Fermi Liquid Theory for Nonlinear Transport
through a Multilevel Anderson Impurity

Yoshimichi Teratani, Rui Sakano, and Akira Oguri

Citation PHYSICAL REVIEW LETTERS. 125(21); 216801
Date 2020-11-17
Type Journal Article

Textversion Publisher

© 2020 American Physical Society. This article may be downloaded for personal use

only. Any other use requires prior permission of American Physical Society.

Right
8 The following article appeared in PHYSICAL REVIEW LETTERS , Vol. 125, Issu.
21, 216801 and may be found at https://doi.org/10.1103/PhysRevl.ett.125.216801.
doi 10.1103/PhysRevLett.125.216801

Self-Archiving by Author(s)

Placed on: Osaka City University Repository

Yoshimichi Teratani, Rui Sakano, and Akira Oguri. (2020). Fermi Liquid Theory for Nonlinear
Transport through a Multilevel Anderson Impurity. PHYSICAL REVIEW LETTERS. 125, 216801. doi:
10.1103/PhysRevLett.125.216801


https://doi.org/10.1103/PhysRevLett.125.216801

ERARD | OF ) A — VR ROHMEIR A DOEAIRRBIZ HT R ' 2R R T Z & 2 PRI,
RA Db | ORETHRIKIREE @ﬁ% TR a5 2, FiESCE T EROS IS S B 5 BERAFL,
R N—T1, BT OEMNLDHERE—A L MaRioT ) A7 —VHF 08B ORNE
ﬁ%wi%%wﬁ%ﬁ%ﬁ%) X, RO BRI 2B 272 3 >OEHREMOMBECE
RHBDIC X 2 B TIRIARHEREN BN D Z &%, BN TFEEZRNTHALE L, 2L T,
ZOMWHEIZT ) AT — VB OERLERP O E, BRER EOREENGBHICELZ L%
B B o LELE, SROFEREIT. & OICRWELFHZ & REREOIEE O], B X W
FESETIER L EONE L BN LRENSMFINET,

B TFEEHOTRlRDY | ~F 7 A7 — WA R S iz B SRR IE O R i M % i
B~ KBSz k%, hitps://www.osaka-cu.ac.jp/ja/mews/2020/201118. (M 2020-11-18)

Yoshimichi Teratani, Rui Sakano, and Akira Oguri. (2020). Fermi Liquid Theory for Nonlinear

Transport through a Multilevel Anderson Impurity. PHYSICAL REVIEW LETTERS. 125, 216801. doi:
10.1103/PhysRevLett.125.216801



https://www.osaka-cu.ac.jp/ja/news/2020/201118

PHYSICAL REVIEW LETTERS 125, 216801 (2020)

Fermi Liquid Theory for Nonlinear Transport through a Multilevel Anderson Impurity

Yoshimichi Teratani
Department of Physics, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan

Rui Sakano
The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan

Akira Oguri
Department of Physics, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
and Nambu Yoichiro Institute of Theoretical and Experimental Physics, Osaka City University, Osaka 558-8585, Japan

® (Received 21 January 2020; accepted 15 October 2020; published 17 November 2020)

We present a microscopic Fermi liquid view on the low-energy transport through an Anderson impurity
with N discrete levels, at arbitrary electron filling N,. It is applied to nonequilibrium current fluctuations,
for which the two-quasiparticle collision integral and the three-body correlations that determine the
quasiparticle energy shift play important roles. Using the numerical renormalization group up to N = 6, we
find that for strong interactions the three-body fluctuations are determined by a single parameter other than
the Kondo energy scale in a wide filling range 1 < N, < N — 1. It significantly affects the current noise for

N > 2 and the behavior of noise in magnetic fields.

DOI: 10.1103/PhysRevLett.125.216801

Introduction.—Highly correlated low-energy states of
the Kondo systems show fascinating universal behavior [1],
which can be described by a Fermi liquid (FL) theory in
zero dimension [2-6]. FL behaviors have been observed for
the nonlinear current through quantum dots [7,8] and also
the current noise [9-12], which is now one of the most
important probes to explore quantum states. Furthermore,
in addition to the spin, internal degrees of freedom such as
orbital, flavor, etc., bring an interesting variety in the
Kondo effect, occurring in a carbon nanotube [12,13]
and novel quantum systems, such as ultracold atomic gases
[14] and quark matters [15].

Transport properties of the local FL have successfully
been described by the renormalized quasiparticles and their
collisions due to the residual interaction, especially at the
symmetric point where both the particle-hole (PH) and
time-reversal (TR) symmetries are present [16—19]. These
symmetries are broken in real systems by external fields,
such as a gate voltage and a magnetic field. In this case, a
single quasiparticle captures the quadratic dependence on
frequency w, temperature 7', and bias voltage V, not only
through the well-investigated damping rate but also
through the energy shift. It has recently been clarified that
the quadratic energy shift is determined by the three-body
correlations between the impurity electrons [20-24]. It
shows that the three-body correlations are essential param-
eters for describing the FL transport.

Despite its importance, the current noise [25-31] has
been still less elucidated away from the symmetric point.
A major milestone was achieved by Mora et al. [20], who
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have extended Noziéres phenomenological FL theory [3]
to give the formula of the nonlinear noise for a PH
asymmetric single-orbital Anderson model at zero
magnetic field. Further investigation, however, is required
to clarify the physics of nonequilibrium fluctuations in
the Kondo systems with various internal degrees of
freedom.

In this Letter, we give a microscopic view on the low-
energy transport through a multilevel Anderson impurity
for a wide range of electron fillings N,. It is described in
terms of five FL parameters, which can be calculated using
the numerical renormalization group (NRG) [2] up to
N = 6. We find that for strong interactions the three-body
correlations for N degenerate levels are determined by a
single parameter over a wide filling range 1 SN, SN — 1,
which includes the intermediate valence regions. We also
provide a current-noise formula for the FL, taking into
account all the two-quasiparticle collision processes
[32,33]. It satisfies a Ward identity [4-6] for the
Keldysh vertex function and resolves an essential problem
of the current conservation of the correlated electrons under
a nonequilibrium condition [16,25]. We also calculate the
nonlinear noise using the NRG and demonstrate that the
internal degrees of freedom give a wide variety to the filling
dependence. We also examine the effect of a magnetic field
that breaks the TR symmetry and show that the noise of a
spin-1/2 quantum dot exhibits a universal Kondo scaling
behavior.

Model.—We consider an N-level Anderson impurity
coupled to two leads on the left (L) and right (R),

© 2020 American Physical Society
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where d creates an impurity electron with energy
€45» Ngy =dyd,, and U 1is the Coulomb repulsion.
Conduction electrons are normalized as {c.,.cl, .} =
S,40,0(€ —€'). The coupling wv; between y,, =
J _DD de./p.c., and d; yields a resonance of the width
A =Ty + Ty, with T, = mp.v3, p. = 1/(2D), and D as
the half band width.

In this Letter, we study the nonlinear current noise [25]

s® / = dr(51(1)53(0) + 81(0)8T (1)) (2)

Here, 6J(t) =J(t) — (J(0)), is the current fluctuation
operator through the quantum dot (QD) [34], and (- - )y,
is the Keldysh steady-state average defined at finite bias
voltages eV = u; — pur with y; the chemical potential for
A= L, R (see Supplemental Material [35]). The average
current J = (J(0)), is given by [16]

=i [Caolsio)

Here, f;(w)=[e/#)/T 4-1]7! is the Fermi function,
7T ,(w)=—-[4' Tk /(T; + ') ImG,(w) is the transmis-
sion probability, G (@) = [@ — €4, + iA — Z(w)] 7! is the
retarded Green’s function and X} (w) is the self-energy.
From this 7 ,(®), we can also deduce the thermal con-
ductivity kqp [36] for the heat current J, = —kqpoT,
induced by the temperature difference 67 between the
two leads [37].

Fermi liquid parameters.—We investigate low-energy
transport up to next leading order. To this end, we expand
2’ (w) up to terms of order w?, T2, and (eV)? for general N,
extending the latest FL description for spin-1/2 case
[22,23]. The expansion coefficients play an important role
as the FL parameters.

The phase shift 5, = cot™! (e, /A) is a parameter of
primary importance, with € = ey, + Z(0)|7_,y—o the
effective impurity level. It determines the occupation
number (n,) =06,/m and the density of states
Pais = sin® 8,/ (xA). The renormalization factor is given
by the first derivative z,= {1 - [0Z}(®)/0®]|,—o} ",
defined at 7T =eV =0. It is also related to the
static  susceptibility y, ,, = fo dt(ong, (7)0n45,), as

Yoo 3 Do) 200 With G114 = gy — (nyy) [4-6]. The second
derivative is a complex number, the imaginary part of

which corresponds to the single-quasiparticle damping rate
of order w?, T?, and (eV)? [16,17]. The real part

—fr(@)] T (0).  (3)

corresponds to the quadratic energy shift that is determined
by the nonlinear susceptibility defined at equilibrium
[22,23],

3] /T 1T
Xojoy03 = — o dr; A d72<T75ndo’3(T3>5nd02(72)5nd¢71>’

with T, the imaginary-time ordering operator. It can also be
written as )(,[,31]0203 = 00,6,/ O€45, and contributes to the
transport when the PH or TR symmetry is broken.
SU(N) symmetric case.—In the case at which the N
impurity levels are degenerate €,, = €, the linear suscep-
tibility y,» has only two independent components.
The diagonal element determines the energy scale
= 1/(45,,), by which the T-linear specific heat is
scaled as Cymp = (N#?/12)(T/T*). It can also be identified
as the Kondo temperature in the strong-coupling limit. The
other one is the off-diagonal element y,, for o # ¢’, which
is related to the Wilson ratio R=1—y, /%, [38].
Similarly, the nonlinear susceptibility has three 1ndepen—
dent components for N > 3: the diagonal element )(t[,;,, and
two off-diagonal ones, which can also be expressed in the
following form for ¢ # ¢’ # ¢” # o:

%4
- N - 1 [3]/ ;) = ?{lo‘ - 66,
(N =gy =X P,
(N-1)(N=-2) p3 3 oo | N =104
r n — Xooo — . 4
2 )(0'0'0' x 6€d + 2 3€d ( )

In this Letter, we obtain the low-energy expansion of
SL 7, and Kgp up to next leading order, specifically for

noise’
symmetric junctions I'; =T'g and p; = —pup = eV/2,

2Neé?|eV| [sin?265 eV\2
SQD _ C e,
noise h 4 + S T+ +

dJ] _Neé? xT\? eV 2
dV h |:Sln25 CT(T*) —Cv<7_‘*> +:|,

N#*T T\?
Kop = ;[h [sinzé -c° (7;*) + - ] : (5)

The explicit expressions of the coefficients Cg, Cy, Cr, and
C,?D are listed in Table I. Each of these C’s consists of two
parts, denoted as W and ®. The W part represents two-body
contributions, which can be described in terms of R and 6.
The © part represents dimensionless three-body contribu-
tions,

B B

Sin 26 ¥ 60 sin26y,. ( 6)
2% Yoo 2% oo

Therefore, the low-energy transport of the SU(N) Fermi
liquid are determined completely by five parameters: o, 7,
R, O, and Oy. These FL parameters can also be deduced
experimentally through measurements of the coefficients
C’s. We note that another parameter for three different

1= n=
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TABLE L

Coefficients C’s introduced in Eq. (5). W’s and ®’s represent the two- and three-body contributions, respectively.

Cs = (22/192)[Wg — c0s 28{@; + 3(N — 1)0y}]
[

Cy = (7*/64)[Wy + O + 3(N — 1)0y] Wy

Cr = (7*/48)[Wr + ©; + (N — 1)0y]
C = (722/80)[W° + @, + 5 (N — 1)@y

Wy = cos4d + [4 + 5cos48 + 3 (1 — cos46) (N = 2)](N — 1)(R - 1)?
=—[l +5(N=1)(R—1)?]cos25
Wr=—[1+2(N-1)(R-1)*cos28

WP = [(10 = 11 cos 26)/21] = S (N — 1)(R — 1)>cos 26

levels, ®y; = (sin28/2x) (;(E{];,G,, /x%;), does not affect C’s
for symmetric junctions. Nevertheless, it contributes to the
transport for N > 3 when the tunneling couplings or the
chemical potentials are asymmetric.

The nonlinear noise of the Fermi liquid is determined not
only by a single-quasiparticle excitation but also by two-
quasiparticle collisions described by the Keldysh vertex
corrections [25]. In this Letter, we calculate the vertex
function up to order eV [35], extending the diagrammatic
approach of Yamada-Yosida [4-6]. Consequently, the
collision contributions C{"' and the single-quasiparticle
ones C& yield the nonlinear noise Cy = C§{" + C¥!,

7+ 5cos45 3 K?

ol = 5 +§(1—cos45)(1\’—2) N-1

with K = (N — 1)(R — 1). The second term in the bracket
emerges through the collisions specific to multilevel
impurities for N > 2, and it vanishes in the SU(2) sym-
metric case or the PH symmetric case at which 6 = z/2.

Filling dependence of the FL state.—How does the FLL
state evolve as the number of levels N and their position ¢,
vary? As the electron configuration N, =" _(ng4,) con-
tinuously varies with €4, a different class of the Kondo and
valence fluctuation states emerge for multilevel systems
N > 2. To our knowledge, however, the behavior of three-
body correlations @’s that determine the nonlinear transport
has not been explored so much, whereas the two-body
correlations have been well investigated for N =4
[30,39,40]. In this Letter, we calculate the FL. parameters
for N = 4, 6 with the NRG, using the interleaved algorithm
particularly for N = 6 [41]. To be specific, we choose the
Coulomb interaction to be much larger than the hybridi-
zation energy scale: U/(zA) = 5.0. The results are plotted
vs £, =¢€,+ (N —1)U/2 in Fig. 1 for (left panels) N = 4
and (right panels) N = 6.

The top panels of Fig. 1 show the two-body correlations,
relating to (ny,), ¥s0» and y,,. We see that sin> §, which
determines 7 ,(0) at T = eV = 0, shows a flat Kondo ridge
of the unitary limit § ~ z/2 near the PH symmetric point
|£4] < U/2 where the occupation number is almost locked
at N;~ N/2. The other Kondo ridges also emerge at &,
where N, approaches an integer: £; ~ +U for N = 4, and
also £, ~+U,+2U for N = 6.

The renormalization factor z, which determines the
energy scale T* = zzA/(4sin?§), is also shown in the
top panels. It is significantly suppressed over a wide range

of gate voltages |£;| < [(N —1)/2]U, and appears as a
broad valley. This valley becomes shallow as N increases
and vanishes in the large N limit [40]. Inside the
valley, z has minimums at &;~[(N—2M)/2]U for
M=1,2,....,N—1, where the occupation number
approaches an integer N; = M. At these minimums, the
low-energy states can be described by the SU(N) Kondo
model in the strong-coupling limit U > A. We find that z is
also suppressed at local maximums corresponding to the
intermediate valence states, for both N = 4 and 6. In the top
panels, the rescaled Wilson ratio K is also shown. It is
almost saturated to the universal value K =1 and its
derivative becomes very small OK/de, ~ 0 in the whole
region of the broad valley 1 < N, < N — 1. It reveals the
fact that not only the charge susceptibility y.=
—0(ny,)/0ey = xos(1 — K) but its derivative dy./0e, is
suppressed in this region.

2 1.0k 2z 1 210k
£ 1.0k - 3 3 ~ ;
° . F K k 1 8..F% K =6 ¢
2os- Neaif 4 Bosf N=6%7 J
s F 1 £ F ™~ sin?§
S06F ~~sin6 4 SoeF - 3
2 F 7 FR: IR P
o4k 4 “od T
> ] > g %
S0t/ L‘N S0k, |
a V. ] a V.- _ =
~ O E et OTRTS0 ] !f 1 1 U/I7TA—5»I0 1 K!
0.03 -1 0 1 2 R . )
gd/U fd/U
” N — " CMBNSSMNSSS: 1 N
g oof P B 0.0= woapin g, ,f‘;/
© -0 5:_ " _: kS —0.5F \i e, _:
[ o if 4 g O 1
s r 18 ]
© _1.0F 4 ©-1.0F i
> o XA ] > i =]
9 E -0 35 i -0
8-15F N=4 A4 8-1s8f N=6 3
® F U/rih=5.0 Sl ] o Uma=5.0 O ]
_o ol b L b _20 [T T T

il
-3 -2 -1 0

Cr, Cy, C® & C,

FIG. 1. Fermi liquid parameters for SU(N) Anderson model are
plotted vs £, =€, + (N — 1)U/2 for U/ (zA) = 5.0, N = 4 (left
column) and N = 6 (right column). Top row: sin’ §, renormal-
ization factor z, and K= (N—-1)(R—1). Middle row: @y,
—Op=-(N-1)0y, and Op={[(N-1)(N- 2)&/2}®m~
Bottom row: (48/7%)Cy, (64/7%)Cy, (80/772)CE°, and
(192/72)Cs.
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The three-body correlation @ is plotted in the middle
panels of Fig. 1, together with the other two rescaled ones:
—Oy = —(N - 1)0y and Oy = {[(N — 1)(N —2)]/2} Oy
These ®’s also show plateau structures due to the Kondo
effect at the values of &£, corresponding to integer N,; and
almost vanish at |£;| S U/2. We find that these three
parameters ®;, —Oy;, and @y approach each other very
closely over a wide gate-voltage range |&,| < [(N —2)/2]U,
at which 1 < N, <N — 1. This indicates that contnbutlons
of the d1agonal element )(mlﬂ dominate the terms in the right-
hand side of Eq. (4); i.e., )(L,]m becomes much greater than
O oo/ O€q and [(N — 1)/2](Oy s/ O€y). 1t also reveals the
fact that not only dy./de, but also dy,/de,, the derivative
of the spin susceptibility y,; & ¥;; — ¥ss» DECOmes much
smaller than (7*)~2. Thus, for large U, the FL properties are
characterized by three parameters 6, T*, and ©; over
the wide filling range 1 < N,; < N — 1. Outside this region,
the ®’s approach the noninteracting values: @; — —2, and
the other two vanish as || — oo.

Nonequilibrium FL fluctuations.—We show in the fol-
lowing how the transport coefficients evolve as N, varies
continuously. The NRG results are also plotted in Fig. 1.
The difference between the C’s near half filling |£,| < U/2
is caused by the two-body contributions W’s as the ®’s
almost vanish. In particular, the T? conductance Cr is
determined by Wy over the wide filling range 1 <N, <
N — 1 as the three-body contributions almost cancel out
O; + (N = 1)Oy =~ 0, reflecting the suppression of 9y ./ de,
and Jy,/de, mentioned above. For the thermal conduc-
tivity, the three-body contributions become negative in this
region, @ + 2 (N — 1)@y ~ — 160y, but otherwise C”
shows a similar £; dependence to that of Cy. The three-
body contributions on the (eV)? conductance Cy, are given
by ®, = 0, + 3(N — 1)@y, which takes a value O ~ 20
in the same filling range. Thus, Cy is significantly
enhanced at N, ~ 1 and N — 1 where —@y; shows a deep
valley. It pushes the tail of the Cy, curve outside than that of
the Cr in the valence fluctuation region toward the empty
or fully occupied limit.

The |eV|? current noise also exhibits the Kondo plateau
structures as shown in Fig. 1. For Cg, the three-body
contributions enter through ®V with a sinusoidal factor:
—0@y cos 28 ~ (sin45/2x) (;(,,m,/ x%,) over the range of
1 <N, <N —1. In the valence fluctuation regions men-
tioned above, Cg has a minimum caused by the higher-
harmonic sin 46 and cos 46 contributions. We also find that
Cs approaches zero almost simultaneously with Cy at
|4l = 1.4U for N = 4, and at |£,| ~2.4U for N = 6. This
proximity of the zero points affects the behavior of an
extended Fano factor F, defined as the ratio of order (eV)?
current noise to the nonlinear current [20,29,35],

QD 2Né?|eV| sin2265

F.= lim noise h 4
K leVI=0_2|e|(J — Ne \Vlsm 5)

_ G
- Cy/3°

(7)

N
]

0.6

>
[S) p
8" 0.5 N=2 U/rrA .
@ .3 0:25
I 0.4F% €=-UI2 230
N a Vi35 o
L qun 03F° ®40
i |(_) 9 E
2 02F ¢ -
o % 4
hd 01F & B
o ° 1
%
L‘L:“ 0,050 ] 0.0 B
ol i bt b bea e bt 10 47 _0'6 PRI SR IR R A R
-3 -2 -1 0 1 2 3 .0 0.5 1.0 1.5 20
&alU b/ Tk

FIG. 2. Nonlinear current-current correlations. Left: Fg =
[Cs/(Cy/3)] vs £;/U for SU(N) symmetric case for N =4
(>, ) and N =6 (o,0), for U/(zA) =1/3 (diamonds) and
U/(zA) =5 (circles). Right: C% vs b/Tx for N =2 at half
filling e, = —U/2, for U/(zA) = 2.5, 3.0, 3.5, 4.0, with b the
magnetic field and Tk the Kondo temperature at b = 0.

This formula for the SU(N) Anderson model includes the
result of Mora et al., obtained for N = 2 at zero magnetic
field [20], as a special case. In the strong-coupling limit at
integer N, it also agrees with another noise formula of
Mora et al. for the SU(N) Kondo model [29].

The Fano factor for N =4, 6 is plotted vs &, for two
different values of U in the left panel of Fig. 2. It reaches the
local maximum Fg — (N —1+9K?)/(N — 1+ 5K?) at
£, =0 [30] and has positive plateaus for large U at integer
N. In the limit of |£;] — oo, the ratio becomes negative and
takes the noninteracting value Fx — —1. By definition, Fg
changes sign at the zero points of Cg. It also diverges at the
zero point of Cy, where the nonlinear component of J
changes direction from backward to forward. Such a singu-
larity already exists for U = 0 at |£,| = A/+/3. For large U,
F diverges near |£;| ~ [(N —1)/2]U in the valence fluc-
tuation region toward the empty or fully occupied limit. We
can see that sign of the coefficient Cy at the singular points
becomes positive for large U, whereas it is negative for small
U. Sign change occurs, for both N =4 and 6, at a finite U
between the two examined cases U/(zA) = 1/3 and 5. It is
associated with the large enhancement of three-body con-
tributions ®y, occurring in the Kondo regime at N; ~ 1 and
N —1 for N > 2. In contrast, the NRG calculations exam-
ined so far indicate that sign is always negative in the SU(2)
case for any U > 0 [20,35]. The main difference is that in the
SU(2) case the three-body correlations evolve in the valence
fluctuation region where electron correlations become less
important and the two-body contributions Wy dominate Cyg
near the singular point.

Magnetic-field dependence.—We next consider effects
of a magnetic field b that breaks the SU(N) and TR
symmetries, specifically, at half filling for N = 2, where
€y = —=U/2—Db, e,y = =U/2 + b, and the electron filling
is fixed at (ng) + (ny;) = 1. In this case, the transport
coefficients can be described also by five FL parameters:
magnetization m, = (ngy) — (ngy), susceptibilities y44 =

i, and x4 = x4, and three-body correlations Z[T3]TT =

3] B3] B3]

X1l and X1y = Xty The nonlinear current for this
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case has previously been studied [21-23]. However,
behavior of its fluctuations has not been clarified so far.
Here, we examine the current noise at 7 = 0 [42],

4e2|eV| [sin®(zmy) = -, [eV\?2
QD d &
noise = h 4 + g _T + e

Note that the second term is scaled by Ty = T%|,_, the
Kondo temperature defined at zero field. Thus, the co-
efficient C% includes all effects of b, which enter through
the FL parameters. In the right panel of Fig. 2, NRG results
for C"S’ are plotted as a function of b/ T for several different
values of U. We find that the nonlinear noise exhibits a
universal behavior for U/(zA) 2 2.0 in a similar way that
the nonlinear current shows [22,23]. It decreases rapidly as
b increases for small fields, changes sign at b = 0.36T g,
takes a minimum at b = 0.5T g, and then approaches zero at
b = Tk. We note that order T* thermal conductivity also
exhibits the scaling behavior (see Supplemental Material
[35]). These observations reflect the fact that the three-body
fluctuations show the universal scaling behavior in the
Kondo regime without the TR symmetry.

Conclusion.—Nonlinear transport through the SU(N)
Anderson impurity has been described in a unified way
with five FL parameters. We have demonstrated how the FLL
state evolves as electron filling N, varies, using the NRG
up to N = 6. For strong interactions U, not only charge
fluctuations but also the derivatives of charge and spin
susceptibilities are suppressed over a wide filling range
1 <N;<SN-—1. It reduces the number of variable FL
parameters from five to three and causes the Kondo plateau
structures emerging for all the coefficients C’s. In particu-
lar, the three-body contributions on Cy are significantly
enhanced at Ny~ 1 and N — 1 for N > 2. It also affects the
behavior of nonlinear Fano factor Fy in the valence
fluctuation region. We have also shown that the nonlinear
current noise exhibits the universal magnetic-field scaling
in the Kondo regime. The FL parameters can also be
deduced from experiments and can be used to predict
behaviors of unmeasured observables.
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