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Abstract 

An experimental and theoretical study was conducted to investigate the electrowetting on dielectric 

(EWOD)-induced splitting behavior of droplets placed in a Hele-Shaw cell. The deformation behavior 

of the droplet was experimentally observed under various applied voltages. A theoretical model was 

proposed to express the droplet behavior by balancing the surface tension, viscous force, and pressure 

acting on the droplet. The effect of the dynamic contact angle was considered and used to estimate the 

capillary force along on the moving contact line. The results obtained from the theoretical model 

showed a qualitative agreement with the deformation behavior of the observed droplets. An 

approximate model was proposed to verify observations that showed that the contact line widths at the 

boundary between positive and negative electrodes remain almost constant during the splitting process. 

The behavior of the contact line width was explained by the model, based on the minimum work 

required for droplet deformation during the splitting process. 

 

I. INTRODUCTION 

Recently, there has been a growing demand for devices which can control the movement of 

droplets on the wall surface, as used in microfluidics or in lab-on-a-chip technology. Several methods 

have been proposed to manipulate droplets, using the change in the surface tension, or the wettability 

between the droplet and wall1-6. Electrowetting on dielectric (EWOD)7,8, where the wettability changes 

depending on the electric field, is attracting attention because of its low power consumption and large 

change in wettability. Numerous studies about application of EWOD have been conducted to 
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investigate the transportation of test liquids, enabling the development of various devices such as 

optical lenses, electronic paper, and condensers 9-21.  

Many experimental and numerical investigations have been conducted on the dynamics of 

droplets on the wall surface, driven by EWOD. Oh et al.22,23 experimentally investigated droplet 

deformation under a given electric field. Additionally, Ko et al.24 measured the velocity field of a 

droplet driven by EWOD using a flow visualization technique. Lu et al.25 conducted an experimental 

and numerical study on the movement and splitting of droplets placed in a Hele-Shaw cell with a gap 

between the two flat plates. The deformation of the triple-phase contact line, and the change in the 

contact angle during movement or splitting of the droplet, were observed experimentally. Their 

numerical results, based on the diffuse-interface model, qualitatively agreed with the observed droplet 

motion. Izadi & Moosavi26 used a similar method to perform a numerical analysis of droplet movement 

in non-Newtonian liquids. Similarly, Li et al.27 performed a numerical simulation using the front-

tracking method to capture the interface of a droplet in a Hele-Shaw cell. Guan et al.28 performed 

numerical calculations using the volume of fluid (VOF) and level set methods. Wang et al.29 used the 

level set method to numerically analyze the droplet splitting behavior in a Hele-Shaw cell with a 

partition plate. Although their numerical methods successfully reproduced the observed droplet 

behavior, no consideration was made for the dynamic wetting, that is, the contact angle dependent on 

the velocity of the triple-phase contact line. Yamamoto et al.30 used the generalized Navier boundary 

condition (GNBC) as the sliding boundary condition for the wall surface, considering the velocity’s 

dependence of the contact angle. By applying a fitting parameter to the relationship between the slip 

velocity of the contact line and the contact angle, they obtained numerical results that were similar to 

the observed droplet behavior. However, in the method used by Yamamoto et al.30, the fitting 

parameters used had a physical basis that was unclear. To elucidate droplet motion driven by EWOD, 

it is necessary to build a theoretical model that employs only the observed parameters, and not the 

fitting parameters. 

In this study, we experimentally and theoretically examined the EWOD-induced splitting 

behavior of droplets placed in a Hele-Shaw cell similar to those treated in the above studies. In the 

previous report (Yamamoto et al.30), the authors of this paper conducted a theoretical analysis of 

droplet movement using a relatively simple model that was based on the force balance between the 

capillary force and the viscous force. The theoretical results were in agreement with the experimental 

results for simple movement of droplet without splitting observed by Lu et al.25. In this study, we 

designed test plate that exhibited the EWOD effect, enabling the observation of the droplet splitting 

process for various applied voltages. A theoretical model is proposed to describe the droplet behavior 

during splitting, taking into consideration the dependence of the contact angle on the contact line 

velocity, as observed in the experiment. The equation of motion was derived from a balance between 

the pressure, viscous force, and surface tension force, considering the effect of dynamic wetting. The 
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validity of the proposed model was examined by comparing the change in the droplet shape observed 

experimentally with that obtained from the theoretical model. The proposed theoretical model suggests 

that the contact line width at the boundary between the positive and negative electrodes of the EWOD 

substrate has a significant effect on the driving force that moves the droplet. The change in the contact 

line width was estimated using an approximate model. We showed that the actual contact line width 

should be determined using the condition of minimum work during droplet deformation. 

 

II. EXPERIMENTAL METHOD 

Before describing the experimental equipment used in this study, the EWOD principle is briefly 

explained. Figure 1 shows a schematic of a droplet placed on an electrode substrate coated with a 

dielectric thin film between the positive and negative electrodes. When a voltage is applied to the 

system shown in Fig. 1, the wettability of the positive electrode is improved, and the contact angle 

decreases from θ0 to θ. The decrease in the contact angle can be determined using the Young-Lippmann 

equation shown below8. 

2

0cos cos
2

CV
− = 


.                 (1) 

Here, C is the capacitance of the dielectric thin film per unit area of the wall surface, V is the voltage, 

and σ is the surface tension of the liquid. As shown in Fig. 1, the tangential component of the surface 

tension acting on the droplet is larger on the positive electrode, and as a result, the droplet moves 

toward the positive electrode side. 

 

A. Experimental apparatus 

 Figure 2 shows an outline of the experimental equipment used in this study. The experimental 

system is similar to that treated by Lu et al. 25.  A Hele-Shaw cell was constructed with the gap of 

b=0.53 mm between the upper and lower substrates. The upper substrate was a cathode, and the lower 

 

 

Figure 1 Droplet driven by EWOD when voltage is applied to electrode with dielectric film.  
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substrate was composed of three electrodes. One of them was a cathode sandwiched between two 

positive electrodes. A dielectric thin film was applied to each electrode surface. When a voltage was 

applied, the wettability of the positive electrode on the lower substrate improved, and the droplets 

moved toward the positive electrodes on both sides, eventually splitting. To enable the observation of 

the behavior of the droplets in the cell, from above, a glass coated with a transparent indium tin oxide 

(ITO) conductive thin film, was used as the upper substrate, as shown in Fig. 2. A glass plate, with 

aluminum vapor deposition (approximately 100 nm thick), was used as the lower substrate. 

The lower substrate surface was coated with a photoresist solution, and a square-shaped mask 

was attached. A 10 mm square aluminum electrode was etched on a glass substrate, by isolating the 

aluminum in the electrode area, and removing the rest. To make the effect of EWOD more visible, it 

is necessary to install a dielectric thin film with high water repellency and large capacitance, on the 

upper and lower substrates. In this experiment, a dielectric thin film, Cytop (AGC corp., solvent: CTL-

107MK), was applied to the upper and lower substrates, using the dip-coating method. The substrate 

was vertically immersed and withdrawn from a Cytop solution at a constant speed of 60 mm/min, 

using a linear cylinder. After drying, the substrate was kept in an electric furnace at 170 °C for 50 

minutes to remove the excess solvent, and form a uniform thin film. All operations were performed in 

a simple clean room. To increase the change in the contact angle due to EWOD, it is necessary to 

increase the difference in capacitance between the upper and lower substrates. In this experiment, the 

concentration of the solution was adjusted so that the Cytop film thickness of the lower substrate was 

approximately 10 times thicker than that of the upper substrate. The thin film thicknesses of the upper 

and lower substrates were approximately 100 nm and 1000 nm, respectively. 

If pinholes are present on the surface due to the non-uniformity of the dielectric thin film created 

on the substrate surface, the leakage current flowing in the droplet cannot be ignored. Consequently, 

the decrease in the voltage applied to the dielectric film may reduce the EWOD effect locally. To 

 

Figure 2 Schematic of experimental equipment to observe splitting of droplet in Hele-Shaw cell 

composed of EWOD electrodes.   
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improve the homogeneity of the thin film, the substrate surface was activated by exposing it to 

ultraviolet (UV) rays for 24 hours, before forming a thin film using the dip-coating method. By 

irradiating with UV irradiation, it was confirmed that the contact lines of the droplets were not 

distorted during deformation, achieving a smooth motion. Considering the withstand voltage of the 

dielectric thin film used in this experiment, the movement and splitting of the droplets were 

experimentally observed in the range of 60 to 80 V. Within this voltage range, the leakage current in 

the thin film was measured using a micro ammeter (Picoammeter Model 6485 manufactured by 

Keithley). The leakage current was approximately 20 nA/mm2 when not irradiated with ultraviolet 

rays, and decreased to 1 nA/mm2 or less after irradiation. It was confirmed that the effect of the leakage 

current on splitting process can be ignored. 

 

B. Measurement of substrate capacitance and contact angles 

An aqueous 80% glycerol solution, at a temperature of 20 ± 0.5 °C, was used as the test liquid. 

The density ρ, surface tension σ, and viscosity μ, were measured using Boume's hydrometer, 

Wilhelmy's tensiometer, and Ubbelohde viscometer, respectively. Table 1 shows the physical 

properties and measurement results of the quasi-static advancing and receding contact angles, θA and 

θR, with respect to the substrate. The contact angle was determined from the photographed image of 

the gas-liquid interface near the wall surface. The position of the gas-liquid interface was determined 

based on the pixel with the highest brightness gradient; and the contact angle was obtained from the 

wall gradient of the interface curve, approximated using the quadratic curve, from the wall to a height 

of approximately 0.1 mm. For the quasi-static advancing and receding contact angles θA and θR shown 

in Table 1, the measurement was repeated six times, under the condition that the contact line velocity 

was 0.01 mm/s or less; therefore, the influence of the contact line velocity was negligible. The 

uncertainty in the contact angle measurement was approximately ± 0.5°. 

Figure 3 shows a schematic, and an equivalent electric circuit, when the voltage V0 is applied to 

the experimental system. C' and C are the capacitances per unit area of the upper and lower substrates, 

respectively, S is the total droplet adhesion area on the lower substrate, and SP is the droplet area on 

the positive electrode of the lower substrate. From the equivalent circuit shown in Fig. 3, when the 

voltage applied is V0, the voltage V actually applied to the dielectric film of the positive electrode that 

Table 1 Properties of the 80% glycerol solution and static contact angle to the electrode at a 

temperature of 20±0.5℃. 

ρ (kg/m3) σ (N/m) μ (Pa・s) θA (deg) θR (deg) 

1211±1 0.0665±0.0003 0.058±0.001 104.7±0.5 98.8±0.5 
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contributes to the EWOD effect can be expressed as follows: 

0 1 PSC
V V

C C S

 
= − + 

.                        (2) 

Here, the relationship between the capacitances C and C', and the Cytop film thickness, can be 

expressed using the following equations: 

0C
d

=


， 0C
d

 =



,          (3) 

where, ε0 is the permittivity of the vacuum, and ε is the relative permittivity of Cytop. In addition, d 

and d' are the Cytop film thicknesses of the upper and lower substrates, respectively. The Young- 

Lippmann equation (1) can now be expressed using Eqs. (2) and (3). 

22

0 0cos cos 1
2 2

PSCV C
V f

S

  
− = = −  

  
 

           (4) 

Here, d C
f

d d C C

 
 = 

 + + 
, represents the Cytop film thickness ratio between the upper and lower 

substrates. 

  To obtain the contact angle θ from Eq. (4) at a certain area ratio (SP/S) during the splitting 

process, the capacitances C and C' should be measured to estimate the film thickness ratio f. The 

capacitance C, can be obtained from the change in the contact angle with respect to the applied voltage, 

when only the lower substrate was coated with the Cytop film. Since the positive electrode voltage V 

in Eq. (4) is equal to V0 in this system, we can estimate C without the influence of f or SP/S. Similarly, 

C' can be obtained from the same measurement, when only the upper substrate was coated with the 

Cytop film. Figure 4 shows a photograph taken in the lateral direction, when the Cytop film is present 

on only the lower substrate. The wettability improved with the advancing contact angle, from 104.8° 

 

Figure 3 Schematic of the charge distribution on the substrates, and the equivalent circuit (Left 

figure: charge distribution; right figure: equivalent electric circuit). 
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at 0 V, as shown in Fig. 4 (a), to 64.9° at 80 V, as shown in Fig. 4 (b). Figure 5 shows the relationship 

between the cosine of the contact angle on the lower Cytop film, and the square of the voltage. Each 

plot represents an average of five measurements. The experimental results can be approximated using 

the Young-Lippmann equation (1). C/2σ in Eq. (1) was obtained from the gradient of the approximate 

straight line, and the capacitance C was determined. C' was measured using the same method. The 

capacitances of the upper and lower substrates were C = (1.47 ± 0.08) × 10-5 F/m2, and C' = (1.2 ± 0.3) 

× 10-4 F/m2, respectively. The Cytop film thicknesses of the upper and lower substrates were d ≈ 1200 

nm and d' ≈ 140 nm, respectively, and f = 0.108. At the area ratio SP /S, immediately before splitting 

of the droplet, V was about 10% smaller than V0, which had a non-negligible effect on the value of the 

contact angle in Eq. (4). Since f2≪1 in this experiment, Eq. (4) was approximated as follows: 

 

(a) V0 = 0 V                    (b) V0 = 80 V 

Figure 4 Change in the advancing contact angle due to the EWOD effect when voltage is applied to 

the positive electrode on which the droplet is placed (the images above and below the 

electrodes are mirror images). 

 

Upper 

electrode

Lower

electrode

  

Figure 5 Relationship between cosθ－cosθ0 and V2 for the lower substrate. 
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2 22
0

0 0cos cos 1 1 2
2 2 2

P PCVS SCV C
V f f

S S

    
− = = −  −    

    
 

   .        (5) 

The residual voltage (V0-V) was actually imposed on the cathode of the upper substrate, as 

shown in Fig. 3, changing the contact angle of the upper plate slightly due to EWOD. However, 

because the change in the cosine of the contact angle is approximately f2 times that in Eq. (5), it can 

be neglected.  

When the velocity of the contact line is finite, dynamic wetting occurs, and the contact angle 

changes with the velocity. Here, the Hoffmann-Voinov-Tanner equation is used to obtain the dynamic 

contact angle θd from the static contact angle θ0 30,31.   

( )
1/3

3
0d kCa= +  ,                                       (6) 

where k is an experimental constant, and Ca is the capillary number, which is defined as follows: 

v
Ca =




                               (7) 

with v representing the velocity of the contact line (positive when advancing, and negative when 

receding). In this experiment, v is typically 1 mm/s, and the order of Ca is 10-3 to 10-2. Linear 

approximation is done using the Taylor expansion in Eq. (6), and the cosine of the contact angle is 

obtained from the relation below30. 

0 0
0 2 2

0 0

sin sin
cos cos

3 3
d

k k v
Ca−  =

  
 

 
        (8) 

Figure 6 shows the relationship between the cosine of the dynamic advancing contact angle and 

the moving velocity of the contact line. Each measured value represents the average of five 

 

 Figure 6 Relationship between the cosine of the dynamic contact angle, and the capillary number.  
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experiments. Despite the presence of scatter, it can be seen that the change in the cosine of the contact 

angle increases almost linearly with the capillary number. The value of k in Eq. (8) was obtained from 

the gradient of the linear approximation of the measured values, using the least-squares method. In 

this experiment, a value of k = 177 ± 30 was obtained. As shown in the theoretical analysis in Section 

3, dynamic wetting contributes at most 30% to the total drag acting on the droplet, if the value of k 

mentioned above is used. Thus, the measured uncertainty of k does not significantly affect the 

calculations in the droplet splitting process. For example, the effect of the uncertainty of k on the 

calculated split time shown in Fig. 14 was less than 5%. 

 

III. Theoretical consideration of droplet splitting 

In this section, we theoretically consider the dynamics of the droplet splitting process. Figure 7 

shows a series of photographs outlining the splitting process (voltage V0 = 75 V). In this experiment, the 

positive and negative electrode widths were W = 10 mm, and the droplet radius R0 at t = 0 (initial state) 

in Fig. 7 was, approximately 6 mm. The time t shown in the figure represents the time that had elapsed 

since the voltage was applied. As shown in the figure, when the liquid flows into the two positive 

electrodes, the droplet is constricted at the center, and breaks at approximately t = 10 s. Examining the 

straight line (red line in the figure), connecting the two intersections between the contact line and the 

positive and negative electrode boundaries, it can be seen that the length remains almost the same during 

the entire splitting process. Under all experimental conditions, it was observed that the width w of the 

contact line at the boundary between the two electrodes remained almost constant during the splitting 

process. From the geometry as shown in Fig. 7, w at t = 0 is related to the droplet radius and electrode 

width as follows:  

 

 

Figure 7 Images showing the droplet splitting process by EWOD (V0 = 75V). 

(Red line indicates the line connecting the two intersections between the contact line and 

the positive and negative electrode boundaries) 

W R0
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0
4 WRw −= .           (9) 

Here, we consider the theoretical model assuming that the width w of Eq. (9) is constant during the 

process up to splitting. The behavior of w will be discussed in Section 4.2. 

Figure 8 shows a schematic of the contact line of the droplet during the splitting process. Since the 

contact line is symmetric, the dynamics of the half are considered, as shown in the figure. For the sake 

of simplicity, the contact line on the positive electrode side at a time t is approximated using an arc of 

radius R, with a center angle of 2α and that on the negative electrode side is approximated using a simple 

quadratic curve. In the figure, U represents the average velocity of the liquid at the boundary between 

the positive and negative electrodes. First, we briefly touch on relations between each geometric quantity 

necessary for the analysis. The droplet radius R at a certain time is expressed using the following relation, 

considering α and w. 

2sin

w
R =


.          (10) 

Using R and α, the adhesion area of the droplet on the positive electrode is expressed as

( )2 sin cosPS R= −    . The equation below is obtained based on the relation Uw= P
P

dS
S

dt

•  
 
 

between the flow rate and the volume increase rate. 

 
1

sin cos
U R

• 
= − 
 



 
.         (11) 

 

 

Figure 8 Schematic of the droplet contact line (blue line) on the substrate. 
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In deriving Eq. (11), tan
R

R

•
•

= −  , from Eq. (10), was used. Since the position of the droplet front 

edge is given by L=R(1-cosα), the following equation can be used to calculate the elongation rate of the 

droplet. 

sin cos sin

cos sin
L U
• −
=

−

  

  
.         (12) 

For the quadratic curve on the cathode side, the origin O is taken as the center of the axes, as shown in 

Fig. 8. Moreover, the x-axis is taken in the upward direction, and the y-axis is in the lateral direction. The 

quadratic profile of the contact line (y ≥ 0) is given by the following equation: 

2

2 / 2

w x
y a a

W

  
= − +  
  

,        (13) 

where a is the half-width of the droplet contact line at the center line. From the above equation, the 

droplet area SN on the negative electrode shown in Fig. 8 is obtained as follows: 

/2
2

0

2
2

2 / 2 3 6

W

N

w x w
S a a dx W a

W

     
= − + = +     

       .     (14) 

From the volume conservation for a droplet, that is, 
2

0

2
P N

R
S S= +


, the following relationship holds 

for a. 

( )
2 2

0

2

31 3
sin cos

4 48sin

R w w
a

W

 
= − − − 

  


  


      (15) 

Similarly, when considering the relation for volumetric flow rate as:  

- NS
g

=Uw,  

the following equation can be used.  

3

2

w
a U

W

•

= .         (16) 

Using the above relations, we considered the dynamics of the droplet, as shown in Fig. 8. The surface 

tension acting on the circumference of the contact line and acting on A and A’ shown in Fig. 8 from the 

lower part of the droplet should be estimated. In addition, we should consider the pressure acting on the 

center cross section AA', the viscous force and inertial force. The x components of each force are 

evaluated as follows. In the discussion below, several approximations will be made for complicated non-

linear terms to make the analysis as simple as possible.  
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    First, the resultant of the surface tension acting on the contact line was determined. Figure 9 shows 

the contact line on the positive electrode. The resultant force of the surface tension was estimated using 

the integral of the surface tension σcosθ ds normal to the line element ds of the contact line. θ represents 

the local contact angle. Since the contact line extends outward, the advancing contact angle appears in 

the positive electrode. Equation (8) is used to obtain the change in the contact angle θ, depending on the 

velocity of the expanding contact line. Considering that the effect of the EWOD expressed by Eq. (1) 

only appears on the positive electrode of the lower plate, the following relations can be used to obtain 

the cosine of the advancing contact angles θLA and θUA on the lower and upper wall surfaces, respectively. 

 

2

2

sin
cos cos

2 3

nA
LA A

A

vCV k
= + −


 

 
       (17) 

2

sin
cos cos

3

nA
UA A

A

vk
= −


 


.       (18) 

The second term on the right-hand side of Eq. (17) shows the change in the static contact angle due to 

the EWOD expressed by Eq. (1). The quasi-static advancing contact angle θA was used here instead of 

the θ0 used in Eq. (1). In Eqs. (17) and (18), vn is the velocity of the contact line in the normal direction 

of the arc. As shown in Fig. 9, the normal velocity vn, at the azimuthal angle β from the top of the contact 

line, can be approximated using: 

cosnv L
•

          (19) 

where L
•

 is evaluated from Eq. (12). The resultant force FSP of the surface tension in the longitudinal x 

direction acting on the circumference of the contact line shown in Fig. 9 can be evaluated as follows: 

 

Figure 9 Surface tension fs acting on the line element ds of the contact line on the positive electrode. 
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2

2
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2cos  

2 3

A
A

A

CV k U
w
 

 + − 
  

 
 

 
       (20) 

In the above equation, the following approximation was made to facilitate further analysis. 

1
sin 2

sin cos sin 2
2

cos sin sin

 
+ 

−   
 

− 

 
  

   
 

In the splitting process in which α shown in Fig. 9 approximately varies from 30 ° to 130 °, the mean 

value of the above parameter is almost equal to 2. The influence of the above approximation on the total 

surface tension shown below was less than 2%, since the contribution of the dynamic wetting to the total 

surface tension is at most 30%.  

    As shown in Fig. 10, the resultant force FSN of the surface tension acting on the contact line of the 

negative electrode can be evaluated in the same manner. Since the contact line contracts inward, the 

receding contact angle should be used to estimate the resultant of the surface tension. FSN can be 

evaluated as follows by using Eq. (8).   

1

2

0

sin
2 cos sin

3 cos

        

nR
SN R

R

vk d x
F W

 
= − − 

  


  
      (21) 

The relationships 
2

 and  
cos

dx x
ds x

W
= 


were used to obtain the equation above. While deriving the 

above equation, note that there was a total of four contact lines on both the upper and lower walls, on 

both sides of x axis shown in Fig. 8. Here, the normal velocity vn of the contact-line element was 
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determined using Eq. (13) to obtain the quadratic shape of the contact line as shown below. 

( ) ( )2 23
cos 1 cos 1 cos

2
n

w
v y a x U x

W

• •

= − = − − = − −       (22) 

In the above equation, Eq. (16) was used to determine the relation between a
•

 and U.  If we use the 

relations, 
2 2

1 /
cos  and sin

1 ( / ) 1 ( / )

dy dx

dy dx dy dx
= =

+ +
  , in Eq. (21), FSN can be obtained as 

follows: 

  ( ) 3/2
2 2 2

2

2

3

sin 1 1
2( 2 ) cos 1 1 1 3 1 2

3

sin2 2
2( 2 ) cos         

2 / 2

R
SN R

R

R
R

R

F w a Uwk c c c
c c

w a w a
w a Uwk c

W W

 
= − − − + − − + − + + 

  

− − 
 − − −  

 


  




  



. 

(23) 

In the derivation of Eq. (23), the following relation for c obtained from the Taylor expansion was used. 

  ( ) 
3/2

2 2 2

3

1 1 1 2
1 1 1 3 1 2

4 23

w a
c c c c

c Wc

−
+ − − + − + +  =  

The error with respect to the total surface tension (FSP+FSN) calculated from Eqs. (20) and (23) when 

using this approximation was approximately 3%. 

    The surface tension acts at A and A' on the center line (x=0) from the lower part of the droplet, as 

 

Figure 10 Schematic of the quadratic contact line on the cathode. 

W/2
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w
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shown in Fig. 10. Figure 11 shows a schematic of the center cross section of AA’ perpendicular to xy-

plane. Negative surface tension acts over the length of the meniscus appearing at the end of the droplet. 

For simplicity, the meniscus shape was approximated by an arc. The radius r and the length lm of the 

meniscus in Fig. 11 were given by 

2cos dR

b
r = −


, ( )

2
2

2cos

dR
m dR

dR

l r b
−

= − = −
 

 


.        (24) 

where θdR is the dynamic receding contact angle estimated from Eq. (8) as: 

2

sin1
cos cos

3

R
dR R

R

k a
•

= +
 

 


. 

Note that the contact line recedes toward the electrode center at a velocity of a
•

.The resultant force FSC 

of the surface tension in the x direction, acting on the arc length of 2 lm at both ends of the central cross 

section, can be obtained from the following equation, 

( ) ( )2 2

cos cos

dR R
SC

dR R

b b
F

− −
= 
     

 
.       (25) 

In the above equation, 
( )2

cos

dR

dR

− 


 was approximated by using θR , since it is almost equal to -2, unless 

θR and θdR is not far fromπ/2. In this experiment, θdR decreases by at most 20° from θR. In this case, the 

error caused from the above approximation is within few percent.  

    Next, we considered the liquid pressure in the cross-section of the center line of the negative 

electrode. Because the effect of inertia on this phenomenon is trivial as will be shown later, the pressure 

Pi inside the meniscus shown in Fig. 11 is estimated using Yong-Laplace equation. By using the dynamic 

contact angle from Eq. (8), the following equation is obtained for the liquid pressure. 

 

 

Figure 11 Schematic of droplet meniscus in center cross section of electrode. 

a
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2

sin2 1
cos

3

R
i R

R

P k a
r b

• 
= = − + 

  

  



       (26) 

The difference in the pressure between that expressed in Eq. (26) and that at the electrode center was 

estimated by considering the balance between the pressure and the viscous drag on the wall. Here, the 

time scale tb, at which the velocity boundary layer develops up to the channel center of b/2 from the wall, 

can be evaluated using the following relation. 

2

4 ~ ,   
2 64

b b

b b
t t ～


.   

Assuming that the kinematic viscosity of the glycerol solution was ν~4.8×10-5 (m2/s), and b = 0.53 mm, 

tb was approximately 0.1 ms using the above equation. On the other hand, the time scale T of droplet 

splitting, was ～ 10 s in this experiment. Since T≫tb, the flow inside the droplet can be assumed to 

follow the developed two-dimensional Poiseuille flow. The y-directional velocity v(z) over the gap b can 

be expressed as shown below, where z is the coordinate perpendicular to the wall. 

2 2

6 9
z z w z z

v a U
b b W b b

•           
= − = −          

             

      (27) 

Note that the flow rate is b a
•

 from the above equation. The pressure difference ΔP between the droplet 

end and the electrode center can be estimated using the balance with the viscous force on the wall. 

2

18aw U
P

b W
 = −


         (28) 

We considered a linear pressure distribution in the y-direction from Pi in Eq. (26) to ( )iP P+   at the 

electrode center. For simplicity, we assumed that the cross-sectional area of the droplet at the center axis 

is 2ba. Then the force FP due to the pressure can be obtained from Eqs. (26) and (28) as follows: 

2

2

sin1 18
2 4 cos

2 2

R
P i R

R

P U w a w U
F ba P a k

W bW

  
= + = − + −  

    

  
 


.   (29) 

Here, the resultant force of the surface tension FSP, FSN, FSC, and the pressure FP, can be obtained from 

Eqs. (20), (23), (25), and (29) and evaluated as shown below. 
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( )
( )2 2

2 2

2 18
2 cos cos

2 cos

sin sin 3 3
2

3 2

SP SN SC P
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A R

R

A R

A R

F F F F

CV a w U
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bW

k a w
Uw

W W

+ + + =

  −
+ − + − 

 

  
− + +  

   

  
   

 

 


 

   (30) 

In the above equation, the first term on the right-hand side is the difference between the driving force 

due to EWOD, and the surface tension drag due to contact angle hysteresis. As seen from Eq. (30), this 

force acts over w, the contact line width at the positive and negative electrodes30. 

    The viscous drag on the droplet is then obtained. As described above, the developed two-

dimensional Poiseuille flow in x-direction can be considered between the plates. The x-directional 

velocity distribution u(z) in the positive electrode can be expressed as follows.  

2

( ) 6 P

z z
u z U

b b

  
= −  

   

       (31) 

UP is the average velocity at each position on the positive electrode. From the above equation, the viscous 

force per unit area of the wall surface is given by the following equation: 

6 P
W

U

b
=          (32) 

For the positive electrode, the UP value in the above equation changes from U at the boundary between 

the positive and negative electrodes, to 
sin cos sin

cos sin
L U
• −
=

−

  

  
  from Eq. (12) at the top of the 

droplet. In the range of α from 30 ° to 130 ° in the splitting process as stated before, the mean value of 

L
•

 is almost equal to U within a few percent error. Here, for the sake of simplicity, UP ≈ U is assumed 

in Eq. (32), which is used to determine the viscous force FVP on the positive electrode of the upper and 

lower wall surfaces as follows: 

2
06 12 2

2
2 3 6

VP P

RU U w
F S W a

b b

  
=  = − +  

   

 
           (33) 

Using Eq. (14), the positive electrode area,  
2

0

2
P N

R
S S= −


 was used in the above equation. Next, 

we consider the viscous force on the cathode surface. The volume reduction rate of the droplet from the 

origin to a certain position x should be equal to the flow rate passing through the cross section at x. 
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Therefore, the following equation holds for the average flow velocity UN (x), by using Eq. (13) for the 

droplet width at x.  

( )

2 2

0

3

2

2 2
( )

2 2

3
2

 ( )           
4

2

x

N

N

d w x w x
a a dx U x a a

dt W W

x x
w x

U x U x
w W

a x a

        
− − + = − +        

           

−
 

 = −     − + 
 


    (34) 

Here, 
3

2

w
a U

W

•

= , from Eq. (16) was used. Using UN (x) from above and assuming the wall shear stress 

similar to Eq. (32), the viscous force FVN acting on the cathode can be calculated using the following 

equation.  

/2 2

0

1 3
2

2
0

1
4 6

2 / 2

3 15
3

2 4

2

W

VN N

w x
F U a a dx

b W

wWU x x w wWU
a x a d x

wb b
a x a

   
=  − +   

    

 
 −   
 = − − + =  
     − +    







 
    (35) 

The viscous drag FV acting on the entire droplet can be obtained from the sum of Eqs. (33) and (35) as 

2
012 2 15

2 3 6 4
V

RU a w wWU
F W

b b

  
= − + +  

   

 
      (36) 

Finally, the order magnitude of the inertial force of the droplet FM can be estimated using the 

following equation 

( )

2 2 2 2
0 0 0

2 2 / 2
M

R b R b R UdU U b
F

dt W U W
=～ ～

  
. 

The ratio of the inertial force to the viscous force is 

2 2
0

2
0

2
6 12

M

V

R U b

F Ub bW
UF W

R
b

=～




 


.       (37) 
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Under the experimental conditions, Re (1)
Ub

O <



 and b≪W, we can conclude that 

M

V

F

F
≪1.         (38) 

Hence, the inertial force can be neglected. 

    By equalizing Eqs. (30) and (36), the equation of motion during the droplet splitting process can be 

expressed as shown below. 

( )
( )2 2

2 2

2
0

2 sin sin18 3 3
2 cos cos 2

2 cos 3 2

12 2 15

2 3 6 4

R A R
A R

R A R

CV a w U k a w
w b Uw
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   −  
+ − + − − + +    

     

  
= − + +  

   

   
    

   

 

 

      

                       (39) 

In Eq. (39), the first term on the left-hand side represents the difference between the driving force due to 

EWOD, and the drag due to contact angle hysteresis as mentioned before; and the second term is the 

surface tension drag acting on the center cross section. The third and fourth terms on the left-hand side 

represent the pressure on the center cross-section, and the drag resulting from dynamic wetting, 

respectively. The resultant of each force on the left-hand side is balanced with the viscous drag on the 

right-hand side of Eq. (39). 

For the voltage V used in Eq. (39), 0 1 PS
V V f

S

 
= − 

 
, described in Eq. (4), should be used. Using 

the whole droplet adhesion area, 
2

0

2

R
S =


, and the area on the positive electrode, 

2
0 2

2 3 6
P

R a w
S W

 
= − + 

 


, the voltage on the positive electrode is given by the following equation 
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0 2

0

4
1 1

3

W w a
V V f

R

  + 
= − −  

    
  

2 2
0 2 2

0 0

1 2 1 8
3 3

Ww Wa
V V f f

R R

  
  − − +   

    
     (40) 

As described in Section II, the parameter f2≪1 was used for the film thickness ratio f. Using Eq. (40) 
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and 
2

3

W
U a

w

•

= −  from Eq. (16), Eq. (39) can be rewritten as the ordinary differential equation for a as 

shown below. 
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(41) 

where 
a

a
W

=  and 
a

a

•
•

=



. The equation above is rewritten by multiplying the right and left-hand 

sides by 
2

0

2 2
0

3

4

R

fCV W

 
, obtaining the following equation for a .  
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•
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9
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 
.       (46) 

Equation (42) can be easily solved by separating the variables as 

( ) ( )( ) ( ) 
2 2

0 02 1 2 0 1 2
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ln
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R R L R R L R L R

L

a Ct
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W a C

 +
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


 

           (47) 

Here, a0 represents the half-width of the droplet at t = 0. Thus, the droplet half-width a on the electrode 

center, and each geometric quantity related to the droplet shape, such as R, α or L in Fig. 8, can be 

calculated. 
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(a) V0 = 75V 

 

(b) V0 = 80V 

Figure 12 Comparison of the observed and calculated results for time-dependent changes in the 

droplet shape (Upper: continuous photo of observations, Lower: theoretical results) 
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IV. Experimental results and discussion 

A. Experimental results of the splitting process 

 The Cytop film used in this experiment easily suffered dielectric breakdown when the voltage 

was higher than 80V. Considering the voltage at which the droplet is actually driven by the EWOD, 

which will be described later, the measurement results made in the range of 70-80V are shown below. 

Using the voltages V0 = 75 V and 80 V, the droplet shape at each time was calculated using Eq. (47), 

and Figure 12 shows a comparison with the observed droplet shape until final splitting occurs. The 

initial droplet radius is set to approximately 6 mm, as shown in Figs. 12 (a) and (b). The upper part of 

each figure shows an actual photograph, and the lower part shows the theoretical results. The inflow 

into the positive electrode started after the voltage was applied, resulting in an increase in the adhesion 

area on the positive electrode. On the other hand, as the volume in the cathode decreased, the width of 

the contact line at the center also decreased, until the droplet split into two. The time of splitting was 

11.5 s and 7.8 s for 75 V and 80 V, respectively. The splitting time changed more than 30 %, even with 

a small voltage difference. From Eq. (41), we obtained the lower limit of the voltage V0 at which the 

droplet can be driven by the EWOD. When the velocity a
•

 on the right-hand side of Eq. (41) is zero, 

the lower limit V0 can be obtained from the condition that the sum on the left-hand side is zero. The 

calculated result of V0 ≈ 58 V is comparable with the experimentally observed V0 ≈ 60 V, above which 

the droplet was actually driven by EWOD. Because the difference in the voltage from this lower limit 

corresponds to the actual driving force, a noticeable distinction is noted in the splitting time between V0 

= 75 V and 80 V. As shown in Fig. 12, the theoretical model proposed in this study can reproduce the 

time-dependent changes in the droplet shape. 

 Figure 13 shows the time change of the droplet length L on the positive electrode, and the half 

width a at the cathode center, for V0 = 70V. Each plot represents an average of five measurements. It 

can be seen that the theoretical model can adequately approximate the experimental results for the 

length L. However, for a, the theoretical results are slightly larger than the experimental measurements 

at each time until the final split. This may be due to the fact that the contact line shape is approximated 

by a simple parabolic. In addition, the width w of the contact line at the electrode boundary was assumed 

to be constant in the theoretical model. However, it was observed that w increased slightly from the 

initial width, by approximately 10%, and then remained almost constant. In Eq. (39), the first term on 

the left-hand side represents the driving force by EWOD. Since the actual driving force increases 

slightly as w increases, the droplet width contracts faster than that in the theoretical model. For other 

experimental conditions, the theoretical and experimental results were similar to those shown in Fig.13. 

Figure 14 shows the time T when droplet splitting occurs. Note that another substrate (C = 1.60 × 

10-5 F/m2, f = 0.108) was also used to measure the split time. As shown in the figure, the experimental 
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results of T can be approximated using the model proposed in this study. In the actual experiment, the 

half-width at the electrode center continuously decreased up to approximately 1 mm. However, it took 

 

(a) Droplet length on the positive electrode 

  

(b) Half width of the droplet at the electrode center 

Figure 13 Relationship between the time change and geometrical length (V0 = 70V). 

0

2

4

6

8

10

0 2 4 6 8 10 12 14

L
(m

m
)

t (s)

Exp. (70V)

Theory

0

2

4

6

8

0 2 4 6 8 10 12 14

a
(m

m
)

t (s)

Exp. (70V)

Theory

 

Figure 14 Change in the split time with the applied voltage. 
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some time to reach the final split. In the theoretical model of this study, the physics behind the thread 

breaking of the final stage was not considered, allowing the underestimation of the splitting time T. On 

the other hand, as mentioned above, w increases slightly in the actual phenomenon, so the contraction 

the other hand, as mentioned above, w increases slightly in the actual phenomenon, so the contraction 

proceeds faster. As a result of these canceling effects, the theoretical model can reproduce well the actual 

splitting time. 

 

B. Behavior of contact line width at positive and negative electrode boundaries 

In Section III, the theoretical analysis was performed assuming that the contact line width w at the 

boundary between positive and negative electrodes was constant. Figure 15 shows an example of 

successive images taken when there is only one positive electrode, with the droplet simply moving from 

the negative to the positive electrode without splitting. Compared to Fig. 12 (b) at the same voltage, it 

was observed that w increases remarkably during droplet movement. We considered such a difference 

of droplet behavior as well as the validity of the assumption in Section III, based on an approximate 

theoretical model. 

Figures 16 (a) and (b) show a schematic of the contact lines for splitting and simple movement. 

Droplet deformation can be assessed using the principle of minimum work by first considering the case 

where the droplet splits, as shown in Fig. 16(a). Figure 17 shows an enlarged schematic of the contact 

line. Because the contact line is symmetric, the upper half is taken as the target system. We compared 

the contact line of the initial arc with a radius R0, denoted by the dotted line in Fig. 17 with that of the 

solid line after a part of the liquid has moved to the positive electrode side. An assumption was made 

that w increases from the initial w0. The energy in the system changed during deformation. The increase 

in the surface energy was due to the change in the liquid surface area (meniscus area as shown in Fig. 

11) because of the deformation of the contact line, and the work due to wetting behavior where the 

negative electrode is dried while the positive electrode is wetted. In addition, for the negative electrode 

 

Figure 15 Successive images of droplet movement in one direction (V0 = 80 V). 
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when the width w was increased, a certain area was newly wetted (green area in Fig. 17). The total of 

newly wetted area was expressed as AW. When the total adhesion areas of the upper and lower wall 

surfaces of the positive electrodes is AP, the energy change in the system, from the initial circular contact 

line, is considered. 

    The energy change per unit area eA (eR) when wetting (drying) a solid surface can be obtained from 

 

(a) Split         (b) Simple movement in one 

direction 

Figure 16 Deformation of the droplet contact line due to an increase in the contact line width at 

electrodes boundary (red contact line is an arc and blue contact line is combination of a straight 

line and an arc in cathode). 
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Figure 17 Shape of the contact line during splitting. 
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the following relation using modified Young's equation for the contact angle5,32. 

cosA Ae = −          (48) 

cosR Re =          (49) 

By multiplying Eqs. (48) and (49) by the actual wetted (dried) area, the work due to wetting can be 

evaluated. The energy change on the liquid surface can be calculated by multiplying the surface tension 

σ by the increase in the liquid surface area. The perimeter lengths of the contact line drawn by the solid 

line on the positive and negative electrodes are represented by LP and LN, respectively. The energy change 

E of the system can be obtained using the following equation. 
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(50) 

Here, AP0 is the initial area of the positive electrode. The following relation was used to estimate AP0.   

( )2
0 0 0 0 02 sin cosPA R= −         (51) 

α0  
1 0

0

sin
2

w

R

− 
= 
 

is the half central angle of the arc as shown in Fig. 17. In Eq. (50), the first term on 

the right-hand side in the first line represents the energy change corresponding to the increase in the 

liquid surface area. The meniscus length lm from Eq. (24) can be evaluated from the following equation 

using 
( )/ 2

1
cos

R

R

−


 


, when θR is not far from π/2. 

( )/ 2

cos

R
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R

b
l b

−
= 

 


       (52) 

Using Eq. (52), the surface area of the liquid meniscus between the upper and lower plates is represented 

by b (LP+LN) in Eq. (50). The error in the total energy E for this approximation is less than 2%. The 

second and third terms represents the work due to wetting behavior. Note that the actually wetted (dried) 

area can be expressed by (AP+AW－AP0). The last term on the right-hand side of Eq. (50) represents the 

energy reduction due to EWOD. It is noted that the effect of EWOD appears on the lower surface only, 
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although the droplet wets both the upper and lower surfaces.  

As the contact line width at the two electrodes boundary increases, the wetted area AW, drawn by 

green area in Figs. 16 and 17, is formed as stated above. Since the same area is dried extra in addition to 

(AP -AP0), an increase in the width results in excess work, corresponding to the difference between Eqs. 

(48) and (49). This effect is represented in the term multiplied by σ(cosθR-cosθA) in Eq. (50). If the width 

is kept constant, there will be no work corresponding to AW. On the contrary, the energy of the liquid 

surface area increases since the contact line is distorted more remarkably and the length of contact line 

increases. The droplet should be deformed in such a way that the sum of the two kinds of energy changes 

is minimized. It should be noted that if the width decreases from that at the initial state, excess work is 

required to dry the surface of the positive electrode near the electrode boundary, and the distortion of the 

contact line from the initial arc becomes larger than that observed when w increases. Therefore, the case 

of width reduction is not considered here. 

    The solid red line in Fig. 16 shows the circular contact line on the cathode. The solid blue line is a 

combination of a straight line and a circular arc smoothly connected to it. The straight line crosses the 

initial circular contact line with a certain inclination from the positive and negative electrode boundary 

lines. As can be seen from the enlarged view in Fig. 16 (a), when the contact line on the cathode is 

represented by a simple arc or a polynomial, the intersection with the initial contact line shifts to a 

considerably lower position, and the AW becomes larger. Assuming an arc-shaped contact line, shown by 

the red line in Fig. 16 (a), it can be confirmed that E in Eq. (50) is minimized when the contact line width 

w at the boundary between positive and negative electrodes does not change from that of the initial arc. 

As a virtual contact line that makes AW as small as possible, shown in Fig. 17, the contact line on the 

cathode is approximated using a combination of straight line with a length l and an inclination δ, and arc 

radius of RN. Each geometrical parameter (δ, l, and RN) is determined in such a way that E is minimized, 

while also satisfying the geometric constraints. Actually, the contact line approximated by the straight 

line and arc stated above may not be exact. In principle, the curve of the contact line that minimizes Eq. 

(50) should be calculated from the variational principle. However, if we can find a width at which the 

system energy is smaller than that at w0 by using the assumed contact line, the droplet can be deformed 

with increasing the contact line width, because the energy for the actual contact line should become 

smaller.  

The width corresponding to the minimum E described in Eq. (50) was calculated when the wetted 

area on the positive electrode reached a certain value of AP. Although each related value can be obtained 

from simple geometry, the calculation is somewhat troublesome. Here the calculation procedure is briefly 

described below. The total circumference of the contact line (LP+LN) on the positive and negative 

electrodes in Eq. (50) can be calculated as follows. 

2
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
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RP is the radius of the arc on the positive electrode, as shown in Fig. 17, and α is half the center angle of 

the arc. The unknown parameters RP, α, l, RN and δ in the above equation are estimated as follows. The 

following equations can be used for RP: 

2sin
P

w
R =


        (54) 

In addition, we can use the following relationship between the wetted area AP on the positive electrode, 

and w. 

( )22 sin cosP PA R= −          (55) 

If AP and w are given, α and RP can be determined by solving the simultaneous nonlinear algebraic 

equations in Eqs. (54) and (55). Next, the following relation can be written for the cathode-side adhesion 

area, with reference to Fig. 17. 
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(56) 

The following relation can be used for RN: 

sin
2

cos
N

W
l

R

−

=




.        (57) 

Now we introduce another parameter η appearing in Fig.17, that is, the center angle formed in the dotted 

initial arc by both ends of the AW region. The following equations can be obtained from geometrical 

consideration.  

( )0 0sin cos
2

w
R l+ − =          (58) 

( )0 0 0cos cos sinR l − + =            (59) 

If the adhesion area AP and width w are given, the undetermined parameters RN, δ, l, and η are solved 

using the four simultaneous nonlinear algebraic equations described by Eqs. (56) to (59). As a result, 

(LP+LN) in Eq. (53) can be calculated.  

    The wetted area AW on the cathode, as shown in Figs. 16 (a) and 17, can be calculated using each 
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parameter mentioned above as follows. 

( )
( )  ( )0 2
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The coefficient 4 on the right-hand side of the equation above is to account for the fact that the wetted 

area on the cathode is on both the upper and lower walls. 

When Eqs. (53) to (60) are combined with Eq. (50), the energy change E can be expressed as follows. 
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    (61) 

For a certain AP value, E in Eq. (61) can be expressed as a function of w. The width corresponding to the 

minimum energy can be obtained from the following condition: 

at AP: 0
dE

dw
=          (62) 

When the droplet moves on the plate in one direction without splitting as shown in Fig. 18, the 

width that minimizes the energy can be obtained in a manner similar to that stated above. The energy 

change E for the droplet contact line profile, as shown in Fig. 18, is calculated as follows. 
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(63) 

Each parameter, namely α, η, δ, and l in the above equation can be obtained from the geometrical 

consideration similar to that described above for droplet splitting. The energy E of Eq. (63) can be taken 

as a function of w for a certain value of AP, and the width corresponding to the minimum energy can be 

estimated using the following relation:  

at AP: 0
dE

dw
=          (64) 
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Figure 19 shows a comparison of the widths obtained using the model above, and the experimental results. 

In the experiment when the droplet simply moved in one direction, the voltage for one of the two positive 

electrodes was set to zero, and the movement of the droplet with an initial radius of 6 mm was observed. 

Figure 19 shows results for V0 = 80 V, with similar results being obtained using other voltages. The 

 

Figure 19 Time change with the contact line width w at electrodes boundary widths (V0 = 80V). 
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Figure 18 Shape of the contact line during droplet movement. 
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experimental width w for the droplet splitting increased slightly from the initial value, and then remained 

almost constant. However, in the case of simple movement, w tends to asymptotically approach a 

constant value while increasing monotonically. As shown in Fig. 19, the calculated results obtained from 

the model above are consistent with the experimental results, despite some discrepancies. It is possible 

to explain the qualitative behavior of the contact line width at the electrodes boundary using the principle 

of minimum work, although the theoretical model used some approximations. In the case of simple 

movement without splitting, the theoretical width is smaller than the experimental value after t = 2s. This 

is thought to be because the contact line shape on the negative electrode is flatter and thinner than the arc 

assumed in the theoretical model, as shown in Fig. 15. 

The difference in the behavior of the width during splitting or simple unidirectional movement, as 

shown in Fig. 19, can be understood as follows. For droplet splitting, as shown in Fig. 12, the contact 

line inside the cathode has a convex shape toward the outside (from t = 0 to a certain time). If w increases 

during this time, the length of the contact line inside the cathode is reduced, and the liquid surface energy 

decreases. Because the volume is larger in the cathode at around t = 0, the contact line length is also 

relatively large. Therefore, w may increase slightly if the decrease in the liquid surface energy exceeds 

the work corresponding to creating the area AW stated above. However, because the liquid in the cathode 

is transferred to the two positive electrodes, the volume in the cathode decreases rapidly. As can be seen 

in Fig. 12 (b), at t = 4 s after w in Fig. 19 is maximum, the droplet contact line on the cathode curves 

inwards in a concave manner. Assuming that the width increases when the contact line on the cathode 

has a concave shape, the length of the contact line and AW also increases, compared to when w is constant. 

Therefore, since the increase in w requires more energy, the width w cannot be further increased when 

the contact line on the cathode has a concave shape. On the other hand, when the droplet moves in one 

direction, the volume of the liquid on the cathode is larger compared to that when splitting. Thus, the 

contact line on the cathode is maintained in a convex shape as shown in Fig. 15. Since the energy 

reduction due to the decrease in the contact line length is big, it is believed that a continuous increase in 

w is possible. The different behaviors of w may appear depending on the shape of the contact line on the 

cathode side.  

In the case of simple movement without splitting in Fig. 19, the actual droplet width becomes smaller 

than the theoretical results after t = 2s. Since the contact line shape on the negative electrode becomes 

thinner than the arc as mentioned above, the energy is not significantly reduced with the increase in the 

width w. This may be the reason why w observed in the actual system does not increase as expected by 

the theoretical model. 

V. Conclusion 

    A theoretical consideration was made on the EWOD-induced splitting process of droplets placed in 

the Hele-Shaw cell. From the symmetry of the droplet shape, the equation of motion of the half droplet 
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part from the center axis was derived. The resultant force of the surface tension acting on the contact line 

on the electrodes, and on the meniscus in the center cross section was evaluated in consideration of the 

effect of dynamic wetting. In addition, the pressure acting on the center cross section and the viscous 

drag on the wall were estimated. The equation of motion was derived from each force balance and an 

analytical solution was obtained that represents the time variation of the droplet width at the center line. 

For the system used in this study, the effect of dynamic wetting on the movement of droplets was 

approximately 30%. The calculated results obtained from the theoretical model showed behavior similar 

to the experimentally observed movement of the droplets during the splitting process. The theoretical 

model suggests that the driving force behind droplet motion is proportional to the contact line width at 

the boundary between the positive and negative electrodes. The behavior of the contact line width was 

theoretically evaluated using an approximate model based on the principle of minimum work. When the 

droplet is pulled towards the two positive electrodes, the contact line in the cathode becomes concave. It 

was shown that the width is kept almost constant, such that the sum of the work related to wetting, and 

the energy of the liquid surface due to contact line deformation, is minimized. 
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