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Any observer outside black holes cannot detect any physical signal produced by the black holes
themselves, since, by definition, the black holes are not located in the causal past of the outside observer. In
fact, what we regard as black hole candidates in our view are not black holes but will be gravitationally
contracting objects. As well known, a black hole will form by a gravitationally collapsing object in the
infinite future in the views of distant observers like us. At the very late stage of the gravitational collapse,
the gravitationally contracting object behaves as a blackbody due to its gravity. Due to this behavior, the
physical signals produced around it (e.g., the quasinormal ringings and the shadow image) will be very
similar to those caused in the eternal black hole spacetime. However, those physical signals do not
necessarily imply the formation of a black hole in the future, since we cannot rule out the possibility that the
formation of the black hole is prevented by some unexpected event in the future yet unobserved. As such an
example, we propose a scenario in which the final state of the gravitationally contracting spherical thin shell
is a gravastar that has been proposed as a final configuration alternative to a black hole by Mazur and
Mottola. This scenario implies that time necessary to observe the moment of the gravastar formation can be
much longer than the lifetime of the present civilization, although such a scenario seems to be possible only
if the dominant energy condition is largely violated.

DOI: 10.1103/PhysRevD.99.044027

I. INTRODUCTION

The black hole is defined as a complement of the causal
past of the future null infinity (see, e.g., [1,2]) or, in
physical terminology, a domain that is outside the view
of any observer located outside it. As well known, not
only general relativity but also many modified theories of
gravity predict the formation of black holes through the
gravitational collapse of massive objects in our Universe.
Many black hole candidates have been found through
electromagnetic (see, for example, [3]) and gravitational
radiations [4].

Hereafter, any discussion in this paper will be basically
based on general relativity. Figure 1 is the conformal
diagram that describes the formation of a black hole
through the gravitational collapse of a spherical massive
object; the region shaded by gray is the black hole, the
region shaded by green is the collapsing massive object, the
dark red curve A is the world line of a typical observer with
finite lifetime outside the black hole, and the region shaded
by blue is the causal past of the observer often denoted by
J~(4). The causal past of the observer is defined as a set of
all events which can be connected to 4 by causal curves,
i.e., timelike or null curves; we believe that our situation in
our Universe is similar to the observer 4. Thus any event
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outside J~ (1) cannot causally affect the observer 4. As can
be seen in Fig. 1, the black hole is outside the causal past of
the observer 4, and hence any signal detected by the observer
A (e.g., the black hole shadow, the quasinormal ringing of
gravitational radiation, the relativistic jet produced through
the Blandford-Znajek effect [5]) cannot be caused by the
back hole itself, although they strongly suggest the formation
of the black hole as can be seen in Fig. 1. As well known,
the black hole will form after infinite time has elapsed in
the view of the distant observers.

The black hole is often explained as an invisible
astronomical object, but rigorously speaking, this explan-
ation is inappropriate. We call an object invisible if it is in
our view but does not emit anything detectable to our eyes
or detectors. However, the black hole is located outside the
view of the outside observer; this is the reason why the
outside observer cannot see it. In the view of the outside
observer, there is a gravitationally contracting object whose
surface is asymptotically approaching the corresponding
event horizon.

Although the black hole is a promising final configu-
ration of a gravitationally collapsing object in the frame-
work of general relativity, various alternatives have been
proposed (see, for example, [6] and references therein).

© 2019 American Physical Society
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FIG. 1. The conformal diagram of the black hole formation

through the gravitational collapse of a spherical object is depicted.
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FIG. 2. Typical null geodesics emanated from the event p in
past direction toward the shadow image observed at p are
depicted in the conformal diagram of the maximally extended
Schwarzschild black spacetime. From this figure, we see that the
shadow image is not produced by the absorption of photons into
the black hole but is an image of the white hole with no radiation.
If the white hole emits photons, the shadow image can be colored.

We usually think that if a black hole candidate is not a
black hole, it should be a static or stationary compact
object and believe that we will find differences from the
black hole in observational data [6]. As mentioned in the
above, any observer sees not black holes but gravitation-
ally contracting objects and regards them as black holes.
In the very late stage of the gravitational collapse of
the massive object, distant observers can take a photo of
the same shadow image as that in the eternal black hole
spacetime with the boundary condition under which

nothing is emitted from the white hole. Almost the same
quasinormal mode spectrum of gravitational waves as that
of an eternal black hole spacetime will be generated
around the contracting object in the very late stage and
detected by distant observers. However, it should be noted
that we cannot conclude from these observables that the
black hole must form, since there is always the possibility
that the formation of the black hole is prevented by some
unexpected events and the contracting object settles into
some alternative to the black hole in the future.

In this paper, we revisit a very simple model which
describes the gravitational collapse of an infinitesimally
thin spherical shell and offer a scenario of the gravitational
collapse accompanied by the formation of not a black hole
but a gravastar that has been proposed as a final configu-
ration of a gravitationally collapsing object alternative to a
black hole by Mazur and Mottola [7]. Our model shows that
it is observationally very important when the gravastar
formation begins. If the gravastar formation occurs in the
very late stage of the gravitational collapse, the observers
like as A will get shadow images and a quasinormal mode
spectrum of gravitational waves which are almost the same
as those of the maximally extended Schwarzschild space-
time with the boundary condition under which nothing
emerges from the white hole." In this scenario, the unex-
pected event to prevent the black hole formation is the
gravastar formation.

This paper is organized as follows. In Sec. II, we briefly
review the basic equations to treat an infinitesimally thin
spherical massive shell. In Sec. III, based on the analyses of
null rays in the spacetime with a spherical massive shell in
Appendix A, we discuss why a massive object without the
event horizon is regarded as a black hole candidate in the
very late stage of its gravitational collapse in the view of
distant observers. Then, we give a model which represents a
decay of the dust shell into two concentric timelike shells in
Sec. IV. In Sec. V, we show a scenario in which a gravastar
forms in the very late stage of the gravitational collapse of
the dust shell; the gravastar formation is triggered by the
decay of the dust shell. Section VI is devoted to summary
and discussion. In Appendix B, we show that the Bianchi
identity leads to the conservation of the four-momentum at
the decay event.

In this paper, we adopt the abstract index notation, the
sign conventions of the metric and Riemann tensors in
Ref. [2], and basically the geometrized unit in which
Newton’s gravitational constant and the speed of light
are one. If convenient, we adopt natural units with notice.

'In the case of the maximally extended Schwarzschild space-
time, the so-called black hole shadow is the image of the white
hole in the sense that if the white hole emits photons whose color
is blue to distant observers, the shadow images are blue (see
Fig. 2).
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II. EQUATION OF MOTION OF A
SPHERICAL SHELL

In this section, we give basic equations to study the
motion of a spherically symmetric massive shell which is
infinitesimally thin and generates a timelike hypersurface
through its motion. We will refer to this hypersurface as the
world hypersurface of the shell. The world hypersurface
of the shell divides the spacetime into two domains. These
domains are denoted by D, and D_. The situation is
understood by Fig. 3.

The geometry of the domains D are assumed to be
described by the Schwarzschild—de Sitter spacetime; the
infinitesimal world interval is given by

ds® = —F (r)di% + dr* + r*(d6* + sin*0dg?),

(1)

Fyi(r)

with

XM, A.
— __r’

Fy(r)=1 , 3

(2)

where M, and A, are the mass parameter, the charge
parameter, and the cosmological constant in the domains
D, respectively. We should note that the time coordinate is
not continuous at the shell and hence it is denoted by 7, in
the domain D, and by 7_ in the domain D_, whereas r, 6,
and ¢ are everywhere continuous.

Since the finite energy and the finite momentum con-
centrate on the infinitesimally thin region, the stress-energy
tensor diverges on the shell. This fact implies that the shell
is categorized into the so-called scalar polynomial singu-
larity [8] through the Einstein equations. Even though the

temporal

World hypersurface
of the shell

radial

FIG. 3. A schematic diagram of the situation considered in
Sec. II. The vertical direction is timelike, whereas the horizontal
direction is spacelike. The world hypersurface of the shell is a
thick curve. The four-velocity u“ is the timelike unit tangent to
and n? is the unit normal to the world hypersurface of the shell.

shell is a spacetime singularity, we can derive its equation
of motion from the Finstein equations through Israel’s
formalism [9], since the singularity is so weak that its
intrinsic metric on the world hypersurface of the shell exists
and the extrinsic curvature defined on each side of the
world hypersurface is finite. Hence, hereafter, we do not
regard the shell as a spacetime singularity.

We cover the neighborhood of the world hypersurface of
the shell by the Gaussian normal coordinate A, where 9/01
is a unit vector normal to the shell and directs from D_ to
D, . Then, the sufficient condition to apply Israel’s for-
malism is that the stress-energy tensor is written in the form

Tab = Sabs()— A), (3)

where the shell is located at 1 = A, §(x) is Dirac’s delta
function, and S is the surface stress-energy tensor on
the shell.

We impose that the metric tensor g, is continuous even
at the shell. Hereafter, n* denotes the unit normal vector to
the shell, instead of d/0A. The intrinsic metric of the world
hypersurface of the shell is given by

hab = YGab — NaNp, (4)

and the extrinsic curvature is defined as
K3, = —h¢hy Vi n,, (5)

where VE.*) is the covariant derivative with respect to the
metric in the domain D . This extrinsic curvature describes
how the world hypersurface of the shell is embedded into
the domain D . In accordance with Israel’s formalism, the
Einstein equations lead to

1
K;b - KL_lb =8z (Sab - EhabtrS> ’ (6)

where trS is the trace of §S,,. Equation (6) gives us the
condition of the metric junction.

By the spherical symmetry of the system, the surface
stress-energy tensor of the shell should be the following
form;

Sab = ou,u, + P(hab =+ uaub)’ (7)

where, if we assume that the shell is composed of the
perfect fluid type matter, o, P, and u® are the energy per
unit area, the tangential pressure, and the four-velocity,
respectively. Due to the spherical symmetry of the system,
the motion of the shell is described in the form of 7. =
T.(r) and r = R(7), where 7 is the proper time of the shell.
The four-velocity is given by

w* = (T,,R,0,0), (8)
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where a dot represents a derivative with respect to z. Then,
n, is given by

n, = (=R, T.,0,0). 9)

Together with u* and n*, the following unit vectors form an
orthonormal frame,

N 1
eﬂ: <090770>7 (10)
r
# = 10,00 ! (11)
S\ VU rsing)
The extrinsic curvature is obtained as
1 . F
KHutub = — (R+—i>, (12)
F.T. 2
P A A F. .
K50°0" = K5,¢°9" = —n?0,Inr|), = —fri (13)

and the other components vanish, where
Fj: :Fi(R), (14)

and a prime represents a derivative with respect to its
argument, i.e.,

_ dF.(R)

F'. = 15
L= (15)
By the normalization condition w*u, = —1, we have

. 1 <y

T:t = F_ R + Fi? (16)

+

where we have assumed that the shell exists outside the
black hole and u“ is future directed. Substituting Eq. (16)
into Eq. (13), we have

PPN 1 .
KL00" = —E\/RZ +F.. (17)

From Egs. (6) and (17), we have

15 I e
—E\/R +F++E\/R + F_ =4ro. (18)

Hereafter, we assume the weak energy condition ¢ > 0.
Then, Eq. (18) leads to

F_>F,. (19)

From the u-u component of Eq. (6), we obtain the
following relations:

Zhap =0, (20)

where m is the proper mass of the shell defined as
m = 476R>. (21)
By dividing both sides of Eq. (20) by dR/dr, we have

dm
— PR = 0. 22
IR + 87 0 (22)

By giving the equation of state to determine P, Eq. (22)
determines the dependence of m on R. Hereafter, we
assume o is positive so that the energy density is positive
in the rest frame of the shell, and hence m is also positive.

In general, the energy cannot be uniquely defined
within the framework of general relativity. However, in
the case of the spherically symmetric spacetime, quasi-
local energies proposed by many researchers agree with
the so-called Misner-Sharp energy (see, for example,
Ref. [10]). The Misner-Sharp energy just on each side
of the shell is given as

My ==(1-Fy). (23)

Hence, the Misner-Sharp energy included by the shell is
given by

M:

R
5 (F-=Fy). (24)

From Eq. (18), we have

\/k2+Fii%:\/i€2+F : (25)

where we have used Eq. (21). By taking the square of
Eq. (25), we obtain

\/R2+Fi:E:F%, (26)

where

E= N —F) =2 (27)

is the specific energy of the shell. By taking the square of
Eq. (26), we obtain the energy equations for the shell as
follows:

RZ+U(R)=0 (28)

with

044027-4
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UR) =F. — (E T %)2. (29)

Here note that unless P = 0, m and E in Eq. (29) depend
on R.

Since the left-hand side of Eq. (26) is positive, the right-
hand side should also be positive,

m
E—2>0. (30)

By substituting Eq. (26) into Eq. (16), we have

. 1 m
T.=—|EF+—]. 31
. F( :I:2R> G1)

Here note again that Eq. (18) is obtained under the
assumption that the shell is located outside the black hole.
If the shell is in the black hole, Eq. (30) is not necessarily
satisfied, and accordingly, T is not necessarily positive.

III. VERY LATE STAGE OF THE
GRAVITATIONALLY CONTRACTING
SHELL

In Appendix A, by studying null rays in the spacetime
with a spherical shell, we show that the contracting shell
with the radius very close to its gravitational radius
effectively behaves as a blackbody due to its gravity, even
though the material of the shell causes the specular
reflection of or is transparent to null rays: both the null
ray reflected by the shell and that transmitted through the
shell suffer the large redshift or are trapped in the
neighborhood of the shell. Hence, the behavior of any
physical field in this spacetime will be very similar to those
in the maximally extended Schwarzschild spacetime with
the boundary condition under which nothing appears from
the white hole: the contracting shell corresponds to the
white hole horizon. In the late stage of the gravitational
collapse, the image of the shell and the spectrum of the
quasinormal modes will be very similar to the black hole
shadow and the quasinormal modes of the Schwarzschild
spacetime. By contrast, the static shell will show images
distinctive from the black hole shadow, if it is composed
of transparent or reflective materials, since, as shown in
Appendix A, the angular frequency of a null ray perfectly
reflected at or transmitted through the static shell is the
same as that of the incident one. Even if the inside of the
static shell is not empty but filled with the vacuum energy,
the result will be unchanged as long as the vacuum energy
is transparent to the null rays. The time necessary for
traveling from the source of the null rays to the distant
observer can be very long due to the strong redshift if the
radius of the static shell is very close to the gravitational
radius. However, even though its radius is very close to the
gravitational radius, as long as the shell has already been

static in the causal past of the observer, the observer can see
the reflected or transmitted null rays from some sources
around it without suffering strong redshift: the distant
observer will merely see very old distorted images of
sources. By contrast, it is a subtle problem whether easily
appreciable differences appear in the quasinormal modes of
collapsing and static shells due to the long delay of echoes if
the radius of the shell is very close to the gravitational radius.

IV. DECAY OF A TIMELIKE SHELL:
CONSERVATION LAW

In this section, we consider the decay process of a
spherical massive shell into two daughter spherical shells
concentric with the parent shell. In the next section, this
decay process is regarded as a trigger of the gravastar
formation.

We call the parent shell shell 0 and assume that shell 0
initially contracts but decays just before the formation of a
black hole. One of two daughter shells called shell 1 is
located outside the other one called shell 2 (see Fig. 4).
Shell 0, shell 1, and shell 2 divide the spacetime into three
domains: D is the domain whose boundary is composed of
shell 0 and shell 2, D, is the domain whose boundary is
composed of shell 0 and shell 1, and D, is the domain
whose boundary is composed of shell 1 and shell 2.

The infinitesimal world intervals of the three domains D;
(i=0, 1, 2) are given as

d 2
ds? = —F,(r)di2 +FZ A0+ sint0dg). (32)

(r

where
2M; A
F(r)=1-="S0_102 33
i(r) ’ 3 r (33)
temporal

us,

D,

radial

Shell 0

FIG.4. The schematic diagram representing the decay of shell 0
into shell 1 and shell 2 is depicted.
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For later convenience, we introduce the dyad basis
related to the two-sphere whose components are, in all
domains, given as

. 1
o (o,o,-,o), (34)
r
# =1{0,0,0 ! (35)
S\ U rsing)

By virtue of the spherical symmetry, the surface stress-
energy tensor of shell / (/ =0, 1, 2) is given in the form

St = owulyuly + Py H?, (36)

where oy, P(p), and u?” are the surface energy density, the

tangential pressure, and the four-velocity of shell I,
respectively, and

H® = 690° + ¢°¢°. (37)

We assume that o(;) is positive.

The radial coordinate of the decay event d is denoted by
r = ry. Hereafter, the time and radial coordinates of shell /
are denoted by 7'(;); and R ;), where i is the index to specify
the time coordinate in the domain D; (i =0, 1, 2): as
mentioned, the time coordinate is not continuous at the
shells. Then, we introduce the orthonormal basis of the
center of mass frame at d. The components of them are
given as

u?O)i = (T(o)i,R(O),O,O), (38)
a R(O) F T 0.0 39
Moy = Fi(ry)’ i{(ra)T()i»0,0 ), (39)
A 1
0% = (0,0,—,O), (40)
rq
¢* = (0,0,0 ! (41)
77 Urysing)’

where i = 0 (i = 1) represents the components in D (D),
and a dot means the derivative with respect to the proper
time of shell 0.

Hereafter, we assume that the decay occurs before shell 0
forms a black hole, i.e.,

F,(rq) > 0. (42)

The four-velocity u’(lj) (J =1, 2) at d is written in the

form
M?J) = F(J)u?m + 6(]), /F%J) — 11’1'(1()), (43)

where I'(;) is a positive number larger than one, and €(;) =

=41 is the sign factor which will be fixed by the momentum
conservation.

We require the conservation of four-momentum at d,
mo)U{g) = m(l)u?l) + m(z)u?z), (44)
where
I’I”Z(I) = 47TR%1)6(1). (45)

Note that m ;) is positive since we assume o(;) is positive.

The derivation of the conservation law from the Bianchi
identity is shown in Appendix B.
The u component of Eq. (44) leads to

m) = mmL) + ma)le). (46)

whereas the n component leads to

0= mM(1)€(1) /F%I) -1+ m)€(2) 1—%2) - 1. (47)

Since my) is positive, Eq. (47) implies that €(;) = +1 and
€(2) = —1 should hold in the situation we consider.
From Eq. (46), we have

m%z)l"%z) = m%()) = 2mgym L) + m%1)F%1)’ (48)
whereas, from Eq. (47), we have
miy Ly = my (T = 1) + miy,. (49)
Equations (48) and (49) lead to

mig) +miy) —mby,

'y = (50)
v Zmym)
Through the similar procedure, we obtain
m? + m%, —m?
0 2 1
T = (0) @) m (51)

2mym o)
Equations (50) and (51) lead to
m) = mmlay +me)loy 2 may +mp). (52)

From Eq. (43) with J = 1, we have

”21)1 = F(U”Zo)l + \/Fﬁl) - 1"20)1

r R
:ﬂ[ e (Fo—Fl)—m]-F Fﬁl)—lﬂ,
Fl 2m<0) Zrd Fl
(53)
and

where we have used Eqs. (27) and (31) for uEO)l’
F; = F;(rq). On the other hand, by using Eq. (31), we have

1 rq m(l)
S Fy—F)— =11 54
o = [Mm(z ) ZrJ (54)

044027-6
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Then Egs. (53) and (54) lead to

Fy=F +@+2m(” Ty |2 (Fy = F)) = 2O
2 ! ra rq Q) 2m) 0 YV 2y

+ 4 /Ffl) - 1R(0)}. (55)

By the similar procedure starting from Eq. (43) with J = 2,
we have

F,=F +@—2m(2> Loy |29 (Fy = F)) + 20O
200 rﬁ T4 @ 2m<0) 0 ! 2ry4

- \/Th) - 11‘3(0)}. (56)

By using Egs. (50) and (51), we can see that Eq. (55) is
equivalent to Eq. (56). The momentum conservation (44)
uniquely determines the geometry of D, which appears
after the decay event d if we fix the values of ry, Fy, F,
mg), M1y, and m(y); R<O) is determined through Eqgs. (28)
and (29) except for its sign that we have to choose.

V. GRAVASTAR FORMATION

In this section, we consider the gravitational collapse of
shell 0 accompanied by the gravastar formation. Here, we
will adopt the gravastar model devised by Visser and
Wiltshire (VW) [11], which is simpler and clearer than
the original one of Mazur and Mottola. The VW gravastar
is a spherical de Sitter domain surrounded by a spherical
infinitesimally thin shell.

We assume that shell O is an electrically neutral dust
shell, Pg) = 0. The geometry of its inside is Minkowskian,
whereas that of its outside is Schwarzschildian: My =
Qo = 0 = 0= Ay = A, holds. From Eq. (29), we obtain
the effective potential of shell O as

me) \*

U(o)(R(o)) =1-|Eq) +T(o) , (57)
where m () is constant due to the conservation law (22), and
hence Eg) = M /m) is also constant.

From Eq. (30), we have
M,

Ry > —— (58)
(0) 2
2E(0>

so that ug, is future directed for Ry > 2M,. We are
interested in the case that shell O contracts and forms a
black hole, i.e., R(g) < 2M, if the decay of shell 0 does not

occur. Hence, we assume

E(O) > =, (59)

temporal

D,

de Sitter domain

Shell 2

(neutral null)

Shell 1

(neutral timelike)

Dy

Minkowski domain

D,
Schwarzschild domain

ug,

radial

Shell 0

(neutral timelike dust)

FIG. 5. The schematic diagram representing the formation of a
gravastar triggered by decay of shell O into shell 1 and shell 2 is
depicted.

so that the rhs of Eq. (58) is less that 2M. Then, by
investigating the effective potential U ), we can easily see
that the allowed domain for the motion of shell 0 is

M,
O0<Rp Sz (60)
O =2E) (1 - Eq))
for 1/2 < E(g) < 1, whereas

for E(O) > 1.

We assume that the formation of the gravastar is
triggered by the decay of shell O into shell 1 and shell
2. The domain D, between shell 1 and shell 2 is described
by the de Sitter geometry, i.e., M, = Q, = 0 but A, > 0.
Shell 2 shrinks to zero radius, so that the innermost domain
D, disappears at some stage (see Fig. 5). By contrast, shell
1 corresponds to the crust of the gravastar. The decay event
of shell 0 and its areal radius are denoted by d; and ry;,
respectively.

It is observationally very important when the gravastar
formation starts. In Ref. [7], the gravastar formation is
implicitly assumed to start when the radius R of the
contracting object satisfies R —2M ~1,, where [,
(~1.6 x 10733 cm) is the Planck length. The timescale in
which the radius of the collapsing object satisfies 0 < R —
2M < 2M is almost equal to the free fall time of the system.
From Egs. (28), (29), and (31), we can see that once 0 <
R — 2M < 2M is satisfied, the time evolution of the radius
of a dust shell (;m = constant) is given by R ~ Const. X e,
where ¢ is the proper time for an asymptotic observer. Thus,
the timescale in which R —2M ~ [ is achieved will be
much less than our average lifetime if the mass M of the
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contracting object takes 1 Mgy < M < 108 My, where
Mg is the solar mass. If the criterion of the gravastar
formation proposed by Mazur and Mottola is correct, we
can, in principle, observe the gravastar as a final product
of the gravitational collapse of a massive object. However,
we know no physically well-motivated estimate on when
the gravastar formation starts. There is the possibility
that the gravastar formation may start at very late stage of
the gravitational collapse. For example, the trigger of the
gravastar formation might be the energy loss from the
system due to the semiclassical effects associated with
the gravitational collapse. If the contracting object has a
mass larger than the solar mass M, the particles created
through the semiclassical effect will be photons and
gravitons. For a spherically symmetric contracting object
with R — 2M <« 2M, the time variation of the mass of the
contracting object will be governed by

dM 72
=30 ThuAu. (62)

in natural units, where, mpy| being the Planck mass, Tpy =
mﬁl /8xM is the Bekenstein-Hawking temperature, and Ay
is the horizon area 16zM?/ mgl [12]. We assume that after
a small fraction ¢ (<« 1) of the initial mass of the
collapsing objects is released through the particles created
by the semiclassical effect, the gravastar formation begins.
Then by solving Eq. (62), we can see that the timescale 7,
in which the initial mass M; of the contracting object
becomes (1 — €)M; is given by

3

M,
te = 7680x[1 + O(e)]e —
oy

— 30 x 1097]1 + O(e)]e<;‘j;>3 . (63)

If this is true, asymptotic observers should wait to observe
the gravastar formation for a very long time after the
gravitational collapse has begun: the time will be much
longer than the age of the Universe for a black hole of the
mass larger than the solar mass if € > 1070,

Anyway, the radius of shell 0 might be very close to the
gravitational radius in the domain D; when the gravastar
formation starts. Hence, hereafter we assume so.

A. Motion of shell 2

Let us start on the discussion about shell 2. We assume
that shell 2 moves inward with the energy much larger than
its proper mass, i.€., E(5) = M) /m(y) > 1, where M) is
the Misner-Sharp energy of shell 2. We introduce

ke = ) (64)

and rewrite S?zb) in the form

m@)

M

M
ab __ 2 a b
52) = Ee) 4R, kyke) +

HPy | (65)
We assume that o) is non-negative, and the equation of
state is given by

Py =w@o)0(), (66)

where 6(5) W(y) is a constant number of [w(,)| < 1. Then we
take the massless limit for shell 2: m ;) — 0 with the Misner-
Sharp energy M ;) fixed. From Eqs. (43) and (51), we have

O™ Tmg M, 00 (67)

It is easy to see that k‘(lz) is null in this limit. Furthermore, we
have

ab
5, Mo
E(z) 471'R%2)

Ky Kby . (68)

As expected, shell 2 becomes the null dust in this limit.
Although S?z”) itself diverges due to the Lorentz contraction,
the Misner-Sharp mass kept by shell 1 is finite by assumption
[see Eq. (24)]: this divergence should be absorbed in the
integral measure (please see Ref. [13] for the proper stress-
energy tensor of the null shell). In the massless limit of shell 2,
we have M) at the decay event, from Eq. (56), in the

following form:

2 2
M) =™y

Mpyl, = Eq) +5—

2m(0)

m)\?

The cosmological constant in D, is determined at the
decay event d; through

(69)

Az — ?M(z)‘dl. (70)
Tai

Then the Misner-Sharp energy of shell 2 is a function of the
radius of shell 2,

A
—>(Fo—Fy) = 2R}

¢ Koy (71)
As can be seen from Eq. (71), M(z) vanishes when the
radius of shell 2 becomes zero, or in other words, shell 2
disappears when it shrinks to the symmetry center » = 0.
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B. Motion of shell 1

From Eq. (43), the radial velocity of shell 1 at d; is
written in the form

Ry =T )Ry + /T = LF T o),
_ M)\ 2

m(0)
+ F%l) -1 (E(()) - ﬂ) ) (72)

Hence, R(l) is positive at d;, if and only if

1 M(O) 2

holds. Taking into account Egs. (50) and (52), Eq. (73)
leads to the condition on my as

m ), <m0 [ o)
Mla, ¢ VFy 0 2rg

(74)

M)\ 2
_W@_%)

On the other hand, R(l) is negative or zero, if and only if

1 my \ 2
2 ©)
I < F, (E(O) - 2”d1> (75)
or equivalently,
me < }'71(1) < m(o) (76)

at d 1-
The effective potential Uy of shell 1 is given by

2M1 |:1 ( A2 .;> I’Vl(l):|2
UnRp) =1-"A— | — (M, =22R3 ) - .
o) Ry Lmay "' 6 0] 2Ry
(77)
The future directed condition Tml > 0 implies
1 As 13 m)

It is easy to see that, irrespective of the equation of state of

shell 1,
6M,\ 5
R(]) < Ru = <—1) (79)

is necessary so that Eq. (78) is satisfied, since we require
o) 2 0, or equivalently, mey 0; the allowed domain for

the motion of shell 1 is bounded from above.

1. Dissipation through further decay

Shell 1 is the crust of the gravastar. It is dynamical and
hence should dissipate its energy so that the gravastar is
stable and static. Chan et al. studied the gravastar formation
by taking into account a dissipation through the emission of
null dust [14]. In this paper, instead of the emission of the
null dust, we assume that the crust, shell 1, emits outward
shell 3 at the event d, with r = ry, and becomes static and
stable; the static crust of the gravastar is called shell 4. This
process is equivalent to the decay of shell 1 into shell 3 and
shell 4 (see Fig. 6).

The domain between shell 3 and shell 4 is denoted by Dj.
Replacing shell 0, shell 1, shell 2, D, and D, by shell 1,
shell 3, shell 4, D, and D5 in Eq. (55), the same argument
as that in Sec. IV is applied, and we obtain

2

m 2m m
(3) 3) T'a (1)
F;=F r Fy—F|)———
3 1+ r(212 + o { 3) {2’%(1)( 2 1) 2
+ 4 /Fé) - lR(l)}, (80)
where
2 2 _ 2
ro M e T M .
3) = , (81)
2miym)
temporal

Shell 4

(neutral timelike)

Dz u(%)
de Sitter domain

(neutral null) (neutral timelike)

radial

Dy dl D,

Minkowski domain Schwarzschild domain

Shell 0

(neutral timelike dust)

FIG. 6. The schematic diagram representing the stabilization of
the gravastar due to the decay of shell 1 into shell 3 and shell 4.
Shell 3 is null and causes the dissipation which results in the
stabilization of the crust of the gravastar, i.e., shell 3.
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and, in this Sec. V B 1, all quantities are evaluated at d,.
Here, as in the case of shell 2, we take the limit mey — 0
under the assumption of P(3) = w)o3) with w) fixed:
this limit is equivalent to the assumption that shell 3 is a
null dust. From Eq. (80), we have

m2,. — m? m
(1) 4) O
Fy=F,+————|E;y——+R . 82
: ! m)raz < W 2rg (1>> ( )

Then, from this result, we have

Ta2
E, = F,—F
(4) 2m(4)( 2 3)
T2 T2
= F,—F F,-F
2m(4)( 2 1)+2m( (Fy 3)

m moy —m m .
_ﬁE“) M 4) (E(l) _ﬂ_FR(l))
m) Zmiyms)

(83)

The crust of the gravastar is shell 4 after the event d,. As
mentioned, since the gravastar becomes static after the

event dy, R always vanishes. Since we have

- m<4) 2
R(4) = —U(4>(R(4>) 1= E<4) +T(4) - FZ(R(4)), (84)
Eq. (83) and R(4)|R<4)=rd2 =0 lead to

m2 .+ m? m m2. —m. 12
{ DREC (E(1>+ (1>)_ 0 (4)R(1)} _F,=0.

2miym) ) 2mayma)
(85)
Since we have
. m 1) 2 m<1) 2
W ( Chd 2”d2> ’ < . 2rg ]
(86)
at R(j) = rg, the following inequality holds:
Eq + o0 5 R 87
(1)+7dz>| ml (87)
By the same argument as that of Eq. (52), we have
my) > ny) > 0. (88)

Then, Eq. (85) leads to

m? -|—m2 m2. — m?
(1) T M) m<1>> 1)~ M) .
W W, W) WO @R =0,
2mnym) ( Y ar) T amamey ’
(89)
and hence we have
M g 2. _9
Eqy+5,— 1 Ry ) miyy = 2mayma) v Fa
a2
Eop 4+ o w2 =0 90
+ <1>+7dz— my Jmiy = 0. (90)

The above quadratic equation for m 4) has a degenerate root

where we have used Eq. (86). By using Eq. (86), we can see
that Eq. (88) is satisfied only if R(l) is positive. Thus, we
consider the only situation in which Ry, is positive at the
event dp. R4 vanishes if and only if the proper mass of

shell 4 satisfies Eq. (91), and hereafter we assume so. By
virtue of the future directed condition of the four-velocity

of shell 1, i.e., E(j) — 5> > 0, and Eq. (86), we have

n'l(l) .
E(l) —Fdz— RU) > 0. (92)

Here note that Eq. (83) can be rewritten as

2 2
m4 m1+m4 me .
Ey - " ”(E(1>—2”—R(1>)
Ta2

DT My m
TR (93)
@ra (1)

Hence, if R(l) > 0 holds, the future directed condition,
E(4) —m)/2rg, > 0, for shell 4 also holds. The decay of
shell 1 to make the gravastar static is possible.

The effective potential of shell 4, U 4), vanishes at R4y =
rqgo by assumption. The first- and second-order derivatives
of U should vanish and be positive, respectively, at
R(4) = rgy so that the gravastar is stably static. Hereafter we
assume so; these assumptions partly determine the equation
of state of shell 4 as follows.

Equation (18) implies that the surface energy density of
shell 4 is given in the form

1
o) = 4nR, [\/FZ(R(AL)) = Uu)(Ru))
- \/Fz(R<4)) - U(4)(R(4))J, (94)
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and the tangential pressure of shell 4, P ), is given from Eq. (22) in the form

1 d ,

Ry dU ) (R4))

Py=—-~——I(0 R)_—P+
) )
2R<4) dR(4) ) 2 4\/[F2(R 4 ) _

AZR( 4) M3

U (Ra))I[F3(R)) =

(95)

= Ug(R

24n\/F2

At R(4) = FIqp, WE have

[\/Fz ra) \/F3(rd2)]v (96)

‘dz 47rr
and

Aorgy M,

2471'\/F2(rd2 87rrd2\/F3 rdz)

(97)

Paly, = =500l +

We are interested in whether the dominant energy condition
O4) = |P<4) | holds.

2. Case of shell 1 expanding at d,

First we consider the case of R(l) > 0 at the first decay
event d; with the areal radius ry;. Since we consider the
case that ry; is very close to 2M, we have, from Eq. (74),

mly <5 (L O(F ) /Fr. (98)

ity

The proper mass of shell 1 should be much smaller than m g).
We show the effective potential U(;) in the case of
the dust, P;) =0, in Fig. 7. Shell 1 will bounce off
the potential barrier and then form a black hole by its
contraction. The behavior of U(;) even in the case

Py =wamoq) (99)

with [w(;)| < 1 is too similar to distinguish from that of the
dust, even if it is depicted together in Fig. 7. The dominant
energy condition for shell 1 is given by
0(1) > |P(1)|. (100)
As long as the dominant energy condition is satisfied, the
effective potential of shell 1 behaves as that shown in Fig. 7.
As mentioned below Eq. (86), shell 1 should decay into
shell 3 and shell 4, when R(;) > 0 so that the gravastar is
static. Hence, shell 1 should decay before it bounces off
the potential barrier. The allowed domain for the motion
of shell 1 is bounded from above as Eq. (79) and hence
rqr < rgp < Ru.

+
) SﬂR%4)\/F3(R4)—

U (Ra))

Let us estimate R,. Since 0 < F(rq;) < 1 and m) <
m at d, due to Eq. (98), we have, from Egs. (69) and (70),

M F
A2=¥[l—ﬁ2——lm( O(FF. F})|.
i AE)(Eo) =5,
(101)
where
m
p=—01 <OWF), (102)
M o)

d;
and hence R, defined as Eq. (79) is written in the form
2

p F
Ry=rq {1+—+ —+ OB B?F\ . F?)|,
3 12E()(Eq)—52) !

(103)

where all quantities are evaluated at d;. Since ry < R,
should be satisfied from Eq. (79), we have

rap < rap < Ry =rq[l+ OB Fy)]. (104)

0.90 0.95 100 1.05 1.10 1.15 1.20 (x10®)

FIG. 7. The effective potential U(;) near R(;) = ry; is depicted
in the case that shell 1 is the dust, i.e., Py = 0. We assume
ra1 = 1.001 x 2M,, E) =09, and m) = 10~'m,. Shell 1
begins expanding at d; and then bounces off the potential barrier.
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Since we consider the situation that ry; is larger than but
very close to 2M, ry, should be very close to 2M; from
Eq. (104). Furthermore, from Eq. (101) and the inequality
0 < rgp — rqy < O(B?, F,) derived from Eq. (104), we have

A 2M), 2M
ST = =" O F). (105)
d1 d2
and hence
Fz(rdz) :O(ﬁz,Fl) < 1. (106)

Here again note that F,(ry,) > F3(rg,) holds because of
E(4) > 0 [see Eq. (83) and the discussion below Eq. (91)].

From Egs. (96), (97), and (106), Egs. (96) and (97) imply
0(4) < P(y), and so the violation of the dominant energy
condition (100). This result is basically equivalent to that
obtained by Visser and Wiltshire for their gravastar
model [11].

3. Case of shell 1 contracting at d,

We consider the case that shell 1 begins contracting at the
first decay event d; the proper mass m ;) satisties Eq. (76).
As in the expanding case, we show the effective potential
Uy in the case of P(;) =0 in Fig. 8. As in the case of
expansion at d;, Uy of the equation of state (99) with
lwy| <1 is too similar to that of the dust to distinguish
between them, even if they are depicted together in Fig. 8.
In this case, shell 1 does not bounce off the potential barrier
but directly forms a black hole through its contraction. Thus,
in the contracting case, the equation of state of shell 1 cannot
be Eq. (99) with |w(;y| <1 so that the gravastar forms.

Shell 1 should bounce off the potential barrier at some
radius Ry, larger than 2M so that the black hole formation
is halted. The effective potential should take the following
form near d;:

0.006

0.004 |
0.002
0
0.002
0.004
-0.006
-0.008
-0.01

Uayr) ’

-0.012

0.004 0.006  0.008 0.01

r
I
2M,

0 0.002

FIG. 8. The same as Fig. 7, but m(;y = Sm. In this case, shell 1
begins contracting at d; and then a black hole forms.

Un)(r) = =a(r = Ry) + O((r = Ry)"), ~ (107)

where a and n are positive constant and natural number
larger than one, respectively, and

2M1 < Rb < rqi (108)

should hold (see Fig. 9). By contrast to the case of shell 1
expanding at dy, in the present case, m ;) does not have to be
much smaller than m g due to Eq. (76) and we assume that
myy is close to but less than m ). Equation (69) leads to

miy) = mf,
Mpl, =— M +O(F)). (109
1 o)
Hence, Eq. (79) implies
Ry=—"9 11+ 0(F)] (110)

(1-p)

where f has been defined as Eq. (102) and is less than but
can be very close to unity, and hence R, may be much larger
than ry;. As a result, rq, can also be much larger than rg,
and hence, as we will discuss later, the dominant energy
condition (100) can be satisfied by shell 4. However, as
shown below, the dominant energy condition is not satisfied
at Ry = Ry, by shell 1.

Through the same prescription to derive Egs. (94) and
(95), we have

1
= dnRy, [\/Fz(Rm)) - Uy (R())
_\/FI(R(I))_U(I)(R(U):|, (111)
Uny(r)
0 \3*’ 1
T T r
2M, a1

FIG. 9. The assumed effective potential U}y of shell 1 near
R = Ry, is schematically depicted.
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and

1 d ,

1
Pyy=———(o)R )——{—-l—
) )
2Ry dRy 0 2 4 /IRa(Ry) - U

AZR(1> M

+ +
2477:\/F2(R(1)) - U(l)(R<1)) 8HR%1)\/F1(R(1

Since we have

U (Ra) —_—a<0 (113)
dR) Ry=Ry
we obtain, from Eq. (112),
1 ARy,

> R
P(1)|R(1):Rh - 26(1)|R<'):Rb * 247 FZ(Rb)

M,

.
87zR\/F(Ry)

Due to Eq. (108) and since ry, is very close to 2M|,
F{(Ry) < 1 holds. Hence, we have

(114)

> 6(1)| (115)

M,
P ~ .
(1)|R(1>=Rb 87R? R(y=R,

Fi(Ry)

The dominant energy condition cannot be satisfied by shell
1 at and around R(;) = Ry, by continuity.

Now we see the equation of state of shell 4 which is the
crust of the gravastar after the second decay event d,. The
surface energy density and the tangential pressure of shell
4, 0(4), and P4 are evaluated by using Eqs. (96) and (97).
Although we have determined the effective potential U )
of shell 1 in the only vicinity of Ry = Ry, as Eq. (107), we
have not yet in the vicinity of R(;) = rg,. Thus, the value of
Uy, or equivalently, R(l) at d, is regarded as a free
parameter. Once we assume the values of ry, and

V= R(l)ldz’ (116)

we have

mayl,, = 4xo R,

:rdz[\/U2+F2(rd2)_\/7)2+Fl(rd2)} (117)

and

Ra) W Ray)),
1
O RIF1(R1y) = Uy (Rpy)] dRq)
! . (112)
) — Uy (Ray)
.
Eql, :ﬁi)[Fz(de)—Fl(rdﬁl (118)

We depict 6(4) and P4 as a function of rg,/2M3 — 1 in
the case of Eg) = 0.9, m() =0.99m ) at d,, and ry; =
1.00001 x 2M, for three values of v in Figs. 10-12.

We also show M3 in the case of rq, = rg; = 1.00001 x
2M, as a function of v in Fig. 13; the larger v is, the smaller
M35 is. This behavior implies that if shell 1 has the larger
outward velocity v > 0, the larger energy should be
released through the emission of shell 3 so that shell 4
is at rest. Furthermore, we depict M5 as a function of
rao/2M; — 1 in Fig. 14 for three values of v; here note that
rq 1s normalized by not M5 but M;. The mass parameter
M3 is a decreasing function of ry,.

We can see from Figs. 10 and 11 that the dominant
energy condition o4y > |P4)| is satisfied in the case of
re 2 1.04 x 2M5, it is not so for ry, very close to 2M5; the
domain in Fig. 12 does not include ry, = 1.04 x 2M5 due
to the behavior of M5 shown in Figs. 13 and 14. Since rg, is
the radius of the gravastar in its final state, if ry = 1.04 x
2M5 holds, the formed gravastar satisfies the dominant
energy condition, even though the crust of the gravastar
does not in its formation process. The quantum gravita-
tional effects should play an important role so that the

0.25

0.2

\2MF,,

01F}

0.05f

0.05 0.1 0.16 0.2 0.25 0.3 0.35 0.4 045 0.5
Td2
Ta g
2M:

FIG. 10. The surface energy density and tangential pressure of
shell 4 are depicted as a function of the final radius of the gravastar
R4y = rgp. We assume Eq) = 0.9, m() =0.99m at d; and

rqr = 1.00001 x 2M1, and v = \/Fl(rdl) =3.16 x 1073
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0.16 T T T T T

0.14} 1
0.12 1
0.08F 1
0.06>
0.04

0.02

FIG. 11. The same as Fig. 10 but » =10

3.16 x 1072,

Fi(rq) =

0.045

0.04
0.035
0.03
0.025
0.02F"
0.015

0.01

0.005

FIG. 12. The same as Fig. 10 but v = 100/F(rq;) =
3.16 x 107!, From Fig. 14, we can see 0.74M, < M; <
0.78M in this case. Hence, the lower bound of the domain of
this figure is restricted by a slightly larger value than that in
Fig. 11.

1.05

0.95
My g9

0.85

0.8

0.75} 1

0.7

0 0.05 0.1 015 02 025 03

v

FIG. 13. The mass parameter M5 in the case of ry, = rq; =
1.00001 x 2M, is depicted as a function of v.

1.05
1 V=NF, (1)
oss| [T
M 09r

0.85}

0.8+
ool v=100VF (ra)

0.7

O.‘05 6.1 0.‘15 0‘.2 O.‘25 d.3 0.65 0‘.4 0.‘45 0.5
Z’T‘*/il—l

FIG. 14. The mass parameter M5 in the case of v = \/F(rq;),

10y/F(rq), and 100/ F(rq;) is depicted as a function of rg,.

As in Figs. 10-12, we assume E(g) = 0.9, m(;y = 0.99mg) at d,

and rgq; = 1.00001 x 2M,.

l'+

FIG. 15. This is the case in which the observer 4 will wrongly
conclude that a black hole will form if the areal radius ry at
the beginning of the gravastar formation is sufficiently close to
the gravitational radius 2M; in D, but no event horizon forms.
In the domain D, corresponds to the gravastar. Here shell O is
assumed to gravitationally contract, i.e., 1/2 < Eq < 1.

process accompanied by the violation of the dominant
energy condition is realized. Hence the gravastar formation
should rely on the quantum gravitational effects, if it begins
at the very late stage of the gravitational collapse, i.e.,
0<rg —2M; <2M,.
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As mentioned, it is observationally very important when
the gravastar formation begins. If the gravastar formation
starts after the backreaction of the Hawking radiation
begins sufficiently affecting the evolution of the contracting
object, the gravitationally contracting object of the mass
larger than that of the solar mass will form a gravastar
completely outside the causal past of observers with the
finite lifetime like us. In such a case, the observers will
wrongly conclude that a black hole will form (see Fig. 15).

VI. SUMMARY

Any observer outside black holes cannot detect any
physical signal caused by the black holes themselves but
see the gravitationally contracting objects and phenomena
caused by them; for observers outside black holes, the
contracting objects will form black holes after infinite time
lapses. In order to see why a contracting object seems to be
a black hole even if there is not an event horizon but the
contracting object in our view, we have studied a very
simple model which describes the gravitational contraction
of an infinitesimally thin spherical massive shell and
studied null rays in such a situation. Even in the case that
the shell made of materials which causes specular reflection
of or is transparent to the null rays, it behaves as a
blackbody due to its gravity if its radius is very close to
its gravitational radius; incident null rays do not return
from the shell or suffer indefinitely large redshift even if
they return. Hence, the shell at the very late stage of its
gravitational collapse is well approximated by the max-
imally extended Schwarzschild spacetime with the boun-
dary condition under which nothing comes from
the white hole. Signals of the quasinormal ringing and
shadow images obtained in the spacetime with the shell will
be, in practice, indistinguishable to those of the maximally
extended Schwarzschild spacetime for any distant observer
in the very late stage of the gravitational collapse. In this
sense, the black hole shadow is not the appropriate name in
the case of the observed black hole candidates, since it is
not a shadow of a black hole but the image of the highly
darkened photosphere of a gravitationally contracting
object. Even in the case of the black hole spacetime, the
black hole shadow is not the appropriate name, since it is an
image of the white hole.

However, as we have shown, even though the observers
detect the quasinormal ringings and take photos of shadow
images, those observables do not necessarily imply that the
event horizon will form by the contracting object. There
always remains the possibility that the formation of the
event horizon is prevented by some unexpected event. We
have given a scenario in which such a situation is realized: a
gravitational contraction of the dust shell suddenly stops
due to its decay into two daughter shells concentric with the
parent shell, and then a gravastar forms. If the decay occurs
at the radius so close to that of the corresponding event
horizon that the decay event is outside of the causal past of

observers, it may be impossible for the observers with finite
lifetime to see the gravastar formation and hence such
observers believe that the shell will form a black hole, even
if there is no event horizon. On the other hand, our analysis
on a simplified formation scenario suggests that the
formation of gravastar with the radius extremely close to
that of the would-be horizon may be possible only with
large violation of the dominant energy condition by the
crust of the gravastar.

VII. SOME REMARKS

Here we should note that the Hawking radiation can also
not be the observable that is evidence of the event horizon
formation. As shown by Paranjape and Padmanabhan,
almost Planckian distribution of particles created through
the semiclassical effect will appear in the contracting shell
model [12]. Hence, the gravastar formation model cannot
be distinguished from the black hole spacetime through
the particle creation due to the semiclassical effects if the
gravastar formation starts at the too late stage of the
gravitational collapse to be observed by the distant observ-
ers with finite lifetimes. This issue will also be discussed by
Harada et al. [15]. It might be interesting that the Planckian
distribution is consistent to the approximate blackbody
behavior of the shell at a very late stage of its gravitational
collapse.

As mentioned, the gravastar formation might start after the
effect of the Hawking radiation causes significant back-
reaction effects on the gravitational collapse of a massive
object. If it is really so, the gravitational collapse of the
massive object with the mass larger than the solar mass will
not cause the gravastar formation within the age of the
Universe. By contrast, the formation of the primordial black
hole with the mass much smaller than the solar mass should
be replaced by the primordial gravastar formation that is,
in principle, observable for us [16,17]. Although it is very
difficult to observe compact objects with very small mass,
they might be very important in order to find the unexpected
events.

Rigorously speaking, it is impossible for us to conclude,
through any observation, that it is a black hole. It is a
profound fact that general relativity has predicted the advent
of domains of which the existence cannot be confirmed
through any observation. By contrast, if it is not a black hole,
we can, in principle, know that it is the case. It is necessary to
keep observing black hole candidates.
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APPENDIX A: REDSHIFT OF NULL RAY DUE
TO MASSIVE SPHERICAL SHELL

Here we consider the redshift of a null ray due to a
spherical massive shell considered in Sec. II. Notation
adopted in this section is the same as that in Sec. II. The null
ray goes along a null geodesic. The components of the null
geodesic tangent [ are written in the form

Pmo (-t afi-Br .05 (an
= EFL(r) P2 EVST )
where w, and b, are constants corresponding to the
angular frequency and the impact parameter, respectively,
and € = £1: € = 41 for the outgoing null, whereas ¢ = —1
for the ingoing one. Without loss of generality, we consider
the only case of the non-negative impact parameter b > 0.
In this section, for simplicity, we focus on the shell with
no electric charge in the spacetime without the cosmologi-
cal constant and the domain D_ is Minkowskian,

and F_=1.

2M

- (42)

We also focus on the case that the spherical massive shell is

contracting R <0.
We obtain the energy equation from the radial compo-
nent of /¢ as

2
a)ii (jé) +Wi(r)=0, (A3)
where y. is the affine parameter and
b2
Wi(r) = F—§Fi(r) -1 (A4)

The null ray can move only in the domain of W_.(r) < 0.
The geometry of D, is Schwarzschildian, and as well
known, the effective potential W (r) has one maximum at
r=3M, (see Fig. 16). If b, is larger than v/27M_, the
maximum of W is positive. The null ray going inward in
the region of r > 3M , bounces off the potential barrier and
then goes away to infinity, whereas one going outward in
the domain of r < 3M_ also bounces off the potential
barrier and then turns to the center. On the other hand,
the maximum of W, (r) is nonpositive in the case of
b, <+/27M.; in this case, the null ray does not bounce off
the potential barrier. The fact we should remember here is
that if the null ray is ingoing, or equivalently, ¢ = —1, in the
region of r < 3M, within D, it does not bounce off but
continues to go inward.

1. Reflected case
(in)

Let us consider the case that an ingoing null ray /;, * from
infinity in D, with @, = w; and b, = b, is reflected at the
shell and then goes away to infinity in D, as an outgoing

(out)

nullray [, withw, = @, and b, = b,. Since the angular

06
0.4} :
b= 2T M,
02} .
U O

FIG. 16. The effective potential of the null ray in the domain
D, whose geometry is Schwarzschildian is depicted for three

cases, b, =2V2TM , b, =+2TM, and b, =$V27M,.
frequency of the reflected null ray is the same as that before
reflection in the rest frame of the shell, we have

IS“) ut =

ll(lout) ut.

(AS)

The parameter € of ingoing null ray should be equal to —1,
whereas it is nontrivial which sign of € is chosen after the
reflection; ¢ after the reflection is denoted by ¢, Then
Eq. (AS) leads to

[F, 2
[ F [ b2
:a)0< 1+V—;+€O 1—FF+>, (A6)

where F, = F(R), and
V:i=—R > 0. (A7)

In the rest frame, the component of [ vertical to the shell
changes its sign at the reflection event

[ pa = (o) pa (A8)
Equation (A8) leads to
F. b?
W; |} - \/(1 +W> < —R—12F+>
F b2
= —w, |1 +€0\/<1 +V—;> (1 —Fﬂ) . (A9)

On the other hand, the component of [ tangential to the
shell does not change; the equation

S G (A10)
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leads to the conservation of the angular momentum,
a)ibi = wobo =:L. (Al])

Since the null ray is assumed to hit the shell, l,(lin)n“ <0
should be satisfied, and hence

R2
+
should hold.
From Eqgs. (A6) and (A9), we have
b2
VIt —\1-2F,
2
=0+ 515 F)
1+F_§+€0 l_b_éF
R i M NN E)
e /(1 +5)(1 -5 F))
We rewrite Eq. (A13) in the form
b2
A/l —R—3F+ = €,AR, (A14)
where
F. F, b12
F. .\ | bi2 F.

It is not so difficult to see that A; > 0 whereas the sign of
Ag depends on b;, R, and V. Since the lhs of Eq. (A14) is
positive, €, should be chosen so that the rhs is also positive,
and hence we have

+1  for b? < b,
€5 = (A17)
-1 for b? > b2,
where
) R’F
: (A18)

cr = (2V2 4 F+)2 ’

The null ray with ¢, = —1 goes inward although it is the
null ray reflected by the shell. Since we consider the case
that the reflection occurs when the radius of the shell is very
close to the gravitational radius 2M ,, the reflected null ray
with €, = —1 continues to move inward in D, ; in other
words, the distant observers recognize the shell as an
absorber of all null rays hitting the shell.

By taking the square of Eq. (A14) and using the relation

2173
A2_A2: biF+
L R 4v4R2’

(A19)

we obtain

_ Za)i

=124,
F,

@, (A20)

Then, by regarding w,, as a function of L, w;, R, and V, we
have

(90)0 Za)i ) aAL 2b1 V2
_ Vi ==
oL F, 0L R?

>0. (A21)

This result implies that @, of the reflected null ray that can
go away is bounded from the value with L = w;b.,. When
b; is equal to b, Ag vanishes, and hence

bs

-2

F,=0 (A22)
holds; the reflected null ray has a vanishing radial compo-

nent of [“. In this case, Eq. (A6) leads to

Cl)iF+

w0|bi:bcr = m (A23)

Hence, the angular frequency of the reflected null ray is
bounded from the above as

a)iF+

< O A24
oSV LF, (A24)

For 0 < F, <1, the reflected null ray with e, = +1
suffers indefinitely large redshift, i.e., v, < w;. Note that,
in the case of V =0, i.e., the static shell, w, = w;. The
redshift of the reflected null ray is caused by the contraction
of the shell.

2. Transmitted case

We study the redshift of a null ray in the case that it is
transmitted through the shell. The null ray is assumed to be
in D, initially, enter D_, and then return to D, . We are
interested in the case that when the null ray returns from D _
to D,, the radius R of the shell is very close to the
gravitational radius 2M _ ; here our attention is concentrated
at the moment of this return. The angular frequency and the
impact parameter of the null ray in D_ are denoted by w_
and b_, respectively, whereas those of the null ray after
returning to D, are denoted by w, and b, respectively.

The inequality /,n* > 0, or equivalently,

1 b2
e (1) (1) =0

should hold just before the null ray hits the shell in D_,
where V has been defined as Eq. (A7). Equation (A25) is
necessarily satisfied if € is equal to unity. On the other hand,

(A25)
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R 2
- b
b= +1 (A26) By —fﬂ =€, By, (A30)
should hold in the case of € = —1. We will study these  here
cases separately. But in both cases, the continuity of /,¢"
leads to 1 F, b2
Bu=\[l+ 5\ 1+3z 1 - =
w_b_=w,b,. (A27)
Since it is nontrivial whether € is equal to +1 after entering F b2
D,, ein D, is denoted by €,. - 1+o5 V2 1 "R L, (A31)
First, we consider the case of ¢ = —1 in D_. In the
transmitted case, all components of [* should be every- F 1
. . . + —_
where continuous; the continuity of /,u“ leads to =1\/1+—=+ \/ 1-—-— \/ 1+ —
Vv Vv
1 b?
o |\[1+35 - \/ 1-= F b2
\/ V2 R2‘ X (1 + *) (1 —ﬁ) +1]. (A32)
+
— /1 +—= \/1 F. |, (A28)
+ V2 Ttes R? +] Since we have
whereas the continuity of [,n? leads to < ) ( )
/1 + T 1=-=
V? V?
1 b2
o[- () (-5
F, b2
- 1+— V2 l-— ] +1
F, %)
F+ 1 +e, 1+W 1- RZFJr (A29)
\/1+F++\/ b sz* (A33)
where F,. = F_(R). As in the reflected case, by dividing %% “®) Tvr” 0
each side of Eq. (A28) by each side of Eq. (A29) and
further by a few manipulations, we have By > 0 holds. We also have
2
2
F. b* 1 F. b*
(‘“JFWJF 1—F> - <1+W> <1+W I- | +1
1 F, b2 b2
1 F b2 b_\F, F b2 b_F,
=—_ 1+ )[1-=5 ] +1 s I+—2)1-=5 ) +1-==
1 F b? b_\/F
= I+ (1-= ) +14+ =5
V2 <+v2 ( R2>+ TR
F b* b_  b_
x (1 V—;> 1_F>+1_f —(1-\/F.)| <0 (A34)
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where, in the last inequality, we have used the fact that
b_/R<1 and /F, <1, and hence By <0 holds.
Through Eq. (A28), this result implies that e, is equal
to —1. This result implies that in the case of e_ = —1, the
null ray keeps going inward even after returning to D, and
is effectively absorbed by the contracting shell.

Next, we consider the case of ¢ = +1 in D_. By the
similar argument to the case of e =—1 in D_, the
continuity of [,u“ leads to

1 b2
1+v2+ 1- =

w_

,/1+ 2+e+\/ +F+ . (A35)
whereas the continuity of /,n“ leads to
1 b2
o |y (1) (1)
W, F. b’
:F—+ I+e. 1+V2 I—FFJr (A36)

By dividing each side of Eq. (A35) by each side of
Eq. (A36) and by a few simple manipulations, we have

b2
CL 1- R2 F+ —€+CR,

(A37)
where
F 1 b2
CL:\/I—l—V—er(\/l—i—W—i- “F)
1 b2
‘\/(”W)(“F)‘l’ (A38)
1 b2 F
1 b2
xl\/<1+v2)(1 R2>+1 (A39)

By the similar prescription to that in the case of By, we can
see Cp > 0. Hence, Cy should be positive so that e is
equal to +1, although the sign of Cy is nontrivial. In order
to know it, we study the following quantity:

2

oon (1) [0 3) 0 5)
()

F. 1 b2 o
V2 (”W)(I_F)“ VR
F. 1+1 | b* 14 b_

V2 v? R? R\F,

(A40)

[ (-]

Cy is positive, if and only if Cy is positive. We can see that
Cr is positive if and only if

AR P

holds. If

(A41)

b_
<1
RVF;

(A42)

is satisfied, Eq. (A41) holds. By contrast, in the case of

b
- 1 A4
RYF. (443)
we rewrite Eq. (A41) in the form
1 b2 b
l+—|1-= ——1 Ad4
(i) () it e

and take the square of its both sides and, as a result, obtain

(V24 1)F, + V7] 2—2; - 2V2\/F—+% —F, <0. (A45)
Then, we have
VAJF =/ (V2 + 1) (V2 +F)F, b_
(VZ41)F, + V2 R
_VAVFL AV DV FF, (A46)

(V2+1)F, +V?

In order that the intersection between Eqs. (A43) and (A46)
is not empty,
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JFD < V2JF; + (V2 +1)(V2+ F,)F,
N (V24 1)F, + V?

(A47)

should hold. We are interested in the case of F, <1 in
which this inequality is satisfied. Hence, in the case of
F, <« 1, Cy is positive if and only if

b_ < b (A48)

holds, where

o RVAVEL+ (V2 DV + FOF,] (Ad9)

e (V2+ 1)F, + V2
holds.
By using
2 , _DIF,
Ci—Cg = ViRE (A50)
we have from Eq. (A37)
w, =w_V?Cy. (A51)

As in the reflected case, by regarding . as a function of L,
w_, R, and V, we have

F.
Do, ac, bvyl+g— 1+
— = W_ = >0
OL OL R2 =
VIiTr
(A52)

Hence, o, of the null ray with e, = +1 that can escape to
infinity is bounded from above by the value of @_ |, _ .
Since Cgl,__j, = 0 holds, we have, from Eq. (A50),

bcr F+
Cil, o = . A53
U, =~ (A53)
Substituting Eq. (A53) into Eq. (A51), we have
b\ F
oy 2y, = 0= (A54)

and hence, in the case of V > 0,

w_F,

o, < w _ =
o < Ol VWVVE+1-V)

This result implies that the transmitted null ray going away
to infinity suffers indefinitely large redshift in the limit of
F, — 0.Note that in the case of V = 0, i.e., the static shell,
the angular frequency . of the transmitted null ray is the
same as that of the incident null ray, in D, . The redshift of
the transmitted null ray is caused by the contraction of
the shell.

[1+O(F,)]. (A55)

APPENDIX B: CONSERVATION OF
THE FOUR-MOMENTUM

We show that the “four-momentum conservation” (44) is
consistent with the Bianchi identity V,7¢* = 0. The stress-
energy tensor of shell / (I = 0, 2, 3) is written in the form

Tt = Sl

where §(x) is Dirac’s delta function, and y; is the
Gaussian normal coordinate: shell / is located at y(;) = 0.

We introduce a coordinate system (z,y, 0, ) for the
neighborhood of the decay event d to which the coordinates
(r,y) = (0,0) are assigned. The coordinate y is the
Gaussian normal coordinate associated with the hypersur-
face Z that agrees with the world hypersurface of shell O in
Dy and D and is a C'~ extension of the world hypersurface
of shell 0 in D,, and hence y agrees with ;) in Dy and D;.

(B1)

The coordinate basis vectors are chosen so that they are C'~

and agree with (u’(‘()), ”?0)* 0, &5“) defined as Egs. (38)—(41)
at the decay event d. We use the same notation for the
coordinate basis as this tetrad basis.

By using the introduced coordinate basis, the stress

energy tensors of the shells are written in the form

ng) = (o(0)ufp, ufo) + PoyH*)8(). (B2)

Iy (T.x)|™!

T = (%)”?1)”?1)+P(1)H“b)5()(—x<1)(f))'# ,
(B3)

Oy (z. )|

T<“2b) = (a(z)u‘(lz)uf’z) —l—P(z)Hab)(s()(—X(z) (T))‘ial ‘ )
(B4)

where y = X(;)(z) with X(;)(0) = O represents the world
hypersurface of shell J (J =1, 2). We have

8)((1)(77)() 0\
AURNDAT - B
o —a(y) e
o) (t.x) 2\«
2R (d — ), B6
)2 = o, ;) (B6)
where, at the decay event d,
(d)((l))a = €(1)4 /F%I) - 114510) -+ F(Ul’l((lo), (B7)
(d)(@))a = €(2)4 /F%Z) - 114((10) -+ F(z)nt(lo), (BS)
and
a a
(&) = "
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Hence, we have

Oy, x)
LTy, (B10)
O (7. x)

0
5/2 —¢/2

+6/2 +e/2 +e/2
dt / d
5/2 —&/2 —&/2 —&/2

+6/2 +e/2 +e/2 +6‘/2
[ ar [ |
-5/2 —&/2 —&/2 —&/2

e/2 —e/2
+e/2

I
>

I
NS

N

€/2 £/2
+5/2 +¢/2
+ / / b /
—5/2 —€/2 —&/2
+6/2 +€/2 +e/2 ib
-l-/ dT/ /
—8/2 —€/2 —8/2
+6/2 +s/2
-I—/ dr/
—6/2 —¢/2 —e/2
/+£/2 /+s/2 /+g/2 . |:
—¢/2 —£/2 —&/2
- ( ooyl'y +ople — U(o))sz + (9(825),

ho

=gl

T‘%u(b )

\/ T¢ ”b |¢ +e/2

()=e @%

where we have used the finiteness of V, u, in the third
equality, 7% |,—+e/2 = 0 due to the situation we consider

(see Fig. 17), and T“béaub|@:+g/2 = T“b@aub|g)=_g/2 and

Shell 1

Shell 0

FIG.17. The domain of integration is schematically depicted by
a dashed square.

+6/2 +e/2 +e/2 +e/2 .
dr dy / do /=g ul’'V,Tab

Tabu( ) +Tab (0 ))

We integrate the Bianchi identity V,T% = 0 over the
small neighborhood of the decay event d shown in Fig. 17:
the domain of integration is chosen so that the shells do not
intersect the boundaries y = +¢/2. Only shell 0 intersects
the boundary 7 = —&/2, whereas only shell 1 and shell 2
intersect the boundary 7 = +46/2. Then, we have

dp /=5 [Va(Tuy”) = TV ;"
dp(\/=gTuy) + O(2)

+s/2d /+e~/2 & /:2/2 d(;g[\/_g(be)M§,> +sz) ())|T:+5/2 _ \/_—ngg)u}(]o)L:_&/z]

| =+te/2 \/_—ngb”éO) |F—g/2)

= V=T o)

(0
,/—gT‘/’bué ) he—es2) T O(&%5)
0 V7Y ap  (0) (0
51) ) T(é’)u,(, >u§7 )| + O(€26)
=+5/2 Uz 7==5/2

(B12)

T u,| beter = T ,u,| j—_esp due to the spherical
symmetry in the fourth equality, and ug(” le—ts2 =
ul|._o[1 + O(8)] and Eqs. (B2)~(B4) in the final equality.
Hence, in the limit of § — 0, by multiplying Eq. (B12) by
4zr3, we obtain Eq. (46).

By similar manipulations to those in Eq. (B12), we have

+6/2 +e/2 A
— / dr / dydddd /=g n\"'V T

-5/2 /2
+£

_/ d d&dqb[" (T ny” + T 0y )ul
—e/2

27
_ V_gTab (0) (0)|

Oy, Ua
u‘(r()) © T==5/2

- u( oy /T = 1+ eyo

O(&%s).

1=+6/2

| +os)

Ty =1)¢

(B13)

Hence, in the limit of § — 0, by multiplying Eq. (B12) by
4zr3, we obtain Eq. (47).
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