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ABSTRACT
The interaction of double-layer density stratified interfaces with initial non-uniform velocity shear is investigated theoretically and numer-
ically, taking the incompressible Richtmyer–Meshkov instability as an example. The linear analysis for providing the initial conditions in
numerical calculations is performed, and some numerical examples of vortex double layers are presented using the vortex sheet model.
We show that the density stratifications (Atwood numbers), the initial distance between two interfaces, and the distribution of the initial
velocity shear determine the evolution of vortex double layers. When the Atwood numbers are large, the deformation of interfaces is small,
and the distance between the two interfaces is almost unchanged. On the other hand, when the Atwood numbers are small and the ini-
tial distance between two interfaces is sufficiently close (less than or equal to the half of the wavelength of the initial disturbance), the two
interfaces get closer to each other and merge at the last computed stage due to the incompressibility. We confirm this theoretically expected
fact numerically.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0023558., s

I. INTRODUCTION

The motion of unstable interfaces in multi-layer flow is impor-
tant in various areas such as internal gravity waves,1,2 geophysi-
cal fluid dynamics,3 and plasma physics.4–8 Karman vortex streets
that appear in the wake region9,10 are also the significant exam-
ples of unstable double-layer interfaces. These multi-layer interfaces
often occur in the fluids with density stratification, and they interact
with each other when the interfaces are located close together. The
Rayleigh–Taylor instability (RTI)4,5 and the Richtmyer–Meshkov
instability (RMI)7,11,12 are the examples of such density stratification
instabilities.

RMI is a shock-induced interfacial instability that occurs at a
corrugated interface separating two fluids with density jump.11,12

This instability plays an important role in various fields such
as astrophysical supernova explosion,13–17 supersonic combustion,
inertial confinement fusion (ICF),18–20 and fundamental plasma
physics.21,22 In the linear stage of RMI immediately after the
passage of shocks, the compressibility effects by the shocks are

dominant,23–31 and the amplitude of the interface is sufficiently
small. When the shocks leave the interface (more than one wave-
length), the system can be regarded as incompressible and irro-
tational except at the interface, on which non-uniform vorticity
is induced by the shocks.21,32 In this incompressible nonlinear
stage, it is known that the interface of RMI rolls up like a mush-
room,32,33 and we can treat that interface as a non-uniform vortex
sheet.34–36 For the incompressible model of RMI, various analyti-
cal studies, such as weakly nonlinear analysis32,37,38 or the asymp-
totic growth velocity and curvature of bubbles, have also been
provided.39,40

In real laboratory experiments, the density jump in RMI in
the interface is not necessarily sharp, and the system is often com-
posed of multi-layer interfaces with density stratifications. Mikaelian
theoretically investigated such multi-layer systems4–7 and derived
the eigenvalues and eigenfunctions in the multi-component den-
sity stratified fluids. His linear analysis is applicable not only to
multi-component RTI and RMI but also to multi-layer internal grav-
ity waves.1 Extending the linear theory for the M (M = 2, 3, . . .)
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component density stratified fluids by Mikaelian, Liu et al.8 per-
formed a weakly nonlinear analysis for the incompressible RMI with
three-component fluids in which two interfaces exist. In that study,
they concluded that the distance between two interfaces largely
affects the growth of amplitudes of the interfaces. In order to obtain
the finite thickness effect on harmonics in RMI, they assume that
both sides of the two interfaces are vacuum.

In addition to the above linear and weakly nonlinear analyses
for multi-component density stratified systems, there also exists a
numerical study that investigated the interaction of vortex double
layers in RMI. Zabusky and Zhang41 investigated the shock inclined-
curtain interaction of a planar RMI using the piecewise parabolic
method (PPM) algorithm.42 In this study, they found the appear-
ance and interaction of opposite-signed vortex double layers and
the emergence of dipolar vortex domains. The two vortex layers
(interfaces) approach each other and form a complicated vortical
structure. In their study,41 the authors insist that the vortex double
layer is fundamental in understanding the turbulent mixing inherent
in accelerated inhomogeneous flows and the reacceleration problem
such as the reshock RMI.43 This is the first work showing that the
finite-amplitude double-layer solution can exist in RMI. However,
the initial conditions or parameter dependence, such as the Atwood
numbers and the distance between two interfaces, was unknown in
their numerical study.

Despite its importance, there does not exist the theoretical
work that treated the nonlinear behavior of the multi-layer inter-
faces with density stratification. In the current study, we first per-
form the linear analysis for the double-layer RMI and determine
the initial conditions for numerical calculations. After that, we
present the theoretical model for solving the nonlinear interaction
of double-layer interfaces in three-component RMI and investi-
gate the long-time behavior of that using the boundary integral
method34,35,44–47 and the vortex (blob) method.34–36,48–52 These two
methods are usually distinguished by the fact whether the param-
eter δ49,50 to regularize the vortex induced velocity (Birkhoff–Rott
equation)53–55 is zero (the boundary integral method) or finite values
(the vortex method), but the thickness of the interface is assumed
to be zero in both methods. From now on, we refer to both of
these methods as the vortex sheet model (VSM). VSM can cap-
ture the long-time nonlinear evolution of two-dimensional shear
flows when the computation is regularized.49 It is known that the
regularized vortex motion is not an exact solution to the Euler equa-
tion;56 however, the model equation effectively describes real inter-
facial motion such as roll-ups49,57 together with the velocity field
in bulk.17,58,59

Using the VSM, we regard the double-layer interfacial motion
in RMI as the motion of two vortex sheets. In the VSM, the inter-
facial velocity is described by a Lagrangian parameter that param-
eterizes the interface. In the current study, we parameterize two
interfaces by the same Lagrangian parameter. When two interfaces
exist in the system, we have two interfacial velocities, which cor-
respond to the fact that two Lagrange derivatives with respect to
time exist. Extending the case of one interface, we define the two
interfacial velocities as the deviation from the average fluid velocity
(refer to Sec. II) so that we can calculate the model equations with a
Lagrangian time derivative.

Since we consider three-component RMI, two Atwood num-
bers exist in the system. We present various interfacial motions

together with the growth velocities of bubbles and spikes by vary-
ing those Atwood numbers and initial conditions including the dis-
tance between the two interfaces. We show that the two interfaces
gradually approach each other for all cases due to the incompress-
ibility. The incompressibility indicates the area-preserving. There-
fore, the initial area between the two interfaces should be conserved
mathematically, no matter how large the interfacial deformation
becomes. When the initial distance between the two interfaces is
sufficiently small (less than or equal to the half of the wavelength
of the initial perturbation), the two interfaces merge and behave
like one vortex sheet at the last computed stage, although they do
not coincide exactly to maintain the initial area between them. The
merging phenomenon between two vortex sheets is also observed
in the numerical simulations by Zabusky and Zhang.41 Although
we select incompressible RMI as a physical example of multi-layer
systems, the model and analysis developed here are applicable to
general unstable multi-layer interfacial motions, such as the Kelvin–
Helmholtz instability (KHI), RTI, and internal gravity waves. In the
current study, we consider the three-component fluid systems; how-
ever, the extension of the model equations to M (M ≥ 3) component
density stratified fluids is not difficult.

This paper is organized as follows. In Sec. II, we provide the
mathematical model for the three-component density stratified fluid
such that two interfaces coexist in the system and derive the govern-
ing equations for describing the motion of the interfaces as vortex
sheets. In Sec. III, the linear analysis for deriving the initial condi-
tions for numerical calculations is performed. In Sec. IV, we present
some numerical results for the motion of the two vortex sheets in
RMI varying the Atwood numbers and initial distances between the
two interfaces. Section V is devoted to conclusion and discussions.

II. FORMULATION OF THE PROBLEM
We consider two-dimensional inviscid and incompressible

flows in which two fluid interfaces I1 and I2 with density and tan-
gential velocity jumps (Fig. 1). The fluids over I1 (density ρ0) and

FIG. 1. Schematic figure of the physical situation.
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under I2 (density ρ2) are assumed to extend to infinity (Fig. 1). We
also assume that the fluid is irrotational except the interfaces. Then,
the Bernoulli equation holds in each fluid i,

ρi[
∂ϕi

∂t
+

1
2
(∇ϕi)

2
] + pi = Ci(t) (i = 0, 1, 2), (1)

where ϕi (i = 0, 1, 2) is the velocity potential that is related to
the fluid velocity vi as vi = ∇ϕi, ρi is the density of fluid i, pi is
the pressure, and Ci(t) is some constant depending only on time.
When we ignore the gravity, we can set C0(t) = C1(t) = C2(t) in
Eq. (1). Since the system is described by the potential flow, the
Laplace equation

△ ϕi = 0 (i = 0, 1, 2) (2)

holds for the velocity potential ϕi in each fluid region across the
interfaces.

From the pressure continuous condition pi = pi−1 at each
interface Ii (i = 1, 2), Eq. (1) yields

(1 − Ai)[
∂ϕi

∂t
+

1
2
(∇ϕi)

2
]

− (1 + Ai)[
∂ϕi−1

∂t
+

1
2
(∇ϕi−1)

2
] = 0 (i = 1, 2) (3)

where the Atwood number Ai, the density ratio between fluids i and
i − 1, is defined by

Ai =
ρi−1 − ρi

ρi−1 + ρi
(i = 1, 2). (4)

We parameterize points on the interface x = Xi (i = 1, 2) as

Xi(e, t) = [Xi(e, t), Yi(e, t)]

using the same Lagrangian parameter e (−π ≤ e ≤ π), where we
assume the periodicity in the x direction. Due to the linearity of
the field (2), the vortex induced velocity W i = (W i ,x, W i ,y) (i = 1,
2) on the interface Ii is given as the sum of the self-contribution of
interface Ii and the contribution from the other interface Ij (i ≠ j) as
follows:

Wi,x(Xi(e, t), Yi(e, t)) = −
1

4π
P.V.∫

π

−π

γi(e′, t)si,e(e′, t) sinh(Yi(e, t) − Yi(e′, t))
cosh(Yi(e, t) − Yi(e′, t)) − cos(Xi(e, t) − Xi(e′, t)) + δ2 de′

−
1

4π ∫
π

−π

γj(e′, t)sj,e(e′, t) sinh(Yi(e, t) − Yj(e′, t))
cosh(Yi(e, t) − Yj(e′, t)) − cos(Xi(e, t) − Xj(e′, t)) + δ2 de′ (i ≠ j),

Wi,y(Xi(e, t), Yi(e, t)) =
1

4π
P.V.∫

π

−π

γi(e′, t)si,e(e′, t) sin(Xi(e, t) − Xi(e′, t))
cosh(Yi(e, t) − Yi(e′, t)) − cos(Xi(e, t) − Xi(e′, t)) + δ2 de′

+
1

4π ∫
π

−π

γj(e′, t)sj,e(e′, t) sin(Xi(e, t) − Xj(e′, t))
cosh(Yi(e, t) − Yj(e′, t)) − cos(Xi(e, t) − Xj(e′, t)) + δ2 de′ (i ≠ j),

(5)

in which γi = ui − ui−1, and γi = γi ⋅ ti = ∂Γi/∂si denotes the (true)
vortex sheet strength of the interface Ii derived from the circulation
Γi ≡ ϕi − ϕi−1, where si and ti are length and unit tangent of the inter-
face Ii, respectively. Here, the subscript e denotes the differentiation
with respect to e, and si,e =

√
X2

i,e + Y2
i,e. We take the principal value

P.V. in the integral (5) when the point x = (x, y) is on the interface Ii;
(x, y) = (Xi, Y i). The second terms on the right-hand side of Eq. (5)
denote the contribution from the other interface Ij (i ≠ j, i, j = 1, 2).
It should be noted that we do not need to take the principal value for
the integral of these terms. If we set the regularized parameter δ49,50

in Eq. (5) to δ = 0 and adopt a suitable integral method,60 the numeri-
cal results for the spatial integration have the spectral accuracy.46 We
mention that since the second integrals in Eq. (5) without the nota-
tion P.V. are not singular integrals, the parameter δ is unnecessary
for these integrals in the meaning of the regularization. However,
when an interface is so close to the other one (refer to Figs. 10, 12,
and 13), the denominators of the integrands in these integrals can be
very small when we set δ = 0, which causes some numerical insta-
bilities in the last computed stage. In order to avoid that and retain

the resolution at the last computed stage of the computation, we also
insert δ in the second integrals of Eq. (5). The velocity W i in Eq. (5)
corresponds to the average velocity (ui + ui−1)/2 between the two
fluid velocities ui and ui−1.

The fluid velocity W = (Wx, Wy) at an arbitrary point x = (x, y)
in bulks is given by replacing Xi and Y i with the coordinates x and
y in Eq. (5). Then, all integrals in the right-hand side of Eq. (5)
are regular integrals. Equation (5) is an extension of the Birkhoff–
Rott equation53–55 to two interfaces. Taking into account the relation
γi = ui − ui−1 and γi = γiti, the fluid velocities of the upper and lower
sides of the interfaces are given by

u0 =W1 −
γ1

2
t1,

u11 =W1 +
γ1

2
t1,

u12 =W2 −
γ2

2
t2,

u2 =W2 +
γ2

2
t2,

(6)
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where u11 and u12 are the velocities of the lower side of interface
I1 and the upper side of interface I2 in fluid region 1, respectively.
It should be noted that the normal component of the velocities is
continuous at each interface because γi (γi = γiti) does not possess
the normal component.

Now, we determine the Lagrange motion of the interfaces.
Unlike the case of a single interface, there are two interfacial veloci-
ties in the current system associated with those interfaces; therefore,
two Lagrange derivatives with respect to time can exist depending
on the interfacial velocities. The normal component of the fluid
velocity across each interface should always be continuous. How-
ever, there is an arbitrariness how to select the tangential velocity at
the interfaces.34,45,61–63 Here, we define the interfacial velocity u+

i at
each interface Ii labeled by the Lagrange parameter e as

u+
i =W i +

α̃i

2
γi, (7)

where α̃i (∣α̃i∣ ≤ Ai) is an artificial parameter depending on the
Atwood number Ai,61,64 and we set α̃i = 0 when Ai = 0. Equation (7)
is an extension of the velocity of a single interface34–36,45 to the one
of two interfaces.

Then, the interface Ii moves with the Lagrange derivative d/dti,

d
dt i
=

∂

∂t
+ u+

i ⋅ ∇ =
d
dt

+
α̃i

2
γi ⋅ ∇, (8)

where d/dt is defined by

d
dt
=

∂

∂t
+ u+
⋅ ∇. (9)

The derivative d/dt denotes the Lagrange derivative moving with the
velocity u+, which coincides with W i at interface Ii,

u+
∣x=Xi =W i.

The parameter α̃i in Eq. (7) controls the magnitude of the tangential
velocity on the interface.45,61,64 When the regularized parameter δ
= 0, we select α̃i as α̃i = −Ai, for which the interfacial velocities u+

1
and u+

2 become the weighted averages of two fluids derived from the
interfacial velocities (6),

u+
1 =

ρ0u0 + ρ1u11

ρ0 + ρ1
,

u+
2 =

ρ1u12 + ρ2u2

ρ1 + ρ2
,

while we select α̃i as α̃i = −A2
i when δ ≠ 034,58,59 throughout this

paper, by which we can suppress the rapid increase in the tangential
velocity in rolling-up of the vortex sheet at the late stage.61

Rewriting the Bernoulli equation (3) using the velocity (7), we
obtain the following equation at interface Ii:

dΓi

dti
= 2Ai

dΦi

dti
+ (u+

i −W i) ⋅ ∇Γi − 2Ai(u+
i ⋅ ∇)Φi

+ Ai(W i ⋅W i +
1
4
∇Γi ⋅ ∇Γi) (10)

where Φi = (ϕi−1 + ϕi)/2 (i = 1, 2), ∇Φ1 = (u0 + u11)/2, and ∇Φ2
= (u12 + u2)/2. Differentiating (10) with respect to e and using the

Lagrange derivatives (8) and (9), we obtain the evolution equation
for the sheet strength γi = ti ⋅ ∇Γi described by a single derivative
d/dt,

dγi

dt
=

2Ai

si,e
(Xi,e

dWi,x

dt
+ Yi,e

dWi,y

dt
)

−
(1 + α̃iAi)γi

s2
i,e

(Xi,eWi,x,e + Yi,eWi,y,e) +
Ai − 5α̃i

4si,e
(γ2

i )e

+
Aiα̃i

si,e
(γi,eTi + γiTi,e) (11)

where Ti = ti ⋅W i, and we set the temporal evolution of interface Ii
using Eq. (7) as

dXi

dt
= u+

i . (12)

Solving Eqs. (11) and (12) simultaneously by taking Eqs. (5) and (7)
into account, we can determine the motion of interfaces I1 and I2
together with the bulk velocity field.

III. LINEAR ANALYSIS AND INITIAL CONDITIONS
FOR NUMERICAL CALCULATIONS
A. Linear analysis for the double-layer solution

In this subsection, we perform the linear analysis in order
to determine the initial conditions for numerical calculations. We
denote the interface as y = ηi(x, t). The kinematic boundary condi-
tions at interface Ii (i = 1, 2) are given by

∂η1

∂t
−
∂ϕi

∂y
=
∂ϕi

∂x
∂η1

∂x
(i = 0, 1) at I1,

∂η2

∂t
−
∂ϕi

∂y
=
∂ϕi

∂x
∂η2

∂x
(i = 1, 2) at I2.

(13)

We assume that the non-perturbative states of interfaces I1 and
I2 are y = d/2 and y = −d/2 (d > 0), respectively (refer to Fig. 1),
and consider small deviations from those states. Linearizing the
Bernoulli equation (3) and the kinematic boundary condition (13)
at the non-perturbative interfaces, we obtain the following linearized
equations at I1 (y = d/2):

ρ0
∂ϕ̃0

∂t
= ρ1

∂ϕ̃1

∂t
,

∂η̃1

∂t
=
∂ϕ̃0

∂y
,

∂η̃1

∂t
=
∂ϕ̃1

∂y
,

(14)

and at I2 (y = −d/2),

ρ1
∂ϕ̃1

∂t
= ρ2

∂ϕ̃2

∂t
,

∂η̃2

∂t
=
∂ϕ̃1

∂y
,

∂η̃2

∂t
=
∂ϕ̃2

∂y
,

(15)

where the quantities with tilde denote small perturbations: ∣η̃i∣ ≪ 1
(i = 1, 2) and ∣ϕ̃i∣ ≪ 1 (i = 0, 1, 2).
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Taking into account the Laplace field (2) and the periodicity in
the x direction, we have the following linear solution to Eqs. (14) and
(15):

η̃1 = a1t cos kx +
d
2

,

η̃2 = a2t cos kx −
d
2

,

ϕ̃0 = B0e−ky cos kx (y >
d
2
),

ϕ̃1 = (B11eky + B12e−ky
) cos kx (−

d
2
≤ y ≤

d
2
),

ϕ̃2 = B2eky cos kx (y < −
d
2
),

(16)

where k is the wavenumber, and we can select the amplitudes a1 and
a2 independently. Using ai (i = 1, 2), the coefficients B0, B11, B12, and
B2 are given as

B0 = −
a1

k
ekd/2,

B11 =
a1ekd/2

− a2e−kd/2

k(ekd − e−kd)
,

B12 =
a1e−kd/2

− a2ekd/2

k(ekd − e−kd)
,

B2 =
a2

k
ekd/2.

(17)

Following the case of the conventional single-layer RMI, we
normalize the physical quantities in Eq. (16) by the wavenumber k
and the initial velocity shear of a single interface vlin, which corre-
sponds to the linear growth rate in the single-layer RMI.21,24,25,58,59

From now on, the dimensionless variables for space kx, time kvlint,
circulation of vortex sheet ikΓi/vlin (i = 1, 2), and vortex sheet
strength γi/vlin are used as x, t, Γi, and γi. The dimensionless dis-
tance kd between the interfaces is replaced with d below. Then, from
Eqs. (16) and (17), we have the normalized linear solution

η̃1 = a1t cos x +
d
2

,

η̃2 = a2t cos x −
d
2

,

ϕ̃0 = −a1ed/2−y cos x (y >
d
2
),

ϕ̃1 = [
a1ed/2+y

− a2e−d/2+y

ed − e−d +
a1e−d/2−y

− a2ed/2−y

ed − e−d ] cos x

×(−
d
2
≤ y ≤

d
2
),

ϕ̃2 = a2ed/2+y cos x (y < −
d
2
).

(18)

The linear solution [Eq. (18)] provides the initial conditions for
solving the nonlinear interaction between the two interfaces.

B. Initial conditions for numerical calculations
Throughout this paper, we set the initial interfacial shapes as

I1 : X1(e, 0) = e, Y1(e, 0) =
d
2

,

I2 : X2(e, 0) = e, Y2(e, 0) = −
d
2

(19)

for all numerical calculations (−π ≤ e ≤ π).
For the linear solution (18) and the initial condition (19), we

obtain the initial vortex sheet strengths γ1 = (∂ϕ1/∂x − ∂ϕ0/∂x)∣y=d/2
[s1,e(e, 0) = 1] and γ2 = (∂ϕ2/∂x − ∂ϕ1/∂x)∣y=−d/2 [s2,e(e, 0) = 1] as

γ1(e, 0) = −
2(a1ed

− a2)

ed − e−d sin e,

γ2(e, 0) = −
2(a2ed

− a1)

ed − e−d sin e.

(20)

When we approach interface I2 toward interface I1 (d→ 0), we
have

lim
d→0

γ1 = [
−2a1ed

ed + ed ]
d=0

sin e = −a1 sin e,

lim
d→0

γ2 = [
−2a2ed

ed + ed ]
d=0

sin e = −a2 sin e,

(21)

where we used L’Hôpital’s rule. Equation (21) gives the limit sheet
strength

γ = lim
d→0
(γ1 + γ2) = [

∂ϕ2

∂x
−
∂ϕ0

∂x
]

d=0
= −(a1 + a2) sin e.

This γ coincides with the one in the conventional single-layer RMI
when a1 = a2 = 1.17,34

From now on, we normalize the Atwood numbers Ai (i = 1, 2)
in (4) with the fluid density ρ1 (ρ1 ≠ 0) as follows:

A1 =
ρ̃0 − 1
1 + ρ̃0

, A2 =
1 − ρ̃2

1 + ρ̃2
(22)

where ρ̃0 = ρ0/ρ1 and ρ̃2 = ρ2/ρ1. Depending on the density ratios,
we consider the following two cases:

ρ0 < ρ1 < ρ2, i.e., ρ̃0 < 1 and ρ̃2 > 1, (23a)

ρ0 < ρ1 and ρ2 < ρ1, i.e., ρ̃0 < 1 and ρ̃2 < 1. (23b)

Case (23b) corresponds to the situation investigated by Liu et al.8

using the weakly nonlinear analysis when ρ1 = ρ2 = 0 (the vacu-
ums). The situation that was investigated numerically by Zabusky
and Zhang41 is also case (23b), in which they set ρ0 = ρ2 and ρ0/ρ1
= 0.14. The cases that ρ0 > ρ1 and ρ2 > ρ1, i.e., ρ̃0 > 1 and ρ̃2 > 1, are
also possible, but this is essentially the same as case (23b) for RMI
in the planar geometry because we do not consider the gravity in the
current study.

Here, we normalize the linear amplitude ai (i = 1, 2) as |ai| = 1.
Then, there are two options for a1 and a2: one of which is in phase,

a2

a1
= 1, (24)
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and the other is out of phase,

a2

a1
= −1, (25)

where Eq. (24) provides the initial limit sheet strength of the conven-
tional single-layer RMI: γ = limd→0(γ1 + γ2)t=0 = −2 sin e21,34–36,58,59

when a1 = a2 = 1, while γ = limd→0(γ1 + γ2)t=0 = 0 for Eq. (25).
We compare the numerical results for double-layer interfaces

with those for the conventional single-layer interface, in which the
Atwood number in the latter case is defined as

A =
ρ2 − ρ1

ρ1 + ρ2
,

where ρ2 > ρ1 is assumed for two fluid components 1 and 2 (fluid 1
is upper). The initial condition for the single-layer interface (X, Y)
and the initial sheet strength γ are selected as

X(e, 0) = e (−π ≤ e ≤ π),
Y(e, 0) = 0,
γ(e, 0) = −2 sin e

(26)

for both cases of the regularized parameter δ = 0 and δ ≠ 0.

IV. NUMERICAL CALCULATIONS BY VSM
In this section, we perform numerical calculations based on the

governing equations (11) and (12) with Eqs. (5) and (7) and inves-
tigate the nonlinear interaction between the two interfaces in the
double-layer RMI.

A. Overview of numerical methods
In this subsection, we briefly mention the numerical methods

adopted in the current study. When the regularized parameter δ = 0,
we adopt the alternate point quadrature method34,46,60 for the spatial
integration of Eq. (5). This scheme is known to be spectral accu-
racy.46 When δ ≠ 0, we adopt the conventional trapezoidal rule for
the spatial integration.57 For the temporal integration, we use the
fourth-order Runge–Kutta scheme throughout this paper for both
calculations of δ = 0 and δ ≠ 0. The simultaneous Fredholm equa-
tions of the second kind [Eq. (11)] are solved by iteration with a
tolerance level of 10−12.

In order to prevent the irregular motion due to the round-off
error, we use the filtering technique (filter levels 10−11 for δ = 0 and
10−13 for δ ≠ 0) introduced by Krasny.49 The growth of higher-order
Fourier modes in calculations of multi-layer interfaces is more rapid
than that of single-layer RMI, especially for the calculations of δ = 0,
and the above Krasny’s filter is not enough to suppress the growth
when δ = 0. To control the higher-order Fourier modes, we adopt
the following 16th-order Fourier exponential filter:63,65,66

exp
⎡
⎢
⎢
⎢
⎢
⎣

−10(
∣k∣

N/2
)

16⎤
⎥
⎥
⎥
⎥
⎦

f̂ (k) (27)

for mode k and the number of grid points N to damp the highest
modes, where f̂ (k) is the Fourier transform of an arbitrary function
f (e). The exponential filter (27) is only employed for the calculations
of δ = 0.

When δ ≠ 0, we adopt the grid redistribution method by use of
Newton’s method to avoid clustering61 of grid points.17,34,67 There is
another numerical method to avoid the clustering, which is known
as the point insertion scheme.49,58,59,68 This method can capture the
complicated structure of the vortex sheet at the late stage by insert-
ing grid points successively; however, the roll-up of the vortex sheet
is too strong, and the asymptotic growth rate of the bubble and
spike deviates68 from the value obtained by the theoretical predic-
tion.40,69 In addition to that, the point insertion scheme is unsuitable
for the calculation of high Atwood numbers. For more details on the
numerical schemes adopted here, refer to Refs. 17 and 34.

B. Numerical results for δ = 0
In this subsection, we present the numerical results by the VSM

for δ = 0 in Eq. (5) and compare those with the ones of the single-
layer RMI. In numerical calculations of δ = 0, the number of grid
points N taken on the interfaces is selected as N = 1024. We set the
normalized time step Δt as Δt = 10−4 throughout the calculations for
δ = 0. In this subsection, we investigate the situation of Eq. (23b) for
two types of density ratios, large (|Ai| = 1) and small (|Ai| = 0.2), one
of which is ρ̃0 = 0 and ρ̃2 = 0, i.e., A1 = −1 and A2 = 1 in Eq. (22),
which corresponds to the situation that fluid 0 and fluid 2 are the
vacuums, and the other is ρ̃0 = ρ̃2 = 2/3, i.e., A1 = −0.2 and A2
= 0.2 in Eq. (22). We also compare the numerical results with those
for A = 1 and A = 0.2 in the single-layer RMI. Throughout this sub-
section, we consider the in-phase situation [Eq. (24)] (a1 = a2 = 1).
We select the initial distance d between two interfaces in Eq. (19) as
d = π (d = λ/2, where λ is the wavelength) when A1 = −1 and A2 = 1.
For the case of A1 = −0.2 and A2 = 0.2, we consider two cases of d
= π and d = π/4.

Figure 2 shows the interfacial structures and the velocity fields
for (left) A1 = −1 and A2 = 1 in Eq. (22) (ρ0 = ρ2 = 0) and (right) A
= 1 (the upper fluid ρ1 = 0). The points x = 0 on the upper interface
I1 and x = ±π on the lower interface I2 correspond to spikes, and the
points x = ±π on I1 and x = 0 on I2 correspond to bubbles in the left
panel, while the point x = 0 (x = ±π) corresponds to the spike (bub-
ble) in the right panel. The interfacial shape in the neighborhood of

FIG. 2. Interfacial structures for δ = 0 with the colored scale of the vortex sheet
strengths and the velocity fields for the (left) double-layer RMI and (right) single-
layer RMI, where the Atwood numbers are (left) A1 = −1 and A2 = 1 and (right)
A = 1. Both panels show the last computed stage of the evolution for those Atwood
numbers, where t = 0.12 for the left panel and t = 0.55 for the right panel. The
initial distance d between I1 and I2 in the left panel is selected as d = π.
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the bubble (x = ±π on I1 and x = 0 on I2) and spike (x = 0 on I1 and
x = ±π on I2) is the same in the two interfaces. We see that two stag-
nation points exist in the velocity field at around x = ±π/2 and y
= 0 in the left panel. The change in the distance between two
interfaces is not so remarkable for the case of A1 = −1 and A2 = 1.

In the numerical calculations, the interfacial coordinate (Xi, Y i)
(i = 1, 2) is expanded using Fourier modes34,46

Xi(e, t) = e +
N/2

∑
k=−N/2+1

X̂i,k(t)e
ike,

Yi(e, t) =
N/2

∑
k=−N/2+1

Ŷi,k(t)e
ike.

(28)

We show the growth of the Fourier amplitude
√

X̂1(t)
2 + Ŷ1(t)

2 for
A1 = −1 and A2 = 1 and the corresponding Fourier amplitude of the
single-layer RMI for A = 1 in Fig. 3. We depict the Fourier ampli-
tude for I1 in Fig. 3, but the amplitude for I2 at the corresponding

FIG. 3. Fourier amplitudes for I1 in the (a) double-layer interfaces and (b) single-
layer interface, where the Atwood numbers are the same as in Fig. 2. The slope of
the dotted line is −5/2.

time coincides with the one for I1. The dotted lines in (a) and (b) in
Fig. 3 possess slope−5/2, the value obtained by Moore70 for KHI. It is
known that the curvature singularity occurs as the spectra approach
the −5/2 lines.34,46,70,71 This is confirmed in Fig. 4.

Curvatures of Ii (i = 1, 2) at t = 0.12 and the one of the single-
layer interface at t = 0.55 are depicted as a function of the Lagrange
parameter e in Fig. 4. Although the interfacial structures in Fig. 2
are sufficiently smooth, the corresponding curvatures in Fig. 4 have
cusps at the spikes [e = 0 on I1 and e = ±π on I2 in Fig. 4(a) and e
= 0 in Fig. 4(b)]. We mention that the vortex sheet strength γi (γ) in
the neighborhood of the spike is not so large; however, the derivative
γi ,e (γe) is quite large because the sheet strength γi (γ) changes its sign
at the spike (refer to Fig. 2). The numerical calculations for these
Atwood numbers break down immediately after (t = tc = +0.12 for
the double-layer RMI and t = tc = 0.55 for the single-layer RMI) the
appearance of the curvature singularity. From now on, we refer to tc
as the break-down time.

FIG. 4. Curvatures of (a) I1 (blue line) and I2 (red line) in the double-layer interfaces
at t = 0.12 and (b) single-layer interface at t = 0.55, where the Atwood numbers
are the same as in Figs. 2 and 4.
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FIG. 5. Interfacial structures for δ = 0 with the colored scale of the vortex sheet
strengths and the velocity fields for the (left) double-layer RMI and (right) single-
layer RMI, where the Atwood numbers are (left) A1 = −0.2 and A2 = 0.2 and (right)
A = 0.2. Both panels show the last computed stage of the evolution for those
Atwood numbers, where t = 1.0 for the left panel and t = 0.94 for the right panel.
The initial distance d between I1 and I2 in the left panel is selected as d = π.

Figure 5 shows the interfacial structures and the velocity fields
for (left) A1 = −0.2 and A2 = 0.2 in Eq. (22) (ρ0 = ρ2 = 2/3) and
(right) A = 0.2 (the upper fluid is lighter). The locations of bubbles
and spikes are the same as those in Fig. 2. Both of the deformations
of bubbles and spikes for A1 = −0.2 and A2 = 0.2 are large compared
to those for A1 = −1 and A2 = 1 (Fig. 2), although the vortex sheet
strengths γ1 and γ2 in the double-layer RMI in Fig. 5 are weaker
than the ones in Fig. 2 or those in the right panel of Fig. 5. We
see that a strong upward (downward) velocity field exists around
the spike at x = 0 on I1 (x = ±π on I2), and the shape of spikes of
the double-layer RMI (left panel) becomes sharper than the one of
the single-layer RMI (right panel) for these small Atwood numbers
(|Ai| = A = 0.2).

We depict the Fourier amplitude for I1 (the one for I2 at the
corresponding time is the same) for A1 = −0.2 and A2 = 0.2 and the
Fourier amplitude of the single-layer RMI for A = 0.2 in Fig. 6. As
the Fourier amplitudes approach the −5/2 lines, the cusps appear in
the curvatures for both the double-layer RMI and the single-Layer
RMI, as shown in Fig. 7. These cusps appeared at the spikes for both
of the double-layer RMI and the single-layer RMI in Fig. 4. On the
other hand, they appear at different places in (a) and (b), in which
two cusps appear on both sides of spikes (e = 0 on I1 and e = ±π
on I2) in Fig. 7(a), while those appear in the neighborhood of
e = ±1 in Fig. 7(b). At both of which, the vortex sheet strengths
|γi| (i = 1, 2) and |γ| take their maximum values. Unlike the case of
|Ai| = A = 1 (i = 1, 2), the break-down time of numerical calculations
due to the appearance of curvature singularity for the double-layer
RMI (tc = 1.0) is larger than that for the single-layer RMI (tc = 0.94).
This break-down time is further extended for δ = 0 when the initial
distance between the two interfaces d becomes small. We see that in
Figs. 7–9.

Figure 8 shows the interfacial structures and the velocity fields
of the double-layer RMI with the same Atwood numbers as Fig. 5
and a different initial distance d = π/4, where the left panel shows
the state of t = 1.0 and the right panel shows t = 2.0. As we see from
Fig. 8, the vortex sheet strength |γi| (i = 1, 2) with this narrow initial
distance does not grow, and the concentration of |γi| as observed in
Figs. 2 and 5 is not found in Fig. 8. We see that the distance between

FIG. 6. Fourier amplitudes for I1 in the (a) double-layer interfaces and (b) single-
layer interface, where the Atwood numbers are the same as in Fig. 5. The slope of
the dotted line is −5/2.

the two interfaces gradually becomes narrow with the passage of
time. The fact that the concentration of the sheet strength |γi| does
not occur is also reflected in the growth of Fourier amplitudes and
curvatures of the interfaces.

The upper panel of Fig. 9 shows the Fourier amplitude for I1
(the one for I2 at the corresponding time is the same) with A1 = −0.2
and A2 = 0.2 and the initial distance d = π/4. The Fourier amplitude
with d = π/4 does not grow, and it does not attain the line of slope
−5/2 (the dotted line), as shown in Figs. 3 and 6. The curvatures of
I1 (blue line) and I2 (red line) at t = 2.0 are depicted in the lower
panel of Fig. 9 as a function of the Lagrange parameter e. Both cur-
vatures of I1 and I2 are smooth, and the cusps do not appear even at
this time. When t > 2.0, the higher-order Fourier modes grow, and
the calculation becomes unstable; however, the noticeable curvature
singularity as shown in Figs. 4 and 7 was not observed even at later
times. We mention that the calculations for d = π/4 are stable for
a long time compared to those for d = π regardless of the Atwood
numbers when δ = 0.
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FIG. 7. Curvatures of (a) I1 (blue line) and I2 (red line) in the double-layer interfaces
at t = 1.0 and (b) single-layer interface at t = 0.94, where the Atwood numbers are
the same as in Figs. 5 and 6.

FIG. 8. Interfacial structures for δ = 0 with the colored scale of the vortex sheet
strengths and the velocity fields of the double-layer RMI for the initial distance
d = π/4 between the two interfaces, where the Atwood numbers are the same as
in Fig. 5. The left and right panels show the velocity fields at t = 1.0 and t = 2.0,
respectively.

FIG. 9. Fourier amplitude (upper panel) and the curvature at t = 2.0 (lower panel) in
the double-layer interfaces with the initial distance d = π/4. The Atwood numbers
are the same as in Figs. 5–8. The slope of the dotted line in the upper panel is
−5/2.

C. Numerical results for finite δ

In this subsection, we present the numerical results by the VSM
for δ ≠ 0 using the vortex (blob) method.49,50 The calculation for
δ ≠ 0 does not possess the spectral accuracy as for the calculation
in δ = 0 presented in Subsection IV B; however, it enables us to
compare the numerical results to the long-time behavior in numer-
ical simulations as presented by Zabusky and Zhang.41 We adopt
the regularized parameter δ as δ = 0.15 throughout this subsection
(for the details of the selection of this value, refer to Ref. 58). In
numerical calculations, the number of grid points on the interfaces
N is selected as N = 512, and we set the normalized time step Δt as
Δt = 2.5 × 10−3 for the calculations of δ = 0.15. In this subsection,
we consider the nonlinear interactions between the two interfaces
for various initial distances (d = π, π/2, and π/4). We investigate the
long-time behavior of the interfaces for the two cases of Eqs. (23a)
and (23b), where the absolute value of the Atwood number is fixed as
|Ai| = 0.2 (i = 1, 2).
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We show the temporal evolution of interfacial structures with
the initial distance d = π/2 and the linear amplitudes a1 = a2 = 1
[in phase (24)] in Fig. 10, where the Atwood numbers are A1 = A2
= −0.2 [ρ̃0 = 2/3 and ρ̃2 = 3/2 in Eq. (22)]; that is, we consider the
case of (23a). This is the natural extension of the conventional single-
layer RMI such that the sum of two initial sheet strengths in Eq. (20)
becomes equal to the initial sheet strength of the single-layer RMI
γ in the limit of d → 0: limd→0(γ1(e, 0) + γ2(e, 0)) = −2 sin e = γ(e,
0). The two interfaces gradually approach each other and merge, and
finally, they behave like one interface. This merging occurs for all ini-
tial distances d = π (refer to Fig. 12), π/2, and π/4 when δ is finite. In
particular, when the initial distance between two interfaces is small
(d = π/2 and d = π/4), the two interfaces finally merge including the
bubbles (x = ±π) and spikes (x = 0), as shown in Fig. 10. The sheet
strengths γ1 and γ2 concentrate at the vortex cores,72 the center of the
mushrooms, and the same-signed neighboring cores rotate around
each other. The merging phenomenon is caused by the incompress-
ibility of the system that the area-preserving condition must hold. In
order to maintain the area of the initial rectangle region between two
interfaces, the distance between the interfaces is needed to become

FIG. 10. Temporal evolution of interfacial structures of the double-layer RMI for δ
= 0.15 with the colored scale of the vortex sheet strengths, where the initial dis-
tance d = π/2, the Atwood numbers A1 = A2 = −0.2, and the linear amplitudes a1
and a2 satisfy the in-phase condition (24). The depicted times are t = (a) 2, (b) 4,
(c) 6, and (d) 10.

narrower as the interfacial shapes become complicated. We mention
that the temporal evolution of interfacial structures for the initial
distance d = π/4 is similar to the one in Fig. 10, but the merging of
two interfaces occurs at an earlier time.

Figure 11 shows the growth rates of (a) bubbles and (b) spikes
for the single-layer RMI (black line) with the Atwood number A
= 0.2 and the double-layer RMI (blue, green, and red lines) with the
Atwood numbers A1 = A2 = −0.2, where the initial distances d are
selected as d = π/4 (blue lines), π/2 (green lines), and π (red lines).
The growth rates of I1 and I2 are depicted with solid and dotted
lines, respectively. The bubbles and spikes for these Atwood num-
bers and the linear amplitudes (a1 = a2 = 1) appear at the same x
coordinate on the two interfaces I1 and I2, where the former appear
at x = ±π and the latter appear at x = 0. Since a1 = a2, the initial sheet
strength γ1(e, 0) is equal to γ2(e, 0) [refer to Eq. (20)]; therefore, the
growth rates of the bubble and spike for I1 coincide with those for I2

FIG. 11. Temporal evolution of (the absolute value of) the growth rates of (a) bub-
bles and (b) spikes for δ = 0.15, where the Atwood number of the single RMI
is A = 0.2 and those of the double-layer are the same as in Fig. 10. The black
line denotes the single-layer RMI, and the blue, green, and red lines indicate the
growth rates of the double-layer RMI with initial distances d = π/4, π/2, and π. For
the double-layer RMI, the solid and dotted lines denote the growth rates of I1 and
I2, respectively.

Phys. Fluids 32, 102109 (2020); doi: 10.1063/5.0023558 32, 102109-10

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

at t = 0. As time passes, the deviation between the sheet strengths γ1
and γ2 becomes large due to the nonlinear interaction between the
two interfaces, and a difference appears in the growth of bubbles and
spikes for I1 and I2.

The growth rate of the bubble for the single-layer RMI is almost
equal to the one for the interface I2 (dotted lines) in the double-layer
RMI, regardless of the values of the initial distance d, and all these
lines asymptotically approach zero, the theoretically predicted value
for the single-layer RMI.39,40 On the other hand, the growth rates of
bubbles for I1 (solid lines), especially for d = π (red solid line), reveal
the different behavior from those for the single-layer RMI, although
the two lines with d = π/4 and π/2 asymptotically approach zero. The
asymptotic growth rate of the bubble for I1 with d = π is larger than
the one of the spikes [refer to the red solid lines in Figs. 11(a) and
11(b)]. The growth rate of the spike in the single-layer RMI at the
earlier stage (t < 1) is closest to the one of I2 with d = π (red dotted
line) in the double-layer RMI, and it approaches the line of I1 with
d = π (red solid line) asymptotically. The behavior of the growth
rate of bubbles for I1 (solid lines with blue, green, and red) is similar
to that of spikes for I2 (dotted lines with the corresponding colors),
although they do not coincide with each other perfectly.

We show the interfacial structures at t = 10 (the final stage of the
calculation) for the double-layer RMI with the initial distance d = π
(left) and the single-layer RMI for A = 0.2 (right) in Fig. 12, where
the Atwood numbers of the left panel are the same as in Fig. 10.
As we see from Fig. 11(b), the asymptotic behavior of the growth
rate of the spike in the single-layer RMI (black line) is closest to that
of the upper interface I1 with the initial distance d = π (red solid
line), although the interfacial shape, especially the structure in the
neighborhood of vortex cores, is quite different from each other, as
shown in Fig. 12. Unlike the interfaces with d = π/2 in Fig. 10, the
bubbles and spikes of the two interfaces with d = π keep at a distance
even at t = 10, although the interfaces around the vortex cores merge.
Secondary vortex cores with relatively strong sheet strengths appear
in the neighborhood of the spike on I2 and the bubble on I1 at this
time in the double-layer RMI.

FIG. 12. Comparison between the interfacial structures of the (left) double-layer
RMI and (right) single-layer RMI at the same time t = 10, where the initial distance
in the left panel is d = π and the Atwood numbers are the same as in Fig. 10. The
Atwood number of the right panel is A = 0.2.

Now, we compare the interfacial structure with an in-phase
initial condition [Eq. (24)] to the one with an out of phase initial
condition [Eq. (25)] for fixed Atwood numbers A1 = −0.2 and A2
= 0.2 [case (23b), ρ̃0 = ρ̃2 = 2/3 in (22)] and the initial distance d
= π. Figure 13 shows the interfacial structures (over two periods) at
t = 10 with (a) in phase [Eq. (24), a1 = a2 = 1] and (b) out of phase
[Eq. (25), a1 = 1 and a2 = −1] initial conditions. Since Fig. 13(a) sat-
isfies the in-phase condition (24), the sum of the two initial sheet
strengths γ1(e, 0) + γ2(e, 0) is equal to the initial sheet strength of
the single-layer RMI γ(e, 0) in the limit of d → 0 [refer to Eqs. (20)
and (21)]; however, unlike the case of Figs. 10–12, the x coordinates

FIG. 13. Interfacial structures at t = 10 with (a) in phase [Eq. (24), a1 = a2 = 1] and
(b) out of phase [Eq. (25), a1 = 1 and a2 = −1] initial conditions, where the Atwood
numbers A1 = −0.2 and A2 = 0.2 and the initial distance d = π. A period of two
wavelengths is depicted in these figures.
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of bubbles and spikes are different between I1 and I2 in this den-
sity ratio (the middle layer is the heaviest). Here, the bubble position
on I2 is x = 0, and the spike position on I2 is x = ±π (in a period)
in Fig. 13(a) (the bubble and spike positions on I1 are the same as
those on I1 in Figs. 10–12), while the bubble and spike positions in
Fig. 13(b) are x = ±π and x = 0 (in a period) for both of I1 and I2.
The initial sheet strengths for the out of phase condition [Fig. 13(b)]
satisfy limd→0[γ1(e, 0) + γ2(e, 0)] = 0 [refer to Eq. (21)]; therefore,
this case does not tend to the single-layer solution even in the limit of
d → 0. We see that the curvature of all bubbles tends to almost zero
for both figures of Fig. 13, as expected for the conventional single-
layer RMI.39,40 The result of Fig. 13(b) with the out of phase initial
condition (25) and the density ratios ρ̃0 < 1 and ρ̃2 < 1 corresponds
to the numerical simulation presented by Zabusky and Zhang.41

We mention that the bubble and spike of I1 and those of I2 are
asymmetric with each other unless A1 = A2 = 0.

FIG. 14. Growth rates of (upper) bubbles and (lower) spikes for a fixed initial dis-
tance d = π, where the Atwood numbers are (a) A1 = A2 = −0.2 and [(b) and (c)]
A1 = −0.2 and A2 = 0.2 for both panels. The linear amplitudes in (a) and (b) are
selected as a1 = a2 = 1 (in phase), and those in (c) are a1 = 1 and a2 = −1 (out of
phase). The black solid line denotes the growth rate of the single-layer RMI for A
= 0.2. The growth rates depicted with black and red lines are the same as those in
Fig. 11.

The growth rates of bubbles and spikes for two density ratios:
case (23a) [ρ̃0 = 2/3 and ρ̃2 = 3/2, A1 = A2 = −0.2 in Eq. (22)] and
case (23b) [ρ̃0 = ρ̃2 = 2/3, A1 = −0.2 and A2 = 0.2 in Eq. (22)] are
presented in Fig. 14, fixing the initial distance d as d = π, where the
linear amplitudes in (a) and (b) are selected as a1 = a2 = 1 (in phase),
and those in (c) are a1 = 1 and a2 = −1 (out of phase). The asymp-
totic growth rates of spikes on the upper interface I1 are almost the
same for (b) and (c) (refer to the pink solid and light blue lines
in the lower panel of Fig. 14), which also almost coincide with the
growth rates of spikes for I1 with A1 = A2 = −0.2 (red solid line
in Fig. 14) and the single-layer RMI (black line in Fig. 14). On the
other hand, the growth rates of bubbles are all different except the
one on I2 with A1 = A2 = −0.2 (red dotted line) and the growth
rate of the single-layer RMI (black line). In particular, the growth
rates of bubbles depicted with pink lines, of which the final interfa-
cial structure is presented in Fig. 13(a), do not tend to zero for both
of I1 and I2.

V. CONCLUDING REMARKS
We have investigated the nonlinear interaction of double-layer

density stratified interfaces, taking the multi-component RMI as
an example. This multi-component RMI is also applicable to the
problem of reshock.43 We have constructed the governing equa-
tions to describe the evolution of the double-layer interfaces using
the vortex sheet model (VSM) and performed numerical calcula-
tions for both of the regularized parameters δ = 0 and δ ≠ 0. In the
numerical calculations, we obtained the result that the two interfaces
approach each other and merge at the final stage of the computa-
tion due to the incompressibility. The model equations developed
in the current study are easily extended to the M-component sys-
tem (M ≥ 4) with (M − 1) interfaces with different initial conditions
such that the multi-component RTI or multi-layer internal grav-
ity waves if we take the gravity into account, which will be our
future work.

We mention that when A1 = A2 = 0 (ρ0 = ρ1 = ρ2), the bubbles
and spikes on I1 and I2 are perfectly symmetric, and the differ-
ence between them as observed in Figs. 10, 12, and 13 is not found,
although the merging of two interfaces occurs at the later stage of the
evolution. We also remark that when the initial distance d becomes
larger (equal to or greater than the wavelength of the initial distur-
bance), the interaction between the two interfaces becomes weak,
and the merging phenomenon does not occur (although the two
interfaces approach to some extent).
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