ test​​ f​	

where Rtest is the firing rate matrix of the test data. Decoding accuracy 
was defined as the Pearson correlation coefficient between Sdec and 
the observed speed Stest. The chance level of the decoding accuracy 
was estimated by a shuffling procedure repeated 100 times, by which 
Sdec was time-shifted by a random interval between 30 and 210 s 
relative to Stest. The decoding procedure was repeated five times to 
decode all periods of the recording session, and the obtained decoding 
accuracy was averaged over the five periods. Dependency of the de-
coding performance on the number of used cells was measured by 
random subsampling of the cells, as described above. The single-unit 
decoding accuracy refers to the accuracy obtained from the decoding 
using single units. To control the decoding performance for SUB 
high firing rate, spikes were randomly removed from SUB neurons 
as described above, before performing the decoding analysis.

Robustness of the decoding performance against noise was esti-
mated by randomly removing (up to 99% of the number of spikes of 
the unit) or adding spikes to every unit at a fixed frequency over the 
entire recording session before performing the decoding procedure 
with all the simultaneously recorded CA1 or SUB units. The removal/
addition procedure was repeated 100 times to obtain the decoding 
accuracy, averaged over the repetition. The normalized accuracy was 
obtained as the decoding accuracy values divided by the correspond-
ing decoding accuracy without the spike removal/addition. Recording 
sessions containing less than five units were excluded from this analysis.

Trajectory-dependent firing in an alternating T-maze
Trajectory-dependent firing in the start box of the T-maze was ana-
lyzed. A trial comprised a wait period of ~8 s in the start box, running 
through the stem and left or right arm, reward acquisition at the 
end of the arm, and return to the start box. To estimate the strength 
of trajectory-dependent firing in the start box, we obtained the 
following parameters for each neuron using firing rates in the start 
box: trajectory information per spike (Ispike, bits/spike) and trajectory 
information per second (Isec, bits/s), calculated by Eqs. 1 and 2, re-
spectively, where i is the identifier of left or right choices, pi is the 
proportion of choice i, i is the mean firing rate in the start box for 
the subsequent choice i, and  is the mean firing rate in the start box. 
Units with i < 0.1 Hz for both left and right choices were excluded 
from the analysis. The rate change ratio was defined as |L − R| / 
max(L, R), where L and R are the firing rates in the start box 
averaged over left- and right-arm trials, respectively. The auROC 
(ranging from 0 to 1) was calculated to estimate the goodness of 
fit of the binary classifier (i.e., left- or right-arm trials) from the 
mean firing rates in the start box using the “perfcurve” function in 
MATLAB. For auROC values less than 0.5, 1 − auROC was assigned as 
the new auROC value, as the experimenter had no prior knowledge 
on the type of trials (left or right) that neurons showed a higher 
firing rate. We defined trajectory-dependent cells as neurons whose 
firing rates in the start box were significantly different between left- 
and right-arm trials (P < 0.05, Wilcoxon rank sum test). We used 
bootstrap analysis to determine whether a SUB projection neuron 
group contained a significantly higher proportion of trajectory-
dependent cells (31).

Decoding of trajectory
Trajectory decoding was performed using a support vector machine 
algorithm and leave-one-out cross-validation, according to a previous 

study (5). From a given set of trials in the recording session, one 
trial was assigned as test data, and the remaining trials were used as 
the training dataset. A binary classifier was constructed to predict 
the next trajectory (left or right) from the firing rates in the start 
box, using the “fitcsvm” function in MATLAB, in which the input 
arguments were matrix F consisting of the firing rates of individual 
neurons (columns) in the training trials (rows) and vector y consisting 
of the trajectory label (−1, 1) of the training trials. Using the firing 
rates in the test trial as an input to the constructed classifier, the 
trajectory in the test trial was predicted. This decoding procedure 
was repeated to assign every trial as test data once, and the decoding 
accuracy was defined as the proportion of correctly predicted trials. 
Dependency of the decoding performance on the number of used 
cells was measured by random subsampling of the cells, as described 
above. The chance level of the decoding accuracy was estimated by 
a shuffling procedure repeated 100 times, by which trajectory labels 
were randomly shuffled before constructing the classifier. To con-
trol the decoding performance for SUB high firing rate, spikes were 
randomly removed from SUB neurons as described above, before 
performing the decoding analysis.

The robustness of the decoding performance against noise was 
estimated by randomly removing (up to 99% of the number of spikes 
of the unit) or adding spikes to every unit at a fixed frequency over 
the entire recording session before performing the decoding proce-
dure with all the simultaneously recorded CA1 or SUB units. The 
removal/addition procedure was repeated 100 times to obtain the 
decoding accuracy averaged over the repetition. The normalized accu-
racy was obtained as follows: (decoding accuracy − 0.5)/(corresponding 
decoding accuracy without the spike removal/addition − 0.5). Re-
cording sessions containing less than five units were excluded from 
this analysis.

Head-direction representation in an open field
We analyzed the head-direction tuning in the open field by con-
structing directional rate maps for individual cells. A directional 
rate map consisted of firing rates at 1° directional bins smoothed by 
Gaussian filter ( = 5°). Units with a mean firing rate less than 
0.1 Hz in the open field were excluded from the analyses. Directional 
information per spike (Ispike, bits/spike) and that per second (Isec, bits/s) 
were calculated by Eqs. 1 and 2, respectively, where pi is the propor-
tion of time spent in the ith directional bin, i is the firing rate in the 
ith directional bin, and  is the mean firing rate in the open field. 
The chance level of Isec was obtained by a session-wise shuffling pro-
cedure of spike timing against the rat’s position. A cell was defined 
as a head-direction cell if its Isec value exceeded the 99th percentile 
of the Isec value from the shuffled data obtained from all CA1 and 
SUB cells. Strength of directional tuning was measured with the mean 
vector length of head directions when spikes occurred. We performed 
memoryless Bayesian decoding of head direction ( = 250 ms, 1° di-
rectional bins) similarly with place decoding in an open field. De-
coding performance was estimated using fivefold cross-validation. 
The decoding error was obtained as the mean of the absolute angular 
differences between the decoded and observed head direction.

Behavioral states
Throughout the recording sessions, each second of behavior was 
classified into four states: RUN, REST, REM sleep, or SWS. This 
classification was carried out by visual inspection of the power spectra 
of SUB LFPs, SUB raw LFP traces, and electromyogram (EMG)–related 
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signals extracted as correlations of LFPs in distant channels after 
filtering at 300 to 600 Hz (81). RUN states were defined as the periods 
during behavioral tasks with prominent theta oscillations and EMG-
related signals. REST was defined as the awake, resting state detected 
during rest sessions without theta oscillations but with EMG-related 
signals. REM sleep was detected by the presence of robust theta 
oscillations and the absence of EMG-related signals during rest 
sessions. SWS was detected by the absence of both theta oscillations 
and EMG-related signals during rest sessions.

Theta oscillations
The power spectra density of LFP during RUN and REM periods was 
obtained using the Welch periodogram method (50% overlapping 
Hamming windows with a length of 2 s). Theta power was obtained 
as the mean power spectra density (in decibels) between 5 and 10 Hz. 
A recording site with maximal theta power approximately at the 
center of the SUB cell layer was used as the reference site to deter-
mine phase deviation and phase locking. Instantaneous theta phase 
was derived from the Hilbert transform of the bandpass-filtered (5- to 
10-Hz) LFP trace (troughs = 0° and 360° and peaks = 180° throughout 
this study). Theta phase deviation was calculated as the mean circular 
distance of instantaneous theta phases between the reference re-
cording site and the recording site of interest. Spike theta phase, i.e., 
the theta phase at which the spike occurred, was obtained for every
spike. The preferred theta phase of each neuron was defined as the
circular mean of the spike theta phases. PPC, a firing rate–insensitive
measure of phase-locking strength, was calculated by

	​PPC  = ​   2 ─ N(N − 1) ​ ​ ∑
i=1

 
N−1

​ ∑ 
j=i+1

​ 
N

  ​​ { cos (​​ i​​) cos (​​ j​​ ) + sin (​​ i​​) sin (​​ j​​ ) }​	

where N is the total spike number, and i is the spike theta phase of 
the ith spike (46).

SPW-R–associated firing
Spike timing along SPW-Rs was examined during SWS and REST 
periods. The ripple-band LFP signal was obtained as the bandpass-
filtered LFP signal (140 to 230 Hz) at the center of the SUB cell layer. 
Normalized ripple power was calculated as the z-scored moving 
average (window size, 11 samples) of squared ripple-band LFP sig-
nals. Periods with a normalized ripple power exceeding three were 
collected as candidate ripple events. Temporally close candidate 
events (<30-ms interevent intervals) were merged into single events. 
The candidate events with low peak normalized ripple power (<7), 
too short duration (<15 ms), or too long duration (>300 ms) were 
discarded, and the remaining events were defined as ripple events. 
Ripple timing was determined as the timing of the negative peak of 
the bandpass-filtered LFP signal (140 to 230 Hz) in each event. Ripple 
power was defined as the peak value of the normalized ripple power 
in each ripple event. Ripple duration was defined as the duration of 
the normalized ripple power exceeding three. Ripple frequency was 
defined as the frequency with maximal wavelet power between 140 
and 230 Hz at the ripple timing. A peri-event time histogram (5-ms 
bins) was constructed for each ripple event for each cell, averaged 
across all events, and z-scored. The peak height for each neuron was 
defined as the mean z-scored peri-event time histogram between −10 
and +10 ms. All data analyses were performed by custom-written 
MATLAB codes.

Statistical analysis
Statistical analysis was performed using MATLAB (MathWorks) and 
SPSS Statistics (IBM). All statistical tests were two-sided. Error bars 
indicate means ± SD unless otherwise noted.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/11/eabf1913/DC1

View/request a protocol for this paper from Bio-protocol.
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