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AXISYMMETRIC FLOWS IN THE EXTERIOR OF A CYLINDER

K. ABE AND G. SEREGIN

Abstract. We study an initial-boundary value problem of the three-dimensional Navier-
Stokes equations in the exterior of a cylinder Π = {x = (xh, x3) | |xh| > 1}, subject to the
slip boundary condition. We construct unique global solutions for axisymmetric initial data
u0 ∈ L3 ∩ L2(Π) satisfying the decay condition of the swirl component ruθ0 ∈ L∞(Π).

1. Introduction

We consider the three-dimensional Navier-Stokes equations:

(1.1)
∂tu − ∆u + u · ∇u + ∇p = 0

div u = 0
in Π × (0,∞).

It is well known that for small initial data u0 ∈ L3
σ(R3), there exists a unique global solution

u ∈ BC([0,∞); L3) of (1.1) [22]. However, unique existence of a global solution is unknown
in general for large initial data in L3 with finite energy. Here, BC([0,∞); X) denotes the
space of all bounded and continuous functions from [0,∞) to a Banach space X and Lp

σ(Π)
denotes the Lp-closure of compactly supported smooth solenoidal vector fields in a domain
Π ⊂ R3.

For initial data with finite energy u0 ∈ L2(R3), it is well known that global Leray-Hopf
weak solutions exist [29], [19]. However, their regularity and uniqueness are unknown. For
large initial data in L3(R3), weak solutions are constructed in [7], [27]. See [40] for weak
L3-solutions.

The purpose of this paper is to construct unique global solutions of (1.1) for large ax-
isymmetric initial data in L3 ∩ L2. We say that a vector field u is axisymmetric if

u(x) = tRu(Rx) x ∈ R3, η ∈ [0, 2π],

for R = (er(η), eθ(η), ez) and er(η) = t(cos η, sin η, 0), eθ(η) = t(− sin η, cos η, 0), ez =
t(0, 0, 1). We say that a scaler function p is axisymmetric if p(x) = p(Rx) for x ∈ R3

and η ∈ [0, 2π]. We set the cylindrical coordinate (r, θ, z) by x1 = r cos θ, x2 = r sin θ, x3 = z
and decompose the axisymmetric vector field into three terms:
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u(x) = ur(r, z)er(θ) + uθ(r, z)eθ(θ) + uz(r, z)ez.

The azimuthal component uθ is called swirl velocity (see, e.g., [34]).
Unique global solutions of (1.1) for axisymmetric initial data without swirl were first

constructed in [24], [42] by the Galerkin approximation. Later on, unique global solutions
are constructed in [28] by a strong solution approach for axisymmetric data without swirl
in H2(R3). See also [1] for H1/2(R3). For axisymmetric solutions of (1.1), the vorticity
ω = curl u is expressed by

ω = ωrer + ω
θeθ + ωzez

= (−∂zuθ)er + (∂zur − ∂ruz)eθ +
(
∂ruθ +

uθ

r

)
ez,

and for v = urer + uzez, the azimuthal component ωθ satisfies the vorticity equation

(1.2) ∂t
(ωθ

r

)
+ v · ∇

(ωθ
r

)
−

(
∆ +

2
r
∂r

)(ωθ
r

)
= ∂z

(uθ

r

)2
.

For axisymmetric solutions without swirl, the right-hand side vanishes and the global a priori
estimate

∥∥∥∥ωθr ∥∥∥∥
L2(R3)

≤
∥∥∥∥ωθ0r ∥∥∥∥

L2(R3)
t > 0,

holds. The above vorticity estimate implies existence of unique global solutions for axisym-
metric data without swirl u0 ∈ L3 ∩ L2(R3). (We may assume the condition ωθ0/r ∈ L2(R3)
since local-in-time solutions belong to H2(R3).) In other words, unique global solutions
exist for large axisymmetric initial data in L3 ∩ L2(R3), provided that without swirl. For
axisymmetric data with swirl, unique existence of global solutions in R3 is unknown.

In this paper, we study axisymmetric solutions with swirl in the exterior of a cylinder

Π = {x = (x1, x2, x3) ∈ R3 | |xh| > 1, xh = (x1, x2)},

subject to the slip boundary condition

(D(u)n)tan = 0, u · n = 0 on ∂Π.(1.3)

Here, n = −er denotes the unit outward normal vector field on ∂Π, D(u) = (∇u + ∇T u)/2 is
the deformation tensor and ftan = f − n( f · n) is a tangential component of a vector field f
on ∂Π. Since axisymmetric vector fields u = urer + uθeθ + uzez satisfy
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ur = 0, ∂ruθ − uθ = 0, ∂ruz = 0 on {r = 1},

subject to the slip boundary condition (1.3), the azimuthal component of vorticity ωθ van-
ishes on the boundary (see Remarks 6.1 (ii) for the Dirichlet boundary condition).

By the partial regularity result [6], it is expected that axisymmetric solutions are smooth
in the interior of Π. Moreover, as noted in [11], they will not develop singularities on the
boundary due to viscosity. See [37], [18] for partial regularity results up to the boundary
subject to the Dirichlet boundary condition. The regularity theory for the slip boundary
condition (1.3) may be simpler than that for the Dirichlet boundary condition. In fact, for a
half space regularity results are deduced from a whole space case by a reflection argument;
see [3]. In this paper, we prove that axisymmetric solutions are sufficiently smooth in the
exterior of the cylinder Π × (0,∞), subject to the slip boundary condition (1.3). We impose
the slip boundary condition in order to construct approximate solutions for R3; see Remarks
1.2 (iii).

Our goal is to construct unique global mild solutions of (1.1) for axisymmetric initial data
with swirl in L3 ∩ L2(Π). Since the boundary of the cylinder Π ⊂ R3 is uniformly regular,
we construct mild solutions by using the L̃p-theory. We set

L̃p(Π) = Lp ∩ L2(Π)

(resp. L̃p
σ(Π) = Lp

σ∩L2
σ(Π)) for p ∈ [2,∞). It is proved in [14] ( [15]) that that the Helmholtz

projection P acts as a bounded operator on L̃p(Π). Moreover, it is recently shown in [17] that
the Stokes operator subject to the slip boundary condition A = P∆ generates a C0-analytic
semigroup on L̃p

σ(Π) (see also [14], [16] for the Dirichlet boundary condition). We construct
mild solutions for u0 ∈ L̃3

σ(Π) of the form

u(t) = etAu0 −
∫ t

0
e(t−s)AP(u · ∇u)(s)ds.(1.4)

Since the swirl component satisfies the Robin boundary condition, axisymmetric solutions
of (1.4) satisfy the energy equality

∫
Π

|u|2dx + 2
∫ t

0

∫
Π

(
|∇v|2 + |∇uθ|2 +

∣∣∣∣uθr ∣∣∣∣2)dxds + 2
∫ t

0

∫
∂Π
|uθ|2dHds =

∫
Π

|u0|2dx,(1.5)

where dH denotes the surface element on ∂Π.
We construct unique global solutions for large axisymmetric data with swirl u0 ∈ L̃3

σ(Π)
satisfying the decay condition of the swirl component ruθ0 ∈ L∞(Π). The main result of this
paper is the following:

Theorem 1.1. Let u0 ∈ L̃3
σ(Π) be an axisymmetric vector field. Assume that ruθ0 ∈ L∞(Π).

Then, there exists a unique axisymmetric mild solution u ∈ BC([0,∞); L̃3(Π)) satisfying
(1.5) for t ≥ 0.
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Remarks 1.2. (i) It is unknown in general whether axisymmetric solutions in R3 for u0 ∈
L̃3
σ(R3) satisfying ruθ0 ∈ L∞(R3) are globally bounded for all t > 0. See [35], [36], [8],

[21] for regularity criteria of axisymmetric solutions. For axisymmetric solutions, an upper
bound of the form |u(x, t)| ≤ Cr−1, r < 1, is called type I condition. It is proved in [9], [10] by
De Giorgi method and [23], [39] by the Liouville-type theorem that axisymmetric solutions
do not develop type I singularities. See [38] about type I singularities. Recently, it is shown
in [26] ( [31]) that axisymmetric smooth solutions in R3 × (−T, 0) for u(·,−T ) ∈ L2(R3)
and ruθ(·,−T ) ∈ L∞(R3) satisfy an upper bound of the form |u(x, t)| ≤ C| log r|1/2r−2 near
(r, t) = 0 with some constant C.
(ii) It is known that solutions of (1.1) in R3 are smooth if the direction of vorticity is Lip-
schitz continuous for spatial variables in regions of high vorticity magnitude [13] (called a
geometric regularity criterion). For axisymmetric flows without swirl, vorticity varies only
in the azimuthal direction and is identified with a scalar function. On the other hand, for
axisymmetric flows with swirl vorticity varies also in the radial and vertical directions. We
constructed unique global solutions whose vorticity may become large and vary in three di-
rections. For a half space R3

+, a geometric regularity criterion is proved in [4], subject to the
slip boundary condition. See also [5] for the Dirichlet boundary condition.
(iii) Theorem 1.1 implies existence of approximate solutions for R3. Since the exterior of
the cylinder Πε = {r > ε} approaches R3 as ε → 0, axisymmetric solutions in R3 can be
viewed as limits of solutions in Πε. Indeed, axisymmetric solutions without swirl in Πε

are uniformly bounded in L∞t H1
x for ε > 0 and approach those in R3 [24, p.78, l.7]. See

Remarks 6.1 (iii). For the case with swirl, unique existence of global solutions is proved
in [43] ( [44]) in a bounded cylindrical domain for sufficiently smooth initial data. It is
unknown whether global solutions with swirl are uniformly bounded for all ε > 0. We
constructed unique global mild solutions for u0 ∈ L̃3

σ(Πε) satisfying the uniform estimate
for the swirl component (1.6).

Let us sketch the proof of Theorem 1.1. We first construct local-in-time mild solutions
of (1.4) for u0 ∈ L̃3

σ and prove that mild solutions are axisymmetric and satisfy the energy
equality (1.5) for axisymmetric initial data. The major step of the proof is to derive a global
L4-bound for axisymmetric solutions u = v + uθeθ. Once we obtain the global bound, it is
not difficult to see that u ∈ BC([0,∞); L̃3) by local solvability and the energy equality (1.5).

We first prove the global L∞-estimate for the swirl component

||ruθ||L∞(Π) ≤ ||ruθ0||L∞(Π) t > 0.(1.6)

Since r ≥ 1 in the exterior of the cylinder Π, the L∞-estimate (1.6) and the energy equality
(1.5) implies the global L4-bound for uθ of the form

||uθ||4 ≤ ||ruθ0||
1
2
∞||u0||

1
2
2 t > 0.(1.7)

In order to prove (1.6), we study the drift-diffusion equation subject to the Robin boundary
condition:
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(1.8)
∂tΓ + b · ∇Γ − ∆Γ + 2

r
∂rΓ = 0 in Π × (0,T ),

∂nΓ + 2Γ = 0 on ∂Π × (0,T ),
Γ = Γ0 on Π × {t = 0}.

Here, ∂n = −∂r denotes the normal derivative. The function Γ = ruθ is a solution of (1.8) for
b = v. We prove the L∞-estimate

||Γ||L∞(Π) ≤ ||Γ0||L∞(Π) t > 0,(1.9)

for solutions to (1.8). Since the sign of the coefficient is plus in the Robin boundary condi-
tion, a maximum principle holds if the coefficient b and Γ are bounded in Π × [0,T ]. Then
the L∞-estimate (1.9) easily follows from a maximum principle (see Lemma 3.1). If Γ is
decaying sufficiently fast as |x| → ∞, we are able to obtain (1.9) by estimating Lp-norms
of Γ for p = 2m and sending m → ∞. Since we assume that ruθ0 is merely bounded, the
function ruθ may not decay as |x| → ∞ . We shall prove (1.9) for non-decaying solutions Γ.

We apply the L∞-estimate (1.9) for ruθ and obtain (1.6). Note that the boundedness of
ruθ does not follow from properties of local-in-time solutions to (1.1) for u0 ∈ L̃3

σ. For this
purpose, we first extend the L∞-estimate (1.9) for mild solutions to (1.8) for Γ0 ∈ L∞ and
the coefficient b such that t1/2−3/2pb ∈ C([0,T ]; Lp) vanishes at time zero for p ∈ (3,∞]. We
then deduce from the integral form (1.4) that ruθ is a mild solution to (1.8) (see Lemma 4.7).

We next estimate a global L4-norm of v = urer+uzez. We apply an interpolation inequality

||v||4 ≤ C||v||
1
4
2 (||v||2 + ||ωθ||2)

3
4 ,(1.10)

and estimate an energy norm of the vorticity ωθ. Since ωθ vanishes on the boundary, we
control the external force ∂z(uθ/r)2 by using viscosity and estimate

(1.11)

∫
Π

∣∣∣∣ωθr ∣∣∣∣2dx +
∫ t

0

∫
Π

∣∣∣∣∇(ωθr )∣∣∣∣2dxds ≤
∫
Π

∣∣∣∣ωθ0r ∣∣∣∣2dx + ||ruθ0||
2
∞||u0||22

=: E t > 0.

Since the above vorticity estimate implies the global bound

(1.12)

∫
Π

|ωθ|2dx +
∫ t

0

∫
Π

(
|∇ωθ|2 +

∣∣∣∣ωθr ∣∣∣∣2)dxds ≤
∫
Π

|ωθ0|
2dx

+C(E
3
4 ||u0||

1
2
2 + ||ruθ0||

2
∞)||u0||22, t > 0,

the local-in-time solution u = v + uθeθ is globally bounded on L4.

This paper is organized as follows. In Section 2, we state a local existence theorem of
mild solutions for u0 ∈ L̃3

σ and prove axial symmetry of mild solutions. In Section 3, we
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study the drift-diffusion equation (1.8) for a bounded coefficient and prove the L∞-estimate
(1.9) by a maximum principle. In Section 4, we extend (1.9) for mild solutions to (1.8)
under the weak regularity condition of a coefficient, and apply (1.9) for the swirl component
of axisymmetric solutions. In Section 5, we prove the a priori estimates (1.11) and (1.12).
In Section 6, we prove Theorem 1.1. In Appendix A, we give a proof for a local solvability
result stated in Section 2. In Appendix B, we prove some interpolation inequalities used in
Section 5.

2. Local existence of axisymmetric solutions on L̃3

In this section, we construct local-in-time axisymmetric solutions of (1.1) for u0 ∈ L̃3
σ

satisfying the energy equality (1.5). Local solvability for u0 ∈ L̃3
σ is known for R3 [22,

Theorem 3]. We give a proof for the exterior of the cylinder by using L̃p-theory in Appendix
A.

2.1. Local solvability. Let Cα([δ,T ]; X) denote the space of all α-th Hölder continuous
functions f ∈ C([δ,T ]; X) for a Banach space X. Let Cα((0,T ]; X) denote the space of
functions in Cα([δ,T ]; X) for all δ ∈ (0,T ). For the convenience, we denote by L̃p = Lp∩ L2

also for p = ∞.

Lemma 2.1. For u0 ∈ L̃3
σ, there exist T > 0 and a unique mild solution of (1.4) satisfying

t
3
2 ( 1

3−
1
p )u ∈ C([0,T ]; L̃p), 3 ≤ p ≤ ∞,(2.1)

t
3
2 ( 1

3−
1
r )+ 1

2∇u ∈ C([0,T ]; L̃r), 3 ≤ r < ∞,(2.2)

t3/2(1/3−1/p)u and t3/2(1/3−1/r)+1/2∇u vanish at time zero except for p = 3. Moreover,

(2.3)
u ∈ Cα((0,T ]; L̃3),

∇u ∈ C
α
2 ((0,T ]; L̃3), 0 < α < 1.

We show that mild solutions satisfy (1.1) by applying an abstract regularity result [32,
4.3.1 Theorem 4.3.4].

Proposition 2.2. Let B be a generator of an analytic semigroup in a Banach space X with
a domain D(B). Assume that f ∈ L1(0,T ; X) ∩Cβ((0,T ]; X) for β ∈ (0, 1). Then,

w =
∫ t

0
e(t−s)B f (s)ds

belongs to Cβ((0,T ]; D(B)) ∩C1+β((0,T ]; X).
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Proposition 2.3. The mild solution u in Lemma 2.1 satisfies

u ∈ Cγ((0,T ]; D(A)) ∩C1+γ((0,T ]; L2), 0 < γ <
1
2
,(2.4)

for D(A) = {u ∈ L2
σ ∩ H2 | (D(u)n)tan = 0, u · n = 0 ∂Π }. In particular, u satisfies the

equations (1.1) and (1.3).

Proof. We set f = −Pu · ∇u. It follows from (2.1)-(2.3) that

|| f ||2 ≤ ||u · ∇u||2 ≤ ||u||3||∇u||6 ≤
C

t
3
4

,

|| f (t) − f (τ)||2 ≤ ||(u(t) − u(τ)) · ∇u(t)||2 + ||u(τ) · ∇(u(t) − u(τ))||2
≤ ||u(t) − u(τ)||3||∇u(t)||6 + ||u(τ)||6||∇u(t) − ∇u(τ)||3

≤ C
( |t − τ|α

t
3
4

+
|t − τ| α2
τ

1
4

)
for 0 < τ < t ≤ T.

Thus f ∈ L1(0,T ; L2) ∩ Cα/2((0,T ]; L2) for α ∈ (0, 1). Applying Proposition 2.2 yields
(2.4). □

2.2. Axial symmetry. We show that mild solutions are axisymmetric and satisfies the en-
ergy equality (1.5) for axisymmetric initial data.

Lemma 2.4. Assume that u0 is axisymmetric. Then, the mild solution u in Lemma 2.1 is
axisymmetric and satisfies

(2.5)

∂tur + v · ∇ur − |u
θ|2
r
−

(
∆ − 1

r2

)
ur + ∂r p = 0

∂tuθ + v · ∇uθ +
ur

r
uθ −

(
∆ − 1

r2

)
uθ = 0

∂tuz + v · ∇uz − ∆uz + ∂z p = 0

∂rur +
ur

r
+ ∂zuz = 0

in Π × (0,T ),

ur = 0, ∂ruθ − uθ = 0, ∂ruz = 0 on ∂Π × (0,T ),(2.6)

and the energy equality (1.5).

Proposition 2.5. Assume that a vector field u = urer + uθeθ + uzez satisfies (1.3). Then,
(ur, uθ, uz) satisfies (2.6). The converse also holds.
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Proof. By fundamental calculations using the cylindrical coordinate, we observe that

D(urer)er = ∂rurer +
1
2r
∂θureθ +

1
2
∂zurez,

D(uθeθ)er =
1
2

(
∂ruθ −

uθ

r

)
eθ,

D(uzez)er =
1
2
∂ruzez,

D(u)er = ∂rurer +
1
2

(1
r
∂θur + ∂ruθ −

uθ

r

)
eθ +

1
2

(∂zur + ∂ruz)ez.

By (1.3), (ur, uθ, uz) satisfies (2.6). Conversely, suppose that (2.6) holds. Then,

D(u)er = ∂rurer, u · er = 0 on {r = 1}.

Thus (1.3) holds for u = urer + uθeθ + uzez. □

Proposition 2.6. Set the rotation operator U = Uη : L2(Π) −→ L2(Π) by

f (x) 7−→ tR f (Rx)

and R = (er(η), eθ(η), ez) for η ∈ [0, 2π]. Then, we have

UetA f = etAU f ,(2.7)
UPg = PUg,(2.8)

U(h · ∇h) = (Uh) · ∇(Uh),(2.9)

for f ∈ L2
σ, g ∈ L2 and h ∈ H1 satisfying h · ∇h ∈ L2.

Proof. We give a proof for (2.7). We are able to prove (2.8) and (2.9) by a similar way.
We set w = etA f and wη = Uηw. Since the Stokes equations are rotationally invariant, wη
satisfies

∂twη − ∆wη + ∇qη = 0
div wη = 0

in Π × (0,∞),

with some associated pressure qη. It follows that

wη(x) = tRw(Rx)

= wr(r, θ + η, z)er(θ) + wθ(r, θ + η, z)eθ(θ) + wz(r, θ + η, z)ez.

Since (wr,wθ,wz) satisfies (2.6) by Proposition 2.5, wη satisfies the slip boundary condition



9

(1.3). Since wη is a unique solution of the Stokes equations for fη = Uη f , we have wη =
etA fη. □

Proof of Lemma 2.4. We multiply U by (1.4). It follows from (2.7)-(2.9) that

Uu = UetAu0 −
∫ t

0
Ue(t−s)AP(u · ∇u)(s)ds

= etAUu0 −
∫ t

0
e(t−s)AP(Uu · ∇Uu)(s)ds.

Since u0 is axisymmetric, u0 = Uu0. Hence Uu is a mild solution of (1.1) for u0. By the
uniqueness of the mild solution, we have u = Uηu for η ∈ [0, 2π]. Thus u is axisymmetric.
Since u satisfies (1.1) and (1.3) by Proposition 2.3, (ur, uθ, uz) satisfies (2.5) and (2.6). The
energy equality (1.5) follows from integration by parts. □

3. A maximum principle

We consider the drift-diffusion equation (1.8) with a bounded coefficient and prove the
L∞-estimate (1.9) by a maximum principle. Let C(Π×[0,T ]) denote the space of all bounded
and continuous functions in Π× [0,T ]. Let C2,1(Π× [δ,T ]) denote the space of all functions
f ∈ C(Π×[δ,T ]) such that ∂s

t ∂
k
x f ∈ C(Π×[δ,T ]) for 2s+|k| ≤ 2. We denote by C2,1(Π×(0,T ])

the space of all functions in C2,1(Π × [δ,T ]) for all δ ∈ (0,T ). The goal of this section is:

Lemma 3.1. Let Γ ∈ C2,1(Π × (0,T ]) ∩ C(Π × [0,T ]) be a solution of (1.8). Assume that
b ∈ C(Π × [0,T ]). Then, the L∞-estimate (1.9) holds for t ≥ 0.

We prove Lemma 3.1 by a maximum principle. When Π is bounded, a maximum princi-
ple with the Robin boundary condition is known [30, Lemma 2.3]. We give a proof for the
unbounded domain Π.

Proposition 3.2 (Maximum principle). Assume that Γ ∈ C2,1(Π × (0,T ]) ∩ C(Π × [0,T ])
satisfies

∂tΓ + b · ∇Γ − ∆Γ + 2
r
∂rΓ ≤ 0 in Π × (0,T ],(3.1)

∂nΓ + 2Γ ≤ 0 on ∂Π × (0,T ],(3.2)
Γ ≤ 0 on Π × {t = 0}.(3.3)

Then,
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Γ ≤ 0 in Π × [0,T ].(3.4)

Corollary 3.3. Assume that the reverse inequalities of (3.1)-(3.3) hold. Then, Γ ≥ 0 in
Π × [0,T ].

Proof of Lemma 3.1. We set

M = sup
x∈Π
Γ0(x),

m = inf
x∈Π
Γ0(x).

We first show (1.9) when m ≤ 0. We set

Γm = m − Γ.

The function Γm satisfies (3.1) and (3.3). Since m ≤ 0, it follows that

(∂n + 2)Γm = 2m − (∂n + 2)Γ
= 2m ≤ 0.

Hence the condition (3.2) is satisfied. Applying Proposition 3.2 implies that

m ≤ Γ(x, t) in Π × [0,T ].(3.5)

We next estimate Γ from above. We first consider the case M ≤ 0. Since Γ0 ≤ M ≤ 0, we
apply Proposition 3.2 to Γ and observe that Γ ≤ 0. It follows from (3.5) that

||Γ||∞ = − inf
x∈Π
Γ(x, t)

≤ −m = ||Γ0||∞.

Thus (1.9) holds. We next consider the case M > 0. We set

ΓM = M − Γ.

Since (∂n + 2)ΓM = 2M > 0, the reverse inequalities of (3.1)-(3.3) hold for ΓM. Applying
Corollary 3.3 implies that

Γ(x, t) ≤ M in Π × [0,T ].(3.6)
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By (3.5) and (3.6), we obtain

||Γ||∞ = max
{
− inf

x∈Π
Γ(x, t), sup

x∈Π
Γ(x, t)

}
≤ max{−m, M} = ||Γ0||∞.

We proved (1.9) when m ≤ 0.

It remains to show (1.9) when m > 0. Since Γ0 ≥ m > 0, we observe that Γ ≥ 0 by
Corollary 3.3. Applying Corollary 3.3 for ΓM = M − Γ implies that 0 ≤ Γ ≤ M. Thus (1.9)
holds when m > 0. The proof is complete. □

We prove Proposition 3.2 from the following:

Proposition 3.4. We set

L = ∂t + b · ∇ − ∆ + 2
r
∂r,

N = n · ∇.

Assume that Γ ∈ C2,1(Π × (0,T ]) ∩C(Π × [0,T ]) satisfies

(L + 1)Γ ≤ 0 in Π × (0,T ],(3.7)
(N + 2)Γ ≤ 0 on ∂Π × (0,T ],(3.8)

Γ ≤ 0 on Π × {t = 0}.(3.9)

Then,

Γ ≤ 0 in Π × [0,T ].

Proof of Proposition 3.2. Applying Proposition 3.4 for Γ̃ = Γe−t implies (3.4). □

We first consider the case when the function Γ attains a maximum in Π. When Γ attains
the maximum as |x| → ∞, we modify Γ so that it attains a maximum in Π.

Proof of Proposition 3.4. We argue by contradiction. Suppose on the contrary that there
exists a point (x0, t0) ∈ Π × [0,T ] such that

Γ(x0, t0) > 0.(3.10)
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We set

M = sup
{
Γ(x, t) | x ∈ Π, t ∈ [0,T ]

}
> 0.

Case 1. The function Γ attains the maximum in Π × [0,T ].

We take a point (x1, t1) ∈ Π × [0,T ] such that

M = Γ(x1, t1) > 0.

By (3.9), we may assume that t1 > 0. Then, there are two cases whether x1 ∈ Π or x1 ∈ ∂Π.
(a) x1 ∈ Π. We observe that

∂tΓ(x1, t1) ≥ 0,
∇Γ(x1, t1) = 0,
∆Γ(x1, t1) ≤ 0.

Hence we have

((L + 1)Γ)(x1, t1) ≥ Γ(x1, t1) > 0.

This contradicts (3.7). Thus the function Γ does not attain the maximum in the interior of Π.
(b) x1 ∈ ∂Π. Since the function Γ increases along the normal direction near the boundary,
we have

∂Γ

∂n
(x1, t1) ≥ 0.

It follows that

((N + 2)Γ)(x1, t1) ≥ 2Γ(x1, t1) > 0.

This contradicts (3.8). Thus the function Γ does not attain the maximum on the boundary.

Case 2. The function Γ attains the maximum at space infinity.

We modify Γ and reduce the problem to Case 1. We set

Γε(x, t) = Γ(x, t) − ε(At + |x|2),
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by positive constants A, ε > 0. We shall show that, by choosing A−1 and ε sufficiently small,
depending on b, x0, t0 and Γ(x0, t0), the function Γε satisfies the conditions (3.7)-(3.10).
Once we verify these conditions, it is not difficult to derive a contradiction. In fact, the
function Γε is negative in Π ∩ {|x| > R} × [0,T ] for R =

√
M/ε. The condition (3.10) for Γε

implies the existence of some point (x1, t1) ∈ Π ∩ {|x| ≤ R} × [0,T ] such that

Mε = sup
{
Γε(x, t) | x ∈ Π, t ∈ [0,T ]

}
= Γε(x1, t1) > 0.

However, by the same way as we have shown in Case 1, the conditions (3.7)-(3.10) for Γε
imply that such the point (x1, t1) does not exist. Thus we are able to conclude that Case 2
does not occur neither.

It remains to show (3.7)-(3.10) for Γε. It follows that

(∂n + 2)(At + |x|2) = (−∂r + 2)(At + r2 + |z|2)

= 2(At + |z|2) + 2r(r − 1)
≥ 0,

(N + 2)Γε = (N + 2)Γ − ε(∂n + 2)(At + |x|2) ≤ 0.

Thus the conditions (3.8) and (3.9) are satisfied for A, ε > 0. We show that (3.7) holds for
Γε and sufficiently large A. Since

L(At + |x|2) =
(
∂t + b · ∇ − ∆ + 2

r
∂r

)
(At + |x|2)

= A + 2b · x − 2,

it follows that

(L + 1)Γε = (L + 1)Γ − ε(L + 1)(At + |x|2)

= (L + 1)Γ − ε(A(1 + t) + |x|2 + 2b · x − 2).

Since the function Γ satisfies (3.7), the first term of the right-hand side is negative. We set

A0 = sup
{
2 + 2||b||L∞(Π×[0,T ])|x| − |x|2 | x ∈ Π

}
> 0.

It follows that
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A(1 + t) + |x|2 + 2b · x − 2 ≥ A − (2 + 2||b||∞|x| − |x|2)
≥ A − A0.

Thus the condition (3.7) holds for Γε and A ≥ A0. Since

Γε(x0, t0) = Γ(x0, t0) − ε(At0 + |x0|2),

the condition (3.10) holds for Γε, ε < ε0 and ε0 = Γ(x0, t0)(At0 + |x0|2)−1 > 0. We proved
that (3.7)-(3.10) holds for Γε. The proof is now complete. □

4. An a priori L∞-estimate for swirl

We prove the a priori L∞-estimate for the swirl component (1.6) (Lemma 4.7). Since the
boundedness of ruθ does not follow from properties of local-in-time solutions to (1.1), we
extend the L∞-estimate (1.9) for mild solutions to (1.8). In the subsequent section, we show
that ruθ is a mild solution to (1.8) and obtain the desired estimate (1.6).

4.1. Mild solutions. We define a mild solution of (1.8). We set the elliptic operators by

L0γ = ∆γ −
1
r2γ,

L1Γ = ∆Γ −
2
r
∂rΓ,

subject to the Robin boundary conditions, ∂nγ + γ = 0 and ∂nΓ + 2Γ = 0 on ∂Π. We also
set the operator L′0 = ∆ − r−2, subject to the Dirichlet boundary condition. By the classical
Lp-estimates for elliptic operators [2], it is known that the operators B = L0, L1, L′0 generate
C0-analytic semigroups on Lp for p ∈ (1,∞) [32, Theorem 3.1.3]. Moreover, the semigroups
are analytic also for p = ∞ (see [32, Corollary 3.1.24]). By analyticity of the semigroups,
they satisfy the regularizing estimate

||∂k
xetB f ||∞ ≤

C

t
3

2p+
|k|
2

|| f ||p(4.1)

for 0 < t ≤ T0, 3 < p ≤ ∞ and |k| ≤ 1. By using the semigroup etL1 , we consider the integral
equation

Γ = etL1Γ0 −
∫ t

0
e(t−s)L1(b · ∇Γ)(s)ds.(4.2)

We assume that the coefficient b satisfies the regularity condition
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(4.3) t
1
2−

3
2p b ∈ C0([0,T ]; Lp) for 3 < p ≤ ∞.

Here, C0([0,T ]; Lp) denotes the space of all functions in C([0,T ]; Lp), vanishing at time
zero. Note that solutions of (1.4) satisfies the condition (4.3) by Lemma 2.1. We prove
the L∞-estimate (1.9) for mild solutions Γ ∈ Cw([0,T ]; L∞) of (4.2), where Cw([0,T ]; L∞)
denotes the space of all weakly-star continuous functions from [0,T ] to L∞.

We first recall that mild solutions of (4.2) are Hölder continuous up to second orders in
Π × [0,T ] for sufficiently smooth Γ0 and b by the Hölder regularity results for second order
equations [25, Chapter IV], [32, Chapter 5].

Let C(Π) denote the space of all bounded and continuous functions in Π. Let Cm(Π)
denote the space of all functions f ∈ C(Π) such that ∂k

x f ∈ C(Π) for |k| ≤ m with non-
negative integer m. We denote by C∞(Π) the space of all functions in Cm(Π) for all m ≥ 1.
We denote by Cµ(Π) the space of all µ-th Hölder continuous functions f ∈ C(Π) for µ ∈
(0, 1). For m = [m] + µ, Cm(Π) denotes the space of all functions f ∈ C[m](Π) such that
∂k

x f ∈ Cµ(Π) for |k| = [m], where [m] is the greatest integer smaller than m > 0. We denote
by Cµ,µ/2(Π × [0,T ]) the parabolic Hölder space for µ ∈ (0, 2), which is the space of all
functions f ∈ C(Π × [0,T ]) such that f (·, t) ∈ Cµ(Π) for t ∈ [0,T ] and f (x, ·) ∈ Cµ/2[0,T ]
for x ∈ Π. We denote by C2+µ,1+µ/2(Π× [0,T ]) the space of all functions f ∈ C2,1(Π× [0,T ])
such that ∂s

t ∂
k
x f ∈ Cµ,µ/2(Π × [0,T ]) for 2s + |k| ≤ 2.

Proposition 4.1. Let T > 0. Let b satisfy (4.3).

(i) For Γ0 ∈ L∞, there exists a unique mild solution Γ ∈ Cw([0,T ]; L∞) of (4.2) such that
t1/2∇Γ ∈ Cw([0,T ]; L∞). If Γ0 and b are axisymmetric, the mild solution Γ is axisymmetric.

(ii) Assume that

b ∈ Cµ,µ/2(Π × [0,T ]), µ ∈ (0, 1),(4.4)

Γ0 ∈ C2+µ(Π) and ∂nΓ + 2Γ = 0 on ∂Π.(4.5)

Then, the mild solution belongs to C2+µ,1+µ/2(Π × [0,T ]). In particular, the L∞-estimate
(1.9) holds for t ≥ 0.

Proof. The assertion (i) follows from a standard iteration argument. We are able to prove
axial symmetry by a similar way as we did in the proof of Lemma 2.4. The assertion (ii)
follows from a Hölder regularity result for second order equations [32, Theorem 5.1.21,
Corollary 5.1.22]. The L∞-estimate (1.9) follows from Lemma 3.1. □
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4.2. Approximation of initial data. We prove the L∞-estimate (1.9) without the conditions
(4.4) and (4.5) by approximation. For this purpose, we prepare Hölder norms for space-time
functions [25]. We set the µ-th Hölder semi-norm in Q = Ω × (δ,T ] for µ ∈ (0, 1) by

[ f ]
(µ, µ2 )
Q = sup

t∈(δ,T ]
[ f ](µ)
Ω

(t) + sup
x∈Ω

[ f ]
( µ2 )
(δ,T ](x),

[ f ](µ)
Ω

(t) = sup
{
| f (x, t) − f (y, t)|
|x − y|µ

∣∣∣∣∣∣ x, y ∈ Ω, x , y
}
,

[ f ]
( µ2 )
(δ,T ](x) = sup

{
| f (x, t) − f (x, s)|
|t − s|

µ
2

∣∣∣∣∣∣ t, s ∈ (δ,T ], t , s
}
.

When µ = 1, we set

[ f ]
(1, 12 )
Q = ||∇ f ||L∞(Q) + sup

x∈Ω
[ f ]

( 1
2 )

(δ,T ](x).

For m = [m] + µ, we set

[ f ]
(m,m2 )
Q =

∑
2s+|k|=[m]

[∂s
t ∂

k
x f ]

(µ, µ2 )
Q ,

| f |(m,
m
2 )

Q =
∑

2s+|k|≤[m]

||∂s
t ∂

k
x f ||L∞(Q) + [ f ]

(m,m2 )
Q .

We first remove the condition (4.5) by approximation of Γ0 ∈ L∞.

Proposition 4.2. For Γ0 ∈ L∞(Π), there exists a sequence {Γ0,ε} ⊂ C∞(Π) supported in Π
such that

(4.6)
||Γ0,ε||∞ ≤ ||Γ0||∞
Γ0,ε → Γ0 a.e. in Π.

Proof. For x = rer(θ) + zez, we set

Γ̃0,ε(x) =

 Γ0((r − ε)er(θ) + zez) r ≥ 1 + ε,
0 0 ≤ r < 1 + ε.

By mollification of Γ̃0,ε, we obtain the desired sequence. □

Proposition 4.3. In Proposition 4.1 (ii), the estimate (1.9) holds without the condition (4.5).
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Proof. For Γ0 ∈ L∞, we take a sequence {Γ0,ε} satisfying (4.6). Since Γ0,ε is smooth in Π
and supported in Π, it satisfies the condition (4.5). Since the estimate (1.9) holds for the
mild solution Γε of (4.2) for Γ0,ε by Proposition 4.1 (ii), it follows from (4.6) that

||Γε||∞ ≤ ||Γ0||∞ t > 0.(4.7)

We shall show that Γε converges to a mild solution of (4.2) for Γ0. We use the Hölder
continuity of the coefficient b in (4.4). We apply the local Hölder estimate for parabolic
equations [25, Chapter IV, Theorem 10.1] and estimate

|Γε|
(2+µ,1+ µ2 )
Q ≤ C||Γε||L∞(Π×(0,T ))(4.8)

for Q = (B ∩ Π) × (δ,T ] and δ > 0 with some constant C, independent of ε. Here, B ⊂ R3

denotes an open ball satisfying B∩Π , ∅. By (4.7) and (4.8), Γε subsequently converges to
a limit Γ locally uniformly in Π × (0,T ] up to second derivatives.

It is not difficult to see that the limit Γ is a mild solution of (4.2) for Γ0. In fact, by
choosing a subsequence, we have

etL1Γ0,ε → etL1Γ0 locally uniformly in Π × (0,T ].

Since ∇Γε converges to ∇Γ locally uniformly in Π × (0,T ], similarly for each 0 < s < t, we
have

eρL1b · ∇Γε → eρL1b · ∇Γ locally uniformly in Π × (0,T ].

Hence sending ε → 0 to (4.2) implies the limit Γ is a mild solution for Γ0. The estimate
(4.7) is inherited to the limit Γ. □

4.3. Approximation of a coefficient. We next remove the condition (4.4).

Proposition 4.4. For b satisfying (4.3), there exists a sequence {bε} ⊂ C∞(Π × [0,T ]) satis-
fying (4.3) and

lim
ε→0

sup
0≤t≤T

t
1
2−

3
2p ||b − bε||p(t) = 0 for 3 < p < ∞.(4.9)

Proof. We may assume that b is smooth inΠ by mollification by spatial variables. Since g =
t1/2−3/(2p)b vanishes at time zero by (4.3), by shifting g by a time variable, and mollification,
we obtain a sequence {gε} ⊂ C∞(Π × [0,T ]) such that gε(·, t) is supported in (0,T ] and
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lim
ε→0

sup
0≤t≤T

||gε − g||p(t) = 0.(4.10)

Since gε(·, t) is supported in (0,T ], the function bε = t−1/2+3/2pgε is smooth in Π × [0,T ]
and satisfies (4.3). The convergence (4.9) follows from (4.10). □

Lemma 4.5. The estimate (1.9) holds for mild solutions of (4.2) for Γ0 ∈ L∞ and t > 0.

Proof. We shall show the estimate (1.9) between 0 < t ≤ T1 for some T1 > 0. Once we
have (1.9) near time zero, it is extendable for all t > 0 by taking t = T1 as an initial time.
We take a sequence {bε} satisfying (4.9). Since the estimate (1.9) holds for a mild solution
Γε for Γ0 ∈ L∞ and the coefficient bε by Proposition 4.3, we have

||Γε||∞ ≤ ||Γ0||∞ t > 0.(4.11)

We shall show that Γε converges to a mild solution Γ in the sense that

lim
ε→0

sup
0<t≤T1

{
||Γ − Γε||∞ + t

1
2 ||∇(Γ − Γε)||∞

}
= 0.(4.12)

The desired estimate follows from (4.11) and (4.12) by sending ε→ 0.

We set ρε = Γ − Γε and aε = b − bε. It follows from (4.2) that

ρε = −
∫ t

0
e(t−s)L1(b · ∇Γ − bε · ∇Γε)ds

= −
∫ t

0
e(t−s)L1(aε · ∇Γ + bε · ∇ρε)ds.

For p ∈ (3,∞), we set the constants

Kε = sup
0<t≤T1

{||ρε||∞ + t
1
2 ||∇ρε||∞

}
,

K = sup
0<t≤T1

{||Γ||∞ + t
1
2 ||∇Γ||∞

}
,

Nε = sup
0≤t≤T1

t
1
2−

3
2p ||aε||p,

Lε = sup
0≤t≤T1

t
1
2−

3
2p ||bε||p.

It follows from (4.1) that



19

||ρε||∞ ≤
∫ t

0

C

(t − s)
3

2p

(||aε||p||∇Γ||∞ + ||bε||p||∇ρε||∞)
ds

≤ C(NεK + LεKε)
∫ t

0

ds

(t − s)
3

2p s1− 3
2p

= C0(NεK + LεKε).

Similarly, we estimate ∇ρε and obtain

Kε ≤ C0(NεK + LεKε).

We take an arbitrary δ > 0. By (4.3), there exists T1 > 0 such that

sup
0<t≤T1

t
1
2−

3
2p ||b||p ≤ δ.

By (4.9), that there exits ε0 > 0 such that

sup
0<t≤T1

t
1
2−

3
2p ||b − bε||p ≤ δ for ε ≤ ε0.

We estimate

Lε = sup
0<t≤T1

t
1
2−

3
2p ||bε||p ≤ sup

0<t≤T1

t
1
2−

3
2p ||bε − b||p + sup

0<t≤T1

t
1
2−

3
2p ||b||p

≤ 2δ for ε ≤ ε0.

By taking δ = (4C0)−1, we estimate

Kε ≤ 2C0NεK.

Since Nε → 0 as ε→ 0 by (4.9), we proved (4.12). □

4.4. An application to axisymmetric solutions. We now prove the a priori L∞-estimate
for the swirl component (1.6). It suffices to show that the swirl component ruθ is a mild
solution of (4.2).

Proposition 4.6. The semigroups satisfy
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eθ · etA f = etL0 f θ,(4.13)

eθ · curl etAg = etL′0
(
eθ · curl g

)
,(4.14)

retL0γ = etL1(rγ),(4.15)

for axisymmetric f , g ∈ L2
σ and γ ∈ L∞ satisfying eθ · curl g ∈ L2 and rγ ∈ L∞.

Proof. We set w = etA f . Since wθ = eθ · w satisfies

∂twθ −
(
∆ − 1

r2

)
wθ = 0 in Π × (0,∞),

∂nwθ + wθ = 0 on ∂Π × (0,∞),

wθ = f θ on Π × {t = 0},

the function wθ agrees with etL0 f θ by the uniqueness of the heat equation. Similarly, we are
able to prove (4.14) and (4.15). □

Lemma 4.7 (A priori L∞-estimate). Let u = v + uθeθ be an axisymmetric mild solution of
(1.4) in Lemma 2.4. Assume that ruθ0 ∈ L∞. Then, ruθ is a mild solution of (4.2) for b = v.
In particular, the L∞-estimate (1.6) holds.

Proof. We set

(4.16) h = u · ∇u =
(
v · ∇ur − |u

θ|2
r

)
er +

(
v · ∇uθ +

ur

r
uθ

)
eθ + (v · ∇uz)ez,

∇Φ = (I − P)h,

for axisymmetric mild solutions u in [0,T ]. Since h is axisymmetric, the function Φ is
independent of θ and we have

eθ · Pu · ∇u = eθ · (h − ∇Φ)
= eθ · (h − er∂rΦ − ez∂zΦ)

= v · ∇uθ +
ur

r
uθ.

We multiply eθ by (1.4). It follows from (4.13) that

uθ = etL0uθ0 −
∫ t

0
e(t−s)L0

(
v · ∇uθ +

ur

r
uθ

)
ds.
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Since uθ0 ∈ L∞ by ruθ0 ∈ L∞, the above integral form implies that uθ ∈ Cw([0,T ]; L∞) and
t1/2∇uθ ∈ Cw([0,T ]; L∞).

On the other hand, there exists a unique axisymmetric mild solution Γ for Γ0 = ruθ0 and
b = v by Proposition 4.1 (i). We multiply r−1 by (4.2). It follows from (4.15) that γ = Γ/r
satisfies

γ = etL0uθ0 −
∫ t

0
e(t−s)L0

(
v · ∇γ + ur

r
γ
)
ds.

Since γ ∈ Cw([0,T ]; L∞) and t1/2∇γ ∈ Cw([0,T ]; L∞), it is not difficult to show that uθ

agrees with γ by estimating the difference uθ − γ. Thus ruθ is a mild solution of (4.2). The
proof is now complete. □

5. Energy estimates for the azimuthal component of vorticity

We prove the global estimates (1.11) and (1.12).

(5.1)

∂tω
θ + v · ∇ωθ − ur

r
ωθ −

(
∆ − 1

r2

)
ωθ =

∂z|uθ|2
r

in Π × (0,T ),

ωθ = 0 on ∂Π × (0,T ),

ωθ = ωθ0 on Π × {t = 0}.

Proposition 5.1. Axisymmetric mild solutions of (1.4) in Lemma 2.4 satisfy

ωθ ∈ Cγ((0,T ]; D(L′0)) ∩C1+γ((0,T ]; L2), 0 < γ <
1
2
.(5.2)

In particular, ωθ satisfies the vorticity equation (5.1), where D(L′0) = H2 ∩ H1
0 denotes the

domain of the operator L′0 = ∆ − r−2 on L2.

Proof. We recall that the mild solution u is expressed by

u(η + δ) = eηAu(δ) +
∫ η

0
e(η−s)A f (δ + s)ds,

for 0 ≤ δ ≤ η ≤ T − δ and f = −Pu · ∇u. It follows from (4.16) that
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g : = eθ · curl f
= −eθ · curl (h − ∇Φ)

= −∂zhr + ∂rhz

= −v · ∇ωθ + ur

r
ωθ +

∂z|uθ|2
r
.

We multiply eθ · curl by u. It follows from (4.14) that

ωθ(η + δ) = eηL
′
0ωθ(δ) +

∫ η

0
e(η−s)L′0g(δ + s)ds.

Since u ∈ Cγ((0,T ]; H2) for γ ∈ (0, 1/2) by (2.4), we have g ∈ Cγ((0,T ]; L2). By Proposi-
tion 2.2, ωθ satisfies (5.2). □

Proposition 5.2. The function v = urer + uzez satisfies

||∇v||2 = ||ωθ||2,(5.3)

||ur ||4 ≤ C||ur ||
1
4
2 ||ω

θ||
3
4
2 ,(5.4)

||uz||4 ≤ C||uz||
1
4
2 (||uz||2 + ||ωθ||2)

3
4 ,(5.5)

||ωθ||4 ≤ C||ωθ||
1
4
2 ||∇ω

θ||
3
4
2 ,(5.6)

||∇(ωθeθ)||2 =
(
||∇ωθ||22 +

∥∥∥∥ωθr ∥∥∥∥2

2

) 1
2 ,(5.7)

with some constant C. In particular, the estimate (1.10) holds.

Proof. Since v satisfies

−∆v = curl curl v − ∇div v

= curl (ωθeθ),

it follows from (2.6) that∫
Π

|∇v|2dx = −
∫
Π

∆v · vdx +
∫
∂Π

∂v
∂n
· vdH

=

∫
Π

curl (ωθeθ) · vdx −
∫
∂Π

(∂rurur + ∂ruzuz)dH

=

∫
Π

|ωθ|2dx.
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Thus (5.3) holds. Similarly, we obtain (5.7) by integration by parts. Since vr and ωθ vanish
on ∂Π, applying the interpolation inequality (B.1) implies (5.4) and (5.6). We apply (B.2)
for vz and obtain (5.5). □

Lemma 5.3. The estimates (1.11) and (1.12) hold for t > 0 for axisymmetric mild solutions
for u0 ∈ L̃3

σ satisfying ruθ0 ∈ L∞ and ∇u0 ∈ L2 with some constant C.

Proof. We prove (1.11). Sinceωθ/r satisfies (1.2) and vanishes on ∂Π, by multiplying 2ωθ/r
by (1.2) and integration by parts, we have

d
dt

∫
Π

∣∣∣∣ωθr ∣∣∣∣2dx + 2
∫
Π

∣∣∣∣∇(ωθr )∣∣∣∣2dx = −2
∫
Π

(uθ

r

)2
∂z

(ωθ
r

)
dx.

Since r ≥ 1, it follows that

∥∥∥∥uθ

r

∥∥∥∥
4
≤ ||uθ||4 =

∥∥∥∥(ruθ)
1
2
(uθ

r

) 1
2
∥∥∥∥

4
≤ ||ruθ||

1
2
∞
∥∥∥∥uθ

r

∥∥∥∥ 1
2

2
.(5.8)

By the Young’s inequality, we estimate

∣∣∣∣2 ∫
Π

(uθ

r

)2
∂z

(ωθ
r

)
dx

∣∣∣∣ ≤ ∥∥∥∥uθ

r

∥∥∥∥4

4
+

∥∥∥∥∇(ωθr )∥∥∥∥2

2

≤ ||ruθ||2∞
∥∥∥∥uθ

r

∥∥∥∥2

2
+

∥∥∥∥∇(ωθr )∥∥∥∥2

2
.

Hence

d
dt

∫
Π

∣∣∣∣ωθr ∣∣∣∣2dx +
∫
Π

∣∣∣∣∇(ωθr )∣∣∣∣2dx ≤ ||ruθ||2∞
∥∥∥∥uθ

r

∥∥∥∥2

2
.

We integrate the both sides between (0, t). By applying (1.5) and (1.6), we obtain (1.11).

We prove (1.12). We multiply 2ωθ by (5.1) to see that

d
dt

∫
Π

|ωθ|2dx + 2
∫
Π

(
|∇ωθ|2 +

∣∣∣∣ωθr ∣∣∣∣2)dx = 2
∫
Π

ur

r
ωθωθdx + 2

∫
Π

∂z|uθ|2
r
ωθdx

=: I + II.

It follows from (5.4), (5.6) and (5.7) that
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|I| =
∣∣∣∣2 ∫

Π

ur

r
ωθωθdx

∣∣∣∣ ≤ 2
∥∥∥∥ωθr ∥∥∥∥

2
||ur ||4||ωθ||4

≤ C
∥∥∥∥ωθr ∥∥∥∥

2
||ur ||

1
4
2 ||ω

θ||2||∇ωθ||
3
4
2

≤ C
∥∥∥∥ωθr ∥∥∥∥ 3

4

2
||ur ||

1
4
2 ||ω

θ||2||∇(ωθeθ)||2

≤ C′
∥∥∥∥ωθr ∥∥∥∥ 3

2

2
||ur ||

1
2
2 ||ω

θ||22 +
1
2
||∇(ωθeθ)||22.

Since r ≥ 1, it follows from (5.8) that

|II| =
∣∣∣∣2 ∫

Π

∂z|uθ|2
r
ωθdx

∣∣∣∣ ≤ 2||uθ||24||∇ωθ||2

≤ 2||ruθ||∞
∥∥∥∥uθ

r

∥∥∥∥
2
||∇(ωθeθ)||2

≤ 2||ruθ||2∞
∥∥∥∥uθ

r

∥∥∥∥2

2
+

1
2
||∇(ωθeθ)||22.

By combining the estimates for I and II, we obtain

d
dt

∫
Π

|ωθ|2dx +
∫
Π

(
|∇ωθ|2 +

∣∣∣∣ωθr ∣∣∣∣2)dx ≤ C
(∥∥∥∥ωθr ∥∥∥∥ 3

2

2
||ur ||

1
2
2 + ||ruθ||2∞

)(
||ωθ||22 +

∥∥∥∥uθ

r

∥∥∥∥2

2

)
.

We integrate the both sides between (0, t). By (1.11), (1.5) and (1.6), we obtain (1.12). □

6. Global bounds on L4

Proof of Theorem 1.1. For an axisymmetric u0 ∈ L̃3
σ satisfying ruθ0 ∈ L∞, the axisymmetric

mild solution u ∈ C([0,T ]; L̃3) satisfies (1.6) by Lemma 4.7. It follows from (1.6) and (2.2)
that ruθ0(·, t0) ∈ L∞ and

∇u(·, t0) ∈ L2 for t0 ∈ (0,T ].

We may assume that ∇u0 ∈ L2 by taking t = t0 as an initial time. It follows from (1.7) and
(1.10)-(1.12) that u ∈ L∞(0,∞; L4). By (1.5) and Lemma 2.1, the mild solution belongs to
BC([0,∞); L̃3). The proof is now complete. □
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Remarks 6.1. (i) (The Euler equations) We constructed global solutions in the exterior do-
main by using viscosity. For the Euler equations, existence of global solutions is unknown.
We refer to [33], [20] for a one-dimensional blow-up model of axisymmetric Euler flows on
the boundary. See [12], [11] for blow-up results of models.
(ii) (The Dirichlet boundary condition) The statement of Lemma 2.1 is valid also for the
Dirichlet boundary condition. However, in this case unique existence of global solution
is unknown even for axisymmetric data without swirl. Since the azimuthal component of
vorticity ωθ does not vanish on the boundary subject to the Dirichlet boundary condition,
the global vorticity estimates (1.11) and (1.12) are not available unlike the slip boundary
condition.
(iii) (Uniform estimates) The assertion of Theorem 1.1 is valid also for the exterior of the
cylinder Πε = {r > ε} and we are able to construct global solutions u = uε satisfying (1.6)
and the energy equality

(6.1)

∫
Πε
|u|2dx + 2

∫ t

0

∫
Πε

(
|∇v|2 + |∇uθ|2 +

∣∣∣∣uθr ∣∣∣∣2)dxds

+
2
ε

∫ t

0

∫
∂Πε
|uθ|2dHds =

∫
Πε
|u0|2dx, t ≥ 0.

For the case without swirl, the a priori estimates

∫
Πε

∣∣∣∣ωθr ∣∣∣∣2dx + 2
∫ t

0

∫
Πε

∣∣∣∣∇(ωθr )∣∣∣∣2dxds ≤
∫
Πε

∣∣∣∣ωθ0r ∣∣∣∣2dx,(6.2)

(6.3)

∫
Πε
|ωθ|2dx +

∫ t

0

∫
Πε

(
|∇ωθ|2 +

∣∣∣∣ωθr ∣∣∣∣2)dxds

≤
∫
Πε
|ωθ0|

2dx +C
∥∥∥∥ωθ0r ∥∥∥∥ 3

2

L2(Πε)
||u0||

5
2
L2(Πε)

, t > 0,

hold with some constant C, independent of ε. Hence we have a uniform bound

sup
ε≤ε0
||u||L∞(0,∞;H1(Πε)) < ∞,

provided that L2-norms of uθ0, ωθ0/r and ωθ0 in Πε are uniformly bounded for ε ≤ ε0.

Appendix A. Mild solutions on L̃3

We give a proof for local solvability of (1.1) on L̃3 (Lemma 2.1).

Proposition A.1. The Stokes semigroup satisfies



26

||∂k
xetA f ||L̃p ≤

C

t
3
2 ( 1

q−
1
p )+ |k|2
|| f ||L̃q ,(A.1)

||∂k
x(eρA − 1)eηA f ||L̃q ≤ C

ρα

ηα+
|k|
2

|| f ||L̃q ,(A.2)

for f ∈ L̃q
σ, 2 ≤ q ≤ p < ∞, 0 < t, ρ, η ≤ T0, α ∈ (0, 1), |k| ≤ 1 and T0 > 0.

Proof. The estimates (A.1) and (A.2) follow from estimates of the Stokes semigroup on
L̃q [17, Theorem 1.2] and the interpolation inequality (B.2). □

Proposition A.2. For u0 ∈ L̃3
σ, there exists T > 0 and a unique mild solution of (1.4)

satisfying (2.1) and (2.2).

Proof. We set

u j+1 = etAu0 −
∫ t

0
e(t−s)AP(u j · ∇u j)ds,

u1 = etAu0,

K j = sup
0≤t≤T

tγ{||u j||L̃p + t
1
2 ||∇u j||L̃p},

for γ = 1/2−3/(2p) and p ∈ (3,∞). We take q ∈ [2, p]. By applying the Young’s inequality,
we estimate

||u j · ∇u j||q ≤ ||u j||η||∇u j||p

for 1/η = 1/q − 1/p. Since q ∈ [2, p] and p > 3, we observe that σ = 3(1/p − 1/η) =
3(2/p − 1/q) ≤ 3/p < 1. By applying the interpolation inequality (B.2), we estimate

||u j||Lη ≤ C||u j||1−σLp ||∇u j||σW1,p .

We take T ≤ 1 and estimate

||u j · ∇u j||Lq ≤ C||u j||1−σLp ||∇u j||1+σW1,p ≤ C
(

K j

sγ

)1−σ( 2K j

sγ+
1
2

)1+σ

≤ C′
K2

j

s
3
2 (1− 1

q )
.

Since the above estimate holds for s ≤ T ≤ 1, we have

||u j · ∇u j||L̃q = max{||u j · ∇u j||Lq , ||u j · ∇u j||L2} ≤
CK2

j

s
3
2 (1− 1

q )
.(A.4)

Applying (A.1) implies
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||∂k
xe(t−s)APu j · ∇u j||L̃p ≤

CK2
j

(t − s)
3
2 ( 1

q−
1
p )+ |k|2 s

3
2 (1− 1

q )
.(A.5)

We estimate K j+1. We set p0 = max{3p/(p + 3), 2} and fix q ∈ (p0, 3) so that the right
hand-side of (A.5) is integrable near s = t for |k| ≤ 1. It follows from (A.1) and (A.5) that

||u j+1||L̃p ≤ ||etAu0||L̃p +
C

t
1
2−

3
2p

K2
j .

Similarly, we estimate ∇u j+1 and obtain K j+1 ≤ K1 + C0K2
j . Since the Stokes semigroup is

strongly continuous on L̃3, we have K1 → 0 as T → 0. We take T > 0 sufficiently small so
that K1 ≤ (4C0)−1 and

K j ≤ 2K1 for j = 1, 2, · · · .

By a similar way, we estimate the difference u j+1 − u j and obtain

sup
0≤t≤T

tγ(||u j+1 − u j||L̃p + t
1
2 ||∇(u j+1 − u j)||L̃p)→ 0 as j→ ∞.

Thus the sequence {u j} converges to a mild solution u satisfying (2.1) and (2.2) for p, r ∈
(3,∞). In particular, we have

K = sup
0≤t≤T

tγ{||u||L̃p + t
1
2 ||∇u||L̃p} ≤ 2K1.(A.6)

The uniqueness follows from the integral form since tγu and tγ+1/2∇u vanish at time zero.

It remains to show (2.1) and (2.2) at end points. The property (2.1) for p = ∞ follows
from the interpolation inequality (B.2). It follows from (A.1), (A.4) and (A.6) that

||u − etAu0||L̃3 ≤
∫ t

0
||e(t−s)APu · ∇u||L̃3ds

≤ CK2
1

∫ t

0

ds

(t − s)
3
2 ( 1

q−
1
3 )s

3
2 (1− 1

q )
= C′K2

1 .

Since K1 → 0 as T → 0, the mild solution u is strongly continuous on L̃3 at time zero.
Thus (2.1) holds for p = 3. By a similar way, we estimate t

1
2 ||∇u − ∇etAu0||L̃3 ≤ CK2

1 . Since
t1/2∇etAu0 vanishes on L̃3 at time zero, (2.2) holds for r = 3. □

Proof of Lemma 2.1. It remains to show the Hölder continuity (2.3). We set f = −Pu · ∇u.
It follows from (A.4) that
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|| f ||L̃q ≤
CK2

s
3
2 (1− 1

q )
for 2 ≤ q ≤ 3.(A.7)

We take an arbitrary δ ∈ (0,T ) and α ∈ (0, 1). For δ ≤ τ < t ≤ T , we estimate

||u(t) − u(τ)||L̃3 ≤ ||etAu0 − eτAu0||L̃3 +

∫ t

τ
||e(t−s)A f ||L̃3ds +

∫ τ

0
||e(t−s)A f − e(τ−s)A f ||L̃3ds

=: I + II + III.

It follows from (A.2), (A.1) and (A.7) that

I ≤ Cδ−α(t − τ)α||u0||L̃3 ,

II ≤ C
∫ t

τ
|| f ||L̃3ds ≤ C′δ−1K2(t − τ).

We estimate III. Since

e(t−s)A f − e(τ−s)A f = (e(t−τ)A − 1)e
(τ−s)

2 Ae
(τ−s)

2 A f ,

it follows from (A.2), (A.1) and (A.6) that

||e(t−s)A f − e(τ−s)A f ||L̃3 ≤ C
( t − τ
τ − s

)α
||e

(τ−s)
2 A f ||L̃3

≤ C′
(t − τ)α

(τ − s)α+
3
2 ( 1

q−
1
3 )
|| f ||L̃q

≤ C′′K2 (t − τ)α

(τ − s)α+
3
2 ( 1

q−
1
3 )s

3
2 (1− 1

q )
.

We take q ∈ [2, 3) so that 3/2(1/q − 1/3) < 1 − α and obtain

III ≤ Cδ−αK2(t − τ)α.

Thus u ∈ Cα([δ,T ]; L̃3) for α ∈ (0, 1). By a similar way, ∇u ∈ Cα/2([δ,T ]; L2) follows. We
proved (2.3). The proof is now complete. □
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Appendix B. Interpolation inequalities

We give a proof for interpolation inequalities used in Proposition 5.2.

Lemma B.1. The estimates

||φ||p ≤ C||φ||1−σq ||∇φ||σq , φ ∈ W1,q
0 ,(B.1)

||ϕ||p ≤ C||ϕ||1−σq ||ϕ||σ1,q, ϕ ∈ W1,q,(B.2)

hold for 1 ≤ q ≤ p ≤ ∞ satisfying σ = 3(1/q − 1/p) < 1, where W1,q
0 denotes the space of

functions in W1,q, vanishing on ∂Π.

Proof. The estimate (B.1) for Π = R3 holds by estimates of the heat semigroup. Since the
trace of φ ∈ W1,q

0 vanishes on ∂Π, we apply (B.1) to the zero extension of φ to R3 and obtain
the desired estimate for Π ⊂ R3. For functions ϕ ∈ W1,q with non-trivial traces, we use an
extension operator E : W1,q(Π) −→ W1,q(R3) acting as a bounded operator also from Lq(Π)
to Lq(R3) [41, Chapter VI, 3.1 Theorem 5]. By applying (B.1) for R3 and Eϕ, we obtain
(B.2). □
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