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Residual bubble volume formed behind a sphere plunging into liquid bath
(meniscus breakdown with finite velocity of sphere penetration)
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1Department of Mechanical Engineering, Osaka City University, 3-3-138 Sugimoto Sumiyoshi-ku,
Osaka 558-8585, Japan
2Department of Mechanical Engineering, Setsunan University, 17-8, Ikedanakamachi,
Neyagawa 572-8508, Japan

(Received 16 May 2018; accepted 19 July 2018; published online 7 August 2018)

The residual bubble formed from spherical particles plunging into a liquid bath has an important
effect on the performance of CaO particles used for the desulfurization of melted iron. Previous work
has theoretically estimated the residual bubble volume resulting from quasi-static sphere immersion
by applying the energy minimization principle to the gas–liquid interface meniscus at its rupture
[Katoh et al., “Residual bubble formed behind a sphere plunging into liquid bath (in Japanese),” Jpn.
J. Multiphase Flow 28, 547–553 (2015)]. Here, we propose a method to theoretically estimate the
residual bubble volume for sphere penetration with a finite velocity from 0.05 to 30 mm/s into a liquid
bath. To do so, the meniscus rupture at the sphere’s critical depth was calculated via a dynamic equation
in which the energy gradient along the sphere surface was considered as the driving force to move the
triple-phase contact line. The bubble volume was then estimated by calculating the system energy at the
meniscus breakpoint and by using the principle of minimum energy. The model results were verified
experimentally for a variety of liquids, showing that the proposed model can be used for estimation
of the residual bubble volume. Published by AIP Publishing. https://doi.org/10.1063/1.5040315

I. INTRODUCTION

The behavior of the gas–liquid interface formed above
spherical particles plunging into a liquid is an important phe-
nomenon for various engineering fields. Pioneering studies
of solid–liquid impact include the studies of Worthington and
Cole2 and Worthington and Cole,3 who used single-spark pho-
tography to examine the splash and air cavity shapes formed by
the vertical entry of a sphere into water. In the mid-1900s, the
studies of the water-entry problem of a sphere were prompted
by military applications.4–8 Recently, high-speed photogra-
phy has been used to show the instantaneous nature of cav-
ity growth and closure and to observe the movement of the
sphere.9–15 Duclaux et al.9 experimentally observed the tem-
poral variation of the cavity shape and compared it with the
approximate analytical one derived by extending the method
used to solve the classical Besant–Rayleigh problem. Aristoff
and Bush10 extended this work by including the effects of sur-
face tension and aerodynamic pressure on the cavity surface,
as well as the influence of sphere deceleration on the result-
ing cavity shape. Truscott et al.11 estimated unsteady forces
acting on the sphere from the trajectory of the sphere. Several
investigations have shown the influence of the wettability of the
sphere surface on the phenomenon. Duez et al.12 demonstrated
that a hydrophilic sphere requires a larger impact velocity than
a hydrophobic sphere to produce the air cavity. Tanaka et al.,13

Tanaka et al.,14 and Ueda et al.15 also revealed that the air cav-
ity on a hydrophobic sphere grows more rapidly even at low

a)Author to whom correspondence should be addressed: katoh@mech.
eng.osaka-cu.ac.jp. Telephone: +81-6-6605-2665. Fax: +81-6-6605-2953.

impact velocities. The equation of motion of a hydrophobic
sphere entering into water was derived by Lee and Kim,16 and
numerical approaches have been able to reproduce the cav-
ity.17–19 The air cavity and movement of entering objects had
also been investigated for deformable sphere20 and aspherical
objects.21,22 These studies have advanced scientific knowledge
on the behavior of an air cavity formed on an object as it enters
a liquid bath. Truscott et al.22 reviewed the subjects in this
field.

It is also important to understand the behavior of the resid-
ual bubble attached to a sphere after the cavity collapses or the
meniscus representing the gas–liquid interface breaks (pinch-
off in the quasi-static seal regime). Observation with high
speed imaging and numerical simulation of a sphere plung-
ing into a liquid bath have revealed that a bubble attaches to
the sphere after the cavity or the meniscus breaks.18,23,24 In
the steel smelting process, the poor wettability of CaO parti-
cles used as a desulfurizing agent with molten pig iron causes
residual air bubbles on the surface of the particles after the
meniscus breaks. The adhesion of these air bubbles can have
adverse effects on the process, including increasing particle
drag and inhibiting chemical reactions. Studies have identi-
fied the need to accurately estimate the volume of bubbles
adhering to particles to evaluate the performance of engineer-
ing devices.14,25 However, although work has been performed
addressing the behavior of the gas–liquid interface around the
solid spheres plunging into a liquid,9–12 little work has been
performed to accurately estimate the volume of the residual
bubble adhering to the spherical particle.

The purpose of this study is to investigate the behavior of
the triple-phase contact line on a sphere plunging into a liquid

1070-6631/2018/30(8)/082106/11/$30.00 30, 082106-1 Published by AIP Publishing.
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and to estimate the volume of the bubble remaining attached to
the sphere after the meniscus breaks. Previous work has pro-
posed a theoretical model as a first step to obtain the bubble
volume for the quasi-static penetration of a spherical parti-
cle.1 Applying the principle of minimum energy of the system,
geometrical parameters determining the gas-liquid interfacial
meniscus shape at its rupture were obtained, and the bubble
volume attached to the sphere was calculated from the volume
surrounding the gas–liquid interface and the sphere surface.
The model results showed a good agreement with experimen-
tal bubble volumes for two kinds of spherical particles having
different wettability.

In this study, a theoretical model is proposed to estimate
the bubble volume for the penetration of a particle with a
finite velocity. An equation of motion was used to describe
the behavior of the triple-phase contact line while the particle
enters into the liquid with a finite velocity. The gradient of the
system energy with respect to the contact line movement was
considered as the force driving the bulk liquid motion until
the meniscus breaks. From the solution of the equation, we
estimated the critical depth of the sphere at the point of menis-
cus rupture. The bubble volume was then calculated using the
energy minimization principle for the gas–liquid interface pro-
file when the meniscus breaks at the critical depth from the
static liquid surface. Experimental trials were run to validate
the proposed model. There, we measured the time of meniscus
rupture and the residual bubble volume on spherical particles
with relatively low penetration speeds (U = 0.05–30 mm/s)
with different wettability. The validity of the proposed theo-
retical model was verified from the comparison of the time of
meniscus rupture and of the bubble volume with the experi-
mental results. The influence of wettability, sphere radius, and
liquid property on the volume of the bubble adhering to the
sphere was considered.

II. EXPERIMENTAL METHOD

The experimental setup used in this study is schematically
shown in Fig. 1. A sphere of stainless steel (SUS304) (radius
RS = 2, 4, and 6.35 mm) was fixed in an acrylic vessel 4© with
a supporting rod 3© attached to the bottom of the sphere. The
test liquid was then poured from the upper tank 9© to raise the
liquid level at the speed set by the valve 6©. The velocity of
sphere penetration U was changed within U = 0.05–30 mm/s
in this experiment. Although we used a supporting rod with a
diameter of 4 mm, which is comparable to the sphere diame-
ter, for ensuring adequate rigidity, any influence of the wake
behind the rod on the axisymmetric contact line and the liquid
surface was not observed. Tap water, 20% aqueous ethanol,
and 60% aqueous glycerol were used as the test liquids. Their
surface tension (σ), density (ρ), and kinematic viscosity (ν)
were measured by the Wilhelmy method, Baumé’s hydrom-
eter, and Ubbelohde viscometer, respectively; their physical
properties are shown in Table I.

Two types of water repellents, FS-1060TH-0.5 (Fluoro
Technology Co.) (Repellent 1) and HIREC 1450NF (NTT
Advanced Technology Co.) (Repellent 2), were used to vary
the wettability between the test liquid and the sphere. Because
the solid sphere entered the liquid, it was necessary to consider

FIG. 1. Schematic of the experimental apparatus.

TABLE I. Properties of test liquids.

σ (mN/m) ρ (kg/m3) ν (mm2/s)

Water (10 ± 1 ◦C) 73.8 ± 0.3 1000 ± 1 1.32 ± 0.03
Ethanol 20% (20 ± 1 ◦C) 39.1 ± 0.2 970 ± 1 2.21 ± 0.04
Glycerol 60% (20 ± 1 ◦C) 68.7 ± 0.3 1158 ± 1 10.15 ± 0.1

the advancing contact angle as an index of wettability.26 To
measure the advancing contact angle while avoiding the effect
of dynamic wetting, the sphere coated with a water repellent
was fixed in vessel 4© while raising the liquid levels at a speed
less than 1 mm/min. The photographs of the gas–liquid inter-
face near the contact line were taken to generate a polynomial
to approximate the interface profile. The advancing contact
angle θA was then determined from the gradient of the poly-
nomial at the contact line. This process was repeated over six
times for each combination of the liquid and water-repellent
spray chosen. Average results of θA are shown in Table II. The
contact angle of Repellent 1 was found to be less than 100◦ for
ethanol and glycerol aqueous solutions, and thus, the volume
of attached bubbles was extremely small. Thus, only Repel-
lent 2 was used for these solutions. Furthermore, a relatively
high deviation of contact angles was measured for Repellent 2.
These could be caused by the roughness observed on the sur-
face of the sphere due to the fine particles, several micrometers
in diameter that were mixed in Repellent 2.

The movement of the triple-phase contact line on the sur-
face of the sphere was tracked by using a high-speed video
camera. A schematic diagram showing the change in the
meniscus (gas–liquid interface) shape attached to a sphere pen-
etrating into a liquid with velocity U and the resulting behavior

TABLE II. Advancing contact angles θA.

Repellent 1 (deg) Repellent 2 (deg)

Water 118 ± 2 155 ± 5
Ethanol 20% – 100 ± 2
Glycerol 60% – 136 ± 3
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FIG. 2. Behavior of the axisymmetric meniscus on the sphere.

of the triple-phase contact line is displayed in Fig. 2. In the
case of quasi-static penetration, the shape of the meniscus that
adheres to the sphere is determined from the axisymmetric
Laplace equation shown in Eq. (1), which represents the force
balance at the gas–liquid interface,27

σ


−

d2z/dr2

{
1 + (dz/dr)2

}3/2
−

|dz/dr |

r
√

1 + (dz/dr)2


= −ρgz. (1)

Here, r and z represent the coordinates in the radial direction
and the vertical direction, respectively, and g is the gravita-
tional acceleration. z = 0 corresponds to the stationary liquid
surface. As the depth of the top of the sphere H from the sta-
tionary liquid surface is increased quasi-statically, there is a
critical depth HCR at which the given Laplace equation has
no solution satisfying the condition that the meniscus attaches
to the sphere with the advancing contact angle θA. When the
sphere reaches the critical depth during quasi-static penetra-
tion, the system becomes unstable, and the contact line begins
to move along the sphere surface toward its head. When the
sides of the meniscus curve come in contact with each other
near the sphere head, the residual bubble is formed at HCR.

In the case of penetration with a finite velocity, the influ-
ence of the inertial force can be estimated by the Weber
number, We,

We =
ρU2RS

σ
. (2)

Considering the conditions used in this study (U = 0.05–30
mm/s and RS = 2–6.35 mm), the Weber number defined by
Eq. (2) is at most We ∼ 0.1. As a result, the shape of the
gas–liquid interface may still be approximated by the solution
of static Laplace equation given in Eq. (1). During penetration
with a finite velocity, the meniscus becomes unstable near HCR.
However, the sphere continues to sink after reaching the critical
depth, and the bubble is formed at a deeper position, HCR +∆H,
as shown in Fig. 2. For the purposes of this study and to pro-
pose a simple theoretical model, the bubble volume for the
finite velocity will be determined in Sec. III by considering the
model in which the effect of U is superimposed on the basis of
quasi-static particle penetration. Thus, the reference time t = 0
was designated as the moment when the sphere depth reaches
HCR for the quasi-static penetration. When the sphere reaches
H = HCR, the observation was started to measure the trajec-
tory of the triple-phase contact line up to the rupture of the
meniscus.

To observe the motion of the contact line, the needle probe
12© was attached to the micrometer head 11© and was set at
height HCR from the top of the sphere, as shown in Fig. 1.
The probe was then horizontally moved by the XY stage 13© to
a position sufficiently far from the sphere. Since voltage was
impressed between the needle and the liquid, the instance when
the stationary liquid level reaches the height HCR can be rec-
ognized with the signal on the oscilloscope. The liquid level is
raised, and high-speed video recording begins using the cam-
era 1© [Keyence, VW-9000, Image size: 640 × 480 (pixel2)]
when the liquid surface touches the needle, thus allowing the
movement of the contact line on the sphere surface from t = 0
to be observed. Figure 3 shows the sequential photographs
of the movement of the contact line on the sphere surface.
When the sphere reaches HCR at t = 0, as shown in Fig. 3(a),
the contact line moves on the surface of the sphere with a
velocity corresponding to that of sphere penetration. Then, the
speed of movement of the contact line is accelerated gradually,
and finally, the meniscus breaks at t = 26.8 ms, as shown in
Fig. 3(e). Note that an ellipse is drawn in Fig. 3(e) for compar-
ison. The details will be stated in Sec. III. From the obtained
images, as in Fig. 3, we measured the change in the position of

FIG. 3. Sequence photographs for the movement of contact line (water, θA = 155◦, Rs = 2 mm, U = 10 mm/s). (a) t = 0, (b) t = 7 ms, (c) t = 14 ms, (d) t = 21
ms, (e) t = 26.8 ms, and (f) residual bubble.
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the contact line with time and the time T at which the menis-
cus broke and the residual bubble was formed on the sphere.
We retook a high-resolution image of the residual bubble with
a digital still camera [Nikon D70S, image size: 3008 × 2000
(pixel2)] and calculated the bubble volume in the image by inte-
grating the volume surrounded by the axisymmetric gas–liquid
interface and the sphere wall. The accuracy of this volume mea-
surement was estimated to be 1.6%–8.7% based on the spatial
resolution of the image (=1.8–5.7 µm/pixel). The average of
three trials of each liquid and sphere combination was used
as the experimental result. The scatter of the break time and
bubble volume was within ±10% for the trailed experimental
conditions.

III. THEORETICAL CONSIDERATION

With T defined as the time when the meniscus breaks,
the residual bubble is formed at ∆H = UT deeper than HCR,
as shown in Fig. 2. In this study, we calculated the bubble
volume using the same principle of minimum energy as in the
quasi-static penetration stated in the preceding report1 at the
position H = HCR + UT using a dynamic model to theoretically
obtain the time T. In Sec. III A, first we briefly touch the
method of energy minimization to estimate the bubble volume
for the quasi-static sphere penetration. Then the dynamics of
meniscus up to its rupture as shown in Fig. 3 will be discussed
in Sec. III B.

A. Residual bubble volume in quasi-static penetration

A schematic view immediately before the meniscus
breaks is presented in Fig. 4. Here, H is the sphere depth,
and H = HCR for quasi-static penetration, and H = HCR + UT
for penetration with a finite velocity. In the figure, α represents
the angle at the sphere center from the contact line position to
the sphere top, β indicates the angle between the horizontal
line and the line segment connecting the contact line position
and the center of the circular gas–liquid interface with radius
R, and θ represents the contact angle observed when the menis-
cus breaks. If the gas–liquid interface of the meniscus shape

FIG. 4. Schematic of residual bubble generation.

is approximated by a simple circular arc of radius R, as shown
in Fig. 4, the relations from geometrical conditions for angles
β, α, and R can be written as Eqs. (3) and (4),

R(1 + sin β) = HCR + RS(1 − cos α), (3)

R(1 − cos β) = RS sin α. (4)

The center angle α of the contact line position is determined
from the minimum energy condition, and β and R can then be
determined from Eqs. (3) and (4) from the obtained α. Thus
we can calculate the bubble volume V as that surrounded by
the gas–liquid interface and sphere wall, as shown in Fig. 4,

V = πR3
(

1
12

sin 3β −
1
2

sin 2β +
7
4

sin β − β

)
− πRS

3
(

1
3

cos3 α − cos α +
2
3

)
. (5)

The overall system energy can be considered as a summa-
tion of its three parts: the surface energy ES of the gas–liquid
interface, the liquid potential energy EP, and the energy EW

due to the wetting behavior of the contact line. The reference
energy was defined as that for the stationary liquid surface and
the wetted sphere.

ES can be obtained by multiplying the surface tension σ
by the difference of surface area between the meniscus and the
surface of the stationary liquid. A geometrical consideration
allows for ES to be expressed as Eq. (6),

ES = 2πR2σ
(
π

2
+ β − 1 − sin β

)
− πR2σ. (6)

EP of the liquid can be calculated from the energy increment
of the liquid displaced by the air cavity, shown in Eq. (7),

EP = ρgπR4
[

5
3
−
π

2
+ 2 sin β −

1
3

sin3 β −
1
2

sin 2β − β

−
1
4

cos4 β +
2
3

cos3 β −
1
2

cos2 β

]
− ρgπRS

3

×

[
(HCR + RS)

(
1
3

cos3 α − cos α +
2
3

)
−

1
4

RS sin4 α

]
.

(7)

Please refer to the Appendix for details about the derivations
of Eqs. (5)–(7).

EW , related to the wetting behavior of the contact line,
can be found by multiplying the wetted area of the immersed
sphere by the energy difference per unit area between the solid
surface and the solid–liquid interface. By applying the advanc-
ing contact angle to Young’s equation, EW can be obtained as
shown in Eq. (8),26

EW = 2πσRS
2 cos θA(1 − cos α). (8)

The system energy E can then be obtained from the sum of
three energies ES , EP, and EW calculated from Eqs. (6)–(8).

After the meniscus becomes unstable, the contact line
advances on the spherical surface. When the meniscus breaks,
the contact angle θ = θA can be observed because of the
dynamic wetting effect.28,29 We then obtained αmin, where the
system energy E takes the minimum value under the condition
of θ = θA using Eq. (9),
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E(αmin) = Min[E(α)|θ ≥ θA ]. (9)

Using the above αmin, the volume of residual bubble was
determined from Eq. (5) by using Eqs. (3) and (4).

The above results were obtained based on the circular
meniscus profile shown in Fig. 4. As shown in Fig. 3(e),
the actual meniscus shape looks noticeably different from
a circular arc. However, because the system energy is esti-
mated by integrating over the meniscus profile assuming the
satisfaction of appropriate boundary conditions, it could be
rather insensitive to the accuracy of approximation.30 As
a trial, we calculated the bubble volume from the same
energy minimization when the meniscus shape was approx-
imated by an ellipse. For example, an ellipse with a semi-
major axis of 8 mm was assumed, and the other param-
eters, such as a semi-minor axis or contact line position,
were determined from energy minimization and geometrical
conditions. The resulting profile of the ellipse is drawn in
Fig. 3(e). The ellipse well approximates the actual meniscus
profile.

Figure 5 shows a comparison of the volume of the exper-
imental bubble1 with the volumes determined theoretically by
using a circle and an ellipse. As shown in the figure, the bubble
volume does not significantly depend on the approximation to
the meniscus profile. The experimental values of the two tested
contact angles showed good agreement with both theoretical
curves. In this study, to calculate the bubble volume as sim-
ply as possible, we calculate the system energy by assuming
a circular arc as the meniscus curve in Sec. III B in the sce-
nario that the sphere is plunging into a liquid with a finite
velocity.

B. Bubble volume at finite penetration velocity

An equation of motion based on the energy change in
the system with the movement of the contact line is then pro-
posed to estimate the time when the meniscus breaks. Because
the influence of inertia is not significant in this experiment,
it is possible to approximately obtain the system energy from
Eq. (1). An example of the energy change with respect to the
contact line position in the coordinate s direction along the
sphere’s surface is presented in Fig. 6, where s = 0 in the

FIG. 5. Comparison of the residual bubble volumes between the experimental
results and the theoretical model.

FIG. 6. System energy distribution dependent on the contact line position
(water, RS = 4 mm. θA = 118◦).

abscissa indicates the contact line position at t = 0 when the
advancing contact angle θA appears. ECR refers to the system
energy at s = 0. In the figure, the calculated results are shown
for the critical depth H = HCR as well as for a slightly shallow
position, that is, H = HCR−0.2 mm. The coordinates of the top
of the sphere can be expressed as s = RsαCR, where αCR indi-
cates the central angle of the initial contact line at t = 0. This
geometric relationship is shown in Fig. 7. The system energy
at each position s = Rsα can be obtained from the solution
of the Laplace equation (1) with the boundary conditions as
follows:

r = RS sin α : z = HCR − RS(1 − cos α),

r → ∞ :
dz
dr
→ 0.

(10)

The energy E(s) can be obtained from the sum of the energy of
the gas–liquid interface, potential energy, and work of wetting,
as shown in Eq. (11),

E(s) =
∫ ∞

RS sinα


2πrσ




√
1 +

(
dz
dr

)2

− 1



+ ρg

{
πr2z

dz
dr

}dr

+ 2πRS
2σ cos θA(1 − cos α). (11)

FIG. 7. Geometrical relation of the meniscus attached to the sphere.
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By using the numerical solution of Eq. (1) obtained by the
Runge–Kutta method, the above energy was calculated. Note
that the calculation results obtained using Eq. (11) are plotted
in Fig. 6; these results were obtained until the Laplace equation
(1) did not have any solution satisfying the boundary condi-
tions of Eq. (10). As shown in the figure, when the depth is
smaller than HCR, the system is stable at the contact line posi-
tion with minimum energy, that is, dE/ds = 0. On the other
hand, when the sphere reaches the critical depth H = HCR at
t = 0, the system becomes neutral stable, i.e., d2E/ds2 = 0 at
s = 0. The energy monotonously decreases with respect to the
displacement of the contact line toward the top of the sphere,
as shown in Fig. 6. The meniscus then contracts and breaks
near the top of the sphere. Because the bubble size formed
after the meniscus breaks is sufficiently small compared with
the sphere radius RS , we may assume that the system energy
E at the break is quite smaller than ECR. Thus, the relations
shown in Eq. (12) may be drawn for the energy E(s) at s = 0
and s = RSαCR,

s = 0 : E = ECR,
dE
ds
= 0,

d2E

ds2
= 0,

s = RSαCR : E ≈ 0.
(12)

For the sake of simplicity, the energy change E(s) with respect
to the movement of the contact line was approximated by a
third-order polynomial satisfying the condition of Eq. (12), as
shown in Eq. (13),

E = ECR


1 −

(
s

RSαCR

)3
. (13)

Equation (13) is also drawn in Fig. 6 for the purpose of com-
parison. As shown in the figure, Eq. (13) can approximate
the energy distribution around s = 0. The energy distribu-
tion of Eq. (13) may be applied to the contact line position
s as well in the event that there is no solution of the Laplace
equation.

If we recognize that the energy gradient (−dE/ds) of
Eq. (13) corresponds to the force which drives the movement
of the contact line, the following relation can be written as the
equation of motion for the position s(t) of the contact line after
the meniscus becomes unstable at t = 0:

−

(
dE
ds

)
= ρVLa. (14)

Here, VL represents the approximate volume of the liquid
moving with the contact line, and a is the acceleration of
contact line movement (a ≡ d2s/dt2). To roughly obtain the
rupture time of meniscus, VL was approximated by Eq. (15),
which roughly corresponds to the volume of the initial air
cavity that would be filled by the liquid. The volume was
simply approximated by a cylinder with a radius equal to
the distance between the position of attachment of the con-
tact line (∼RSαCR) and the height of the meniscus (HCR) as
follows:

VL ∼ π(RSαCR)2HCR. (15)

Combining Eqs. (13)–(15), the acceleration a of the contact
line can be obtained,

a =
3ECR

ρVLRSαCR

(
s

RSαCR

)2

. (16)

Furthermore, the relation shown in Eq. (17) between the accel-
eration and the contact line velocity (v ≡ ds/dt) can then be
written,

dv
dt
=

dv
ds
×

ds
dt
=

d
ds

(
1
2

v2
)
= a. (17)

v can then be obtained from Eqs. (16) and (17) as follows:

v =

√
2ECR

ρVL

√(
s

RSαCR

)3

+ C. (18)

Setting v = v0 at s = 0, v can then be determined,

v̄ =
√

s̄3 + v̄2
0, (19)

where v̄ and s̄ indicate the non-dimensional values defined by
the following expressions:

v̄ =
v√

2ECR/ρVL

, s̄ =
s

RSαCR
. (20)

The initial velocity v0 can be approximated as the circumferen-
tial velocity of the contact line corresponding to the penetration
velocity U of the sphere as

v0 =
U

sin αCR
. (21)

It was confirmed through experimental observation at H = HCR

that the velocity can be approximated by Eq. (21). Because
the driving force (−dE/ds) due to the energy gradient should
be zero at the critical depth, the tangential velocity may be
simply approximated by Eq. (21) corresponding to the sphere
penetration.

From the relationship between v and s, the following
expression can be written:

ds̄
dt̄
= v̄ *.

,
t̄ ≡

√
2ECR

ρVL

t
RSαCR

+/
-
,

∴
ds̄
v̄
= dt̄ =

ds√
s̄3 + v̄2

0

.

(22)

From Eq. (22), the trajectory of contact line movement s(t) can
then be obtained using Eq. (23),

t̄ =
∫ s̄

0

ds̄√
s̄3 + v̄2

0

. (23)

The rupture time of the meniscus, T, can then be obtained by
numerically integrating Eq. (24),

T̄ =
∫ 1

0

ds̄√
s̄3 + v̄2

0

. (24)

In the above analysis, we assumed that the system energy
at the meniscus break is approximated as E ≈ 0 in Eqs. (12)
and (13). In addition, the meniscus actually breaks somewhere
before s = RSαCR, as described in Eq. (12). The calculated
results in Sec. IV show that the actual energy at the menis-
cus break is about 20% of ECR in the experimental condi-
tions treated here. Assuming E = 0.2ECR at s = 0.9RSαCR in
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Eqs. (12) and (13), the deviation of T was estimated by using
Eq. (24). The results show that the difference is less than 6%
from the value using E = 0. Since the contact line speed is
quickly accelerated with the steep energy gradient, as shown
in Fig. 6, and becomes sufficiently large when the meniscus
breaks, we can safely neglect the influence of deviation in
the boundary conditions stated above to estimate the rupture
time T.

Using the results of T, the bubble volume was obtained
from the principle of minimum energy in Sec. III A at the
sphere depth of (HCR + UT ).

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. Trajectory of the contact line and rupture
time of the meniscus

Examples of contact line trajectories using the theoretical
model compared with the experimental results are shown in
Fig. 8. When the penetration speed U was relatively small, the
theoretical results drawn by the solid and broken lines roughly
agree with the experimental ones, as shown in Figs. 8(a) and
8(b), for U = 2.5 mm/s and U = 5 mm/s. When U was less than
10 mm/s, the experimental trajectories can be approximated by
the theoretical model described by Eq. (23) for all tested liq-
uids and sphere radii. Conversely, when U was greater than
10 mm/s, there were large discrepancies between the theoret-
ical model and measured results as shown in Fig. 8(c). In the
developed theoretical model, the initial position of the contact
line, i.e., the central angle αCR as shown in Fig. 7, was deter-
mined from the Laplace equation using the static advancing
contact angle θA. However, it was observed that the actual cen-
tral angle of the contact line became larger than αCR as U was
increased. When U is increased, the effect of dynamic wet-
ting could not be neglected, and the model needs to include
the effect of the dynamic contact angle.28,29 The influence
of the dynamic contact angle will be further discussed in
Sec. IV C.

The experimental values of time at meniscus break T are
shown in Fig. 9, where the solid lines represent the theoreti-
cal model result, the points represent the experimental trials,
and the dashed lines represent the theoretical results in which
the influence of dynamic contact angle was taken into con-
sideration. This will be elaborated on in Sec. IV C. Under
each experimental condition, T rapidly decreased from quasi-
static penetration (U = 0) and asymptotically reached plateau
as U was increased to greater than 10 mm/s. Figures 9(a) and
9(b) show the comparison of experimental results between the
different contact angles for water, θA = 118◦ and θA = 155◦.
T is slightly larger at θA = 155◦ than at θA = 118◦. This is
because the central angle of the initial contact line position at
t = 0 increases as the contact angle increases. Furthermore, it
is intuitive that T increases as the contact line must travel a
longer distance with a smaller initial velocity, as estimated by
Eq. (21).

The proposed theoretical model was able to approximate
the trajectory of the contact line and the rupture time of the
meniscus up to U = 10 mm/s, and for U greater than 10 mm/s,
the theoretical model tended to underestimate the rupture time.
This tendency was the same for each of the experimental

FIG. 8. Contact line trajectory. (a) U = 2.5 mm/s (water, RS = 6.35 mm and
ethanol 20% solution, RS = 2 mm), (b) U = 5 mm/s (water, RS = 4 mm:
θA = 118◦ and 155◦), (c) U = 20 mm/s (ethanol 20% solution, RS = 2 mm and
6.35 mm).

conditions, i.e., under varied contact angle, test liquid, and
spherical radius.

B. Residual bubble volume

The experimental results for the residual bubble volume V
with increasing velocity are shown in Fig. 10, where the solid
lines represent the theoretical model results and the points rep-
resent the experimental trials. The dashed lines represent the
theoretical results including the dynamic wetting effect which
will be discussed in Sec. IV C. In all experimental conditions
tested, the bubble volume gradually increased as the velocity
was increased from the quasi-static state; V reaches about 1.5
to 2 times as high as that for quasi-static penetration at U = 15
mm/s and 2.5 to 3 times as high at U = 25 mm/s. As can be seen
from Fig. 10(a), a change in the contact angle by 40◦ changed
the bubble volume by one order of magnitude; the bubble vol-
ume is strongly dependent on the wettability. The influence of
spherical radius RS is shown in Fig. 10(b) for samples with
a contact angle of θA = 155◦. As RS is increased from 2 to
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FIG. 9. Time to breakdown of meniscus. (a) Water (θA = 118◦), (b) water
(θA = 155◦), and (c) ethanol 20% and glycerol 60% solutions.

6.35 mm, V increases fivefold. The proposed theoretical model
was again able to approximate the experimental results within
an error of 10% up to U of 10 mm/s, similar to the rupture
time T. As U increases greater than 10 mm/s, the experimen-
tal results tended to be increasingly larger than the calculated
theoretical value for all experimental conditions tried; with
U = 25 mm/s, the experimental results were between 10% and
50% larger than the theoretical value.

The deviation of the proposed theoretical model from the
experimental results at high U is attributable to the deviation
of the rupture time T in the experimental trials from the the-
oretical model. The bubble volume up to U = 10 mm/s was
successfully estimated by the proposed theoretical model using
the static contact angle.

C. Influence of dynamic contact angle

To better understand the influence of the dynamic contact
angle, we measured the central angle α0 of the initial contact
line position. Figure 11(a) shows the results of α0 for water

FIG. 10. Residual bubble volume. (a) Water (RS = 4 mm), (b) water
(θ = 155◦, RS = 2 mm and 6.35 mm), and (c) ethanol and glycerol solutions
(RS = 4 mm).

and 20% aqueous ethanol. The experimental α0 at each U was
measured at t = 0, i.e., at the critical depth HCR for the static
advancing contact angle. Note that α0 at U = 0 corresponds
to αCR for quasi-static penetration. As shown in Fig. 11(a),
the initial position of the contact line deviates from that for
the quasi-static U = 0 and shifts downward on the sphere
surface with respect to U. Figure 11(b) shows an example
of the dynamic contact angles measured at t = 0 for water
with respect to the contact line velocity. The dynamic contact
angle increased with increasing the velocity. The solid line
shown in Fig. 11(b) represents the relation of the Hoffmann–
Voinov–Tanner law to arrange the dynamic contact angle31

as

θdA =
(
θA

3 + kCa′
)1/3

, (25)

where k is the empirical constant and Ca′ is the capillary num-
ber defined using the contact line velocity. Ca′ is defined as
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FIG. 11. (a) Center angle of the contact line at critical depth and (b) dynamic
contact angle for water with Repellent 1.

Ca′ =
ρνv0

σ
=

ρνU
σ sin α0

. (26)

The least squares method was used to determine the corre-
sponding k. Note that the contact line velocity v0 in Eq. (26)
was defined by using α0 to Eq. (21) instead of αCR. As shown
in Fig. 11(b), we can see that the dynamic contact angle can
be suitably fitted by Eq. (25). Returning to Fig. 11(a), each
curve in the figure shows the central angle of the contact
line position α0 at H = HCR calculated by using the dynamic
contact angle to Laplace equation (1). In practice, α0 was cal-
culated from Laplace equation (1) in which properly assumed
θdA was used. Then θdA was corrected repeatedly by New-
ton’s method to satisfy the relation of Eq. (25) in which the
calculated α0 was used to obtain the capillary number. As
shown in Fig. 11(a), the final results of α0 for the appro-
priate dynamic contact angle were in good agreement with
the experimental results. Under the condition of We ≤ 0.1
as targeted in this experiment, the meniscus shape can be
roughly approximated by the static Laplace equation even
though the contact angle was subjected to the dynamic wetting
effect.

On the basis of the measurement results of the dynamic
contact angle, the rupture time of the meniscus T and the
bubble volume V were re-evaluated to see the effect of
using the dynamic contact angle in the model. Firstly, the
critical depth HCR

′ and the central angle αCR
′ of the con-

tact line at HCR
′ were obtained by applying the dynamic

contact angle to the Laplace equation, shown in Eq. (1).
The time ∆T for the contact line moving from quasi-static
HCR at t = 0 to HCR

′ (>HCR) was simply evaluated using
Eq. (27)

∆T =
(HCR

′ − HCR)
U

. (27)

The trajectory after the sphere reaches HCR
′ was recalculated

by Eq. (23) in which Eq. (11) was applied to obtain the energy
ECR

′ in Eq. (13), and then the rupture time T′ was calculated
from Eq. (24). The total rupture time was then obtained as the
sum of T′ and ∆T from Eq. (27). The bubble volume V′ was
then obtained using the minimum energy principle at the cor-
responding sphere depth. The resulting T′ and V′ are shown by
dashed lines in Figs. 9 and 10, respectively. These theoretical
results show better agreement with the experimental results for
both T′ and V′ in the range of U > 10 mm/s.

Figure 12 shows the percent deviation of measured bubble
volumes for all experimental conditions from the theoretical
model in this study with respect to the capillary number Ca
defined by Eq. (28), in which U is used as the representative
velocity,

Ca =
ρνU
σ

. (28)

Figures 12(a) and 12(b) show the deviation for the theoretical
models using the static and dynamic contact angles, respec-
tively. When the static contact angle was applied, the capillary
numbers at which the experimental volume began to deviate
by 20% from the theoretical value were 3 × 10−4 for water,
1 × 10−3 for the 20% ethanol solution, and 3 × 10−3 for the
60% glycerol solution. However, the theoretical model using

FIG. 12. Deviation of experimental bubble volumes from those obtained by
the theoretical model. (a) Deviation from theory when using the static con-
tact angle and (b) deviation from theory when using the dynamic contact
angle.
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the dynamic contact angle was able to evaluate almost all of the
experimental bubble volumes within 20% deviation regardless
of the capillary number, test liquid, contact angle, or spheri-
cal radius tested. The deviation became somewhat large for
Ca > 10−3 in the glycerol solution in Fig. 12(b). Since Ca is
much smaller than unity in the experimental conditions tested,
the influence of viscosity was not considered in Eq. (14) when
expressing the bulk liquid motion. When the viscosity of the
liquid was increased to 10 times that of water as in the glycerol
solution, however, the influence of viscosity may not have been
neglected. As a result, the experimental rupture time could be
slightly longer, and the bubble volume was larger than the
theoretical model.

Overall, the originally proposed theoretical model can
predict the rupture time of the meniscus and the bubble volume
for We ∼ 0.1 in the range up to a penetration speed of 30 mm/s,
as treated in this experiment.

V. SUMMARY

A theoretical model was proposed to estimate the volume
of residual bubbles that adhere to spherical particles penetrat-
ing into a liquid at a finite speed. The behaviors of the contact
line, the rupture time of the gas–liquid interfacial meniscus,
and the volume of bubbles were determined by the proposed
theoretical model and were compared with those measured
in experimental trials where liquid properties, wettability, and
sphere radius were varied.

An equation of motion describing the movement of the
triple-phase contact line along the sphere was derived by
considering the force resulted from the gradient of the sys-
tem energy with respect to the contact line displacement.
The calculated time trajectory of the contact line and rup-
ture time of the meniscus roughly agreed with the experi-
mental results for penetration speeds of less than 10 mm/s.
The sphere depth at which the meniscus breaks was esti-
mated as HCR + UT, and the bubble volume was obtained
from the principle of minimum energy. The resulting pro-
posed theoretical model was within 10% deviation of the
experimental results for penetration speeds of less than
10 mm/s.

At penetration speeds greater than 10 mm/s, the contact
angle can no longer be assumed as static because of the influ-
ence of dynamic wetting behavior. Using the dynamic contact
angle instead of the static contact angle at the initial position
of the contact line, the rupture time and the bubble volume
were calculated using the proposed theoretical model. With
this change, the theoretical model could well approximate
the experimental results for penetration speeds from 10 to
30 mm/s. Under the condition of We ∼ 0.1 as studied in this
experiment, it is possible to calculate the residual bubble vol-
ume by the proposed model considering the dynamic contact
angle.
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APPENDIX: DERIVATION OF EQS. (5), (6), AND (7)

The derivations of Eqs. (5)–(7) are as follows. Figure 13
shows a reproduction of Fig. 4. δ in the figure indicates the
center angle on the circular meniscus measured from the hori-
zontal line. The volume V surrounded by the gas–liquid inter-
face and the sphere wall can be calculated by integration as
follows:

V =
∫ 0

−β

πR3(1 − cos δ)2 cos δdδ

− πRS
3
(

1
3

cos3 α − cos α +
2
3

)
= πR3

(
1

12
sin 3β −

1
2

sin 2β +
7
4

sin β − β

)
− πRS

3
(

1
3

cos3 α − cos α +
2
3

)
. (A1)

Note that the second term on the right-hand side indi-
cates the volume of the spherical cap with the center angle
α, as shown in Fig. 13. The above result was written as
Eq. (5).

The surface energy ES of the gas–liquid interface can be
obtained by multiplying the surface tension σ with the dif-
ference of surface area between the meniscus and the surface
of the stationary liquid. The energy can be obtained from the
following integration:

ES = σ

[∫ π/2

−β

2πR2(1 − cos δ)dδ − πR2
]

= 2πR2σ
(
π

2
+ β − 1 − sin β

)
− πR2σ. (A2)

Finally, the potential of the liquid EP can be estimated
from the increase in the energy of the liquid displaced
by the air cavity. EP can be estimated from the following
integration:

FIG. 13. Schematic of residual bubble generation (reproduced from Fig. 4).
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EP = ρg
∫ π/2

−β

πR4(1 − cos δ)2(1 − sin δ) cos δdδ

− ρg
∫ α

0
πRS

3{HCR + RS(1 − cos δ)}sin3 δdδ.

= ρgπR4
[

5
3
−
π

2
+ 2 sin β −

1
3

sin3 β −
1
2

sin 2β − β

−
1
4

cos4 β +
2
3

cos3 β −
1
2

cos2 β

]
− ρgπRS

3

×

[
(HCR + RS)

(
1
3

cos3 α − cos α +
2
3

)
−

1
4

RS sin4 α

]
.

(A3)

The above result corresponds to Eq. (7).
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