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本研究の 
ポイント 

◇ナノスケール素子や磁性原子の電子状態に、新たな量子多体効果が潜むことを数理的に解明。 
◇量子液体状態の理解に新たな視点を与え、新物質や量子情報の分野にも繋がる理論研究。 

概 要 

研究グループは、電子の運動による磁気モーメントを持つナノスケール素子や金属中の磁性

原子の量子多体状態(近藤効果)には、従来の量子液体理論を超えた３つの電子状態間の相関(三
体相関)による量子液体補正効果が現れることを、数理的手法を用いて解明しました。そして、

この性質はナノスケール素子の電流や電流ゆらぎ、熱伝導などの輸送量から観測できることを

明らかにしました。今回の研究成果は、さらに広い範囲な量子液体状態の性質の解明、および

新物質や量子情報などの分野と繋がる発展が期待されます。 
 

‘数理的手法を用いて成功！～ナノスケール物質に生成された量子多体状態の普遍的性質を解

明～’. 大阪市立大学. https://www.osaka-cu.ac.jp/ja/news/2020/201118. (参照 2020-11-18) 
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We present a microscopic Fermi liquid view on the low-energy transport through an Anderson impurity
with N discrete levels, at arbitrary electron filling Nd. It is applied to nonequilibrium current fluctuations,
for which the two-quasiparticle collision integral and the three-body correlations that determine the
quasiparticle energy shift play important roles. Using the numerical renormalization group up to N ¼ 6, we
find that for strong interactions the three-body fluctuations are determined by a single parameter other than
the Kondo energy scale in a wide filling range 1≲ Nd ≲ N − 1. It significantly affects the current noise for
N > 2 and the behavior of noise in magnetic fields.

DOI: 10.1103/PhysRevLett.125.216801

Introduction.—Highly correlated low-energy states of
the Kondo systems show fascinating universal behavior [1],
which can be described by a Fermi liquid (FL) theory in
zero dimension [2–6]. FL behaviors have been observed for
the nonlinear current through quantum dots [7,8] and also
the current noise [9–12], which is now one of the most
important probes to explore quantum states. Furthermore,
in addition to the spin, internal degrees of freedom such as
orbital, flavor, etc., bring an interesting variety in the
Kondo effect, occurring in a carbon nanotube [12,13]
and novel quantum systems, such as ultracold atomic gases
[14] and quark matters [15].
Transport properties of the local FL have successfully

been described by the renormalized quasiparticles and their
collisions due to the residual interaction, especially at the
symmetric point where both the particle-hole (PH) and
time-reversal (TR) symmetries are present [16–19]. These
symmetries are broken in real systems by external fields,
such as a gate voltage and a magnetic field. In this case, a
single quasiparticle captures the quadratic dependence on
frequency ω, temperature T, and bias voltage V, not only
through the well-investigated damping rate but also
through the energy shift. It has recently been clarified that
the quadratic energy shift is determined by the three-body
correlations between the impurity electrons [20–24]. It
shows that the three-body correlations are essential param-
eters for describing the FL transport.
Despite its importance, the current noise [25–31] has

been still less elucidated away from the symmetric point.
A major milestone was achieved by Mora et al. [20], who

have extended Nozières phenomenological FL theory [3]
to give the formula of the nonlinear noise for a PH
asymmetric single-orbital Anderson model at zero
magnetic field. Further investigation, however, is required
to clarify the physics of nonequilibrium fluctuations in
the Kondo systems with various internal degrees of
freedom.
In this Letter, we give a microscopic view on the low-

energy transport through a multilevel Anderson impurity
for a wide range of electron fillings Nd. It is described in
terms of five FL parameters, which can be calculated using
the numerical renormalization group (NRG) [2] up to
N ¼ 6. We find that for strong interactions the three-body
correlations for N degenerate levels are determined by a
single parameter over a wide filling range 1≲ Nd ≲ N − 1,
which includes the intermediate valence regions. We also
provide a current-noise formula for the FL, taking into
account all the two-quasiparticle collision processes
[32,33]. It satisfies a Ward identity [4–6] for the
Keldysh vertex function and resolves an essential problem
of the current conservation of the correlated electrons under
a nonequilibrium condition [16,25]. We also calculate the
nonlinear noise using the NRG and demonstrate that the
internal degrees of freedom give a wide variety to the filling
dependence. We also examine the effect of a magnetic field
that breaks the TR symmetry and show that the noise of a
spin-1=2 quantum dot exhibits a universal Kondo scaling
behavior.
Model.—We consider an N-level Anderson impurity

coupled to two leads on the left (L) and right (R),
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H ¼
XN

σ¼1

ϵdσndσ þ
X

λ¼L;R

XN

σ¼1

vλðψ†
λσdσ þ d†σψλσÞ

þ
X

λ¼L;R

XN

σ¼1

Z
D

−D
dϵϵc†ϵλσcϵλσ þ

U
2

X

σ≠σ0
ndσndσ0 ; ð1Þ

where d†σ creates an impurity electron with energy
ϵdσ, ndσ ≡ d†σdσ , and U is the Coulomb repulsion.
Conduction electrons are normalized as fcϵλσ; c†ϵ0λ0σ0 g ¼
δλλ0δσσ0δðϵ − ϵ0Þ. The coupling vλ between ψλσ ≡R
D
−D dϵ

ffiffiffiffiffi
ρc

p
cϵλσ and d†σ yields a resonance of the width

Δ≡ ΓL þ ΓR, with Γλ ¼ πρcv2λ , ρc ¼ 1=ð2DÞ, and D as
the half band width.
In this Letter, we study the nonlinear current noise [25]

SQDnoise ¼
Z

∞

−∞
dthδĴðtÞδĴð0Þ þ δĴð0ÞδĴðtÞiV: ð2Þ

Here, δĴðtÞ≡ ĴðtÞ − hĴð0ÞiV is the current fluctuation
operator through the quantum dot (QD) [34], and h� � �iV
is the Keldysh steady-state average defined at finite bias
voltages eV ≡ μL − μR with μλ the chemical potential for
λ ¼ L, R (see Supplemental Material [35]). The average
current J ≡ hĴð0ÞiV is given by [16]

J ¼ e
h

X

σ

Z
∞

−∞
dω½fLðωÞ − fRðωÞ�T σðωÞ: ð3Þ

Here, fλðωÞ≡ ½eðω−μλÞ=T þ 1�−1 is the Fermi function,
T σðωÞ≡ −½4ΓLΓR=ðΓL þ ΓRÞ�ImGr

σðωÞ is the transmis-
sion probability, Gr

σðωÞ ¼ ½ω − ϵdσ þ iΔ − Σr
σðωÞ�−1 is the

retarded Green’s function and Σr
σðωÞ is the self-energy.

From this T σðωÞ, we can also deduce the thermal con-
ductivity κQD [36] for the heat current JQ ¼ −κQDδT,
induced by the temperature difference δT between the
two leads [37].
Fermi liquid parameters.—We investigate low-energy

transport up to next leading order. To this end, we expand
Σr
σðωÞ up to terms of order ω2, T2, and ðeVÞ2 for general N,

extending the latest FL description for spin-1=2 case
[22,23]. The expansion coefficients play an important role
as the FL parameters.
The phase shift δσ ≡ cot−1ðϵ�dσ=ΔÞ is a parameter of

primary importance, with ϵ�dσ ≡ ϵdσ þ Σr
σð0ÞjT¼eV¼0 the

effective impurity level. It determines the occupation
number hndσi ¼ δσ=π and the density of states
ρdσ ≡ sin2 δσ=ðπΔÞ. The renormalization factor is given
by the first derivative zσ ≡ f1 − ½∂Σr

σðωÞ=∂ω�jω¼0g−1,
defined at T ¼ eV ¼ 0. It is also related to the
static susceptibility χσ1σ2 ≡

R 1=T
0 dτhδndσ1ðτÞδndσ2i, as

χσσ→
T→0

ρdσ=zσ, with δndσ ≡ ndσ − hndσi [4–6]. The second
derivative is a complex number, the imaginary part of
which corresponds to the single-quasiparticle damping rate
of order ω2, T2, and ðeVÞ2 [16,17]. The real part

corresponds to the quadratic energy shift that is determined
by the nonlinear susceptibility defined at equilibrium
[22,23],

χ½3�σ1σ2σ3 ≡ −
Z

1=T

0

dτ3

Z
1=T

0

dτ2hTτδndσ3ðτ3Þδndσ2ðτ2Þδndσ1i;

with Tτ the imaginary-time ordering operator. It can also be

written as χ½3�σ1σ2σ3 ¼ ∂χσ1σ2=∂ϵdσ3 and contributes to the
transport when the PH or TR symmetry is broken.
SUðNÞ symmetric case.—In the case at which the N

impurity levels are degenerate ϵdσ ≡ ϵd, the linear suscep-
tibility χσσ0 has only two independent components.
The diagonal element determines the energy scale
T� ≡ 1=ð4χσσÞ, by which the T-linear specific heat is
scaled as Cimp ¼ ðNπ2=12ÞðT=T�Þ. It can also be identified
as the Kondo temperature in the strong-coupling limit. The
other one is the off-diagonal element χσσ0 for σ ≠ σ0, which
is related to the Wilson ratio R≡ 1 − χσσ0=χσσ [38].
Similarly, the nonlinear susceptibility has three indepen-
dent components for N ≥ 3: the diagonal element χ½3�σσσ and
two off-diagonal ones, which can also be expressed in the
following form for σ ≠ σ0 ≠ σ00 ≠ σ:

−ðN − 1Þχ½3�σσ0σ0 ¼ χ½3�σσσ −
∂χσσ
∂ϵd ;

ðN − 1ÞðN − 2Þ
2

χ½3�σσ0σ00 ¼ χ½3�σσσ −
∂χσσ
∂ϵd þ N − 1

2

∂χσσ0
∂ϵd : ð4Þ

In this Letter, we obtain the low-energy expansion of
SQDnoise, J, and κQD up to next leading order, specifically for
symmetric junctions ΓL ¼ ΓR and μL ¼ −μR ¼ eV=2,

SQDnoise ¼
2Ne2jeVj

h

�
sin22δ

4
þ CS

�
eV
T�

�
2

þ � � �
�
;

dJ
dV

¼ Ne2

h

�
sin2δ − CT

�
πT
T�

�
2

− CV

�
eV
T�

�
2

þ � � �
�
;

κQD ¼ Nπ2T
3h

�
sin2δ − CQD

κ

�
πT
T�

�
2

þ � � �
�
: ð5Þ

The explicit expressions of the coefficients CS, CV , CT , and
CQD
κ are listed in Table I. Each of these C’s consists of two

parts, denoted asW andΘ. TheW part represents two-body
contributions, which can be described in terms of R and δ.
The Θ part represents dimensionless three-body contribu-
tions,

ΘI ≡ sin 2δ
2π

χ½3�σσσ

χ2σσ
; ΘII ≡ sin 2δ

2π

χ½3�σσ0σ0

χ2σσ
: ð6Þ

Therefore, the low-energy transport of the SUðNÞ Fermi
liquid are determined completely by five parameters: δ, T�,
R, ΘI, and ΘII. These FL parameters can also be deduced
experimentally through measurements of the coefficients
C’s. We note that another parameter for three different
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levels, ΘIII ≡ ðsin 2δ=2πÞðχ½3�σσ0σ00=χ
2
σσÞ, does not affect C’s

for symmetric junctions. Nevertheless, it contributes to the
transport for N ≥ 3 when the tunneling couplings or the
chemical potentials are asymmetric.
The nonlinear noise of the Fermi liquid is determined not

only by a single-quasiparticle excitation but also by two-
quasiparticle collisions described by the Keldysh vertex
corrections [25]. In this Letter, we calculate the vertex
function up to order eV [35], extending the diagrammatic
approach of Yamada-Yosida [4–6]. Consequently, the
collision contributions Ccoll

S and the single-quasiparticle
ones Cqp

S yield the nonlinear noise CS ¼ Cqp
S þ Ccoll

S ,

Ccoll
S ¼

�
7þ 5 cos 4δ

2
þ 3

2
ð1 − cos 4δÞðN − 2Þ

�
K̃2

N − 1
;

with K̃ ≡ ðN − 1ÞðR − 1Þ. The second term in the bracket
emerges through the collisions specific to multilevel
impurities for N > 2, and it vanishes in the SU(2) sym-
metric case or the PH symmetric case at which δ ¼ π=2.
Filling dependence of the FL state.—How does the FL

state evolve as the number of levels N and their position ϵd
vary? As the electron configuration Nd ≡P

σhndσi con-
tinuously varies with ϵd, a different class of the Kondo and
valence fluctuation states emerge for multilevel systems
N > 2. To our knowledge, however, the behavior of three-
body correlationsΘ’s that determine the nonlinear transport
has not been explored so much, whereas the two-body
correlations have been well investigated for N ¼ 4
[30,39,40]. In this Letter, we calculate the FL parameters
for N ¼ 4, 6 with the NRG, using the interleaved algorithm
particularly for N ¼ 6 [41]. To be specific, we choose the
Coulomb interaction to be much larger than the hybridi-
zation energy scale: U=ðπΔÞ ¼ 5.0. The results are plotted
vs ξd ≡ ϵd þ ðN − 1ÞU=2 in Fig. 1 for (left panels) N ¼ 4
and (right panels) N ¼ 6.
The top panels of Fig. 1 show the two-body correlations,

relating to hndσi, χσσ, and χσσ0 . We see that sin2 δ, which
determines T σð0Þ at T ¼ eV ¼ 0, shows a flat Kondo ridge
of the unitary limit δ ≃ π=2 near the PH symmetric point
jξdj ≲U=2 where the occupation number is almost locked
at Nd ≃ N=2. The other Kondo ridges also emerge at ξd
where Nd approaches an integer: ξd ≃�U for N ¼ 4, and
also ξd ≃�U;�2U for N ¼ 6.
The renormalization factor z, which determines the

energy scale T� ¼ zπΔ=ð4 sin2 δÞ, is also shown in the
top panels. It is significantly suppressed over a wide range

of gate voltages jξdj≲ ½ðN − 1Þ=2�U, and appears as a
broad valley. This valley becomes shallow as N increases
and vanishes in the large N limit [40]. Inside the
valley, z has minimums at ξd ≃ ½ðN − 2MÞ=2�U for
M ¼ 1; 2;…; N − 1, where the occupation number
approaches an integer Nd ¼ M. At these minimums, the
low-energy states can be described by the SUðNÞ Kondo
model in the strong-coupling limitU ≫ Δ. We find that z is
also suppressed at local maximums corresponding to the
intermediate valence states, for bothN ¼ 4 and 6. In the top
panels, the rescaled Wilson ratio K̃ is also shown. It is
almost saturated to the universal value K̃ ¼ 1 and its
derivative becomes very small ∂K̃=∂ϵd ∼ 0 in the whole
region of the broad valley 1≲ Nd ≲ N − 1. It reveals the
fact that not only the charge susceptibility χc ≡
−∂hndσi=∂ϵd ¼ χσσð1 − K̃Þ but its derivative ∂χc=∂ϵd is
suppressed in this region.

TABLE I. Coefficients C’s introduced in Eq. (5). W’s and Θ’s represent the two- and three-body contributions, respectively.

CS ¼ ðπ2=192Þ½WS − cos 2δfΘI þ 3ðN − 1ÞΘIIg� WS ≡ cos 4δþ ½4þ 5 cos 4δþ 3
2
ð1 − cos 4δÞðN − 2Þ�ðN − 1ÞðR − 1Þ2

CV ¼ ðπ2=64Þ½WV þ ΘI þ 3ðN − 1ÞΘII� WV ≡ −½1þ 5ðN − 1ÞðR − 1Þ2� cos 2δ
CT ¼ ðπ2=48Þ½WT þ ΘI þ ðN − 1ÞΘII� WT ≡ −½1þ 2ðN − 1ÞðR − 1Þ2� cos 2δ
CQD
κ ¼ ð7π2=80Þ½WQD

κ þ ΘI þ 5
21
ðN − 1ÞΘII� WQD

κ ≡ ½ð10 − 11 cos 2δÞ=21� − 6
7
ðN − 1ÞðR − 1Þ2 cos 2δ

FIG. 1. Fermi liquid parameters for SUðNÞAnderson model are
plotted vs ξd ≡ ϵd þ ðN − 1ÞU=2 for U=ðπΔÞ ¼ 5.0, N ¼ 4 (left
column) and N ¼ 6 (right column). Top row: sin2 δ, renormal-
ization factor z, and K̃ ≡ ðN − 1ÞðR − 1Þ. Middle row: ΘI,
−Θ̃II ≡ −ðN − 1ÞΘII, and Θ̃III ≡ f½ðN − 1ÞðN − 2Þ�=2gΘIII.
Bottom row: ð48=π2ÞCT , ð64=π2ÞCV , ð80=7π2ÞCQD

κ , and
ð192=π2ÞCS.
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The three-body correlation ΘI is plotted in the middle
panels of Fig. 1, together with the other two rescaled ones:
−Θ̃II ≡ −ðN − 1ÞΘII and Θ̃III ≡ f½ðN − 1ÞðN − 2Þ�=2gΘIII.
These Θ’s also show plateau structures due to the Kondo
effect at the values of ξd corresponding to integer Nd and
almost vanish at jξdj ≲U=2. We find that these three
parameters ΘI, −Θ̃II, and Θ̃III approach each other very
closely over a wide gate-voltage range jξdj≲ ½ðN − 2Þ=2�U,
at which 1≲ Nd ≲ N − 1. This indicates that contributions
of the diagonal element χ½3�σσσ dominate the terms in the right-
hand side of Eq. (4); i.e., χ½3�σσσ becomes much greater than
∂χσσ=∂ϵd and ½ðN − 1Þ=2�ð∂χσσ0=∂ϵdÞ. It also reveals the
fact that not only ∂χc=∂ϵd but also ∂χs=∂ϵd, the derivative
of the spin susceptibility χs ∝ χσσ − χσσ0, becomes much
smaller than ðT�Þ−2. Thus, for large U, the FL properties are
characterized by three parameters δ, T�, and ΘI over
the wide filling range 1≲ Nd ≲ N − 1. Outside this region,
the Θ’s approach the noninteracting values: ΘI → −2, and
the other two vanish as jξdj → ∞.
Nonequilibrium FL fluctuations.—We show in the fol-

lowing how the transport coefficients evolve as Nd varies
continuously. The NRG results are also plotted in Fig. 1.
The difference between the C’s near half filling jξdj≲ U=2
is caused by the two-body contributions W’s as the Θ’s
almost vanish. In particular, the T2 conductance CT is
determined by WT over the wide filling range 1≲ Nd ≲
N − 1 as the three-body contributions almost cancel out
ΘI þ ðN − 1ÞΘII ≈ 0, reflecting the suppression of ∂χc=∂ϵd
and ∂χs=∂ϵd mentioned above. For the thermal conduc-
tivity, the three-body contributions become negative in this
region, ΘI þ 5

21
ðN − 1ÞΘII ≈ − 16

21
Θ̃II, but otherwise CQD

κ

shows a similar ξd dependence to that of CT . The three-
body contributions on the ðeVÞ2 conductance CV are given
by ΘV ≡ ΘI þ 3ðN − 1ÞΘII, which takes a value ΘV ≈ 2Θ̃II
in the same filling range. Thus, CV is significantly
enhanced at Nd ≃ 1 and N − 1 where −Θ̃II shows a deep
valley. It pushes the tail of the CV curve outside than that of
the CT in the valence fluctuation region toward the empty
or fully occupied limit.
The jeVj3 current noise also exhibits the Kondo plateau

structures as shown in Fig. 1. For CS, the three-body
contributions enter through ΘV with a sinusoidal factor:
−ΘV cos 2δ ≈ ðsin 4δ=2πÞðχ½3�σσσ=χ2σσÞ over the range of
1≲ Nd ≲ N − 1. In the valence fluctuation regions men-
tioned above, CS has a minimum caused by the higher-
harmonic sin 4δ and cos 4δ contributions. We also find that
CS approaches zero almost simultaneously with CV at
jξdj ≃ 1.4U for N ¼ 4, and at jξdj ≃ 2.4U for N ¼ 6. This
proximity of the zero points affects the behavior of an
extended Fano factor FK, defined as the ratio of order ðeVÞ3
current noise to the nonlinear current [20,29,35],

FK ≡ lim
jeVj→0

SQDnoise −
2Ne2jeVj

h
sin22δ

4

−2jejðJ − Ne2jVj
h sin2δÞ

¼ CS

CV=3
: ð7Þ

This formula for the SUðNÞ Anderson model includes the
result of Mora et al., obtained for N ¼ 2 at zero magnetic
field [20], as a special case. In the strong-coupling limit at
integer Nd, it also agrees with another noise formula of
Mora et al. for the SUðNÞ Kondo model [29].
The Fano factor for N ¼ 4, 6 is plotted vs ξd for two

different values of U in the left panel of Fig. 2. It reaches the
local maximum FK → ðN − 1þ 9K̃2Þ=ðN − 1þ 5K̃2Þ at
ξd ¼ 0 [30] and has positive plateaus for large U at integer
Nd. In the limit of jξdj → ∞, the ratio becomes negative and
takes the noninteracting value FK → −1. By definition, FK
changes sign at the zero points of CS. It also diverges at the
zero point of CV , where the nonlinear component of J
changes direction from backward to forward. Such a singu-
larity already exists for U ¼ 0 at jξdj ¼ Δ=

ffiffiffi
3

p
. For large U,

FK diverges near jξdj ≃ ½ðN − 1Þ=2�U in the valence fluc-
tuation region toward the empty or fully occupied limit. We
can see that sign of the coefficient CS at the singular points
becomes positive for largeU, whereas it is negative for small
U. Sign change occurs, for both N ¼ 4 and 6, at a finite U
between the two examined cases U=ðπΔÞ ¼ 1=3 and 5. It is
associated with the large enhancement of three-body con-
tributions ΘV occurring in the Kondo regime at Nd ≃ 1 and
N − 1 for N > 2. In contrast, the NRG calculations exam-
ined so far indicate that sign is always negative in the SU(2)
case for anyU ≥ 0 [20,35]. The main difference is that in the
SU(2) case the three-body correlations evolve in the valence
fluctuation region where electron correlations become less
important and the two-body contributions WS dominate CS
near the singular point.
Magnetic-field dependence.—We next consider effects

of a magnetic field b that breaks the SUðNÞ and TR
symmetries, specifically, at half filling for N ¼ 2, where
ϵd↑ ¼ −U=2 − b, ϵd↓ ¼ −U=2þ b, and the electron filling
is fixed at hnd↑i þ hnd↓i ¼ 1. In this case, the transport
coefficients can be described also by five FL parameters:
magnetization md ≡ hnd↑i − hnd↓i, susceptibilities χ↑↑ ¼
χ↓↓ and χ↑↓ ¼ χ↓↑, and three-body correlations χ½3�↑↑↑ ¼
−χ½3�↓↓↓ and χ½3�↑↓↓ ¼ −χ½3�↑↑↓. The nonlinear current for this

FIG. 2. Nonlinear current-current correlations. Left: FK ≡
½CS=ðCV=3Þ� vs ξd=U for SUðNÞ symmetric case for N ¼ 4
(•, ⧫) and N ¼ 6 (∘,⋄), for U=ðπΔÞ ¼ 1=3 (diamonds) and
U=ðπΔÞ ¼ 5 (circles). Right: C̄b

S vs b=TK for N ¼ 2 at half
filling ϵd ¼ −U=2, for U=ðπΔÞ ¼ 2.5, 3.0, 3.5, 4.0, with b the
magnetic field and TK the Kondo temperature at b ¼ 0.
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case has previously been studied [21–23]. However,
behavior of its fluctuations has not been clarified so far.
Here, we examine the current noise at T ¼ 0 [42],

SQDnoise ¼
4e2jeVj

h

�
sin2ðπmdÞ

4
þ C̄b

S

�
eV
TK

�
2

þ � � �
�
:

Note that the second term is scaled by TK ≡ T�jb¼0, the
Kondo temperature defined at zero field. Thus, the co-
efficient C̄b

S includes all effects of b, which enter through
the FL parameters. In the right panel of Fig. 2, NRG results
for C̄b

S are plotted as a function of b=TK for several different
values of U. We find that the nonlinear noise exhibits a
universal behavior for U=ðπΔÞ≳ 2.0 in a similar way that
the nonlinear current shows [22,23]. It decreases rapidly as
b increases for small fields, changes sign at b ≈ 0.36TK ,
takes a minimum at b ≈ 0.5TK , and then approaches zero at
b≳ TK . We note that order T3 thermal conductivity also
exhibits the scaling behavior (see Supplemental Material
[35]). These observations reflect the fact that the three-body
fluctuations show the universal scaling behavior in the
Kondo regime without the TR symmetry.
Conclusion.—Nonlinear transport through the SUðNÞ

Anderson impurity has been described in a unified way
with five FL parameters. We have demonstrated how the FL
state evolves as electron filling Nd varies, using the NRG
up to N ¼ 6. For strong interactions U, not only charge
fluctuations but also the derivatives of charge and spin
susceptibilities are suppressed over a wide filling range
1≲ Nd ≲ N − 1. It reduces the number of variable FL
parameters from five to three and causes the Kondo plateau
structures emerging for all the coefficients C’s. In particu-
lar, the three-body contributions on CV are significantly
enhanced at Nd ≃ 1 and N − 1 for N > 2. It also affects the
behavior of nonlinear Fano factor FK in the valence
fluctuation region. We have also shown that the nonlinear
current noise exhibits the universal magnetic-field scaling
in the Kondo regime. The FL parameters can also be
deduced from experiments and can be used to predict
behaviors of unmeasured observables.
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