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In this study, we numerically investigate the internal structure of localized quantum turbulence in superfluid
4He at zero temperature with the expectation of self-similarity in the real space. In our previous study, we
collected the statistics of vortex rings emitted from a localized vortex tangle. As a result, the power law between
the minimum size of detectable vortex rings and the emission frequency is obtained, which suggests that the
vortex tangle has self-similarity in the real space [Nakagawa et al., Phys. Rev. B 101, 184515 (2020)]. In this
work, we study the fractal dimension and vortex length distribution of localized vortex tangles, which can show
their self-similar structure. We generate statistically steady and localized vortex tangles by injecting vortex rings
with a fixed size. We used two types of injection methods that produce anisotropic or isotropic tangles. The
injected vortex rings develop into a localized vortex tangle consisting of vortex rings of various sizes through
reconnections (fusions and splitting of vortices). The fractal dimension is an increasing function of the vortex
line density and becomes saturated to a value of approximately 1.8, as the density increases sufficiently. The
behavior of the fractal dimension was independent of the anisotropy of the vortex tangles. The vortex length
distribution indicates the number of vortex rings of each size that are distributed in a tangle. The distribution
of the anisotropic vortex tangle shows the power law in the range above the injected vortex size, although the
distribution of the isotropic vortex does not.

DOI: 10.1103/PhysRevB.104.094510

I. INTRODUCTION

Turbulence is one of the most important problems in
physics, and many researchers have studied it for many years
[1,2]. It is a typical phenomenon that is nonequilibrium and
nonlinear, which prevents us from understanding it well.
Quantum turbulence is often considered as a clue to resolve
the nonequilibrium and nonlinear phenomena of turbulence.
In classical turbulence or conventional fluid turbulence, it is
difficult to identify vortices, which are important elements of
turbulence, because they are unstable and not well defined.
However, in quantum turbulence, namely, turbulence in quan-
tum condensed fluids, vortices are well-defined topological
defects and have quantized circulation. Therefore, studies
on quantum turbulence provide a shortcut to understanding
turbulence [3–6].

Superfluid 4He is a typical quantum fluid. Liquid 4He tran-
sitions to the superfluid phase below the temperature Tλ =
2.17 K. The physics of superfluid 4He is described by the
two-fluid model: The system consists of a superfluid com-
ponent and a normal fluid component [7,8]. The superfluid
component has no viscosity and entropy, whereas the normal
fluid component has both. The ratio of the densities depended
on the temperature. When the temperature was below 1 K, the
normal fluid component almost disappeared. In the superfluid
component, the circulation is quantized to κ = h/m, where h
and m are the Planck constant and the mass of a 4He atom,

respectively [9]. A typical quantum turbulence consists of a
tangle of quantized vortices.

In turbulence, the velocity field is disturbed both spatially
and temporally. Therefore, researchers have tried to describe
turbulence not by the velocity field but by universal and repro-
ducible statistical laws. In classical turbulence, Kolmogorov’s
law is well known as the universal law showing self-similarity
in the wave-number space. This law implies that the energy
spectrum of isotropic and homogeneous turbulence is propor-
tional to the wave number to the power of −5/3, and its energy
is transferred from low wave numbers to high wave numbers.
Kolmogorov’s law has also been studied and confirmed in
quantum turbulence [10–15]. However, the self-similarity in
the real space is not well understood because the vortices
are not well defined in classical turbulence, although several
self-similar models have been studied. In quantum turbulence,
all vortices are well defined, which enables us to consider the
self-similarity in the real space clearly.

The quantum turbulence of superfluid 4He has been studied
for more than half a century. Most efforts of researches have
been devoted to thermal counter flow [3,4]. However, in recent
years, localized turbulence, such as that generated by oscil-
lating objects, has received considerable attention [16–27]. A
typical example of an oscillating object is a vibrating wire.
Yano et al. conducted wire experiments and found some
statistical laws for localized vortex tangles [18,23,27]. They
generated the vortex tangle by the vibrating wires and detected
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vortex rings emitted from the tangle. They could manage
the minimum size of detectable vortex rings by varying the
temperature and obtain the statistics on the size of vortex
rings emitted from the tangle. They found a power law be-
tween the minimum size of detectable vortex rings and their
detection frequencies. It may show self-similarity in the real
space because the emitted vortex rings provide information
of the structure of the tangle where they belong. Yano et al.
discussed that the power law is related to a fractal dimension
of the vortex tangle [27].

Our goal is to understand self-similarity in the real space of
localized vortex tangles. In our previous study [28], we inves-
tigated vortex rings emitted from vortex tangles and obtained
results qualitatively similar to the experiments in Ref. [27],
such as the self-similarity of the vortex emission.

In this study, we have developed the previous study and
investigated the internal structure of vortex tangles with
the expectation of self-similarity. To accomplish this goal,
we have studied the fractal dimension [29,30] and the
vortex length distribution [31,32], which may reveal the self-
similarity of vortex tangles directly: The fractal dimension
is a noninteger dimension that characterizes a self-similar
structure. This dimension was calculated by Kivotides et al.
for vortex tangles in periodic boundary conditions [30]. The
vortex length distribution is a probability density function of
the vortex rings in a vortex tangle depending on their size. The
distribution is expected to have the information of the internal
structure of the tangle from which vortex rings are emitted. In
Secs. III and IV, we describe them in detail.

We also investigated the universality independent of the
anisotropy of the tangles. We made the tangles using two
methods numerically. One is the same method as in our pre-
vious study, which makes anisotropic localized vortex tangles
[28]. The other is to create isotropic localized vortex tangles.
The two methods enable us to investigate the universality
independent of the anisotropy of the tangle.

This paper comprises five sections. In Sec. II, we in-
troduce the vortex filament model and the system that we
consider. Section III presents the results of calculating the
fractal dimensions. In Sec. IV, we discuss the vortex length
distribution. Finally, the conclusions are presented in Sec. V.

II. THE MODEL AND SYSTEM

A. Vortex filament model

The circulation of vortices in superfluid 4He is quantized,
and the cores have very thin structures of the order of 1 Å.
For these reasons, the thin structures of the vortex cores can
be neglected, and a vortex filament model is available [33].
In this study, we performed a simulation of the dynamics of
the vortex filament model at T = 0 K. The superfluid velocity
field obtained by the filaments obeys the Biot-Savart law. The
equation of motion of the vortex filaments is:

ds
dt

= κ

4π

∫
L

s′(ξ, t ) × [r − s(ξ, t )]

| r − s(ξ, t ) |3 dξ, (1)

where s(ξ, t ) is the position of the filaments represented by
the parameter ξ , and s′ is ∂s/∂ξ . The integration is performed
over all vortex filaments L.

To calculate this equation numerically, we discretized the
vortex filaments into points and the separation �ξ is set to be
within the range of �ξmin = 0.5 μm and �ξmax = 1.2 μm.
The time resolution is �t = 5 × 10−6 s and the temporal in-
tegration of Eq. (1) is solved by the fourth-order Runge-Kutta
method. As this model cannot describe the reconnection of
vortices, we make them reconnect algorithmically when their
distance becomes less than �ξmin. We deleted small vortex
rings with sizes smaller than 5�ξmin.

B. The systems

We generate localized vortex tangles by two different
methods, “parallel injection” and “spherical injection.” The
advantage of these methods is that they can locally generate
a steady vortex tangle. The steady state of the vortex tan-
gle indicates the equilibrium between the excitation and the
dissipation in a finite volume because we are interested in a lo-
calized vortex tangle. The method of determining the volume
occupied by the tangle depends on the injection methods and
will be introduced later. The excitation originates from vortex
injections. There are two types of dissipation: The vortex ring
escaping from the finite volume and the deletion of the small
vortex rings. The ratios of these two types of dissipation were
roughly the same.

1. Parallel injection

The parallel injection method was used in our previous
study [28]. In this model, two parallel square vortex sources
are prepared, and vortex rings are injected from a random
position of the two sources simultaneously with a certain
frequency f to collide them and generate a localized tangle.
The parameters of this model are the injection frequency f and
diameter 2R0 of the injected rings. The vortex tangles made
by this method are anisotropic, as shown in Figs. 1(a) and
1(b). In this system, the vortex line length in a finite volume
covering the tangle becomes statically steady after a certain
time, as shown in Fig. 2(a). The finite volume we applied is
a cylindrical volume with a height of 160 μm and a radius of
250 μm. As we are interested only in the localized tangle, we
deleted the vortex rings that escape far from the tangle.

2. Spherical injection

In the spherical injection method, we inject vortex rings
from the virtual spherical source of radius 180 μm. An ex-
ample of the tangle is shown in Figs. 1(c) and 1(d). The
parameters are similar to those of the former method. With a
fixed frequency f , two vortex rings with size 2R0 are injected
from random positions on the source. The tangles in a finite
volume become statistically steady after a certain time, as
shown in Fig. 2(b). In this method, the applied finite volume is
a spherical volume with a radius of 180 μm. We also deleted
vortex rings that are far from the tangle.

The vortex line density distributions of the tangles are
shown in Fig. 3. The tangle generated by parallel injection
spreads out in the y and z directions and is relatively flat along
the x axis. However, that by spherical injection is isotropic.
The purpose of using the two methods is to determine the
universality independent of the anisotropy.
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FIG. 1. The vortex tangles generated by the vortex injection at
time 0.2 s. Panels (a) and (b) are the vortex tangle generated by
parallel injection in the condition 2R0 = 60 μm and f = 1000 Hz.
Moreover, (c) and (d) are the tangle generated by spherical injection
in the condition 2R0 = 60 μm and f = 1000 Hz.

FIG. 2. Time development of the vortex line length. Panel (a) is
the tangle generated by parallel injection and (b) is generated by
“spherical injection.” The length is calculated in the finite volume. In
the case of “parallel injection,” the volume is the cylindrical volume
with height 160 μm and radius 250 μm. The volume in spherical
injection is the spherical volume with radius 180 μm. Both volumes
cover the vortex tangles

FIG. 3. Time-averaged vortex line density distribution of the
vortex tangles. Panels (a) and (b) are the distribution of “parallel
injection,” while (c) and (d) are the distribution of “spherical injec-
tion.” The vortex line density is calculated in 280 μm × �y × �z
in (a) and (c). Panels (b) and (d) are the vortex line density in
�x × �y × 280 μm. Here, �x = �y = �z = 280/64 μm.

III. FRACTAL DIMENSION

A fractal dimension is a noninteger dimension that rep-
resents how the fine structure of a pattern changes with the
measured scale defined by

N ∝ kD f , (2)

where k is a length scale and N is the number of structures
with scale k. We obtain the fractal dimension of our vor-
tex tangles using the box-counting method [29,30]. In this
method, we divide a virtual box with the size of the system
into a scale of length δ and count the number N (δ) of the boxes
covering the tangle. Therefore, the fractal structure should
show the following relation:

D f = − ln (N (δ)/Nmin)

ln (δ/δmin)
, (3)

where δmin is the minimum scale of length of the fitting range,
and Nmin is N (δmin). By plotting δ and N (δ) in a log-log
scale and calculating its slope, we can determine the fractal
dimension of the pattern. In this calculation, the maximum
size of the box is set to 800 μm per side.

Regarding the fractal dimension of quantum turbulence,
there is a previous study [30]. Kivotides et al. prescribed a
normal fluid turbulent flow and generated vortex tangles nu-
merically through mutual friction under periodic conditions.
Then, they obtained the fractal dimension of the vortex tangles
with a vortex line density of 0.05 − 0.20 × 105 cm−2 by the
box-counting method and discovered that the dimension D f is
an increasing function of the vortex line density L defined by

L = 1

V

∫
L′

dξ . (4)
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FIG. 4. The plotting of δ and N (δ) applying the box-counting
method to the tangle by “parallel method” in the condition 2R0 =
60 μm and f = 1000 Hz (δmin = 2.22 × 10−3 cm and Nmin = 2526).
The green line shows the slope in the small scale (from the inter
vortex distance to the space resolution). The red line shows the slope
in the middle scale (up to the intervortex distance).

Here, the integration is performed over the path that corre-
sponds to the filaments L′ within a volume V . In the study,
they set the system size to be V . Their values of D f were
roughly 1.4–1.7.

In this study, we calculate the fractal dimension of local-
ized vortex tangles using the box-counting method. Figure 4
shows the typical result in a statistical steady state of “parallel
injection.” In small scales, it shows D f ≈ 1, which refers to
the dimension of each vortex filament as a one-dimensional
object. When the scale exceeds a certain critical value, D f

changes to another value larger than unity, which is the fractal
dimension of the tangle. This behavior is confirmed for all
vortex tangles produced under different conditions. We define
the value at the large scale the fractal dimension D f of the
vortex tangle.

The transition from a small scale to a large scale is deter-
mined by the mean intervortex distance. The distance is the
square root of the inverse of the vortex line density calculated
by Eq. (4). In this study, we set the volume V in Eq. (4) to
be the finite volume depending on each injection method, as
mentioned in Sec. II(B).

Figure 5 shows the time development of D f for ‘parallel
injection. In earlier times, they fluctuate because the systems
have a small number of vortices that it is difficult to calculate
the fractal dimension of vortex tangles properly.

However, at a later time, D f becomes stationary and
asymptotically approaches a certain value in each condition,
which indicates that the tangles become statistically steady.
Figure 6 shows the time-averaged D f after 0.2 s as a function
of vortex line density. In the low-density range, D f increases
with vortex line density. This behavior is consistent with the
results of Kivotides et al. [30]. In the higher density range,
the fractal dimensions converge to D f ∼ 1.8, regardless of
the injection method. Although the tangles have completely
different shapes depending on their injection method, the
tangles have similar fractal dimensions. This is nontrivial.

FIG. 5. The time development of the fractal dimension of the
vortex tangles generated by parallel injection in the conditions 2R0 =
60 μm and some injection frequencies f .

The developed vortex tangles construct intermittent structures
on their own owing to the interaction between vortices, and
the tangles show similar fractal dimensions D f ∼ 1.8. The
values of the fractal dimension roughly agree with the results
of Kivotides et al. [30]. However, it is difficult to make
a quantitative comparison because the systems are differ-
ent. The three main differences are summarized in Table I.
First, the crucial difference is temperature. Kivotides et al.
studied the vortex dynamics at finite temperatures, where the
mutual friction affected the motion of the vortices [30]. Sec-
ond, they prescribed turbulent normal flow [34] and excited
the vortices through the mutual friction; we generated vortex
tangles by injecting vortices. Third, the boundary condition of
Ref. [30] was periodic, but in this study it is not applied.

FIG. 6. The relation between the vortex line density and the
fractal dimension. The dimension becomes saturated as the vortex
line density increases.
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TABLE I. Comparison of the systems of this study and the pre-
vious study [30].

This study Kivotides et al. [30]

Temperature 0 K 1.3 K, 1.9 K
Normal fluid velocity Not relevant Turbulent flow [34]
Boundary condition N/A Periodic

IV. VORTEX LENGTH DISTRIBUTION

In this calculation, all vortices are closed loops because
the system is free from solid boundaries. The vortex length
distribution is the probability density function of the existence
of vortex rings in the tangle depending on their sizes. The dis-
tribution has been studied previously [31,32], especially with
the expectation that it shows a self-similar structure. Fujiyama
and Tsubota found that the distribution obeys a self-similar
distribution and corresponds to the fluctuation of the vortex
line density [32]. In this study, we collect data on the lengths
of rings and investigated the distribution and dependence on
the anisotropy of the tangles.

The time developments of the distribution for parallel in-
jection and spherical injection are shown in Figs. 7(a) and
7(b). The lengths are normalized by 2πR0. In earlier times,
the distribution concentrates in unity, referring to the initial

injection vortices. The distributions develop into both smaller
and larger than the injected length, which shows that the in-
jected vortices split into smaller ones and merge among them
to become larger ones. After a long time, it converges to a
statistically steady distribution.

It seems that the distributions are saturated just before their
vortex line lengths reach a roughly constant value. This indi-
cates the following picture about the development of vortex
tangles. Initially, the tangle has vortex rings at a unique abun-
dance ratio with respect to their sizes before the vortex line
length is saturated. Consequently, the tangle develops while
maintaining the abundance ratio of the vortex rings. Finally,
both the ratio and the vortex line lengths of the tangle are
saturated.

Figures 7(c) and 7(d) show the saturated vortex length
distributions in some different parameters for parallel
injection and spherical injection, respectively. Surpris-
ingly, for each generating method, their behaviors are
common, although the injection sizes, the injection fre-
quencies, and the vortex line densities are substantially
different.

The tangles by parallel injection show the power law in
the range above the injection size. These slopes are −1.67 ∼
−1.98. However, in the range below the injection size, any
power law disappears. Too small vortex rings can be ignored
because they are closer to the spatial resolution.

FIG. 7. The vortex length distribution. (a) and (c) “Parallel injection;” (b) and (d) “spherical injection;” (a) and (b) are the time development
of the vortex number distribution averaged in the time interval in these legends. Panels (c) and (d) are the averaged vortex number distributions
after 0.2 s under different conditions.
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The tangles by spherical injection do not clearly show any
power law. The distributions in the range above the injection
sizes are similar to an exponential distribution. These values
in the range below the injection sizes also do not show the
power law.

V. CONCLUSION

We numerically investigate the fractal dimension and the
vortex length distribution of the localized tangles as a con-
sequence of our previous study [28]. The fractal dimension
increases with the vortex line density in the case of low-
density tangles, whereas the dimension of the high-density
tangle is saturated. The vortex length distribution of the tan-
gles by parallel injection shows the power law though the
distribution of the tangle by spherical injection does not.

The aim of this series of studies is to associate the internal
structure of the localized vortex tangle with the self-similarity
of the vortex emission [27,28]. We considered that the vor-
tex length distribution enabled us to discuss it quantitatively.
However, the self-similarity of the vortex emission is observed

in the range of approximately 3 to 60 μm in our previous study
[28], and the self-similarity of the vortex length distribution
is not observed in this range. The statistics of the internal
structure do not necessarily correspond to that of the emitted
vortex rings.

Although this simulation is performed at T = 0 K, we will
comment on the effects of finite temperatures. Kivotides et al.
calculated the fractal dimension of vortex tangles at 1.3 and
1.9 K and found that it did not depend on the temperature
[30]. When the mutual friction works at finite temperatures,
the fine structure of a vortex tangle is smoothed out. A fine
structure smaller than the intervortex distance does not affect
the fractal dimension of the vortex tangles. Therefore, the
fractal dimension should depend less on the temperature when
it is given by a function of the vortex line density.
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