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ABSTRACT

The nonlinear interaction between bulk point vortices and a vortex sheet with initially nonuniform velocity shear is investigated theoretically
and numerically by use of the vortex method, taking the incompressible Richtmyer–Meshkov instability as an example. As the point vortices
approach the interface, i.e., a nonuniform vortex sheet, they increase the local sheet strength of the vortex sheet, which causes different types
of interface deformation depending on the sign of their circulation of point vortices. For example, when the circulation of a point vortex is
the opposite sign of the local sheet strength, it induces a new type of vortex pair with an local enhanced sheet vortex. We refer to that as a
pseudo-vortex pair in the current study. The pseudo-vortex pair creates a local satellite mushroom at the fully nonlinear stage. The obtained
results indicate that the complexity of the interface structure is enhanced if the bulk vortices exist.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5131701

I. INTRODUCTION

The interaction of vortices with an interface plays an important
role in a wide range of engineering, geophysics, and astrophysical
flows. The interaction between a free surface and a vortex pair is one
of the typical models to analyze the surface disturbances produced in
the wake of a ship and/or the vortices shed by propellers, and this has
been studied by various researchers experimentally1,2 and theoreti-
cally.1,3–5 Tyvand4,5 reported that point vortices change their direction
of motion due to the presence of a surface, while the surface elevation
is also affected by point vortices if the vortices are strong. Similar
results are also confirmed in numerical calculations by Telste.3

The interaction of a free surface and point vortices is also applica-
ble to the problem of strong wind waves over a water surface.6 Surface
ocean waves are known to be excited by the wind.7,8 It is reported that
this excitation can be extremely strong if tiny vortices exist in the
neighborhood of the water surface.9 This study suggests that when a
large vortex such as a hurricane and satellite vortices coexist, the

system can be a turbulent state. This is a kind of stratified multi-layer
system consisting of vortex sheets with point vortices in the air and a
water surface, which should be investigated in the future.

Even apart from the above geophysical problems, there exist
problems for the interaction between bulk vortices and an interface
with strong vorticity in the field of plasma physics and astrophysics
such as those represented by the Richtmyer–Meshkov instability
(RMI).10,11 RMI is a shock-induced density-stratified interfacial insta-
bility, and it is important in astrophysics12–16 and inertial confinement
fusion (ICF).17,18 In supernova remnants (SNRs), RMI causes the
amplification of magnetic field up to milligauss order.12 The presence
of a milligauss magnetic field has a crucial meaning in the long-
standing paradigm of cosmic-ray proton acceleration in young SNRs.
Extension of the present model to MHD RMI15 is possible under cer-
tain assumptions. Mixing by RMI was also observed in gaseous inter-
faces.19,20 Many references of RMI in experimental and theoretical
studies are found in the review by Zhou.21
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Nonuniform velocity shears are induced at the interface due to
the passage of a shock wave across a corrugated interface in RMI.22–27

Also, due to the conservation of tangential velocity at the rippled shock
fronts, transverse velocity perturbations are generated inside the com-
pressed fluids, which account for vorticity generation in the
bulks.23,25,28–34 Cobos-Campos and Wouchuk34,35 reported that bulk
vortices with sufficiently small vorticity stabilize the interfacial instabil-
ity, at least in the (compressible) linear stage.25,30–34 When the incident
shock is strong and/or the amplitude of initial perturbations is large, it
is known that a lot of vortices are left behind with the transmitted
shock.23,26,36 These bulk vortices can interact with the interface and
they affect the vorticity distribution on the interface.

In real physical systems, multi-shocks propagate through a
multi-layer target for high-density fuel compression in ICF.37,38 Shock
waves leave bulk vortices behind that. Defects in a laser fusion target39

may also cause the generation of point-like vortices in bulk when
shocks pass through. The vorticity of these bulk vortices may not
always be weak, and the bulk vortices interact with the unstable inter-
face with nonuniform velocity shear. With these problems in mind, we
theoretically examine the nonlinear interaction between a nonuniform
vortex sheet and bulk point vortices in the present paper.

The numerical method such as the vortex method40 has devel-
oped as a high-precision computational method to investigate
Kelvin–Helmholtz instability (KHI).41,42 Extending this vortex
method to the fluid systems with density stratification, Matsuoka and
Nishihara43–45 and Sohn et al.46,47 succeeded in capturing the long-
time behavior of the vortex sheet motion with density stratification
such as the Rayleigh–Taylor instability (RTI) or RMI. These works
assume that there are no vortices in bulk. However, in problems of
practical importance, there exist bulk vortices as described above, and
they strongly interact with an interface or a vortex sheet.

The simplest way to model vortex interaction with an interface is
to assume the flow to be irrotational except at the location of point
vortices and the interface. Point vortices correspond to singular points
in the flow field, which mathematically have measure zero.48,49

Developing an analytical model for water waves by Ablowitz et al.,50

Curtis and Kalisch51 calculated the nonlinear motion of point vortices
with a free surface and a bottom, by use of a dealiased spectral method
and a high-order time-stepping scheme.51 They succeeded in captur-
ing various complicated loci of point vortices moving under the influ-
ence of a surface with a boundary. In these water wave problems, the
point vortices are under the air–water interface, and the initial vortex
sheet strength of the interface is assumed to be approximately zero or
extremely weak.

As with the above studies, we treat the potential flow problem,
i.e., the incompressible and irrotational flow. The interaction between
an interface with nonuniform velocity shear and bulk vortices has not
been treated in the conventional vortex method; however, it is possible,
and all physical quantities in bulk are computable if the flow is
assumed potential. In the current study, we extend the vortex method
for computations of interfacial dynamics to calculations of the whole
region and investigate the interaction of an interface with bulk point
vortices.

We show that when the point vortices approach the nonuniform
vortex sheet, they create a new velocity shear, and the velocity shear
produces nonuniform vortex sheet strength forming a vortex core,52

where the velocity shear takes its maximum value in absolute values.

Under certain conditions, the vortex core and the point vortex form a
pseudo-vortex pair on the interface. We also show that finer structures
such as satellite bubbles or satellite spikes appear on the interface due
to the nonlinear interaction between bulk vortices and a nonuniform
vortex sheet.

This paper is organized as follows. We provide the mathematical
model when an interface with nonuniform velocity shear and bulk
point vortices coexist in the system and derive the governing equations
to describe their motion in Sec. II. In Sec. III, we present some numeri-
cal results for the motion of the vortex sheet and point vortices in
RMI. Section IV is devoted to conclusion and discussions. The numer-
ical scheme adopted in the current study is provided in Appendix A.

II. DERIVATION OF GOVERNING EQUATIONS

In this section, we present a mathematical model to investigate
the interaction of bulk point vortices and a vortex sheet. We consider
a fluid interface with density and tangential velocity jumps in two-
dimensional inviscid and incompressible flows. We assume that the
fluid is irrotational except the interface and point vortices. Then, the
system is described by the potential flow, and the Bernoulli equation,
i.e., the pressure continuous condition holds at the interface24,43
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þ 1
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where /i (i¼ 1, 2) is the velocity potential that is related to the fluid
velocity ui as ui ¼ r/i and A is the Atwood number defined by
A ¼ ðq2 � q1Þ=ðq1 þ q2Þ, qi the fluid density, and we denote i¼ 1
(i¼ 2) as the lower (upper) fluid. Here, we assume that i¼ 1 (i¼ 2) is
the heavier (lighter) fluid. The Laplace equation �/i ¼ 0 (i¼ 1, 2)
holds in each fluid region i.

As will be shown below, we consider here an interface that has
initially sinusoidal velocity shear with the maximum value of the dif-
ference of tangential velocity between the lower and upper fluids, 2vlin,
with the wavenumber k. This initial velocity shear vlin corresponds to
the linear growth rate in RMI23,36

vlin ¼
q1dv

�
1 � q2dv

�
2

q1 þ q2
; (2)

in which dv�1;2 represents the transverse velocities immediately after
the shock-interface interaction in RMI.23,26,36 The length and time are
normalized by the wavenumber k and the initial shear velocity vlin
such as kx, ky, and kvlint.

The effects of compressibility are important in RMI when an
incident shock is strong and the transmitted and reflected shocks are
very close to the interface, i.e., in the earlier stage of the RMI
growth.36,53,54 Therefore, the linear growth rate depends on the com-
pressibility. A strong incident shock leaves large bulk vortices behind
the transmitted and reflected rippled shocks, and the large bulk vorti-
ces suppress the linear growth of RMI because the flow near the inter-
face generated by the bulk vortices is opposite to the flow caused by
the interface vorticity.34,36 This phenomenon motivates our present
work. However, as the shocks separate from the interface, the pertur-
bations of the pressure and density behind the rippled shocks will
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decay in time.36,55 Then asymptotically, the perturbations become
incompressible independent of the incident shock intensity. Therefore,
we restrict ourselves here to the incompressible flows for the nonlinear
interaction between a nonuniform vortex sheet and bulk vortices. The
vortex sheet model was validated by comparing its nonlinear interface
dynamics with the shocked interface with the use of two-dimensional
hydrodynamic simulations.24 The effect of the compressibility can be
incorporated into the linear growth rate by using the full expression of
that of which concrete formula is given by, e.g., Eq. (3) in Ref. 28 for a
case that a shock is reflected or Eq. (3) in Ref. 56 for a case that a rare-
faction wave is reflected, instead of Eq. (1) in the present paper.

We parameterize points on the interface x ¼ X as

Xðe; tÞ ¼ Xðe; tÞ;Yðe; tÞ½ �;

using a Lagrangian parameter e (�p � e � p). Now we assume the
periodicity in the x direction. When bulk vortices exist in the system,
the vortex induced fluid velocity W at an arbitrary point x ¼ ðx; yÞ is
given as the sum of the two velocities

W ¼W s þWp; (3)

in which Ws ¼ ðWs;x;Ws;yÞ is the velocity by the contribution from
the interface

Ws;xðx; yÞ ¼ �
1
4p

ðp

�p

cðe0; tÞseðe0; tÞsinhðy � Yðe0; tÞÞ
coshðy � Yðe0; tÞÞ � cos ðx � Xðe0; tÞÞ de

0;

Ws;yðx; yÞ ¼
1
4p

ðp

�p

cðe0; tÞseðe0; tÞ sin ðx � Xðe0; tÞÞ
coshðy � Yðe0; tÞÞ � cos ðx � Xðe0; tÞÞ de

0;

(4)

where c ¼ u1 � u2, and c ¼ c � t ¼ @C=@s denotes the (true) vortex
sheet strength derived from the circulation C � /1 � /2, in which s is
the arc length and t is the unit tangential vector of the interface,
respectively. Here, the subscript e denotes the differentiation with
respect to e and se ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
e þ Y2

e

p
. We take the principal value of the

integral (4) when the point (x, y) is on the interface: ðx; yÞ ¼ ðX;YÞ.
Equation (4) is called the Birkhoff–Rott equation57–59 if (x, y) is on the
interface and it provides the velocity of a vortex sheet.

On the other hand, Wp ¼ ðWp;x;Wp;yÞ is the velocity by the
contribution from bulk vortices given by

Wp;xðx; yÞ ¼ �
1
4p

XN
j¼1

cp;jsinhðy � yp;jðtÞÞ
coshðy � yp;jðtÞÞ � cos ðx � xp;jðtÞÞ

;

Wp;yðx; yÞ ¼
1
4p

XN
j¼1

cp;j sin ðx � xp;jðkÞÞ
coshðy � yp;jðtÞÞ � cos ðx � xp;jðtÞÞ

;

(5)

where cp;j and N denote the strength of point vortex j and the number
of point vortices, respectively. Here, although the point vortex has mea-
sure zero from its definition, we have defined its strength using the
wavelength of the initial sinusoidal vortex sheet following Cummings.6

Namely, the strength of point vortex j is defined as cp;j ¼ Cp;j=k, where
Cp;j is the circulation of point vortex j and k ð¼ 2pÞ is the normalized
wavelength of the initial perturbation of the vortex sheet. Traditionally,
the circulation Cp;j is called the strength of point vortex j.

48

We define the interfacial velocity uþ of a Lagrangian point
labeled by e as

uþðe; tÞ ¼Wjx¼X þ
~ac
2
t; (6)

where Wjx¼X � ðU ;VÞ corresponds to the average velocity ðu1
þu2Þ=2 at the interface and ~a is an artificial parameter depending on
the Atwood number A. There is arbitrariness on how to select the tan-
gential velocity of the interface, and the parameter ~a controls the mag-
nitude of the tangential velocity. This parameter was first introduced
by Pullin.60 When we choose ~a ¼ A, the tangential component of the
interfacial velocity uþ becomes a weighted average velocity of two
fluids

uþ ¼ q1u1 þ q2u2
q1 þ q2

:

Sometimes, the large value of A causes clustering of the Lagrange
points in the neighborhood of vortex cores, by which the computation
breaks down. To avoid this and perform long time computations,
larger ~a than ~a ¼ A is often selected.

Equating uþ with the evolution of the interface,61 we have the
interfacial velocity for the Lagrangian motion as

dX
dt
¼Wjx¼X þ

~ac
2
t; (7)

where

d
dt
¼ @

@t
þ uþ � r;

is the Lagrangian derivative in the frame moving with the interface.
A point vortex velocity is given by substituting its location

x ¼ xp;i into (3)

dxp;i
dt
¼Wsjx¼xp;i þWpjx¼xp;i i ¼ 1; 2;…;Nð Þ; (8)

where the term of j¼ i (own contribution) in the integral (5) is
excluded from the summation.

Using the relation C ¼ /1 � /2, we rewrite Eq. (1) as

dC
dt
¼ 2A

dU
dt
� AW �W þ Aþ 2~a

4
c � c� ~aAc �W; (9)

where U ¼ ð/1 þ /2Þ=2. Differentiating (9) with respect to e, we
obtain the following Fredholm integral equation of the second kind

dc
dt
¼ 2A

se
Xe

dU
dt
þ Ye

dV
dt

� �

�ð1þ ~aAÞc
s2e

ðXeUe þ YeVeÞ þ
Aþ ~a
4se
ðc2Þe: (10)

Solving Eqs. (7), (8), and (10) simultaneously by taking into
account Eqs. (4) and (5), we can determine the motion of the interface
and bulk point vortices, including whole velocity field.

Here, we mention the extension of the present model to MHD
flows. A theoretical model15 has been proposed to describe fully non-
linear dynamics of interfaces in two-dimensional MHD flows based
on an idea of the nonuniform current-vortex sheet. The extension of
the present model is possible in a similar way by introducing point
current-vortices (point vortices with line-current) that correspond to
point vortices in pure hydrodynamic flows, and by assuming the
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current and vorticity free conditions at t¼ 0 in the bulk except the sin-
gular points, xp;i (i ¼ 1; 2;…), where point current-vortices exist.
Unlike neutral gasses, the vorticity and the line-current density of the
point vortices are not conserved in MHD flows; therefore, we need to
calculate the temporal evolution of both the strength of point vortices
and the strength of line current together with the vortex sheet strength
and the current sheet strength of the interface. Details of the extension
to MHD flows are beyond the scope of this paper, and we will present
elsewhere.

III. NUMERICAL RESULTS

In numerical calculations, all physical quantities are normalized
by the wavenumber k and the initial velocity shear of the vortex sheet
vlin given by Eq. (2) so that they are dimensionless. From now on, the
dimensionless variables space kx, time kvlint, circulation of vortex
sheet kC=vlin, vortex sheet strength c=vlin, circulation of point vortex j
kCp;j=vlin, and strength of point vortex cp;j=vlin (j ¼ 1; 2;…;N) are
used as x, t, C, c, Cp;j, and cp;j (j ¼ 1; 2;…;N). In general, RMI veloc-
ity shear at the corrugated interface and bulk vortices depends on the
strength of an incident shock, the initial density ratio of two fluids, a
corrugation amplitude of an interface, and thermodynamic properties
of the fluids. However, in our model, the fluid velocity is normalized
by the initial velocity shear at the interface induced by RMI, which is
equivalent to the linear growth rate of RMI. Therefore, the dependence
of the velocity on such initial conditions does not appear explicitly in
the model.

We fix the Atwood number A as A ¼ �0:2 (q2 < q1) through-
out this section. Here, we select the artificial parameter ~a in Eqs. (6),
(7), and (10) as ~a ¼ A2. This value was first selected by Kerr62 for long
time computations of vortex sheets with finite Atwood numbers. The
regularized parameter d in Eq. (A1) is chosen as d ¼ 0:15.43 Krasny42

investigated d dependence of the results in detail and concluded
that an appropriate value of d is in the range d ¼ 0:1 � 0:2. The value
d ¼ 0:15 is adopted so as to be best suited for experiments by
Matsuoka and Nishihara43 and Jacobs and Sheeley63 and the results by
the hydrodynamic simulations24 and the magnetohydrodynamic sim-
ulations.15 When we select d ¼ 0:2, the roll-up of the vortex sheet
becomes considerably weak but there is not much of a difference in
the results between d ¼ 0:1 and d ¼ 0:15.43

The threshold value dlim in Eq. (A4) is selected as dlim ¼ 0:125
throughout the calculations in this section. This value is chosen as
about five times larger than the initial average interval of the
Lagrangian points (2p=N , N¼ 256 the number of initial grid points).
If we select smaller dlim, the computational time becomes very long to
obtain the same results, and if we select larger dlim, we cannot obtain
sufficient spatial resolution. For details on the numerical schemes
adopted here, refer to the Appendix.

A. Interfacial dynamics of the Richtmyer–Meshkov
instability without point vortices

In this subsection, we provide the interfacial dynamics of single-
mode pure RMI without point vortices for reference to subsequent dis-
cussions. Since RMI is essentially driven by the nonuniform velocity
shear left by the transmitted and reflected shocks at the interface,26,36

we consider here a sinusoidal velocity shear at the interface without
spatial perturbation as an initial condition. Under the above normal-
izations, the initial condition of the interface is given as follows:43

x e; 0ð Þ ¼ e; �p � e � pð Þ;
y e; 0ð Þ ¼ 0;

c e; 0ð Þ ¼ �2 sin e;
(11)

where the factor –2 in cðe; 0Þ is due to the normalization of the maxi-
mum difference of the tangential velocity of the vortex sheet at
e ¼ 6p=2.

Figure 1 shows the velocity field and the interfacial structure of
single-mode RMI without point vortices, where the velocity field is cal-
culated by Eq. (3). As given by the initial condition (11), the vortex
sheet strength is positive in x< 0 (c ¼ 2 at x ¼ �p=2), while it is neg-
ative in x> 0 (c ¼ �2 at x ¼ p=2). The spike that grows on RMI
eventually forms a mushroom and the tips of the mushroom umbrella
roll up with time.43,63 The vortex sheet strength c at time t¼ 5 takes its
maximum value (in absolute value) at the center of the mushroom
umbrella, which we refer to the vortex cores52 here. For the initial
condition (11), the vortex cores always appear in the neighborhood of
x ¼ 6p=2 (e ¼ 6p=2), in which the vortex sheet strength with
positive sign (counterclockwise rotation) appears at the left core
(x � �p=2), while the sheet strength with negative sign (clockwise
rotation) appears at the right core (x � p=2).

The interfacial structure at the fully nonlinear stage (t¼ 12.176)
is presented in Fig. 2, where the number of grid points N increases
from N¼ 256 (t¼ 0) to N¼ 1030 (t¼ 12.176) per wavelength. In the
figure, a period of two wavelengths (k ¼ 2p) is depicted. It should be
noted that the number of mushrooms, which corresponds to the num-
ber of bubbles and spikes, is only one in a period for this single-mode
initial condition. Similar interfacial structures were experimentally
observed by Jacobs and Sheeley.63 We compare the results shown in
Figs. 1 and 2 to the vortex sheet dynamics with bulk point vortices in
Subsection III B.

B. Interaction between the vortex sheet and bulk point
vortices

In this subsection, we consider the nonlinear interaction of the
nonuniform vortex sheet with bulk point vortices. For example, in
ICF37,38 multi-shocks propagating through a nonuniform multi-layer
target may leave bulk vortices behind the shocks, and nonuniform
interfaces that are unstable for RMI may interact with these bulk vorti-
ces. It is also well known even in linear RMI that the interaction of an

FIG. 1. Interfacial structures with the colored scale of the vortex sheet strength c
and the velocity fields with the initial condition given by Eq. (11), where the arrows
indicate velocity fields; left figure at the early stage (t¼ 1) and the right one at the
fully nonlinear stage (t¼ 5), respectively.
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incident shock with a corrugated interface induces ripples on the
shock fronts of both the transmitted and reflected shock waves. Also,
due to the conservation of tangential velocity at the rippled shock
fronts, transverse velocity perturbations are generated inside the com-
pressed fluids, which account for vorticity generation in the
bulks.10,28,33,34,36 In the present work, we assume that the bulk vortices
are given by point vortices for simplicity. The spatial distribution of
the bulk vortices was clearly visualized, for instance, in Fig. 3 of
Cobos-Campos andWouchuk.34 For our initial conditions (11), where
the normalized sheet strength c has a maximum (positive) value at
x ¼ �p=2 and a minimum (negative) value at x ¼ p=2, the positions
of the bulk vortices approximately correspond to x � 6p=2 and
y � p; 3p; � � �, and�p=5;�4p=5; � � �, in which the positive and neg-
ative vortices appear alternately in the y direction.34,35

Here, for simplicity, we set the initial distribution of four and
eight point vortices close to the vortex sheet so that two (four) point
vortices are placed over the vortex sheet and the other two (four) vorti-
ces under the sheet for the case of four (eight) vortices. The configura-
tion of point vortices and their signs are related to the linear
RMI discussed above. Case 1 and Case 4 below correspond to the

configuration obtained by the linear analysis of Cobos-Campos and
Wouchuk.34,35 Case 2 and Case 3 are adopted to compare with those
cases, which are possible locations in experiments of ICF.

The initial position of the four-vortex problem is given as

xp;1ð0Þ ¼ �
p
2
; yp;1ð0Þ ¼

p
4
; cp;1ð0Þ ¼ c1;

xp;2ð0Þ ¼ �
p
2
; yp;2ð0Þ ¼ �

p
4
; cp;2ð0Þ ¼ c2;

xp;3ð0Þ ¼
p
2
; yp;3ð0Þ ¼

p
4
; cp;3ð0Þ ¼ c3;

xp;4ð0Þ ¼
p
2
; yp;4ð0Þ ¼ �

p
4
; cp;4ð0Þ ¼ c4:

(12)

For the eight-vortex problem, we set the initial position of four point
vortices from ðp; 1Þ to ðp; 4Þ, which are closer to the vortex sheet, as
the same as Eq. (12), and the other four vortices from ðp; 5Þ to ðp; 8Þ,
which are outside of the above four vortices, are set to be

xp;5ð0Þ ¼ �
p
2
; yp;5ð0Þ ¼

p
2
; cp;5ð0Þ ¼ c5;

xp;6ð0Þ ¼ �
p
2
; yp;6ð0Þ ¼ �

p
2
; cp;6ð0Þ ¼ c6;

xp;7ð0Þ ¼
p
2
; yp;7ð0Þ ¼

p
2
; cp;7ð0Þ ¼ c7;

xp;8ð0Þ ¼
p
2
; yp;8ð0Þ ¼ �

p
2
; cp;8ð0Þ ¼ c8:

(13)

Here, we consider the following four initial distributions for the
strength of point vortices. The oscillating rippled shocks generate bulk
vortices with the opposite sign of the sheet strength on the interface
within their first period of oscillation, which corresponds to the first
one (Case 1, four-vortex problem) given by

c1 ¼ c2 ¼ �c0; c3 ¼ c4 ¼ c0: (14)

It may be interesting to investigate the interface dynamics with differ-
ent configuration of the point vortices and interface velocity shear
such as (Case 2, four-vortex problem)

c1 ¼ c4 ¼ c0; c2 ¼ c3 ¼ �c0; (15)

and (Case 3, four-vortex problem)

c1 ¼ c2 ¼ c0; c3 ¼ c4 ¼ �c0: (16)

In Case 2, there are point vortices with different signs across the inter-
face. In Case 3, the signs of the sheet strength and the normalized
point vortex strength are the same, and they are located in one side, in
which they have positive values in x< 0 and negative values in x> 0.
These three cases result in quite different dynamics of the point vorti-
ces and interfacial structure as will be shown later. The last case is
(Case 4, eight-vortex problem)

c5 ¼ c6 ¼ c0; c7 ¼ c8 ¼ �c0: (17)

For Case 4, the strengths from c1 to c4 are the same as those in
(14), Case 1. Here, we fix the initial strength c0 as c0 ¼ 1. This point
vortex strength is half the initial vortex sheet strength given by Eq.
(11). The position of the point vortex and the sign of the strength in
Case 4 are the closest one in the linear RMI.34 The oscillating rippled
shocks decay as they propagate away from the interface36 and there-
fore, the vorticity of bulk vortices also decreases as the distance from

FIG. 2. Interfacial structure at t¼ 12.176, where the final grid number N¼ 1030
per wavelength. A period of two wavelengths is depicted in the figure.

FIG. 3. Temporal evolution of the absolute value of the maximum sheet strength c.
Initial condition (11) (black line), Case 1 [initial conditions defined by Eq. (14), green
line], Case 2 [initial conditions defined by Eq. (15), blue line], Case 3 [initial condi-
tions defined by Eq. (16), red line], and Case 4 [initial conditions defined by Eq.
(17), pink line].
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the interface becomes large.34,35 However, we set them to the same
value for simplicity in the current study.

In the initial condition given by Eq. (14) (Case 1), the point vorti-
ces are set so that the sign of the point vortices is opposite to that of
the vortex core of the sheet (two vortices at x ¼ �p=2 are negative
sign and two vortices at x ¼ p=2 are positive sign). On the other
hand, the initial condition (15) (Case 2) corresponds to the case that
the strength of the point vortices locating over the vortex sheet is
opposite to the condition (14). In the initial condition (16) (Case 3),
the sign of the point vortices is the same as the core of the sheet (two
vortices at x ¼ �p=2 are positive sign and two vortices at x ¼ p=2 are
negative sign). In the initial condition given by Eq. (17) (Case 4), the
strength of the four point vortices closer to the vortex sheet is the same
as the one in Case 1, while the location of the other four point vortices
far from the vortex sheet is the same as the one in Case 3.

We present the temporal evolution of the absolute value of the
maximum sheet strength Max jcj in Fig. 3. The figure shows that the
vortex sheet strength with point vortices grows much faster and
becomes much larger than that without point vortices (black line) in
the nonlinear stage. The nonlinear interaction of point vortices with a
nonuniform vortex sheet generally increases the strength of the sheet,
and its maximum values depend on the signs of the strengths of point
vortices. We discuss this for each case below.

1. Motion of the vortex sheet and point vortices with the
strength of the opposite sign to the vortex cores (Case 1)

When the bulk point vortices are set to the opposite sign of the
sheet strength [refer to the initial condition (14)], the point vortices
induce the velocity shear on the sheet so that the sheet strength is
enhanced as the point vortices approach the sheet. The rapid increase
in the sheet strength was seen at around time t¼ 2, shown by the
green line in Fig. 3. As a result, the point vortex forms a new vortex
core with the increased sheet strength and a new type of the vortex
pair, and a new (satellite) mushroom is created. Figure 4 shows this
process. The blue (red) point vortices approach the vortex sheet with
red (blue) color while rotating (t¼ 1) and form new vortex cores with
strong sheet strengths, in which process, the vortex sheet with strong
sheet strength splits into four cores (two in the neighborhood of spike
and the other two in the neighborhood of bubbles). These vortex cores
make pseudo-vortex pairs with those point vortices, and new mush-
rooms of which number coinciding with that of point vortices appear
on the sheet (t ¼ 3� 5). The pseudo-vortex pair consists of a point
vortex and a sheet vortex core although their strengths are not the
same in magnitude.

As seen in the right figure of Fig. 5, when the vortex sheet is
absent, the point vortex pairs with the same sign rotate. Since the vor-
tex pairs are not isolated, the rotation of point vortices is not a perfect
circle but slightly elongated in the y-direction. On the other hand,
when the nonuniform vortex sheet exists, the vortices are forced to
rotate in the opposite direction to that of the right figure due to RMI
flow as depicted in the left figure of Fig. 5 (also refer to the direction of
the velocity field in Fig. 4, t ¼ 1� 3) for the initial conditions given
by Eqs. (11) and (14). Namely, the velocity of the background fluid
where there are point vortices is larger than the rotation velocity
induced by the vortex pairs. Moreover, when a point vortex
approaches the vortex sheet, the point vortex forms a pseudo-vortex

pair with the vortex core of the opposite sign, not with another point
vortex, as described above.

In order to make the positions of the newly created bubbles and
spikes clearer, we show the interfacial structure at the final stage
(t¼ 10.7765) over two periods in Fig. 6, where the number of grid
points N increases from N¼ 256 (t¼ 0) to N¼ 1784 (t¼ 10.7765) per
wavelength. We see that the interfacial structure becomes extremely
convoluted due to the presence of point vortices compared to that
without point vortices (refer to Fig. 2). It should be noted that there

FIG. 4. Interfacial structures with the colored scale of the vortex sheet strength and
the velocity fields with the initial condition given by Eq. (14), where the upper left
and right figures show t¼ 1 and t¼ 2, and the lower left and right t¼ 3 and t¼ 5,
respectively. The red and blue points denote the strength of point vortices having
positive (c0 ¼ 1, counterclockwise rotation) and negative (c0 ¼ �1, clockwise
rotation) signs, respectively.

FIG. 5. Loci of point vortices with the nonuniform vortex sheet (left) and without the
vortex sheet for the initial condition (14) (right), where the colors are the same as
those in Fig. 4, and both figures take the same period of time (0 � t � 10:7765).
The markers of a white circle and filled circle denote the initial and final positions of
point vortices, respectively.
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are five mushrooms created (four satellite mushrooms created by the
point vortices stated above and one large mushroom originally exists
due to RMI). We can see the number of bubbles and spikes generated
in one period in this figure. The point vortices in the region of y< 0 in
Fig. 6 were initially located in the lighter fluid. A bubble of light fluid
surrounding the point vortex enters a region of heavier fluid, where
the bubble region forms a mushroom shape. On the other hand, a
spike of heavy fluid surrounding the point vortex in the region of
y> 0 enters a region of lighter fluid forming mushroom spike with
heavier fluid as seen in the conventional RMI.

It is interesting to note that two new pairs of the point vortices
might be formed at this time, the first pairs are in the neighborhood of
x ¼ 0;62p and y ¼ �1, and the other pairs are in the neighborhood
of x ¼ 6p and y¼ 1. We denote a part (the ones in the neighborhood
of x¼ 0, y ¼ �1 and x ¼ 6p, y¼ 1) of those as thin green circles in
Fig. 6. The vortices in the former pairs are initially in the lighter fluid,
i.e., above the interface, while the vortices in the latter pairs are initially
in the heavier fluid, i.e., below the interface. The latter pairs created in
the neighborhood of y¼ 1 are due to the periodic boundary condition
of the system employed.

2. Motion of the vortex sheet and point vortices with
different signs between the vortex cores (Case 2)

Figure 7 shows the interfacial structures, giving the velocity field
and the color scaled velocity shear along the interface at t ¼ 1; 2; 3,
and 5 for the initial condition (15), in which the signs of the point vor-
tices over the sheet (the lighter fluid) are opposite to those in the initial
condition (14) (refer to the figures t¼ 1 in Figs. 4 and 7). In this case,
two vortices, ðp; 1Þ and ðp; 2Þ [or ðp; 3Þ and ðp; 4Þ] form a pair, which
move almost parallel to the x axis in the absence of the vortex sheet, at
least up to the time t � 7, as shown in the right panel of Fig. 8. The
motion of two point vortices ðp; 2Þ and ðp; 4Þ in the heavier fluid at
the early stage is the same as its background fluid motion due to RMI.
Therefore, their distance becomes closer, and they form a new pair
and go upwards with the heavier fluid.

Since the sign of these point vortices ðp; 2Þ and ðp; 4Þ (in the
heavier fluid) is opposite to that of the velocity shear on the sheet,
these vortices make the pseudo-vortex pairs with the vortex cores on
the sheet (t¼ 2) approach the sheet, and two local mushrooms are cre-
ated on both sides of the spike of the original mushroom by RMI
(t ¼ 2� 5 in Fig. 7). The other two point vortices ðp; 1Þ and ðp; 3Þ ini-
tially located over the sheet move downwards with the background

lighter fluid separating each other as shown in Figs. 7 and 8. Even
when the vortices get close to the sheet, they do not induce vortex cores
because they have the same signs with the velocity shear on the sheet.
For this case, the point vortices and the sheet begin to rotate (as found
in the case of Subsection III B 3). As a result, the lighter fluid with these
vortices penetrates the heavier fluid as seen at t¼ 5 in Fig. 7.

Three mushrooms are finally formed (the original large mush-
room and two satellite mushrooms created on both sides of the spike
of the original mushroom) for the initial condition (15). It should be
noted that the maximum strength of the vortex sheet Max jcj is larger
than other two cases of Case 1 and Case 3 as shown by the blue line in
Fig. 3. When t 	 3, all of the point vortices seem to be trapped in or
on the interface, and they stay in the neighborhood of the vortex sheet

FIG. 6. Interfacial structure at t¼ 10.7765, where the final grid number N¼ 1784
per wavelength. A period of two wavelengths is depicted in the figure.

FIG. 7. Interfacial structures with the colored scale of the vortex sheet strength and
the velocity fields with the initial condition given by Eq. (15), where the upper left
and right figures show t¼ 1 and t¼ 2, and the lower left and right t¼ 3 and t¼ 5,
respectively. The colors of point vortices are the same as those in Fig. 4.

FIG. 8. Loci of point vortices for the initial condition (15), where the colors, and
markers of the initial and final positions are the same as those in Fig. 5. Two figures
take the same period of time (0 � t � 7:23).
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for a relatively long time as found in Figs. 7 and 9. This indicates that
the normal velocity of the point vortices coincides with that of the vor-
tex sheet as they approach the sheet.

3. Motion of the vortex sheet and point vortices with the
strength of the same sign to the vortex cores (Case 3)

We show the interfacial structures with the colored scale of the
vortex sheet strength and the velocity fields at t¼ 1 and 2 in Fig. 10 for
the case that the initial point vortices are set with the same signs as the
vortex sheet strength [refer to the initial condition (16)]. The direction
of the rotation of the point vortices in the absence of the vortex sheet
is the opposite of that in Case 1, and it is also the same as that of the
background fluid motion due to RMI. Two point vortices ðp; 2Þ and
ðp; 4Þ in Eq. (12) under the sheet (the side of heavier fluid) at t¼ 0 are
then accelerated upwards by the flow of RMI, while two point vortices
ðp; 1Þ and ðp; 3Þ in Eq. (12) over the sheet at t¼ 0 are accelerated
downwards. It should also be noted that the distance between the
point vortices ðp; 2Þ and ðp; 4Þ becomes smaller, and they become a
new vortex pair. As a result, their upward movement is further acceler-
ated. The other new pair of ðp; 1Þ and ðp; 3Þ formed due to the peri-
odic boundary condition is accelerated to downwards. This situation is
found in the orbits of point vortices in Fig. 11, where the point vortices
without the interface (right figure) hardly move in this period of time.

When t> 2, the bulk velocity induced by RMI, pulling sideways
the vortex pair, becomes larger than the velocity that the pair moves
upwards; therefore, the two vortices ðp; 2Þ and ðp; 4Þ are forced to sep-
arate, and finally, they reach the interface and cross it. At around this
time, the other pair of ðp; 1Þ and ðp; 3Þ, which are initially located over
the sheet (the side of lighter fluid), also reaches the interface. However,
as we see from Eqs. (7) and (8), the normal velocity of the point vorti-
ces coincides with that of the vortex sheet at the interface when the
sheet is parameterized with a continuous variable; namely, the point
vortices cannot cross the interface. We can continue to calculate for
t> 2 as well as Case 1 and Case 2; however, the result that the point
vortices cross the interface is inconsistent with the immiscible condi-
tion adopted here. Therefore, we abort the computation at t¼ 2 for
Case 3.

4. Interaction of the vortex sheet and eight point
vortices (Case 4)

Figure 12 shows the interfacial structures with the colored scale
of the vortex sheet strength and the velocity fields at t ¼ 1; 2; 3, and 5
for the initial condition (17). Since the initial location of the four point
vortices closer to the vortex sheet is the same as the one in Case 1, the
motion of both the point vortices and the vortex sheet is very similar
to that found in Fig. 4 in the early nonlinear stage (1 � t � 2), in
which these four vortices make the pseudo-vortex pairs with the vortex
cores. Since the four vortices initially located outside of the above four
vortices have the same signs as their neighboring cores initially, they
rotate the satellite mushrooms as also found in Fig. 13. The maximum
sheet strength Max jcj (refer to the pink line of Fig. 3) appears at the
core of the satellite mushrooms on either side of the original spike,
where these cores make the pseudo-pairs with the point vortices origi-
nally located in the heavier (under the sheet) fluid. The point vortices
forming the pseudo-vortex pairs in the region of y> 0 at t¼ 5 in Fig.
12 are accelerated downwards due to RMI flow and the presence of
the point vortices with the same signs as the vortex cores, while the
point vortices originally located in the lighter (over the sheet) fluid
make an incomplete pseudo-pair with the lower weak vortex cores at
t¼ 5.

Figure 14 shows the loci of point vortices with the initial condi-
tion (17). The motion described above is depicted in the left figure of
Fig. 14. The two point vortices initially located far from the sheet in

FIG. 9. Interfacial structures with the colored scale of the vortex sheet strength and
the velocity fields with the initial condition (15) in the region �p � x � 0 at fully
nonlinear stage, where the left, middle, and right figures show t¼ 5.73 (grid number
N¼ 546), t¼ 6.48 (N¼ 708), and t¼ 7.23 (N¼ 886), respectively.

FIG. 10. Interfacial structures with the colored scale of the vortex sheet strength
and the velocity fields with the initial condition given by Eq. (16), where the left and
right figures show t¼ 1 and t¼ 2, respectively. The colors of point vortices are the
same as those in Figs. 4 and 7.

FIG. 11. Loci of point vortices for the initial condition (16), where the colors, and
markers of the initial and final positions are the same as those in Figs. 5 and 8.
Two figures take the same period of time (0 � t � 2).
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the heavier fluid [ðp; 6Þ and ðp; 8Þ] form a vortex pair with the two
vortices initially located closer to the sheet in the lighter fluid [ðp; 1Þ
and ðp; 3Þ] in the neighborhood of the original spike. On the other
hand, the two point vortices initially located far from the sheet in the
lighter fluid [ðp; 5Þ and ðp; 7Þ] form a vortex pair with the two vortices
initially located closer to the sheet in the heavier fluid [ðp; 2Þ and
ðp; 4Þ] in the neighborhood of the original bubble. This vortex pair
moves downwards as found at t¼ 5 in Figs. 12 and 13. The exchange
of the vortex pair is caused by the fact that a point vortex in the origi-
nal pair is trapped in the neighborhood of the interface to form the
pseudo-vortex pairs. This kind of exchange is not found in the motion
of a small number of vortices, such as the four-vortex problem
described in Subsections III B 1–IIIB 3.

IV. CONCLUSION AND DISCUSSIONS

We have developed a theoretical model to describe the nonlinear
interaction of a nonuniform vortex sheet with bulk point vortices, tak-
ing RMI as an example. Our model and numerical method can capture
the complicated behavior of the vortex sheet and point vortices,
including the fluid motion in bulk. We found that motion of a vortex
sheet coexisting with point vortices is extremely different from that
without point vortices. This indicates that the motion of a vortex sheet
is unstable for an external field such as the motion of point vortices.

The strength of the vortex sheet increases faster and becomes
larger than that of pure RMI without point vortices as the point vorti-
ces approach the sheet. A point vortex approaching a nonuniform vor-
tex sheet induces a vortex core on the sheet and forms a pseudo-vortex
pair with that core, only if the strength of the point vortex has the
opposite sign of the local sheet strength and is large enough. In a
pseudo-vortex pair, the strength of a point vortex and the sheet
strength of a vortex core is not the same in magnitude. The pseudo-
vortex pair generates a local satellite mushroom profile on the inter-
face. It is also observed that bubbles of lighter fluid surrounding point
vortices enter the region of heavier fluid forming mushroom-shaped
bubbles.

We have treated the problem of four and eight point vortices in
the current study for simplicity; however, the calculation is possible for
any number of point vortices. As the number of point vortices
increases, the more complicated interfacial motion appears. The
method presented here is also applicable to the interaction between an
interface and point vortices in capillary-gravity waves, if we change the
initial condition for the interface and take the surface tension effect
into account.64 Those calculations, including the ones for higher
Atwood numbers, will be reported elsewhere.
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FIG. 12. Interfacial structures with the colored scale of the vortex sheet strength
and the velocity fields with the initial condition given by Eqs. (13) and (17), where
the upper left and right figures show t¼ 1 and t¼ 2, and the lower left and right
t¼ 3 and t¼ 5, respectively. The colors of point vortices are the same as those in
Figs. 4, 7, and 10.

FIG. 13. Interfacial structure at t¼ 6, where the final grid number N¼ 508 per
wavelength. A period of two wavelengths is depicted in the figure.

FIG. 14. Loci of point vortices for the initial condition (17), where the colors, and
markers of the initial and final positions are the same as those in Figs. 5, 8, and 11.
Two figures take the same period of time (0 � t � 6).
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APPENDIX: NUMERICAL SCHEMES

In this appendix, we provide the numerical schemes using the
vortex method.15,42,43,46,47,65 The discretized equation of (4), which
gives the interfacial velocity, is

Ws;x;j ¼ �
h
4p

XN�1
m ¼ 0

m 6¼ j

sinhðYj � YmÞcmse;m
coshðYj � YmÞ � cos ðXj � XmÞ þ d2

;

Ws;y;j ¼
h
4p

XN�1
m ¼ 0

m 6¼ j

sin ðXj � XmÞcmse;m
coshðYj � YmÞ � cos ðXj � XmÞ þ d2

;

(A1)

where N is the grid number in the discretization which increases as
the vortex sheet grows, h ¼ 2p=N , and d is a regularized parameter
to avoid the divergence of the integral (4),42 When d 6¼ 0, the calcu-
lation of Eq. (A1) is called the vortex (blob) method.40 Here, the
variables Xj � XðejÞ; Yj � YðejÞ and cj � cðejÞ (ej ¼ 2pj=N) are
expanded into discrete Fourier series

Xj ¼ ej þ
XN=2

m¼�N=2
X̂me

imej ;

Yj ¼
XN=2

m¼�N=2
Ŷ me

imej ;

cj ¼
XN=2

m¼�N=2
ĉme

imej j ¼ 0;…;N � 1ð Þ;

(A2)

with their spectral derivatives

Xe;m ¼ 1þ
XN=2

m¼�N=2
imX̂me

imej ;

Ye;m ¼
XN=2

m¼�N=2
imŶme

imej ;

ce;m ¼
XN=2

m¼�N=2
imĉme

imej ;

(A3)

where Xe;m ¼ ð@X=@eÞm and so on. Note that the derivatives (A3)
do not involve errors which necessarily arise in derivative represen-
tations by usual difference approximations. The expansion (A2) is
necessary to apply the Fourier filter introduced by Krasny41,42 to
eliminate the higher harmonics, where we set the filter level as
10�13. The spectral derivative (A3) is introduced to solve Eq. (10)
with high accuracy.

There are some methods to solve Eq. (A1) together with Eq.
(10).15,43,46,62 Here, we adopt a point insertion scheme presented by
Sohn et al.46 This method was first adopted for the calculation of
the vortex sheet in KHI by Krasny42 and improved by Sohn et al. to
be able to apply to the computation of the vortex sheet with density
stratification such as RMI or RTI. The same point insertion scheme
is also applicable to the 3D RMI or RTI with cylindrical geometry.65

The algorithm is as follows:65

1. At time tnþ1, we calculate �Xnþ1
j � jXnþ1

jþ1 � Xnþ1
j j and

�Ynþ1
j � jYnþ1

jþ1 � Ynþ1
j j, where ðXn

j ;Y
n
j Þ are discretized

coordinates of X ¼ ðX;YÞ at time tn (j ¼ 1;…;N ; N, the grid
number). Then, we require that

d �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�Xnþ1

j Þ2 þ ð�Ynþ1
j Þ2

q
< dlim; (A4)

where dlim is a threshold value in the distance d on the interface.
If the distance d does not satisfy the requirement (A4), we insert
a point Xn

p ¼ ðXn
p ;Y

n
p Þ in the middle of Xn

j and Xn
jþ1 by placing it

using the cubic spline (refer to Fig. 15). Note that although the
requirement is calculated at time tnþ1, the interpolation itself is
performed at time tn.

2. We interpolate the (true) vortex sheet strength cnp (this is not the
strength cp;j of point vortex j used in the body) at the new point Xn

p .
3. We compute dcnp=dt and the velocity Xn

t;p by using Eqs. (10)
and (A1).

4. We advance all marker points Xn
j ! Xnþ1

j .

We perform from the above 1 to 4 at each time step. This is a
kind of (time) corrective scheme associated with a point insertion.

Denoting the integrands in Eq. (A1) as f, the integrals (A1) are
calculated by the trapezoidal rule

P:V:
ðeþp

e�p
f ðe; e0Þde0 ! h

XN=2
k ¼ �N=2þ 1

k 6¼ 0

f ðkhÞ;

when the grid number N is even, and

P:V:
ðeþp

e�p
f ðe; e0Þde0 ! h

XðNþ1Þ=2
k ¼ �ðN þ 1Þ=2þ 1

k 6¼ 0

f ðkhÞ;

for odd N (this situation can occur during the interpolation). The sum-
mation is taken symmetrically from the nearest point to the farthest
point with respect to the singular point e¼ 0 to avoid the round-off
error. This requirement comes from the fact that we adopt the cubic
spline in the interpolation. If we use the Lagrange interpolation, we
can compute the singular integral with the conventional trapezoidal
rule without considering the order of the summation.

The integral equation (10) is solved iteratively under some tol-
erance level (10�11 here). Temporal integration is calculated by the
fourth-order Runge–Kutta method. Since the grid number N
increases as the vortex sheet evolves, we need to vary the time step
in accordance with that. In the calculation, we set the time step �t
so that �t ¼ �t0=2m�1 for N 	 2ðm�1ÞN0 (m ¼ 1; 2; 3 � � �), where
N0 and �t0 are the grid number and time step at t¼ 0, respectively.
We select N0 ¼ 256 and �t0 ¼ 0:001 throughout the present paper.

FIG. 15. Schematic figure of the point insertion scheme.
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The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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