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Summary

In this paper we present a unified simple approach to anisotropic Hardy inequal-
ities in various settings. We consider Hardy inequalities which involve a Finsler
distance from a point or from the boundary of a domain. The sharpness and the
non-attainability of the constants in the inequalities are also proved.
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1 INTRODUCTION

The interest in the so-called anisotropic problems arose from G. Wulff’s work on crystal shapes and minimization of anisotropic
surface tensions in 1901 and it is becoming increasingly important in different contexts, as in the field of phase changes and
phase of separation in multiphase materials (cf. [7], [12]). This justifies the necessity to extend to anisotropic case many of the
classical tools, which are useful in classical variational problems. In this paper we are interested in sharp anisotropic Hardy-
type inequalities. The basic idea is to endow the space ℝ𝑁 with the distance obtained by a Finsler metric and to extend several
Hardy-type inequalities in such a new geometrical context.

The classical Hardy inequality asserts that for any 𝑝 ≥ 1, 𝑝 ≠ 𝑁 , if Ω is a domain of ℝ𝑁 (𝑁 ≥ 2) containing the origin, then||||𝑁 − 𝑝
𝑝

||||𝑝 ∫
Ω

|𝑢|𝑝|𝑥|𝑝 𝑑𝑥 ≤ ∫
Ω

|∇𝑢|𝑝 𝑑𝑥 (1.1)

holds for 𝑢 ∈ 𝐶∞
0 (Ω) if 1 ≤ 𝑝 < 𝑁 and for 𝑢 ∈ 𝐶∞

0 (Ω ⧵ {0}) if 𝑝 > 𝑁 . Here the constant |||𝑁−𝑝
𝑝

|||𝑝 is sharp and never attained
when 𝑝 > 1. The critical Hardy inequality corresponding to the case 𝑝 = 𝑁 has also been studied (cf. [10], [11], [23], [34],
[37]); in this case, for example, if Ω is a ball having center at the origin and radius 𝑅, then |𝑥|𝑁 appearing in (1.1) is replaced
by the Hardy potential of the type |𝑥|𝑁 (log 𝑅|𝑥| )𝑁 .

Several variants of the Hardy inequalities (1.1) have been known. Among these we recall the geometric type Hardy inequality
which asserts that, if 1 < 𝑝 < ∞ and Ω is a convex, possibly unbounded domain in ℝ𝑁 , then(

𝑝 − 1
𝑝

)𝑝

∫
Ω

|𝑢|𝑝
(𝑑(𝑥))𝑝

𝑑𝑥 ≤ ∫
Ω

|∇𝑢|𝑝𝑑𝑥 , 𝑢 ∈ 𝐶∞
0 (Ω) (1.2)

where 𝑑(𝑥) = dist(𝑥, 𝜕Ω) denotes the usual distance function from the boundary of Ω and the constant
(

𝑝−1
𝑝

)𝑝
is sharp. An

improved version of (1.2) has been proved in [10] where the best constant is given for a larger class of domains which verify
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the geometric assumption that 𝑑 is 𝑝-superharmonic in Ω, i.e.,

−Δ𝑝𝑑 ≥ 0 (1.3)

in the distribution sense. Here Δ𝑝 is the 𝑝-Laplace operator Δ𝑝𝑢 = div(|∇𝑢|𝑝−2∇𝑢).
Anisotropic Hardy inequalities are also known. For example (1.1) and (1.2) have been extended to the case where the Euclidean

norm is replaced by a Finsler norm in [40], [19] when 𝑝 = 2, and [8], [9], [15] when 𝑝 ≠ 2, respectively. The method in [15]
and [8] is to use Picone type identities in Finsler setting.

In this paper further anisotropic sharp Hardy inequalities will be proved. We consider a Finsler norm 𝐻 and its polar function
𝐻0, whose definitions are given in §2. Our first main result gives the following sharp anisotropic subcritical Hardy inequality
which is a consequence of Theorem 3.1 in §3 and Theorem 6.4 in §6.

Theorem 1.1. (Sharp anisotropic subcritical Hardy inequality) Assume 1 ≤ 𝑝 < 𝑁 or 𝑝 > 𝑁 . Let Ω be a domain in ℝ𝑁 . Then
the following inequality ||||𝑁 − 𝑝

𝑝
||||𝑝 ∫

Ω

|𝑢|𝑝(
𝐻0(𝑥)

)𝑝 𝑑𝑥 ≤ ∫
Ω

|||| 𝑥
𝐻0(𝑥)

⋅ ∇𝑢
||||𝑝 𝑑𝑥 (1.4)

holds true for any 𝑢 ∈ 𝐶∞
0 (Ω) if 1 ≤ 𝑝 < 𝑁 , and for any 𝑢 ∈ 𝐶∞

0 (Ω ⧵ {0} if 𝑝 > 𝑁 . Moreover if 0 ∈ Ω, the constant
(

𝑁−𝑝
𝑝

)𝑝
is

sharp and not attained if 1 < 𝑝 < 𝑁 and the constant 𝑁 − 1 is attained for any nonnegative 𝐻0-radially decreasing, compactly
supported function when 𝑝 = 1.

For the notion of 𝐻0-radially decreasing function, see §6.
The critical case 𝑝 = 𝑁 is also studied and the following result is a consequence of Theorem 3.4 and Theorem 6.5.

Theorem 1.2. (Sharp anisotropic critical Hardy inequality) Let Ω ⊂ ℝ𝑁 , 𝑁 ≥ 2, be a bounded domain containing the origin
and put 𝑅 = sup𝑥∈Ω 𝐻0(𝑥). Then the inequality(𝑁 − 1

𝑁

)𝑁

∫
Ω

|𝑢|𝑁
(𝐻0(𝑥))𝑁 (log 𝑅

𝐻0(𝑥)
)𝑁

𝑑𝑥 ≤ ∫
Ω

|||| 𝑥
𝐻0(𝑥)

⋅ ∇𝑢
||||𝑁 𝑑𝑥 (1.5)

holds for any 𝑢 ∈ 𝐶∞
0 (Ω). Moreover the constant

(
𝑁−1
𝑁

)𝑁
is sharp and not attained.

In §4 an anisotropic Hardy inequality of geometric type is proved, while the attainability of the best constant is also studied
in §6.

Theorem 1.3. (Anisotropic Hardy inequality of geometric type) Let 1 < 𝑝 < ∞ and suppose 𝛿 = 𝛿(𝑥) is a nonnegative,
Δ𝐻,𝑝-superharmonic function on Ω, i.e.,

−Δ𝐻,𝑝𝛿 ≥ 0 (1.6)
in the distributional sense, where

Δ𝐻,𝑝𝛿(𝑥) = div
(
𝐻𝑝−1(∇𝛿(𝑥))(∇𝐻)(∇𝛿(𝑥))

)
denotes the Finsler 𝑝-Laplacian of 𝛿. Then the inequality(

𝑝 − 1
𝑝

)𝑝

∫
Ω

|𝑢|𝑝
𝛿𝑝

𝐻𝑝(∇𝛿)𝑑𝑥 ≤ ∫
Ω

|∇𝑢 ⋅ (∇𝐻)(∇𝛿)|𝑝𝑑𝑥 (1.7)

holds true for any 𝑢 ∈ 𝐶∞
0 (Ω).

Condition (1.6) will be discussed in §4. Here we just remark that (1.6) coincides with (1.3) when we choose the Euclidean
norm as the Finsler norm and 𝑑 as 𝛿 in (1.6).

In Section §5 a weighted Finsler-Hardy-Poincaré inequality have been proved with respect to a weight 𝜌 which satisfies
suitable assumptions.

Our Hardy inequalities will be proved by using a simple unified approach valid for any choice of Hardy potential. A related
approach has been adopted in [10], [11].

Finally we fix our attention on two anisotropic Hardy inequalities (1.4) and (1.5) which are quite different from each other in
view of their forms, scaling structures and optimal constants. However, according to [35], we can reveal an unexpected relation
between the critical and the subcritical anisotropic Hardy inequalities and show that the critical anisotropic Hardy inequality on
a ball is embedded into a family of the subcritical anisotropic Hardy inequalities on the whole space by using a transformation
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which connects both inequalities. In §8 we show that the transformation conserves not only the best constants but also the scale
invariance structures of both inequalities, at least in the 𝐻0-radial setting.

Note added to Proof.
After completing this work, the authors of this paper are informed by Professor M. Ruzhansky of his recent seminal works on

the Hardy, Rellich, and other functional inequalities on homogeneous groups with arbitrary quasi-norms [28], [29], [30], [31],
[32], [33]. In [30], for example, the following 𝐿𝑝-Hardy inequality‖‖‖‖ 𝑓|𝑥|‖‖‖‖𝐿𝑝(𝔾)

≤ 𝑝
𝑄 − 𝑝

‖𝑓‖𝐿𝑝(𝔾), 1 < 𝑝 < 𝑄

is proved on a homogeneous group 𝔾 with the homogeneous dimension 𝑄 and a homogeneous quasi-norm | ⋅|. Here the operator = |⋅| = 𝑑
𝑑|𝑥| is called a radial operator. Other problems such as the optimality of constants and the existence of remainder

terms are also studied in the above and subsequent papers. If 𝔾 is chosen as an abelian group (ℝ𝑁 ,+) and | ⋅ | as 𝐻0(⋅), our
Hardy inequality (1.4) is nothing but the above inequality since 𝑓 = 𝑥

𝐻0(𝑥)
⋅ ∇𝑓 in this situation. Their proof is based on the

polar coordinate decomposition

∫
𝔾

𝑓 (𝑥)𝑑𝑥 =

∞

∫
0

∫
𝑓 (𝑟𝜔)𝑟𝑄−1𝑑𝜎(𝜔)𝑑𝑟

for 𝑓 ∈ 𝐿1(𝔾) where  = {𝑥 ∈ 𝔾 ∶ |𝑥| = 1}, and is different from ours in this paper, which depends basically on the use
of divergence theorem. In this sense, many results in the present paper can be seen as special cases of the results above with
different proofs. We stick to the Finsler setting since we want to apply our inequalities to the nonlinear problems involving the
Finsler Laplacian. Also we believe that our method of proof will be useful in such possible applications, see the last part of §3.

2 NOTATION AND BASIC PROPERTIES

Let 𝐻 ∶ ℝ𝑁 → ℝ be a nonnegative, convex function of class 𝐶2(ℝ𝑁 ⧵ {0}), which is even and positively homogeneous of
degree 1:

𝐻(𝑡𝜉) = |𝑡|𝐻(𝜉), ∀𝜉 ∈ ℝ𝑁 , ∀𝑡 ∈ ℝ. (2.1)
The above assumptions give the existence of positive constants 𝛼 and 𝛽 such that

𝛼|𝜉| ≤ 𝐻(𝜉) ≤ 𝛽|𝜉|, 𝜉 ∈ ℝ𝑁 .

Let 𝐾 denote the convex closed set
𝐾 = {𝜉 ∈ ℝ𝑁 ∶ 𝐻(𝜉) ≤ 1}.

Sometimes we will say that 𝐻 is the gauge of 𝐾 . The polar function of 𝐻 is the function 𝐻0 ∶ ℝ𝑁 → ℝ defined by

𝐻0(𝑥) = sup
𝜉∈ℝ𝑁⧵{0}

𝜉 ⋅ 𝑥
𝐻(𝜉)

= sup
𝜉∈𝐾

(𝜉 ⋅ 𝑥) , 𝑥 ∈ ℝ𝑁 .

Throughout this paper 𝜉 ⋅ 𝑥 =
∑𝑁

𝑗=1 𝜉𝑗𝑥𝑗 denotes the usual inner product of ℝ𝑁 .
Note that, by definition of 𝐻0, the Schwarz inequality holds true, i.e.,|𝜉 ⋅ 𝑥| ≤ 𝐻(𝜉)𝐻0(𝑥), ∀𝜉, 𝑥 ∈ ℝ𝑁 . (2.2)

It is well-known that 𝐻0 is a convex, positively homogeneous of degree 1, continuous function on ℝ𝑁 , and the following
inequality is satisfied

1
𝛽
|𝑥| ≤ 𝐻0(𝑥) ≤ 1

𝛼
|𝑥|, ∀𝑥 ∈ ℝ𝑁 .

Also the following equality
𝐻(𝜉) = (𝐻0)0(𝜉) = sup

𝑥∈ℝ𝑁⧵{0}

𝑥 ⋅ 𝜉
𝐻0(𝑥)

, 𝜉 ∈ ℝ𝑁 ,

holds and 𝐻0 itself is the gauge of the closed convex set

𝐾0 = {𝑥 ∈ ℝ𝑁 ∶ 𝐻0(𝑥) ≤ 1}.
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We say that 𝐾 and 𝐾0 are polar to each other. The interior set of 𝐾0, i.e.,

 = {𝑥 ∈ ℝ𝑁 ∶ 𝐻0(𝑥) < 1}

is called the Wulff ball, or 𝐻0-unit ball, and we denote 𝜅𝑁 = 𝑁 (). In this case, the anisotropic 𝐻-perimeter of  , denoted
by 𝑃𝐻 ( ;ℝ𝑁 ), is 𝑃𝐻 ( ,ℝ𝑁 ) = 𝑁𝜅𝑁 . For more explanation about the anisotropic perimeter, see [5] and [13]. Throughout
the paper, we denote

𝜔𝑁−1 = 𝑃𝐻 ( ;ℝ𝑁 ) = 𝑁𝜅𝑁 .
Denote 𝑅 = {𝑥 ∈ ℝ𝑁 |𝐻0(𝑥) < 𝑅}
for any 𝑅 > 0 and we identify ∞ with ℝ𝑁 . A function 𝐻 ∈ 𝐶2 (ℝ𝑁 ⧵ {0}

)
is a Finsler norm if it satisfies properties (2.1),

and moreover 𝐻 is strongly convex in the sense that the Hesse matrix of 𝐻2, Hess(𝐻2) is positive definite. For references about
Finsler norms (or, more in general, for Finsler metrics) see [7], [12].

Here we just recall further properties, whose proofs are contained in [12] Lemma 2.1, 2.2, or [40] Proposition 6.2.

Proposition 2.1. Let 𝐻 be a Finsler norm on ℝ𝑁 . Then the following properties hold true:

(1) ∇𝜉𝐻(𝜉) ⋅ 𝜉 = 𝐻(𝜉), 𝜉 ≠ 0.

(2)
(
∇𝜉𝐻

)
(𝑡𝜉) = 𝑡|𝑡| (∇𝜉𝐻

)
(𝜉), 𝜉 ≠ 0, 𝑡 ≠ 0.

(3)
(
∇2

𝜉𝐻
)
(𝑡𝜉) = 1|𝑡| (∇𝜉𝐻

)
(𝜉), 𝜉 ≠ 0, 𝑡 ≠ 0.

(4) 𝐻
(
∇𝐻0(𝑥)

)
= 1.

(5) 𝐻0(𝑥)
(
∇𝜉𝐻

) (
∇𝑥𝐻0(𝑥)

)
= 𝑥.

Similarly, following properties also hold true:

(1’) ∇𝑥𝐻0(𝑥) ⋅ 𝑥 = 𝐻0(𝑥), 𝑥 ≠ 0.

(2’)
(
∇𝑥𝐻0) (𝑡𝑥) = 𝑡|𝑡| (∇𝑥𝐻0) (𝑥), 𝑥 ≠ 0, 𝑡 ≠ 0.

(3’)
(
∇2

𝑥𝐻
0) (𝑡𝑥) = 1|𝑡| (∇𝑥𝐻0) (𝑥), 𝑥 ≠ 0, 𝑡 ≠ 0.

(4’) 𝐻0 (∇𝜉𝐻(𝜉)
)
= 1.

(5’) 𝐻(𝜉)
(
∇𝑥𝐻0) (∇𝜉𝐻(𝜉)

)
= 𝜉.

Finally, given a smooth function 𝑢 on ℝ𝑁 , the Finsler Laplace operator of 𝑢 (associated with 𝐻) is defined by

Δ𝐻𝑢(𝑥) = div
(
𝐻(∇𝑢(𝑥))

(
∇𝜉𝐻

)
(∇𝑢(𝑥))

)
=

𝑁∑
𝑗=1

𝜕
𝜕𝑥𝑗

(
𝐻(𝜉)𝐻𝜉𝑗 (𝜉)

|||𝜉=∇𝑢(𝑥))
and, more generally, for any 1 < 𝑝 < ∞, the Finsler 𝑝-Laplace operator Δ𝐻,𝑝 by

Δ𝐻,𝑝𝑢(𝑥) = div
(
𝐻𝑝−1(∇𝑢(𝑥))(∇𝜉𝐻)(∇𝑢(𝑥))

)
.

Note that though the Finsler gradient vector

∇𝐻𝑢(𝑥) = 𝐻(∇𝑢(𝑥))
(
∇𝜉𝐻

)
(∇𝑢(𝑥)) = ∇𝜉

(1
2
𝐻2(𝜉)

) |||𝜉=∇𝑢(𝑥)
is a nonlinear operator, thanks to the strict convexity oh 𝐻 , Δ𝐻 and Δ𝐻,𝑝 is a uniformly elliptic operator locally. The Finsler
Laplacian has been widely investigated in literature and its notion goes back to the work of G. Wulff, who considered it to
describe the theory of crystals. Many other authors developed the related theory in several settings, considering both analytic
and geometric points of view, see ([4], [2], [12], [13], [14], [18], [20], [21] and references therein).
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3 HARDY TYPE INEQUALITIES

In this section, we prove several Finsler Hardy type inequalities in a unified method. This simple approach is motivated by [10],
[11], and [37].

Theorem 3.1. (Sharp anisotropic subcritical Hardy inequality) Assume 1 ≤ 𝑝 < 𝑁 or 𝑝 > 𝑁 . Let Ω be a domain in ℝ𝑁 . Then
the following inequality holds true ||||𝑁 − 𝑝

𝑝
||||𝑝 ∫

Ω

|𝑢|𝑝(
𝐻0(𝑥)

)𝑝 𝑑𝑥 ≤ ∫
Ω

|||| 𝑥
𝐻0(𝑥)

⋅ ∇𝑢
||||𝑝 𝑑𝑥 (3.1)

for any 𝑢 ∈ 𝐶∞
0 (Ω) if 1 ≤ 𝑝 < 𝑁 , and for any 𝑢 ∈ 𝐶∞

0 (Ω ⧵ {0}) if 𝑝 > 𝑁 .

Remark 3.2. The anisotropic subcritical Hardy inequality (3.1) is invariant under the scaling 𝑢𝜆(𝑥) = 𝜆
𝑁−𝑝
𝑝 𝑢(𝜆𝑥), (𝜆 > 0) when

Ω = ℝ𝑁 . Indeed, by (2.1) we can easily check the following equalities

∫
ℝ𝑁

|𝑢𝜆(𝑥)|𝑝(
𝐻0(𝑥)

)𝑝 𝑑𝑥 = ∫
ℝ𝑁

|𝑢(𝑦)|𝑝(
𝐻0(𝑦)

)𝑝 𝑑𝑦,
∫
ℝ𝑁

|||| 𝑥
𝐻0(𝑥)

⋅ ∇𝑢𝜆(𝑥)
||||𝑝 𝑑𝑥 = ∫

ℝ𝑁

|||| 𝑦
𝐻0(𝑦)

⋅ ∇𝑢(𝑦)
||||𝑝 𝑑𝑦.

Proof. We just prove the assertion when 1 ≤ 𝑝 < 𝑁 , since the proof of the case where 𝑝 > 𝑁 is similar. Define

𝐹 (𝑥) = 𝑥(
𝐻0(𝑥)

)𝜆 , 𝑥 ∈ Ω.

Then we have

div𝐹 (𝑥) = 𝑁(
𝐻0(𝑥)

)𝜆 + (−𝜆)
(
𝐻0(𝑥)

)−𝜆−1 ∇𝑥𝐻
0(𝑥) ⋅ 𝑥

= 𝑁 − 𝜆(
𝐻0(𝑥)

)𝜆 ,
since ∇𝐻0(𝑥) ⋅ 𝑥 = 𝐻0(𝑥) by Proposition 2.1 (1’). Take 𝜆 = 𝑝. Then for any 𝑢 ∈ 𝐶∞

0 (Ω), we compute

∫
Ω

|𝑢(𝑥)|𝑝(
𝐻0(𝑥)

)𝑝 𝑑𝑥 =
|||||||

1
𝑁 − 𝑝 ∫

Ω

|𝑢(𝑥)|𝑝div𝐹 (𝑥)𝑑𝑥
|||||||

=
|||||||−

1
𝑁 − 𝑝 ∫

Ω

∇(|𝑢|𝑝) ⋅ 𝑥(
𝐻0(𝑥)

)𝑝 𝑑𝑥|||||||
=
|||||||−

𝑝
𝑁 − 𝑝 ∫

Ω

|𝑢|𝑝−2𝑢∇𝑢 ⋅ 𝑥(
𝐻0(𝑥)

)𝑝 𝑑𝑥|||||||
≤ |||| 𝑝

𝑁 − 𝑝
||||
⎛⎜⎜⎝∫Ω

|𝑢|𝑝(
𝐻0(𝑥)

)𝑝 𝑑𝑥⎞⎟⎟⎠
(𝑝−1)∕𝑝 ⎛⎜⎜⎝∫Ω

||||| 𝑥(
𝐻0(𝑥)

) ⋅ ∇𝑢
|||||
𝑝

𝑑𝑥
⎞⎟⎟⎠
1∕𝑝

.

This yields the conclusion.

Remark 3.3. Note that by (2.2) and the positively 1-homogeniety of 𝐻0, the right-hand side of the inequality (3.1) is estimated as

∫
Ω

|||| 𝑥
𝐻0(𝑥)

⋅ ∇𝑢
||||𝑝 𝑑𝑥 ≤ ∫

Ω

(𝐻(∇𝑢(𝑥)))𝑝 𝑑𝑥.

Thus Theorem 3.1 improves the following inequality by Van Schaftingen ([40] Proposition 7.5),||||𝑁 − 𝑝
𝑝

||||𝑝 ∫
Ω

|𝑢|𝑝(
𝐻0(𝑥)

)𝑝 𝑑𝑥 ≤ ∫
Ω

(𝐻(∇𝑢(𝑥)))𝑝 𝑑𝑥,
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which is obtained by the use of symmetrization.

Next result concerns the critical case 𝑝 = 𝑁 .

Theorem 3.4. (Sharp anisotropic critical Hardy inequality) Let Ω ⊂ ℝ𝑁 , 𝑁 ≥ 2, be a bounded domain and put 𝑅 =
sup𝑥∈Ω 𝐻0(𝑥). Then the inequality(𝑁 − 1

𝑁

)𝑁

∫
Ω

|𝑢|𝑁
(𝐻0(𝑥))𝑁 (log 𝑅

𝐻0(𝑥)
)𝑁

𝑑𝑥 ≤ ∫
Ω

|||| 𝑥
𝐻0(𝑥)

⋅ ∇𝑢
||||𝑁 𝑑𝑥 (3.2)

holds for any 𝑢 ∈ 𝐶∞
0 (Ω).

Remark 3.5. The anisotropic critical Hardy inequality (3.2) is invariant under the scaling 𝑢𝜆(𝑥) = 𝜆−
𝑁−1
𝑁 𝑢

((
𝐻0(𝑥)
𝑅

)𝜆−1
𝑥
)

,

(𝜆 > 0) when Ω = 𝑅 = {𝑥 ∈ ℝ𝑁 ∶ 𝐻0(𝑥) < 𝑅}. For the proof, see §7.

Proof. Define
𝐺(𝑥) = 𝑥(

𝐻0(𝑥)
)𝑁 (

log 𝑅
𝐻0(𝑥)

)𝜆 , 𝑥 ∈ Ω.

Note that
div

(
𝑥

(𝐻0(𝑥))𝑁

)
= 0

by the former calculation in the proof of Theorem 3.1. Then we have

div𝐺(𝑥) = 𝑥
(𝐻0(𝑥))𝑁

⋅ (−𝜆)
(
log 𝑅

𝐻0(𝑥)

)−𝜆−1 (
− 1
𝐻0(𝑥)

)
∇𝐻0(𝑥)

= 𝜆
𝑥 ⋅ ∇𝐻0(𝑥)
(𝐻0(𝑥))𝑁+1

(
log 𝑅

𝐻0(𝑥)

)−𝜆−1

= 𝜆

(𝐻0(𝑥))𝑁
(
log 𝑅

𝐻0(𝑥)

)𝜆+1
.

In particular, by choosing 𝜆 = 𝑁 − 1, we have

∫
Ω

|𝑢(𝑥)|𝑁
(𝐻0(𝑥))𝑁

(
log 𝑅

𝐻0(𝑥)

)𝑁 𝑑𝑥

=
|||||||

1
𝑁 − 1 ∫

Ω

|𝑢|𝑁div𝐹 (𝑥)𝑑𝑥
|||||||

=

||||||||−
1

𝑁 − 1 ∫
Ω

∇(|𝑢|𝑁 ) ⋅ 𝑥

(𝐻0(𝑥))𝑁
(
log 𝑅

𝐻0(𝑥)

)𝑁−1
𝑑𝑥

||||||||
=

||||||||−
𝑁

𝑁 − 1 ∫
Ω

|𝑢|𝑁−2𝑢∇𝑢 ⋅
𝑥

𝐻0(𝑥)

(𝐻0(𝑥))𝑁−1
(
log 𝑅

𝐻0(𝑥)

)𝑁−1
𝑑𝑥

||||||||
≤ 𝑁

𝑁 − 1

⎛⎜⎜⎜⎝∫Ω
|𝑢|𝑁

(𝐻0(𝑥))𝑁
(
log 𝑅

𝐻0(𝑥)

)𝑁 𝑑𝑥

⎞⎟⎟⎟⎠
𝑁−1
𝑁 ⎛⎜⎜⎝∫Ω

|||| 𝑥
𝐻0(𝑥)

⋅ ∇𝑢
||||𝑁 𝑑𝑥

⎞⎟⎟⎠
1
𝑁

for 𝑢 ∈ 𝐶∞
0 (Ω). This yields the conclusion.

Here we show a few applications of the Finsler Hardy inequality (3.1) in Theorem 3.1 to the stability analysis of boundary
value problems involving the Finsler Laplacian. Let Ω ⊂ ℝ𝑁 be an open set and let 𝑓 ∶ ℝ → ℝ be 𝐶1. For 𝐻 as in §2, consider
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the problem
−Δ𝐻𝑢 = 𝑓 (𝑢) inΩ, 𝑢 = 0 on 𝜕Ω. (3.3)

Formally, this is the Euler-Lagrange equation of the associated energy functional

𝐸(𝑢) = 1
2 ∫

Ω

𝐻2(∇𝑢)𝑑𝑥 − ∫
Ω

𝐹 (𝑢)𝑑𝑥

defined on an appropriate function space, say 𝐻1
0 (Ω), where 𝐹 (𝑢) = ∫ 𝑢

0 𝑓 (𝑠)𝑑𝑠. Direct calculation shows that

𝑑
𝑑𝑡

𝐸(𝑢 + 𝑡𝜙) = ∫
Ω

𝐻(∇𝑢 + 𝑡∇𝜙)(∇𝜉𝐻)(∇𝑢 + 𝑡∇𝜙) ⋅ ∇𝜙𝑑𝑥 − ∫
Ω

𝑓 (𝑢 + 𝑡𝜙)𝜙𝑑𝑥,

𝑑2

𝑑𝑡2
𝐸(𝑢 + 𝑡𝜙) = ∫

Ω

|(∇𝜉𝐻)(∇𝑢 + 𝑡∇𝜙) ⋅ ∇𝜙|2𝑑𝑥
+ ∫

Ω

𝐻(∇𝑢 + 𝑡∇𝜙)(∇2
𝜉𝐻)(∇𝑢 + 𝑡∇𝜙)∇𝜙 ⋅ ∇𝜙𝑑𝑥 − ∫

Ω

𝑓 ′(𝑢 + 𝑡𝜙)𝜙2𝑑𝑥

for 𝜙 ∈ 𝐶∞
0 (Ω). This leads to the following definition.

Definition 3.6. We call a solution 𝑢 to (3.3) is 𝐻-stable if

∫
Ω

|(∇𝜉𝐻)(∇𝑢) ⋅ ∇𝜙|2𝑑𝑥 + ∫
Ω

𝐻(∇𝑢)(∇2
𝜉𝐻)(∇𝑢)∇𝜙 ⋅ ∇𝜙𝑑𝑥 ≥ ∫

Ω

𝑓 ′(𝑢)𝜙2𝑑𝑥 (3.4)

holds for any 𝜙 ∈ 𝐶∞
0 (Ω).

Let 𝑁 ≥ 3 and consider the function 𝑈 (𝑥) = −2 log𝐻0(𝑥). A direct calculation shows that 𝑈 is a singular distributional
solution to

−Δ𝐻𝑈 = 2(𝑁 − 2)𝑒𝑈 in , 𝑈 = 0 on 𝜕 . (3.5)
Also by Proposition 2.1, we see

∇𝑈 (𝑥) = − 2
𝐻0(𝑥)

∇𝐻0(𝑥),

(∇𝜉𝐻)(∇𝑈 (𝑥)) = −(∇𝜉𝐻)(∇𝐻0(𝑥)) = −𝑥
𝐻0(𝑥)

,

|(∇𝜉𝐻)(∇𝑈 (𝑥)) ⋅ ∇𝜙|2 = |||| 𝑥
𝐻0(𝑥)

⋅ ∇𝜙
||||2 .

Note that since 𝐻 is convex, 𝑁 ×𝑁-symmetric matrix ∇2
𝜉𝐻(𝜉) is nonnegative definite. Therefore, if we obtain(𝑁 − 2

2

)2

∫
Ω

𝜙2(
𝐻0(𝑥)

)2 𝑑𝑥 ≥ 2(𝑁 − 2)∫
Ω

𝑒𝑈𝜙2𝑑𝑥 = 2(𝑁 − 2)∫
Ω

𝜙2(
𝐻0(𝑥)

)2 𝑑𝑥,
the Finsler Hardy inequality (3.1) implies that (3.4) holds for 𝑈 (𝑥) = −2 log𝐻0(𝑥). Thus we have shown the following:

Theorem 3.7. Let 𝑁 ≥ 10. Then the explicit singular solution 𝑈 (𝑥) = −2 log𝐻0(𝑥) to (3.5) is 𝐻-stable.

For the explicit solution 𝑈 (𝑥) = (𝐻0(𝑥))−
2

𝑝−1 − 1 to

−Δ𝐻𝑈 = 𝐶𝑝(1 + 𝑈 )𝑝 in , 𝑈 = 0 on 𝜕 , (3.6)

where 𝑝 > 1 and 𝐶𝑝 =
2

𝑝−1

(
𝑁 − 2 + 2

𝑝−1

)
, similar argument shows the following.

Theorem 3.8. Let 𝑁 ≥ 3 and assume
(

𝑁−2
2

)2 ≥ 𝑝𝐶𝑝. Then the explicit singular solution 𝑈 (𝑥) = (𝐻0(𝑥))−
2

𝑝−1 − 1 to (3.5) is
𝐻-stable.

For more details on the possible extensions in this direction, see the classic paper [17].
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4 HARDY INEQUALITY OF GEOMETRIC TYPE

Let Ω be a domain in ℝ𝑁 with Lipschitz boundary and let

𝑑𝐻 (𝑥) = inf
𝑦∈𝜕Ω

𝐻0(𝑥 − 𝑦) (4.1)

be the anisotropic distance of 𝑥 ∈ Ω to the boundary of Ω ⊂ ℝ𝑁 . Then we have

𝐻(∇𝑑𝐻 (𝑥)) = 1 𝑎.𝑒. in Ω

and
1
𝛽
𝑑(𝑥) ≤ 𝑑𝐻 (𝑥) ≤ 1

𝛼
𝑑(𝑥)

where 𝑑(𝑥) = inf𝑦∈𝜕Ω |𝑥−𝑦| is the Euclidean distance from the boundary 𝜕Ω. In [19], the authors studied the anisotropic Hardy
inequality of geometric type as follows:

Theorem 4.1. ([19]) Suppose 𝑑𝐻 is a Δ𝐻 -superharmonic in Ω, i.e.,

−Δ𝐻𝑑𝐻 ≥ 0

in the distribution sense. Then the inequality

1
4 ∫

Ω

|𝑢|2
(𝑑𝐻 (𝑥))2

𝑑𝑥 ≤ ∫
Ω

(𝐻(∇𝑢))2𝑑𝑥 (4.2)

holds true for any 𝑢 ∈ 𝐶∞
0 (Ω).

Note that if Ω is convex, the assumption −Δ𝐻𝑑𝐻 ≥ 0 holds true. In [19], it is shown that there exists a non-convex domain
Ω such that 𝑑𝐻 is Δ𝐻 -superharmonic on Ω. For the Euclidean geometric type Hardy inequalities, see [16], [22], [26], [39], and
references there in.

In the next theorem, we improve their result in the following form:

Theorem 4.2. (Anisotropic 𝐿𝑝-Hardy inequality of geometric type) Let 1 < 𝑝 < ∞ and suppose 𝛿 = 𝛿(𝑥) is a nonnegative,
Δ𝐻,𝑝-superharmonic function on Ω, i.e.,

−Δ𝐻,𝑝𝛿 ≥ 0
in the distributional sense. Then the inequality(

𝑝 − 1
𝑝

)𝑝

∫
Ω

|𝑢|𝑝
𝛿𝑝

𝐻𝑝(∇𝛿)𝑑𝑥 ≤ ∫
Ω

|∇𝑢 ⋅ (∇𝜉𝐻)(∇𝛿)|𝑝𝑑𝑥 (4.3)

holds true for any 𝑢 ∈ 𝐶∞
0 (Ω).

Remark 4.3. Note that by (2.2) and Proposition 2.1 (4’), we have|∇𝑢 ⋅ (∇𝜉𝐻)(∇𝛿)| ≤ 𝐻(∇𝑢)𝐻0((∇𝜉𝐻)(∇𝛿)) = 𝐻(∇𝑢).

Thus, by (4.3), we have the following inequality(
𝑝 − 1
𝑝

)𝑝

∫
Ω

|𝑢|𝑝
(𝑑𝐻 (𝑥))𝑝

𝑑𝑥 ≤ ∫
Ω

(𝐻(∇𝑢))𝑝𝑑𝑥. (4.4)

Moreover if the domain satisfies the assumption −Δ𝐻𝑑𝐻 ≥ 0 in the distribution sense (this is the case if Ω is convex), then
taking 𝛿 = 𝑑𝐻 and using 𝐻(∇𝑑𝐻 ) = 1 a.e. in Ω, we have −Δ𝐻,𝑝𝑑𝐻 = −Δ𝐻𝑑𝐻 ≥ 0. Thus Theorem 4.2 is an improvement of
the result proved in [19], which gives the inequality (4.4) when 𝑝 = 2 under the assumption −Δ𝐻𝑑𝐻 ≥ 0 .

Proof. For 𝑥 ∈ Ω, define

𝐹 (𝑥) = (𝐻(∇𝛿(𝑥)))𝑝−2

𝛿(𝑥)𝑝−1
∇𝛿(𝑥).

Then we have

𝐻(𝐹 )(∇𝜉𝐻)(𝐹 ) = (𝐻(∇𝛿))𝑝−1

𝛿𝑝−1
(∇𝜉𝐻)(∇𝛿)
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and

div(𝐻(𝐹 )(∇𝜉𝐻)(𝐹 ))
= 𝛿1−𝑝div

(
(𝐻(∇𝛿))𝑝−1(∇𝜉𝐻)(∇𝛿)

)
+ (1 − 𝑝)𝛿−𝑝∇𝛿 ⋅ (𝐻(∇𝛿))𝑝−1(∇𝜉𝐻)(∇𝛿)

=
Δ𝐻,𝑝𝛿
𝛿𝑝−1

− (𝑝 − 1) (𝐻(∇𝛿))𝑝

𝛿𝑝
.

Then for 𝑢 ∈ 𝐶∞
0 (Ω), we have

∫
Ω

|𝑢|𝑝 (Δ𝐻,𝑝𝛿
𝛿𝑝−1

− (𝑝 − 1) (𝐻(∇𝛿))𝑝

𝛿𝑝

)
𝑑𝑥

= ∫
Ω

|𝑢|𝑝div(𝐻(𝐹 )(∇𝜉𝐻)(𝐹 ))𝑑𝑥

= −𝑝∫
Ω

|𝑢|𝑝−1(𝑠𝑔𝑛(𝑢))∇𝑢 ⋅ (𝐻(𝐹 )(∇𝜉𝐻)(𝐹 )𝑑𝑥

= −𝑝∫
Ω

|𝑢|𝑝−1(𝑠𝑔𝑛(𝑢))∇𝑢 ⋅ (𝐻(∇𝛿))𝑝−1

𝛿𝑝−1
(∇𝜉𝐻)(∇𝛿)𝑑𝑥.

Now, by the assumption Δ𝐻,𝑝𝛿 ≤ 0, we see

0 ≥ ∫
Ω

|𝑢|𝑝 (0 − (𝑝 − 1) (𝐻(∇𝛿))𝑝

𝛿𝑝

)
𝑑𝑥

≥ −𝑝∫
Ω

|𝑢|𝑝−1(𝑠𝑔𝑛(𝑢))∇𝑢 ⋅ (𝐻(∇𝛿))𝑝−1

𝛿𝑝−1
(∇𝜉𝐻)(∇𝛿)𝑑𝑥,

and, by the Hölder inequality, this leads to

(𝑝 − 1)∫
Ω

|𝑢|𝑝 (𝐻(∇𝛿))𝑝

𝛿𝑝
𝑑𝑥 ≤ 𝑝∫

Ω

|𝑢|𝑝−1|||∇𝑢 ⋅ (∇𝜉𝐻)(∇𝛿)||| (𝐻(∇𝛿))𝑝−1

𝛿𝑝−1
𝑑𝑥

≤ 𝑝
⎛⎜⎜⎝∫Ω |𝑢|𝑝 (𝐻(∇𝛿))𝑝

𝛿𝑝
𝑑𝑥

⎞⎟⎟⎠
𝑝−1
𝑝 ⎛⎜⎜⎝∫Ω

|||∇𝑢 ⋅ (∇𝜉𝐻)(∇𝛿)|||𝑝⎞⎟⎟⎠
1
𝑝

.

This gives us the result.

Now some consequences of Theorem 4.2 are proved. The first one is an anisotropic Hardy inequality when Ω is the half-space

ℝ𝑁
+ = {𝑥 = (𝑥1, 𝑥2,⋯ , 𝑥𝑁 ) ∶ 𝑥𝑁 > 0}

with 𝑁 ≥ 2. Denote 𝑑𝐻 (𝑥) = inf𝑦∈𝜕ℝ𝑁
+
𝐻0(𝑥 − 𝑦) the anisotropic distance from the boundary for 𝑥 ∈ ℝ𝑁

+ . Note that
𝐻(∇𝑑𝐻 (𝑥)) = 1 a.e. and, by the convexity of ℝ𝑁

+ , −Δ𝐻,𝑝𝑑𝐻 ≥ 0 holds for 1 < 𝑝 < ∞ and 𝑁 ≥ 2. By Theorem 4.2 and the
Remark 4.3, we have the anisotropic Hardy inequality on the half-space:

Corollary 4.4. (Anisotropic Hardy inequality on the half-space) Assume 1 < 𝑝 < ∞ and 𝑁 ≥ 2. Then the inequality(
𝑝 − 1
𝑝

)𝑝

∫
ℝ𝑁

+

|𝑢|𝑝(
𝑑𝐻 (𝑥)

)𝑝 𝑑𝑥 ≤ ∫
ℝ𝑁

+

|∇𝑢 ⋅ (∇𝜉𝐻)(∇𝑑𝐻 )|𝑝𝑑𝑥 (4.5)

for any 𝑢 ∈ 𝐶∞
0 (ℝ𝑁

+ ).

The second consequence of Theorem 4.2 is a lower bound for 𝜆1,𝑝(Ω), the first eigenvalue of the Finsler 𝑝-Laplacian Δ𝐻,𝑝, by
means of anisotropic inradius. Define

𝜆1,𝑝(Ω) = min
𝑢∈𝑊 1,𝑝

0 (Ω),𝑢≠0
∫Ω(𝐻(∇𝑢))𝑝𝑑𝑥

∫Ω |𝑢|𝑝𝑑𝑥
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and assume that 𝜏𝐻 , the anisotropic inradius of Ω, is finite, i.e.,

𝜏𝐻 = sup
𝑥∈Ω

𝑑𝐻 (𝑥) < ∞.

We prove the following result:

Corollary 4.5. Let Ω be a bounded domain in ℝ𝑁 satisfying −Δ𝐻𝑑𝐻 ≥ 0 in the distribution sense and 𝜏𝐻 < ∞. Let 𝜆1,𝑝(Ω)
be the first eigenvalue of the Finsler 𝑝-Laplacian Δ𝐻,𝑝. Then it holds that

𝜆1,𝑝(Ω) ≥
(
𝑝 − 1
𝑝

)𝑝 ( 1
𝜏𝐻

)𝑝

.

Proof. Applying (4.4) to the first eigenfunction 𝜙 of 𝜆1,𝑝(Ω), normalized as ‖𝜙‖𝐿𝑝(Ω) = 1, we obtain

𝜆1,𝑝(Ω) = ∫
Ω

(𝐻(∇𝜙))𝑝𝑑𝑥 ≥
(
𝑝 − 1
𝑝

)𝑝

∫
Ω

|𝜙|𝑝
(𝑑𝐻 (𝑥))𝑝

𝑑𝑥 ≥
(
𝑝 − 1
𝑝

)𝑝 1
(𝜏𝐻 )𝑝

.

5 WEIGHTED FINSLER-HARDY-POINCARÉ INEQUALITIES

In this section, we prove weighted version of Finsler Hardy-Poincaré type inequalities on ℝ𝑁 , following arguments in [24] and
[25].

Theorem 5.1. (Weighted anisotropic Hardy-Poincaré inequality) Let 1 ≤ 𝑝 < ∞. Assume there exists a nonnegative function
𝜌 on ℝ𝑁 ⧵ {0} such that 𝐻(∇𝜌) = 1 and Δ𝐻𝜌 ≥ 𝐶

𝜌
in the sense of distributions where 𝐶 > 0. Then for 𝛼 ∈ ℝ such that

𝐶 + 𝛼 > −1, the following inequality holds true(
𝐶 + 𝛼 + 1

𝑝

)𝑝

∫
ℝ𝑁

𝜌𝛼|𝑢|𝑝𝑑𝑥 ≤ ∫
ℝ𝑁

𝜌𝛼+𝑝 |||(∇𝜉𝐻)(∇𝜌) ⋅ ∇𝑢|||𝑝 𝑑𝑥 (5.1)

for any 𝑢 ∈ 𝐶∞
0 (ℝ𝑁 ⧵ {0}.

Proof. From the assumptions, we see ∇𝜌 ⋅ (∇𝜉𝐻)(∇𝜌) = 𝐻(∇𝜌) = 1 and

𝜌Δ𝐻𝜌 = 𝜌 div((∇𝜉𝐻)(∇𝜌)) ≥ 𝐶.

Thus

div(𝜌(∇𝜉𝐻(∇𝜌)) = 𝜌 div((∇𝜉𝐻)(∇𝜌)) + ∇𝜌 ⋅ (∇𝜉𝐻)(∇𝜌) ≥ 𝐶 + 1.

Multiplying this inequality by 𝜌𝛼|𝑢|𝑝 and integrating over ℝ𝑁 , we have

(𝐶 + 1)∫
ℝ𝑁

𝜌𝛼|𝑢|𝑝𝑑𝑥 ≤ ∫
ℝ𝑁

div(𝜌(∇𝜉𝐻(∇𝜌))𝜌𝛼|𝑢|𝑝𝑑𝑥.
The divergence theorem and the Hölder inequality implies that

(𝐶 + 𝛼 + 1)∫
ℝ𝑁

𝜌𝛼|𝑢|𝑝𝑑𝑥 ≤
|||||||−𝑝∫ℝ𝑁

𝜌𝛼+1|𝑢|𝑝−2𝑢∇𝑢 ⋅ (∇𝜉𝐻(∇𝜌))𝑑𝑥
|||||||

≤ 𝑝
⎛⎜⎜⎝∫ℝ𝑁

𝜌𝛼|𝑢|𝑝𝑑𝑥⎞⎟⎟⎠
𝑝−1
𝑝 ⎛⎜⎜⎝∫ℝ𝑁

𝜌𝛼+𝑝|∇𝑢 ⋅ (∇𝜉𝐻(∇𝜌))|𝑝𝑑𝑥⎞⎟⎟⎠
1
𝑝

.

After some manipulations, we have (5.1).
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Remark 5.2. Since by Proposition 2.1 (4), 𝜌(𝑥) = 𝐻0(𝑥) satisfies that 𝐻(∇𝜌) = 1 and Δ𝐻𝜌 = 𝑁−1
𝜌

, we have from Theorem 5.1
that (

𝑁 + 𝛼
𝑝

)𝑝

∫
ℝ𝑁

(𝐻0(𝑥))𝛼|𝑢|𝑝𝑑𝑥 ≤ ∫
ℝ𝑁

(𝐻0(𝑥))𝛼+𝑝
|||| 𝑥
𝐻0(𝑥)

⋅ ∇𝑢
||||𝑝 𝑑𝑥

for any 𝑢 ∈ 𝐶∞
0 (ℝ𝑁 ⧵ {0}). This improves Theorem 5.4 by Brasco-Franzina [15], because the right-hand side of the above

inequality is less than or equal to ∫ℝ𝑁 (𝐻0(𝑥))𝛼+𝑝𝐻𝑝(∇𝑢)𝑑𝑥.
Finally we recall that in the Euclidean case, i.e. 𝜌(𝑥) = 𝐻0(𝑥) = |𝑥|, weighted Hardy-Poincaré inequalities are well-known (see,
for example, [1], [3], [36] and references therein)

The Uncertainty Principle in quantum mechanics, sometimes called Heisenberg-Pauli-Weyl inequality, is well known in
Euclidean context and it claims that

𝑁2

4

⎛⎜⎜⎝∫ℝ𝑁

|𝑓 (𝑥)|2𝑑𝑥⎞⎟⎟⎠
2

≤ ⎛⎜⎜⎝∫ℝ𝑁

|𝑥|2|𝑓 (𝑥)|2𝑑𝑥⎞⎟⎟⎠
⎛⎜⎜⎝∫ℝ𝑁

|∇𝑓 (𝑥)|2𝑑𝑥⎞⎟⎟⎠
for any 𝑓 ∈ 𝐶∞

0 (ℝ𝑁 ). In Finsler context, we obtain the following:

Theorem 5.3. (Anisotropic uncertainty principle inequality) Let 1 ≤ 𝑝 < ∞ and 𝑁 ≥ 2. Assume there exists a nonnegative
function 𝜌 on ℝ𝑁 ⧵ {0} such that 𝐻(∇𝜌) = 1 and Δ𝐻𝜌 ≥ 𝐶

𝜌
in the sense of distributions where 𝐶 > 0. Then the following

inequality holds true: (𝐶 + 1
2

)2 ⎛⎜⎜⎝∫ℝ𝑁

|𝑢|2𝑑𝑥⎞⎟⎟⎠
2

≤ ⎛⎜⎜⎝∫ℝ𝑁

𝜌2|𝑢|2𝑑𝑥⎞⎟⎟⎠
⎛⎜⎜⎝∫ℝ𝑁

|||(∇𝜉𝐻)(∇𝜌) ⋅ ∇𝑢|||2 𝑑𝑥⎞⎟⎟⎠ (5.2)

for any 𝑢 ∈ 𝐶∞
0 (ℝ𝑁 ). Especially, we have

(𝑁
2

)2 ⎛⎜⎜⎝∫ℝ𝑁

|𝑢|2𝑑𝑥⎞⎟⎟⎠
2

≤ ⎛⎜⎜⎝∫ℝ𝑁

(𝐻0(𝑥))2|𝑢|2𝑑𝑥⎞⎟⎟⎠
⎛⎜⎜⎝∫ℝ𝑁

|||| 𝑥
∇(𝐻0(𝑥))

⋅ ∇𝑢
||||2 𝑑𝑥

⎞⎟⎟⎠
for any 𝑢 ∈ 𝐶∞

0 (ℝ𝑁 ).

Proof. Since 𝐻(∇𝜌2) = 2𝜌𝐻(∇𝜌) and (∇𝜉𝐻)(∇𝜌2) = (∇𝜉𝐻)(∇𝜌) by Proposition 2.1, by using assumptions, we have

Δ𝐻 (𝜌2) = div(2𝜌𝐻(∇𝜌)(∇𝜉𝐻)(∇𝜌)) = 2𝐻2(∇𝜌) + 2𝜌Δ𝐻𝜌 ≥ 2 + 2𝐶.

Multiplying this inequality by |𝑢|2 and integrating over ℝ𝑁 , we have

∫
ℝ𝑁

Δ𝐻 (𝜌2)|𝑢|2𝑑𝑥 ≥ 2(1 + 𝐶)∫
ℝ𝑁

|𝑢|2𝑑𝑥.
On the other hand, integration by parts and Schwarz inequality implies

∫
ℝ𝑁

Δ𝐻 (𝜌2)|𝑢|2𝑑𝑥 = ∫
ℝ𝑁

div(2𝜌(∇𝜉𝐻)(∇𝜌))|𝑢|2𝑑𝑥
= −∫

ℝ𝑁

2𝜌(∇𝜉𝐻)(∇𝜌) ⋅ 2𝑢∇𝑢𝑑𝑥

≤ 4
⎛⎜⎜⎝∫ℝ𝑁

𝜌2|𝑢|2𝑑𝑥⎞⎟⎟⎠
1
2 ⎛⎜⎜⎝∫ℝ𝑁

|(∇𝜉𝐻)(∇𝜌) ⋅ ∇𝑢|2𝑑𝑥⎞⎟⎟⎠
1
2

.

After some computations, we have (5.2). The last claim follows from Remark 5.2 and (5.2).
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6 THE BEST CONSTANT AND ITS ATTAINABILITY ON HARDY INEQUALITIES

In this section we investigate the sharpness and the attainability of the constants in anisotropic Hardy inequalities in the previous
sections. We call a function 𝑓 defined on ℝ𝑁 is 𝐻0-radial if there exists a function 𝐹 = 𝐹 (𝑟) defined on ℝ+ such that 𝑓 (𝑥) =
𝐹 (𝐻0(𝑥)). If 𝐹 is decreasing on ℝ+, then 𝑓 is called 𝐻0-radially decreasing. For a function space 𝑋, we define 𝑋𝐻0𝑟𝑎𝑑 = {𝑢 ∈
𝑋 ∶ 𝑢 is 𝐻0-radial}. Admitting some ambiguity, we sometimes write 𝑓 (𝑥) = 𝑓 (𝑟) with 𝑟 = 𝐻0(𝑥) for 𝐻0-radial function 𝑓 .
Let us begin with two preliminary results.

Proposition 6.1. Let 𝑅 ∈ (0,+∞]. For any 𝑢 ∈ 𝑊 1,𝑝
0 (𝑅), there exists a 𝐻0-radial function 𝑈 ∈ 𝑊 1,𝑝

0 (𝑅) such that the
followings hold true:

∫𝑅

𝑉 (𝐻0(𝑥))|𝑈 |𝑝 𝑑𝑥 = ∫𝑅

𝑉 (𝐻0(𝑥))|𝑢|𝑝𝑑𝑥, (6.1)

∫𝑅

|∇𝑈 |𝑝 𝑑𝑥 ≤ ∫𝑅

||||∇𝑢 ⋅ 𝑥
𝐻0(𝑥)

||||𝑝 𝑑𝑥 (6.2)

where 𝑉 = 𝑉 (𝑟) is any function on [0, 𝑅].

Proof. For 𝑥 ∈ ℝ𝑁 ⧵ {0}, let us write 𝑥 = 𝑟𝜔 where 𝑟 = 𝐻0(𝑥), 𝜔 ∈ 𝜕 and 𝜔𝑁−1 = 𝑃𝐻 ( ;ℝ𝑁 ) = 𝑁𝜅𝑁 . It is enough to
show Proposition 6.1 for 𝑢 ∈ 𝐶1

0 (𝑅) by the density argument. For any 𝑢 ∈ 𝐶1
0 (𝑅), we set

𝑈 (𝑟) =
⎛⎜⎜⎝𝜔−1

𝑁−1 ∫
𝜕

|𝑢(𝑟𝜔)|𝑝𝑑𝑆𝜔

⎞⎟⎟⎠
1
𝑝

,

where 𝑑𝑆𝜔 denotes a measure on 𝜕 such that ∫𝜕 𝑑𝑆𝜔 = 𝑃𝐻 ( ;ℝ𝑁 ) = 𝜔𝑁−1 holds true. Then by the Hölder inequality, we
have

|||𝑈 ′
(𝑟)||| = 𝜔

− 1
𝑝

𝑁−1

⎛⎜⎜⎝∫𝜕 |𝑢(𝑟𝜔)|𝑝𝑑𝑆𝜔

⎞⎟⎟⎠
1
𝑝
−1 |||||||∫𝜕 |𝑢(𝑟𝜔)|𝑝−2𝑢(𝑟𝜔)𝜕𝑢

𝜕𝑟
(𝑟𝜔)𝑑𝑆𝜔

|||||||
≤ ⎛⎜⎜⎝𝜔−1

𝑁−1 ∫
𝜕

||||𝜕𝑢𝜕𝑟 (𝑟𝜔)||||𝑝 𝑑𝑆𝜔

⎞⎟⎟⎠
1
𝑝

.

Therefore for 𝑈 (𝑥) = 𝑈 (𝐻0(𝑥)), we obtain

∫𝑅

|∇𝑈 |𝑝𝑑𝑥 = 𝜔𝑁−1

𝑅

∫
0

|𝑈 ′
(𝑟)|𝑝𝑟𝑁−1𝑑𝑟

≤
𝑅

∫
0

∫
𝜕

||||𝜕𝑢𝜕𝑟 (𝑟𝜔)||||𝑝 𝑟𝑁−1𝑑𝑟𝑑𝑆𝜔

= ∫𝑅

||||∇𝑢 ⋅ 𝑥
𝐻0(𝑥)

||||𝑝 𝑑𝑥 < ∞.
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Thus 𝑈 ∈ 𝑊 1,𝑝
0 (𝑅) and (6.2) is proved. Moreover we obtain

∫𝑅

𝑉 (𝐻0(𝑥))|𝑈 |𝑝 𝑑𝑥 = 𝜔𝑁−1

𝑅

∫
0

𝑉 (𝑟)|𝑈 (𝑟)|𝑝𝑟𝑁−1 𝑑𝑟

=

𝑅

∫
0

∫
𝜕

𝑉 (𝑟)|𝑢(𝑟𝜔)|𝑝𝑟𝑁−1𝑑𝑟𝑑𝑆𝜔

= ∫𝑅

𝑉 (𝐻0(𝑥))|𝑢|𝑝𝑑𝑥.
Hence (6.1) is proved.

Proposition 6.2. For 𝑅 ∈ (0,+∞], let 𝑈 ∈ 𝐶1(0, 𝑅) with 𝑈 (𝑅) ∶= lim𝑟→𝑅 𝑈 (𝑟) = 0. Then the following pointwise estimates
hold for any 𝑟 ∈ (0, 𝑅).

|𝑈 (𝑟)| ≤ (
𝑁 − 𝑝
𝑝 − 1

) 𝑝−1
𝑝
⎛⎜⎜⎝

𝑅

∫
𝑟

|𝑈 ′(𝑠)|𝑝𝑠𝑁−1 𝑑𝑠
⎞⎟⎟⎠

1
𝑝

𝑟−
𝑁−𝑝
𝑝 , (1 < 𝑝 < 𝑁), (6.3)

|𝑈 (𝑟)| ≤ ⎛⎜⎜⎝
𝑅

∫
𝑟

|𝑈 ′(𝑠)|𝑁𝑠𝑁−1 𝑑𝑠
⎞⎟⎟⎠

1
𝑁 (

log 𝑅
𝑟

)𝑁−1
𝑁

. (6.4)

Proof. Since

|𝑈 (𝑟)| = |||||||−
𝑅

∫
𝑟

𝑈 ′(𝑠) 𝑑𝑠
|||||||

≤ ⎛⎜⎜⎝
𝑅

∫
𝑟

|𝑈 ′(𝑠)|𝑝𝑠𝑁−1 𝑑𝑠
⎞⎟⎟⎠

1
𝑝 ⎛⎜⎜⎝

𝑅

∫
𝑟

𝑠−
𝑁−1
𝑝−1 𝑑𝑠

⎞⎟⎟⎠
𝑝−1
𝑝

,

we obtain (6.3) and (6.4).

For Ω ⊆ ℝ𝑁 and 1 ≤ 𝑝 < 𝑁 , let us define the best constant of the anisotropic subcritical 𝐿𝑝-Hardy inequality on Ω as

𝐻𝑝(Ω) = inf
0≢𝑢∈𝑊 1,𝑝

0 (Ω)

∫
Ω

|||| 𝑥
𝐻0(𝑥)

⋅ ∇𝑢
||||𝑝 𝑑𝑥

∫
Ω

|𝑢|𝑝
𝐻0(𝑥)𝑝

𝑑𝑥
. (6.5)

In order to prove Theorem 6.4 below, we need the following result.

Lemma 6.3. If 𝑢(𝑥) = 𝑈 (𝐻0(𝑥)) ∈ 𝑊 1,𝑝
0 (ℝ𝑁 ) is a 𝐻0-radial minimizer of (6.5) with Ω = ℝ𝑁 , then 𝑈 ∈ 𝐶1(0,∞).

Proof. The proof is similar to that of Lemma 2.4 in [23]. Take any 0 < 𝑎 < 𝑏 < ∞. Note that 𝑈 ∈ 𝐿𝑝(𝑎, 𝑏). By the characteriza-
tion of one dimensional Sobolev space 𝑊 1,𝑝(𝑎, 𝑏), 𝑟 → 𝑈 (𝑟) is locally absolutely continuous. Particularly, 𝑈 (𝑟) is differentiable
for almost all 𝑟 ∈ (𝑎, 𝑏). Put 𝑓 (𝑟) = 𝑟𝑁−1|𝜕𝑟𝑈 (𝑟)|𝑝−2𝜕𝑟𝑈 (𝑟), 𝑔(𝑟) = 𝐻𝑝(ℝ𝑁 )𝑟−𝑝+𝑁−1|𝑈 (𝑟)|𝑝−2𝑈 (𝑟). From the weak form of the
Euler Lagrange equation of 𝐻𝑝(ℝ𝑁 ):

∞

∫
0

𝑓 (𝑟)𝜕𝑟𝑣 𝑑𝑟 =

∞

∫
0

𝑔(𝑟)𝑣 𝑑𝑟 (∀𝑣 ∈ 𝑊 1,𝑝
0,𝐻0𝑟𝑎𝑑(ℝ

𝑁 )),
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we see that 𝑓 is weakly differentiable and its weak derivative is 𝜕𝑟𝑓 (𝑟) = −𝑔(𝑟) a.e. 𝑟 ∈ (𝑎, 𝑏). Moreover we have
𝑏

∫
𝑎

|𝜕𝑟𝑓 (𝑟)| 𝑑𝑟 = 𝐻𝑝(ℝ𝑁 )

𝑏

∫
𝑎

𝑟𝑁−𝑝−1|𝑈 (𝑟)|𝑝−1 𝑑𝑟 < ∞.

Therefore 𝑓 ∈ 𝑊 1,1(𝑎, 𝑏) which yields that 𝑓 is absolutely continuous on (𝑎, 𝑏). Since 𝑎, 𝑏 > 0 are arbitrary, we see that
𝑈 ∈ 𝐶1(0,∞).

The first main result of this section is Theorem 6.4 below which concerns the sharpness of the constant in the anisotropic
subcritical Hardy inequality given in Theorem 3.1

Theorem 6.4. Let Ω be a domain in ℝ𝑁 with 0 ∈ Ω and 1 ≤ 𝑝 < 𝑁 . Then 𝐻𝑝(Ω) in (6.5) is 𝐻𝑝(Ω) =
(

𝑁−𝑝
𝑝

)𝑝
. Moreover

𝐻𝑝(Ω) is not attained if 1 < 𝑝 < 𝑁 . On the other hand, 𝐻1(Ω) = 𝑁 − 1 is attained by any nonnegative function which is
𝐻0-radially decreasing on its support.

Proof. Let 𝛿 > 0 satisfy 2𝛿 ⊂ Ω and 𝛼 < 𝑁−𝑝
𝑝

. Set

𝜑𝛼(𝑥) =

⎧⎪⎨⎪⎩
(𝐻0(𝑥))−𝛼 if 𝐻0(𝑥) ≤ 𝛿,
𝛿−𝛼−1(2𝛿 −𝐻0(𝑥)) if 𝛿 < 𝐻0(𝑥) < 2𝛿,
0 if 2𝛿 ≤ 𝐻0(𝑥).

For 𝑥 with 𝐻0(𝑥) ≤ 𝛿, by Proposition 2.1. (1’), we have
𝑥

𝐻0(𝑥)
⋅ ∇𝜑𝛼(𝑥) = −𝛼(𝐻0(𝑥))−𝛼−1 𝑥

𝐻0(𝑥)
⋅ ∇𝐻0(𝑥) = −𝛼(𝐻0(𝑥))−𝛼−1

and

∫
Ω

|||| 𝑥
𝐻0(𝑥)

⋅ ∇𝜑𝛼
||||𝑝 𝑑𝑥 = 𝛼𝑝 ∫𝛿

(𝐻0(𝑥))−𝛼𝑝−𝑝𝑑𝑥 + 𝐶(𝛿)

= 𝛼𝑝𝜔𝑁−1

𝛿

∫
0

𝑟−𝛼𝑝−𝑝+𝑁−1𝑑𝑟 + 𝐶(𝛿)

= 𝛼𝑝𝜔𝑁−1(𝑁 − 𝑝 − 𝛼𝑝)−1𝛿𝑁−𝛼𝑝−𝑝 + 𝐶(𝛿).

This yields that

∫
Ω

|||| 𝑥
𝐻0(𝑥)

⋅ ∇𝜑𝛼
||||𝑝 𝑑𝑥

= 𝛼𝑝𝜔𝑁−1𝑝
−1

(
𝑁 − 𝑝

𝑝
− 𝛼

)−1

𝛿𝑁−𝛼𝑝−𝑝 + 𝑜

((
𝑁 − 𝑝

𝑝
− 𝛼

)−1
)

(6.6)

as 𝛼 ↗ 𝑁−𝑝
𝑝

. On the other hand, we have

∫
Ω

|𝜑𝛼|𝑝
(𝐻0(𝑥))𝑝

𝑑𝑥 = ∫𝛿

(𝐻0(𝑥))−𝛼𝑝−𝑝𝑑𝑥 + 𝐶(𝛿)

= 𝜔𝑁−1𝑝
−1

(
𝑁 − 𝑝

𝑝
− 𝛼

)−1

𝛿𝑁−𝛼𝑝−𝑝 + 𝑜

((
𝑁 − 𝑝

𝑝
− 𝛼

)−1
)
. (6.7)

From (6.6), (6.7) and Theorem 3.1, we see that(
𝑁 − 𝑝

𝑝

)𝑝 ≤ 𝐻𝑝(Ω) ≤
∫Ω ||| 𝑥

𝐻0(𝑥)
⋅ ∇𝜑𝛿

|||𝑝 𝑑𝑥
∫Ω |𝜑𝛼 |𝑝

(𝐻0(𝑥))𝑝
𝑑𝑥

= 𝛼𝑝 + 𝑜(1) =
(
𝑁 − 𝑝

𝑝

)𝑝

+ 𝑜(1).

Hence 𝐻𝑝(Ω) = (𝑁−𝑝
𝑝

)𝑝.
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Next we shall show the attainability of 𝐻1(Ω). For any 𝑢 ∈ 𝐶∞
0 (Ω), there exists 𝑅 > 0 such that supp(𝑢) ⊂ 𝑅. Since 𝑢 is

nonnegative 𝐻0-radially decreasing function on its support, we obtain

∫
Ω

|𝑢|
𝐻0(𝑥)

𝑑𝑥 = ∫𝑅

𝑢(𝑥)
𝐻0(𝑥)

𝑑𝑥 = 𝜔𝑁−1

𝑅

∫
0

𝑢(𝑟)𝑟𝑁−2𝑑𝑟

= −
𝜔𝑁−1

𝑁 − 1

𝑅

∫
0

𝑢′(𝑟)𝑟𝑁−1𝑑𝑟 = 1
𝑁 − 1 ∫

Ω

|||| 𝑥
𝐻0(𝑥)

⋅ ∇𝑢
|||| 𝑑𝑥.

Therefore we see that 𝐻1(Ω) = 𝑁 − 1 is attained by 𝑢.
Finally we show the non-attainability of 𝐻𝑝(Ω) when 1 < 𝑝 < 𝑁 . Assume by contradiction that 𝑢̃ ∈ 𝑊 1,𝑝

0 (Ω) is a minimizer
of 𝐻𝑝(Ω) = (𝑁−𝑝

𝑝
)𝑝 = 𝐻𝑝(ℝ𝑁 ). Then by zero-extension there exists a minimizer 𝑢 ∈ 𝑊 1,𝑝

0 (ℝ𝑁 ) of 𝐻𝑝(ℝ𝑁 ). By Proposition
6.1, there also exists a 𝐻0-radial minimizer 𝑢 ∈ 𝑊 1,𝑝

0 (ℝ𝑁 ) of 𝐻𝑝(ℝ𝑁 ). Write 𝑢(𝑥) = 𝑈 (𝐻0(𝑥)). From Lemma 6.3 we see that
𝑢 ∈ 𝐶1(ℝ𝑁 ⧵ {0}). Now we set

𝐽 (𝑢) = ∫
ℝ𝑁

|||| 𝑥
𝐻0(𝑥)

⋅ ∇𝑢
||||𝑝 𝑑𝑥 −

(
𝑁 − 𝑝

𝑝

)𝑝

∫
ℝ𝑁

|𝑢|𝑝
(𝐻0(𝑥))𝑝

𝑑𝑥

and consider 𝑣(𝑥) = 𝑉 (𝐻0(𝑥)) = (𝐻0(𝑥))
𝑁−𝑝
𝑝 𝑈 (𝐻0(𝑥)). Note that lim𝑟→∞ |𝑉 (𝑟)| = 0 from Proposition 6.2. Indeed

lim
𝑟→∞

|𝑉 (𝑟)| = lim
𝑟→∞

𝑟
𝑁−𝑝
𝑝 |𝑈 (𝑟)| ≤ 𝐶 lim

𝑟→∞
‖𝐻(∇𝑢)‖𝐿𝑝(ℝ𝑁⧵𝑟) = 0.

Since
∇𝑢(𝑥) = −

𝑁 − 𝑝
𝑝

(𝐻0(𝑥))−
𝑁
𝑝 ∇𝐻0(𝑥)𝑣(𝑥) + (𝐻0(𝑥))−

𝑁−𝑝
𝑝 ∇𝑣(𝑥),

we have |||| 𝑥
𝐻0(𝑥)

⋅ ∇𝑢
||||𝑝 = ||||−𝑁 − 𝑝

𝑝
(𝐻0(𝑥))−

𝑁
𝑝 𝑣(𝑥) + (𝐻0(𝑥))−

𝑁−𝑝
𝑝

𝑥
𝐻0(𝑥)

⋅ ∇𝑣(𝑥)
||||𝑝 . (6.8)

By recalling the inequality |𝑎 + 𝑏|𝑝 ≥ |𝑎|𝑝 + 𝑝|𝑎|𝑝−2𝑎𝑏, (𝑝 > 1, 𝑎, 𝑏 ∈ ℝ) and that the equality holds iff 𝑏 = 0, we see|||| 𝑥
𝐻0(𝑥)

⋅ ∇𝑢
||||𝑝

≥
(
𝑁 − 𝑝

𝑝

)𝑝

(𝐻0(𝑥))−𝑁 |𝑣|𝑝 − 𝑝
(
𝑁 − 𝑝

𝑝

)𝑝−1 |𝑣|𝑝−2𝑣∇𝑣 ⋅ 𝑥
𝐻0(𝑥)

(𝐻0(𝑥))−𝑁+1.

Therefore we have

𝐽 (𝑢) ≥
(
𝑁 − 𝑝

𝑝

)𝑝

∫
ℝ𝑁

|𝑣|𝑝
(𝐻0(𝑥))𝑁

𝑑𝑥 −
(
𝑁 − 𝑝

𝑝

)𝑝−1

∫
ℝ𝑁

∇(|𝑣|𝑝) ⋅ 𝑥
(𝐻0(𝑥))𝑁

𝑑𝑥

−
(
𝑁 − 𝑝

𝑝

)𝑝

∫
ℝ𝑁

|𝑢|𝑝
(𝐻0(𝑥))𝑝

𝑑𝑥.

= − lim
𝑅→∞

(
𝑁 − 𝑝

𝑝

)𝑝−1

∫𝑅

∇(|𝑣|𝑝) ⋅ 𝑥
(𝐻0(𝑥))𝑁

𝑑𝑥

= − lim
𝑅→∞

(
𝑁 − 𝑝

𝑝

)𝑝−1 |𝑉 (𝑅)|𝑝
𝑅𝑁 ∫

𝜕𝑅

𝑥 ⋅ 𝜈𝑑𝑆𝑥 = 0

since lim𝑅→∞ |𝑉 (𝑅)| = 0, where 𝜈 is an outer normal vector and we have used the fact div
(

𝑥
(𝐻0(𝑥))𝑁

)
= 0. Since 𝑢 is a 𝐻0-radial

minimizer, 𝐽 (𝑢) = 0, which implies
(𝐻0(𝑥))−

𝑁−𝑝
𝑝

𝑥
𝐻0(𝑥)

⋅ ∇𝑣(𝑥) = 0

by (6.8). This yields that 𝑣(𝑥) is a constant and 𝑢(𝑥) = 𝑐(𝐻0(𝑥))−
𝑁−𝑝
𝑝 for some 𝑐 ∈ ℝ for 𝑥 ∈ ℝ𝑁 ⧵{0}. However (𝐻0(𝑥))−

𝑁−𝑝
𝑝 ∉

𝑊 1,𝑝
0 (ℝ𝑁 ). This is a contradiction. Hence 𝐻𝑝(Ω) is not attained if 1 < 𝑝 < 𝑁 .
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Theorem 6.5. Let Ω be a bounded domain in ℝ𝑁 (𝑁 ≥ 2), 0 ∈ Ω and 𝑅 = sup𝑥∈Ω 𝐻0(𝑥). Then

𝐻𝑁 (Ω) ∶= inf
0≢𝑢∈𝑊 1,𝑁

0 (Ω)

∫
Ω

|||| 𝑥
𝐻0(𝑥)

⋅ ∇𝑢
||||𝑁 𝑑𝑥

∫
Ω

|𝑢|𝑁
𝐻0(𝑥)𝑁 (log 𝑅

𝐻0(𝑥)
)𝑁

𝑑𝑥
=
(𝑁 − 1

𝑁

)𝑁
.

Moreover 𝐻𝑁 (Ω) is not attained.

Proof. Let 𝛿 > 0 satisfy 2𝛿 ⊂ Ω and 𝛼 < 𝑁−1
𝑁

. Set

𝜑𝛼(𝑥) =

⎧⎪⎪⎨⎪⎪⎩

(
log 𝑅

𝐻0(𝑥)

)𝛼
if 𝐻0(𝑥) ≤ 𝛿,(

log 𝑅
𝛿

)𝛼−1
(2𝛿 −𝐻0(𝑥)) if 𝛿 < 𝐻0(𝑥) < 2𝛿,

0 if 2𝛿 ≤ 𝐻0(𝑥).

Since for 𝑥 such that 𝐻0(𝑥) ≤ 𝛿, by Proposition 2.1. (1’) we have

𝑥
𝐻0(𝑥)

⋅ ∇𝜑𝛼(𝑥) = −𝛼
(
log 𝑅

𝐻0(𝑥)

)𝛼−1 1
𝐻0(𝑥)

,

and

∫
Ω

|||| 𝑥
𝐻0(𝑥)

⋅ ∇𝜑𝛼
||||𝑁 𝑑𝑥

= 𝛼𝑁 ∫𝛿

(
log 𝑅

𝐻0(𝑥)

)𝛼𝑁−𝑁 1
(𝐻0(𝑥))𝑁

𝑑𝑥 + 𝐶(𝛿)

= 𝛼𝑁𝜔𝑁−1

𝛿

∫
0

(
log 𝑅

𝑟

)𝛼𝑁−𝑁 𝑑𝑟
𝑟

+ 𝐶(𝛿)

= 𝛼𝑁𝜔𝑁−1𝑁
−1

(𝑁 − 1
𝑁

− 𝛼
)−1 (

log 𝑅
𝛿

)𝛼𝑁−𝑁+1
+ 𝑜

((𝑁 − 1
𝑁

− 𝛼
)−1)

(6.9)

as 𝛼 ↗ 𝑁−1
𝑁

. On the other hand, we have

∫
Ω

|𝜑𝛼|𝑁
(𝐻0(𝑥))𝑁 (log 𝑅

𝐻0(𝑥)
)𝑁

𝑑𝑥 = ∫𝛿

(
log 𝑅

𝐻0(𝑥)

)𝛼𝑁−𝑁 1
(𝐻0(𝑥))𝑁

𝑑𝑥 + 𝐶(𝛿)

= 𝜔𝑁−1𝑁
−1

(𝑁 − 1
𝑁

− 𝛼
)−1 (

log 𝑅
𝛿

)𝛼𝑁−𝑁+1
+ 𝑜

((𝑁 − 1
𝑁

− 𝛼
)−1)

. (6.10)

From (6.9), (6.10) and Theorem 3.4, we see that

(𝑁 − 1
𝑁

)𝑁 ≤ 𝐻𝑁 (Ω) ≤
∫Ω ||| 𝑥

𝐻0(𝑥)
⋅ ∇𝜑𝛼

|||𝑁 𝑑𝑥

∫Ω |𝜑𝛼 |𝑁
(𝐻0(𝑥))𝑁 (log 𝑅

𝐻0(𝑥)
)𝑁
𝑑𝑥

= 𝛼𝑁 + 𝑜(1) =
(𝑁 − 1

𝑁

)𝑁
+ 𝑜(1).

Hence 𝐻𝑁 = (𝑁−1
𝑁

)𝑁 .
Next we shall show the non-attainability of 𝐻𝑁 (Ω) by a contradiction. Assume there exists a minimizer 𝑢̃ ∈ 𝑊 1,𝑁

0 (Ω) of
𝐻𝑁 (Ω). Then by zero-extension there exists a minimizer 𝑢 ∈ 𝑊 1,𝑁

0 (𝑅) of𝐻𝑁 (𝑅), where𝑅 = sup𝑥∈Ω 𝐻0(𝑥). By Proposition
6.1, there also exists a𝐻0-radial minimizer 𝑢 ∈ 𝑊 1,𝑁

0 (𝑅) of𝐻𝑁 (𝑅). Write 𝑢(𝑥) = 𝑈 (𝐻0(𝑥)). We see that 𝑢 ∈ 𝐶1(𝑅⧵{0})
in the same way as Lemma 2.4 in [23]. Now we set

𝐽 (𝑢) = ∫𝑅

|||| 𝑥
𝐻0(𝑥)

⋅ ∇𝑢
||||𝑁 𝑑𝑥 −

(𝑁 − 1
𝑁

)𝑁

∫𝑅

|𝑢|𝑁
𝐻0(𝑥)𝑁 (log 𝑅

𝐻0(𝑥)
)𝑁

𝑑𝑥
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and consider 𝑣(𝑥) = 𝑉 (𝐻0(𝑥)) = (log 𝑅
𝐻0(𝑥)

)−
𝑁−1
𝑁 𝑈 (𝐻0(𝑥)). Note that |𝑉 (𝑅)| = lim𝑟→𝑅 |𝑉 (𝑟)| = 0 from Proposition 6.2. Indeed

lim
𝑟→𝑅

|𝑉 (𝑟)| = lim
𝑟→𝑅

(
log 𝑅

𝑟

)−𝑁−1
𝑁 |𝑈 (𝑟)| ≤ 𝐶 lim

𝑟→𝑅
‖𝐻(∇𝑢)‖𝐿𝑁 (𝑅⧵𝑟) = 0.

Since

∇𝑢(𝑥) = 𝑁 − 1
𝑁

(
log 𝑅

𝐻0(𝑥)

)− 1
𝑁 ∇𝐻0(𝑥)

𝐻0(𝑥)
𝑣(𝑥) +

(
log 𝑅

𝐻0(𝑥)

)−𝑁−1
𝑁

∇𝑣(𝑥),

we have |||| 𝑥
𝐻0(𝑥)

⋅ ∇𝑢
||||𝑁 (6.11)

=
||||||𝑁 − 1

𝑁

(
log 𝑅

𝐻0(𝑥)

)− 1
𝑁 𝑣(𝑥)
𝐻0(𝑥)

+
(
log 𝑅

𝐻0(𝑥)

)𝑁−1
𝑁 𝑥

𝐻0(𝑥)
⋅ ∇𝑣(𝑥)

||||||
𝑁

.

By recalling the inequality |𝑎 + 𝑏|𝑁 ≥ |𝑎|𝑁 +𝑁|𝑎|𝑁−2𝑎𝑏, (𝑁 > 1, 𝑎, 𝑏 ∈ ℝ) and that the equality holds iff 𝑏 = 0, we see|||| 𝑥
𝐻0(𝑥)

⋅ ∇𝑢
||||𝑁 ≥ (𝑁 − 1

𝑁

)𝑁 |𝑣|𝑁
(𝐻0(𝑥))𝑁

(
log 𝑅

𝐻0(𝑥)

)−1

−𝑁
(𝑁 − 1

𝑁

)𝑁−1 |𝑣|𝑁−2𝑣∇𝑣 ⋅ 𝑥
𝐻0(𝑥)

(𝐻0(𝑥))−𝑁+1.

Therefore we have

𝐽 (𝑢) ≥ (𝑁 − 1
𝑁

)𝑁

∫𝑅

|𝑣|𝑁
(𝐻0(𝑥))𝑁

(
log 𝑅

𝐻0(𝑥)

)−1

𝑑𝑥

−
(𝑁 − 1

𝑁

)𝑁−1

∫𝑅

∇(|𝑣|𝑁 ) ⋅ 𝑥
(𝐻0(𝑥))𝑁

𝑑𝑥

−
(𝑁 − 1

𝑁

)𝑁

∫𝑅

|𝑢|𝑁
𝐻0(𝑥)𝑁 (log 𝑅

(𝐻0(𝑥))
)𝑁

𝑑𝑥

= −
(𝑁 − 1

𝑁

)𝑁−1 |𝑉 (𝑅)|𝑁
𝑅𝑁 ∫

𝜕𝑅

𝑥 ⋅ 𝜈𝑑𝑆𝑥 = 0

by |𝑉 (𝑅)| = 0. Since 𝑢 is a 𝐻0-radial minimizer, 𝐽 (𝑢) = 0, which implies(
log 𝑅

𝐻0(𝑥)

)𝑁−1
𝑁 𝑥

𝐻0(𝑥)
⋅ ∇𝑣(𝑥) = 0

by (6.11). This in turn yields that 𝑣(𝑥) is a constant and 𝑢(𝑥) = 𝑐
(
log 𝑅

𝐻0(𝑥)

)𝑁−1
𝑁 for some 𝑐 ∈ ℝ for 𝑥 ∈ 𝑅 ⧵ {0}. However(

log 𝑅
𝐻0(𝑥)

)𝑁−1
𝑁 ∉ 𝑊 1,𝑁

0 (𝑅). This is a contradiction and 𝐻𝑁 (Ω) is not attained.

Theorem 6.6. Let 𝑁 ≥ 2 and 1 < 𝑝 < ∞. Define 𝑑𝐻 as in (4.1). Then

𝐶𝑝(ℝ𝑁
+ ) ∶= inf

0≢𝑢∈𝑊 1,𝑝
0 (ℝ𝑁

+ )

∫
ℝ𝑁

+

|∇𝑢 ⋅ (∇𝜉𝐻)(∇𝑑𝐻 )|𝑝𝑑𝑥
∫
ℝ𝑁

+

|𝑢|𝑝
(𝑑𝐻 (𝑥))𝑝

𝑑𝑥
=
(
𝑝 − 1
𝑝

)𝑝

.

Proof. The inequality (4.5) implies that 𝐶𝑝(ℝ𝑁
+ ) ≥

(
𝑝−1
𝑝

)𝑝
. For 𝑅 > 0, let

𝑄𝑅 = {𝑥 = (𝑥′, 𝑥𝑁 ) ∈ ℝ𝑁
+ | |𝑥′| < 𝑅, 0 < 𝑥𝑁 < 𝑅} (6.12)
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be an open cube and let 𝜂 be a smooth cut-off function with 0 ≤ 𝜂 ≤ 1, 𝜂 ≡ 1 on 𝑄𝑅, 𝜂 ≡ 0 on (𝑄2𝑅)𝑐 . For 𝛼 > 𝑝−1
𝑝

, put
𝑢𝛼(𝑥) = 𝜂(𝑥)(𝑑𝐻 (𝑥))𝛼 . Then 𝑢𝛼 ∈ 𝑊 1,𝑝

0 (ℝ𝑁
+ ∩𝑄2𝑅) and

∇𝑢𝛼 = 𝛼𝜂(𝑑𝐻 )𝛼−1∇𝑑𝐻 + (∇𝜂)(𝑑𝐻 )𝛼 .

Thus

∇𝑢𝛼 = 𝛼(𝑑𝐻 )𝛼−1∇𝑑𝐻 on ℝ𝑁
+ ∩𝑄𝑅,

∫
ℝ𝑁

+ ∩𝑄𝑅

𝐻𝑝(∇𝑢𝛼)𝑑𝑥 = 𝛼𝑝 ∫
ℝ𝑁

+ ∩𝑄𝑅

(𝑑𝐻 (𝑥))𝑝(𝛼−1)𝑑𝑥,

∫
ℝ𝑁

+ ∩𝑄𝑅

|𝑢𝛼|𝑝
(𝑑𝐻 (𝑥))𝑝

𝑑𝑥 = ∫
ℝ𝑁

+ ∩𝑄𝑅

(𝑑𝐻 (𝑥))𝑝(𝛼−1)𝑑𝑥.

Now, since the inequality 1
𝛼2
|𝑥| ≤ 𝐻0(𝑥) ≤ 1

𝛼1
|𝑥| holds, we have 1

𝛼2
𝑑𝐸(𝑥) ≤ 𝑑𝐻 (𝑥) ≤ 1

𝛼1
𝑑𝐸(𝑥), where 𝑑𝐸(𝑥) = 𝑥𝑁 denotes the

Euclidean distance of 𝑥 ∈ ℝ𝑁
+ from the boundary: 𝑑𝐸(𝑥) = inf𝑦∈𝜕ℝ𝑁

+
|𝑥 − 𝑦|. Since

∫
ℝ𝑁

+ ∩𝑄𝑅

𝑥𝑝(𝛼−1)𝑁 𝑑𝑥 = ∫|𝑥′|<𝑅
𝑅

∫
0

𝑥𝑝(𝛼−1)𝑁 𝑑𝑥𝑁𝑑𝑥
′ = 𝐶(𝑅) 𝑅𝑝(𝛼−1)+1

𝑝(𝛼 − 1) + 1
,

where 𝐶(𝑅) = ∫|𝑥′|<𝑅 𝑑𝑥′, we have

∫
ℝ𝑁

+ ∩𝑄𝑅

(𝑑𝐻 (𝑥))𝑝(𝛼−1)𝑑𝑥 = 𝑂
(

1
𝑝(𝛼 − 1) + 1

)
as 𝛼 ↘

𝑝 − 1
𝑝

for any fixed 𝑅 > 0. On the other hand, by the convexity of 𝐻 and the fact 𝐻(∇𝑑𝐻 ) = 1, we have

𝐻(∇𝑢𝛼) = 𝐻
(
𝛼𝜂(𝑑𝐻 )𝛼−1∇𝑑𝐻 + (∇𝜂)(𝑑𝐻 )𝛼

)
≤ 𝐻(𝛼𝜂(𝑑𝐻 )𝛼−1∇𝑑𝐻 ) +𝐻((𝑑𝐻 )𝛼(∇𝜂))
≤ 𝛼(𝑑𝐻 )𝛼−1 + (𝑑𝐻 )𝛼𝐻(∇𝜂).

Since (2𝑅)𝑝(𝛼−1)+1 − 𝑅𝑝(𝛼−1)+1 → 0 as 𝛼 ↘ 𝑝−1
𝑝

, we have

∫
ℝ𝑁

+ ∩(𝑄2𝑅⧵𝑄𝑅)

𝑥𝑝(𝛼−1)𝑁 𝑑𝑥 = ∫
𝑅<|𝑥′|<2𝑅

2𝑅

∫
𝑅

𝑥𝑝(𝛼−1)𝑁 𝑑𝑥𝑁𝑑𝑥
′

= 𝐷(𝑅) (2𝑅)
𝑝(𝛼−1)+1 − 𝑅𝑝(𝛼−1)+1

𝑝(𝛼 − 1) + 1
= 𝑜( 1

𝑝(𝛼 − 1) + 1
)

as 𝛼 ↘ 𝑝−1
𝑝

for any fixed 𝑅 > 0, where 𝐷(𝑅) = ∫𝑅<|𝑥′|<2𝑅 𝑑𝑥′. Also we have

∫
ℝ𝑁

+ ∩(𝑄2𝑅⧵𝑄𝑅)

𝑥𝑝𝛼𝑁 𝑑𝑥 = ∫
𝑅<|𝑥′|<2𝑅

2𝑅

∫
𝑅

𝑥𝑝𝛼𝑁 𝑑𝑥𝑁𝑑𝑥
′ = 𝑂(1).

Then

∫
ℝ𝑁

+ ∩(𝑄2𝑅⧵𝑄𝑅)

(𝑑𝐻 (𝑥))𝑝(𝛼−1)𝑑𝑥 = 𝑜( 1
𝑝(𝛼 − 1) + 1

),

∫
ℝ𝑁

+ ∩(𝑄2𝑅⧵𝑄𝑅)

(𝑑𝐻 (𝑥))𝑝𝛼𝑑𝑥 = 𝑂(1)
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as 𝛼 ↘ 𝑝−1
𝑝

for any fixed 𝑅 > 0 and thus

∫
ℝ𝑁

+ ∩(𝑄2𝑅⧵𝑄𝑅)

𝐻(∇𝑢𝛼)𝑝𝑑𝑥

≤ 2𝑝−1𝛼𝑝 ∫
ℝ𝑁

+ ∩(𝑄2𝑅⧵𝑄𝑅)

(𝑑𝐻 )𝑝(𝛼−1)𝑑𝑥 + 2𝑝−1 sup
𝑥∈𝑄2𝑅

𝐻𝑝(∇𝜂(𝑥)) ∫
ℝ𝑁

+ ∩(𝑄2𝑅⧵𝑄𝑅)

(𝑑𝐻 )𝑝𝛼𝑑𝑥

= 𝑜( 1
𝑝(𝛼 − 1) + 1

) + 𝑂(1).

Therefore, we see

𝐶𝑝(ℝ𝑁
+ ∩𝑄2𝑅) ≤

∫
ℝ𝑁

+ ∩𝑄2𝑅

|∇𝑢𝛼 ⋅ (∇𝜉𝐻)(∇𝑑𝐻 )|𝑝𝑑𝑥
∫

ℝ𝑁
+ ∩𝑄2𝑅

|𝑢𝛼|𝑝
(𝑑𝐻 (𝑥))𝑝

𝑑𝑥

≤
∫

ℝ𝑁
+ ∩𝑄𝑅

𝐻𝑝(∇𝑢𝛼)𝑑𝑥 + ∫
ℝ𝑁

+ ∩(𝑄2𝑅⧵𝑄𝑅)

𝐻𝑝(∇𝑢𝛼)𝑑𝑥

∫
ℝ𝑁

+ ∩𝑄𝑅

|𝑢𝛼|𝑝
(𝑑𝐻 (𝑥))𝑝

𝑑𝑥

=

𝛼𝑝 ∫
ℝ𝑁

+ ∩𝑄𝑅

(𝑑𝐻 (𝑥))𝑝(𝛼−1)𝑑𝑥 + ∫
ℝ𝑁

+ ∩(𝑄2𝑅⧵𝑄𝑅)

𝐻𝑝(∇𝑢𝛼)𝑑𝑥

∫
ℝ𝑁

+ ∩𝑄𝑅

(𝑑𝐻 (𝑥))𝑝(𝛼−1)𝑑𝑥

= 𝛼𝑝 +
𝑜( 1

𝑝(𝛼−1)+1
) + 𝑂(1)

𝑂( 1
𝑝(𝛼−1)+1

)

as 𝛼 ↘ 𝑝−1
𝑝

. Then taking the limit 𝛼 ↘ 𝑝−1
𝑝

, we have 𝐶𝑝(ℝ𝑁
+ ) ≤ ( 𝑝−1

𝑝
)𝑝. Thus we have proven the result.

Remark 6.7. Let Ω ⊂ ℝ𝑁
+ be a domain with a flat boundary portion on 𝜕ℝ𝑁

+ , that is,

𝑄4𝑅 ⊂ Ω for some 𝑅 > 0

where 𝑄4𝑅 be an open cube as in (6.12). Then we have𝐶𝑝(Ω) =
(

𝑝−1
𝑝

)𝑝
. Because for such domain, 𝑑𝐸(𝑥) = inf𝑦∈𝜕Ω |𝑥−𝑦| = 𝑥𝑁

for 𝑥 ∈ 𝑄2𝑅 ∩ Ω and the same proof as Theorem 6.6 works well.

Remark 6.8. Let Ω be a domain in ℝ𝑁 satisfying that 𝑑𝐻 is weakly twice differentiable and −Δ𝑑𝐻 ≥ 0 a.e.in Ω, where
𝑑𝐻 (𝑥) = inf𝑦∈𝜕Ω 𝐻0(𝑥 − 𝑦). Concerning the attainability of the best constant of (4.4), i.e.,

𝐶𝑝(Ω) ∶= inf
0≢𝑢∈𝐶∞

0 (Ω)

∫
Ω

|∇𝑢 ⋅ (∇𝜉𝐻)(∇𝑑𝐻 )|𝑝𝑑𝑥
∫
Ω

|𝑢|𝑝
(𝑑𝐻 (𝑥))𝑝

𝑑𝑥
, (6.13)

we will have the following observation.
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First, for 𝑢 ∈ 𝐶∞
0 (Ω), define 𝑣(𝑥) = 𝑢(𝑥)𝑑

−( 𝑝−1
𝑝
)

𝐻 , 𝑣 is a Lipschitz function and 𝑣 = 0 on 𝜕Ω. We compute

∇𝑢 =
(
𝑝 − 1
𝑝

)
𝑑
− 1

𝑝

𝐻 𝑣(𝑥)∇𝑑𝐻 + 𝑑
𝑝−1
𝑝

𝐻 ∇𝑣,

∇𝑢 ⋅ (∇𝜉𝐻)(∇𝑑𝐻 ) =
(
𝑝 − 1
𝑝

)
𝑑
− 1

𝑝

𝐻 𝑣(𝑥)∇𝑑𝐻 ⋅ (∇𝜉𝐻)(∇𝑑𝐻 )

+ 𝑑
𝑝−1
𝑝

𝐻 ∇𝑣 ⋅ (∇𝜉𝐻)(∇𝑑𝐻 ).

Thus

|∇𝑢 ⋅ (∇𝜉𝐻)(∇𝑑𝐻 )|𝑝 = |||
(
𝑝 − 1
𝑝

)
𝑑
− 1

𝑝

𝐻 𝑣(𝑥) + 𝑑
𝑝−1
𝑝

𝐻 ∇𝑣 ⋅ (∇𝜉𝐻)(∇𝑑𝐻 )|||𝑝
≥
(
𝑝 − 1
𝑝

)𝑝

𝑑−1
𝐻 |𝑣|𝑝 + 𝑝

(
𝑝 − 1
𝑝

)𝑝−1 |𝑣|𝑝−2𝑣∇𝑣 ⋅ (∇𝜉𝐻)(∇𝑑𝐻 )

=
(
𝑝 − 1
𝑝

)𝑝 |𝑢|𝑝
𝑑𝑝
𝐻

+
(
𝑝 − 1
𝑝

)𝑝−1

∇(|𝑣|𝑝) ⋅ (∇𝜉𝐻)(∇𝑑𝐻 ),

where, as before, we have used the fact that |𝑎+ 𝑏|𝑝 ≥ |𝑎|𝑝 + 𝑝|𝑎|𝑝−2𝑎𝑏 for 𝑝 > 1 and 𝑎, 𝑏 ∈ ℝ. Note that the equality holds true
if and only if 𝑏 = 0. Thus we have

𝐽 (𝑢) ∶= ∫
Ω

|∇𝑢 ⋅ (∇𝜉𝐻)(∇𝑑𝐻 )|𝑝𝑑𝑥 −
(
𝑝 − 1
𝑝

)𝑝

∫
Ω

|𝑢|𝑝
(𝑑𝐻 )𝑝

𝑑𝑥

=
(
𝑝 − 1
𝑝

)𝑝−1

∫
Ω

∇(|𝑣|𝑝) ⋅ (∇𝜉𝐻)(∇𝑑𝐻 )𝑑𝑥

= −
(
𝑝 − 1
𝑝

)𝑝−1

∫
Ω

|𝑣|𝑝(Δ𝐻𝑑𝐻 )𝑑𝑥,

since 𝐻(∇𝑑𝐻 ) = 1 a.e. Therefore, if 𝐽 (𝑢) = 0 for some 𝑢 ∈ 𝐶∞
0 (Ω), then we must have{

Δ𝐻𝑑𝐻 = 0 𝑎.𝑒. inΩ,|∇𝑣 ⋅ (∇𝜉𝐻)(∇𝑑𝐻 )| = 0 𝑎.𝑒. inΩ,

since we assume that Δ𝐻𝑑𝐻 ≤ 0 a.e.in Ω. In particular, we can claim that if 𝐶𝑝(Ω) =
(

𝑝−1
𝑝

)𝑝
and −Δ𝐻𝑑𝐻 > 0 on a positive

measure, then 𝐶𝑝(Ω) is not attained.

Let 1 < 𝑝 < ∞. In the Euclidean case (i.e., 𝐻(𝜉) = |𝜉|, 𝐻0(𝑥) = |𝑥| for 𝜉, 𝑥 ∈ ℝ𝑁 ), the following facts are known [26] [27]:

• For any convex domain Ω, 𝐶𝑝(Ω) = ( 𝑝−1
𝑝
)𝑝.

• For any domain Ω such that 𝜕Ω has a tangent hyperplane at least one point in 𝜕Ω, 𝐶𝑝(Ω) ≤ ( 𝑝−1
𝑝
)𝑝.

• For any bounded 𝐶2-domain Ω, if 𝐶𝑝(Ω) < ( 𝑝−1
𝑝
)𝑝 then 𝐶𝑝(Ω) is attained.

• For any bounded 𝐶2-domain Ω, 𝐶2(Ω) <
1
4

if and only if 𝐶2(Ω) is attained.

It could be interesting to study corresponding results for the best constant of the geometric Finsler Hardy inequality (6.13).

7 THE SCALE INVARIANCE OF THE ANISOTROPIC CRITICAL HARDY INEQUALITY

In this section, we shall show that the anisotropic critical Hardy inequality (3.2) is invariant under the scaling

𝑢𝜆(𝑥) = 𝜆−
𝑁−1
𝑁 𝑢

((
𝐻0(𝑥)
𝑅

)𝜆−1

𝑥

)
, (𝜆 > 0)
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when Ω = 𝑅. In order to show that, we need the following lemma.

Lemma 7.1. Let 𝑐 > 0 and 𝑎 ∈ ℝ. For 𝑦 ∈ ℝ𝑁 , let 𝑥 = 𝑐𝐻0(𝑦)𝑎𝑦. Then the Jacobian of the transformation 𝑦 → 𝑥 is|||||det
(
𝜕(𝑥1,⋯ , 𝑥𝑁 )
𝜕(𝑦1,⋯ , 𝑦𝑁 )

)||||| = 𝑐𝑁 (1 + 𝑎)(𝐻0(𝑦))𝑎𝑁 .

In the special case 𝐻(𝜉) = |𝜉|, Lemma 7.1 is shown by [23].

Proof. Let us assume 𝑦 ≠ 0. Then 𝑥 ≠ 0 and we may employ “polar coordinate" 𝑥 = 𝑟𝜔, 𝑦 = 𝜌𝜔, where 𝑟 = 𝐻0(𝑥), 𝜌 = 𝐻0(𝑦)
and 𝜔 ∈ 𝜕 . By homogeneity, we see 𝑟 = 𝐻0(𝑥) = 𝑐(𝐻0(𝑦))𝑎+1 = 𝑐𝜌𝑎+1, which implies 𝑑𝑟 = 𝑐(𝑎 + 1)𝜌𝑎𝑑𝜌. Also we see
𝑑𝑥 = 𝑟𝑁−1𝑑𝑟𝑑𝑆𝜔, 𝑑𝑦 = 𝜌𝑁−1𝑑𝜌𝑑𝑆𝜔, where 𝑑𝑆𝜔 is an (𝑁 − 1)-dimensional measure such that

∫
𝜕

𝑑𝑆𝜔 = 𝑃𝐻 ( ;ℝ𝑁 ) = 𝜔𝑁−1 = 𝑁𝜅𝑁 .

When 𝜕 is Lipschitz, 𝑑𝑆𝜔 can be written 𝑑𝑆𝜔 = 𝐻(𝜈(𝜔))𝑑𝑁−1 where 𝜈(𝜔) = ∇𝐻0(𝜔)|∇𝐻0(𝜔)| is an unit normal vector of 𝜕 . Now,

𝑑𝑥 = 𝑟𝑁−1𝑑𝑟𝑑𝑆𝜔 = (𝑐𝜌𝑎+1)𝑁−1 𝑑𝑟
𝑑𝜌

𝑑𝜌𝑑𝑆𝜔

= 𝑐𝑁 (𝑎 + 1)(𝜌𝑎+1)𝑁−1𝜌𝑎𝑑𝜌𝑑𝑆𝜔 = 𝑐𝑁 (𝑎 + 1)𝜌𝑎𝑁𝜌𝑁−1𝑑𝜌𝑑𝑆𝜔

= 𝑐𝑁 (𝑎 + 1)𝜌𝑎𝑁𝑑𝑦.

On the other hand, 𝑑𝑥 =
||||det ( 𝜕(𝑥1,⋯,𝑥𝑁 )

𝜕(𝑦1,⋯,𝑦𝑁 )

)|||| 𝑑𝑦 by definition. Thus we have the conclusion.

Remark 7.2. By a direct calculation, we see that the Jacobi matrix

𝐴 =
(
𝜕𝑥𝑖
𝜕𝑦𝑗

)
1≤𝑖,𝑗≤𝑁

= 𝑐(𝐻0(𝑦))𝑎
[
Id. + 𝑎

𝐻0(𝑦)
𝐵
]
,

𝐵 = (𝐻0
𝑦𝑗
(𝑦)𝑦𝑖)1≤𝑖,𝑗≤𝑁

has eigenvalues

• 𝑐(𝐻0(𝑦))𝑎 with multiplicity 𝑁 − 1, whose eigenspace is the orthogonal space of the vector ∇𝐻0(𝑦), 𝑦 ≠ 0.

• 𝑐(1 + 𝑎)(𝐻0(𝑦))𝑎 with multiplicity 1, whose eigenspace is ℝ𝑦, 𝑦 ≠ 0.

Thus actually

det𝐴 = det
(
𝜕(𝑥1,⋯ , 𝑥𝑁 )
𝜕(𝑦1,⋯ , 𝑦𝑁 )

)
= 𝑐𝑁 (1 + 𝑎)(𝐻0(𝑦))𝑎𝑁 .

Set 𝑦 =
(

𝐻0(𝑥)
𝑅

)𝜆−1
𝑥, that is 𝑥 = 𝑅1− 1

𝜆 (𝐻0(𝑦))
1
𝜆
−1𝑦. Since

𝜕𝑢(𝑦)
𝜕𝑥𝑖

𝑥𝑖
𝐻0(𝑥)

=
𝑁∑
𝑗=1

𝜕𝑢(𝑦)
𝜕𝑦𝑗

𝜕𝑦𝑗
𝜕𝑥𝑖

𝑥𝑖
𝐻0(𝑥)

=
𝑁∑
𝑗=1

𝜕𝑢(𝑦)
𝜕𝑦𝑗

𝑥𝑖
𝐻0(𝑥)

𝑅1−𝜆
[
(𝜆 − 1)(𝐻0(𝑥))𝜆−2𝐻0

𝑥𝑖
(𝑥)𝑥𝑗 + (𝐻0(𝑥))𝜆−1𝛿𝑖𝑗

]
= 𝑅1−𝜆(𝜆 − 1)(𝐻0(𝑥))𝜆−2𝐻0

𝑥𝑖
(𝑥)

𝑥𝑖
𝐻0(𝑥)

(∇𝑦𝑢(𝑦) ⋅ 𝑥) + 𝑅1−𝜆(𝐻0(𝑥))𝜆−1
𝜕𝑢(𝑦)
𝜕𝑦𝑖

𝑥𝑖
𝐻0(𝑥)

,

we obtain

∇𝑥𝑢(𝑦) ⋅
𝑥

𝐻0(𝑥)

= 𝑅1−𝜆(𝜆 − 1)(𝐻0(𝑥))𝜆−1
(
∇𝑦𝑢(𝑦) ⋅

𝑥
𝐻0(𝑥)

)
+ 𝑅1−𝜆(𝐻0(𝑥))𝜆−1

(
∇𝑦𝑢(𝑦) ⋅

𝑥
𝐻0(𝑥)

)
= 𝜆𝑅1−𝜆(𝐻0(𝑥))𝜆−1

(
∇𝑦𝑢(𝑦) ⋅

𝑥
𝐻0(𝑥)

)
= 𝜆𝑅

1
𝜆
−1(𝐻0(𝑦))1−

1
𝜆

(
∇𝑦𝑢(𝑦) ⋅

𝑦
𝐻0(𝑦)

)
.
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Therefore we see that

∫𝑅

|||| 𝑥
𝐻0(𝑥)

⋅ ∇𝑢𝜆(𝑥)
||||𝑁 𝑑𝑥

= 𝜆−𝑁+1 ∫𝑅

𝜆𝑁𝑅
𝑁
𝜆
−𝑁 (𝐻0(𝑦))𝑁−𝑁

𝜆
|||| 𝑦
𝐻0(𝑦)

⋅ ∇𝑢(𝑦)
||||𝑁 det

(
𝜕(𝑥1,⋯ , 𝑥𝑁 )
𝜕(𝑦1,⋯ , 𝑦𝑁 )

)
𝑑𝑦

= 𝜆𝑅
𝑁
𝜆
−𝑁 ∫𝑅

(𝐻0(𝑦))𝑁−𝑁
𝜆
|||| 𝑦
𝐻0(𝑦)

⋅ ∇𝑢(𝑦)
||||𝑁 𝑅𝑁−𝑁

𝜆
1
𝜆
(𝐻0(𝑦))

𝑁
𝜆
−𝑁𝑑𝑦

= ∫𝑅

|||| 𝑦
𝐻0(𝑦)

⋅ ∇𝑢(𝑦)
||||𝑁 𝑑𝑦,

where the second equality comes from Lemma 7.1, on taking 𝑐 = 𝑅1− 1
𝜆 and 𝑎 = 1

𝜆
− 1. In the same way as above, we see that

∫𝑅

|𝑢𝜆(𝑥)|𝑁
(𝐻0(𝑥))𝑁 (log 𝑅

𝐻0(𝑥)
)𝑁

𝑑𝑥

= 𝜆−𝑁+1 ∫𝑅

|𝑢(𝑦)|𝑁
𝑅𝑁−𝑁

𝜆 ((𝐻0(𝑦)))
𝑁
𝜆 ( 1

𝜆
log 𝑅

𝐻0(𝑦)
)𝑁

𝑅𝑁−𝑁
𝜆
1
𝜆
(𝐻0(𝑦))

𝑁
𝜆
−𝑁𝑑𝑦

= ∫𝑅

|𝑢(𝑦)|𝑁
(𝐻0(𝑦))𝑁 (log 𝑅

𝐻0(𝑦)
)𝑁

𝑑𝑦.

Hence the inequality (3.2) is invariant.

8 RELATION BETWEEN THE SUBCRITICAL AND THE CRITICAL ANISOTROPIC
HARDY INEQUALITIES

In this section, according to [35], a relation between the critical and the subcritical anisotropic Hardy inequalities (3.1), (3.2) is
presented. It will be shown that the critical anisotropic Hardy inequality on a ball is embedded into a family of the subcritical
anisotropic Hardy inequalities on the whole space by using a transformation which connects both inequalities.

Theorem 8.1. Let 𝑚,𝑁 ∈ ℕ satisfy 𝑁 ≥ 2 and 𝑚 > 𝑁 , and 𝑁
𝑅 ∶= {𝑦 ∈ ℝ𝑁 |𝐻0(𝑦) < 𝑅}. Set

𝐼(𝑢) = ∫
ℝ𝑚

||||∇𝑢 ⋅ 𝑥
𝐻0(𝑥)

||||𝑁 𝑑𝑥 −
(𝑚 −𝑁

𝑁

)𝑁

∫
ℝ𝑚

|𝑢|𝑁
𝐻0(𝑥)𝑁

𝑑𝑥,

𝐽 (𝑤) = ∫
𝑁

𝑅

||||∇𝑤 ⋅
𝑦

𝐻0(𝑦)
||||𝑁 𝑑𝑦

−
(𝑁 − 1

𝑁

)𝑁

∫
𝑁

𝑅

|𝑤|𝑁
𝐻0(𝑦)𝑁

(
log 𝑅

𝐻0(𝑦)

)𝑁 𝑑𝑦.

Then for any 𝑤 ∈ 𝐶1
𝐻0𝑟𝑎𝑑(𝑁

𝑅 ⧵ {0}) (resp. 𝑢 ∈ 𝐶1
𝐻0𝑟𝑎𝑑(ℝ

𝑚 ⧵ {0})), there exists 𝑢 ∈ 𝐶1
𝐻0𝑟𝑎𝑑(ℝ

𝑚 ⧵ {0}) (resp. 𝑤 ∈ 𝐶1
𝐻0𝑟𝑎𝑑(𝑁

𝑅 ⧵
{0})) such that the equality

𝐼(𝑢) =
𝜔𝑚−1

𝜔𝑁−1

(𝑚 −𝑁
𝑁 − 1

)𝑁−1
𝐽 (𝑢) (8.1)

holds true where 𝜔𝑁−1 = 𝑁𝜅𝑁 and 𝜔𝑚−1 = 𝑚𝜅𝑚.

Before the proof, we define a transformation which connects the critical and the subcritical anisotropic Hardy inequalities
according to [35]. Let 𝑚,𝑁 be integers such that 𝑚 > 𝑁 and let 𝑅 > 0 be fixed. For a given 𝑟 ∈ [0,+∞) (resp. 𝑠 ∈ [0, 𝑅) ),
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define a new variable 𝑠 ∈ [0, 𝑅) (resp. 𝑟 ∈ [0,+∞) ) by the relation(
log 𝑅

𝑠

)𝑁−1
𝑁 = 𝑟−

𝑚−𝑁
𝑁 , (8.2)

that is,
𝑠 = 𝑠(𝑟) = 𝑅 exp(−𝑟−𝛼), (resp. 𝑟 = 𝑟(𝑠) =

(
log 𝑅

𝑠

)−1∕𝛼
) (8.3)

where
𝛼 = 𝑚 −𝑁

𝑁 − 1
. (8.4)

Note that the left-hand side of (8.2) is the virtual extremal for (3.2) on 𝑁
𝑅 and the right-hand side of (8.2) is the virtual extremal

for (3.1) on the whole space ℝ𝑚 when 𝑝 = 𝑁 < 𝑚. Easy computation shows that
𝑑𝑠
𝑑𝑟

= 𝛼𝑠𝑟−𝛼−1 > 0, (8.5)

so when 𝑟 varies from 0 to +∞ then 𝑠 varies from 0 to 𝑅, and vice versa.
Let 𝑟 = 𝐻0(𝑥), 𝑥 ∈ ℝ𝑚 and 𝑠 = 𝐻0(𝑦), 𝑦 ∈ 𝑁

𝑅 . Now, for a given 𝑢 = 𝑢(𝑟) ∈ 𝐶1
𝐻0𝑟𝑎𝑑(ℝ

𝑚 ⧵ {0}) (resp. 𝑤 = 𝑤(𝑠) ∈
𝐶1
𝐻0𝑟𝑎𝑑(𝑁

𝑅 ⧵ {0})), define a new function 𝑤 = 𝑤(𝑠) ∈ 𝐶1
𝐻0𝑟𝑎𝑑(𝑁

𝑅 ⧵ {0}) (resp. 𝑢 = 𝑢(𝑟) ∈ 𝐶1
𝐻0𝑟𝑎𝑑(ℝ

𝑚 ⧵ {0})) by

𝑤(𝑠) = 𝑢(𝑟), (8.6)

where variables 𝑠 and 𝑟 are related as in (8.2). Note that lim𝑠→𝑅 𝑤(𝑠) = 0 is equivalent to lim𝑟→∞ 𝑢(𝑟) = 0. Namely, under the
transformation (8.6), the boundary 𝜕𝑁

𝑅 corresponds to the infinity point ∞ in ℝ𝑚.

Proof of Theorem 8.1. Define 𝑢 and 𝑤 as in (8.6). Then we obtain

∫
ℝ𝑚

||||∇𝑢 ⋅ 𝑥
𝐻0(𝑥)

||||𝑁 𝑑𝑥 = 𝜔𝑚−1

∞

∫
0

|𝑢′(𝑟)|𝑁𝑟𝑚−1𝑑𝑟
= 𝜔𝑚−1

𝑅

∫
0

||||𝑤′(𝑠)𝑑𝑠
𝑑𝑟

||||𝑁 𝑟(𝑠)𝑚−1 𝑑𝑟
𝑑𝑠

𝑑𝑠

= 𝜔𝑚−1

𝑅

∫
0

|𝑤′(𝑠)|𝑁 (
𝛼𝑠𝑟(𝑠)−𝛼−1

)𝑁−1 𝑟(𝑠)𝑚−1 𝑑𝑠

= 𝜔𝑚−1𝛼
𝑁−1

𝑅

∫
0

|𝑤′(𝑠)|𝑁𝑠𝑁−1𝑟(𝑠)𝑚−1−(𝛼+1)(𝑁−1) 𝑑𝑠

=
𝜔𝑚−1

𝜔𝑁−1
𝛼𝑁−1

𝑅

∫
0

|𝑤′(𝑠)|𝑁𝑠𝑁−1 𝑑𝑠

=
𝜔𝑚−1

𝜔𝑁−1
𝛼𝑁−1 ∫

𝑁
𝑅

||||∇𝑤 ⋅
𝑦

𝐻0(𝑦)
||||𝑁 𝑑𝑦,

here we have used (8.5) and 𝑚 − 1 − (𝛼 + 1)(𝑁 − 1) = 0 by (8.4).
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On the other hand, we have

∫
ℝ𝑚

|𝑢(𝑥)|𝑁
𝐻0(𝑥)𝑁

𝑑𝑥 = 𝜔𝑚−1

∞

∫
0

|𝑢(𝑟)|𝑁𝑟𝑚−𝑁−1 𝑑𝑟

= 𝜔𝑚−1

𝑅

∫
0

|𝑤(𝑠)|𝑁𝑟(𝑠)𝑚−𝑁−1 𝑑𝑟
𝑑𝑠

𝑑𝑠

= 𝜔𝑚−1

𝑅

∫
0

|𝑤(𝑠)|𝑁𝑟(𝑠)𝑚−𝑁−1𝛼−1𝑠−1𝑟(𝑠)𝛼+1 𝑑𝑠

=
𝜔𝑚−1

𝛼

𝑅

∫
0

|𝑤(𝑠)|𝑁
𝑠

𝑟(𝑠)𝑚−𝑁+𝛼 𝑑𝑠

=
𝜔𝑚−1

𝛼

𝑅

∫
0

|𝑤(𝑠)|𝑁
𝑠(log 𝑅

𝑠
)𝑁

𝑑𝑠

=
𝜔𝑚−1

𝛼𝜔𝑁−1 ∫
𝑁

𝑅

|𝑤(𝑦)|𝑁
𝐻0(𝑦)𝑁

(
log 𝑅

𝐻0(𝑦)

)𝑁 𝑑𝑦,

since 𝑟(𝑠)𝑚−𝑁+𝛼 = (log 𝑅
𝑠
)−𝑁 by (8.2) and (8.4).

By combining these identities, we obtain Theorem 8.1.

Lastly we show that the transformation preserves the scale invariance structures of the subcritical and the critical anisotropic
Hardy inequalities.

Proposition 8.2. Let 𝑚,𝑁 be integers such that 𝑚 > 𝑁 . For functions 𝑢 = 𝑢(𝑟), 𝑟 ∈ [0,+∞) and 𝑤 = 𝑤(𝑠), 𝑠 ∈ [0, 𝑅), define
the scaled functions

𝑢𝜇(𝑟) = 𝜇
𝑚−𝑁
𝑁 𝑢(𝜇𝑟),

𝑤𝜆(𝑠) = 𝜆−
𝑁−1
𝑁 𝑤(𝑅1−𝜆𝑠𝜆)

for 𝜇, 𝜆 > 0. Then we have

𝑤𝜆(𝑠(𝑟)) = 𝑢𝜇(𝑟), where 𝜇 = 𝜆−1∕𝛼 ,
𝑢𝜇(𝑟(𝑠)) = 𝑤𝜆(𝑠), where 𝜆 = 𝜇−𝛼 ,

where 𝑠 = 𝑠(𝑟) and 𝑟 = 𝑟(𝑠) are as in (8.3) and 𝛼 is defined in (8.4).

Proof. By direct calculation,

𝑅1−𝜆𝑠(𝑟)𝜆 = 𝑅1−𝜆 (𝑅 exp(−𝑟−𝛼))𝜆 = 𝑅 exp (−𝜆𝑟−𝛼)
= 𝑅 exp

((
−(𝜆−1∕𝛼𝑟)

)−𝛼) = 𝑠(𝜇𝑟),

where 𝜇 = 𝜆−1∕𝛼 . Therefore we obtain

𝑤𝜆(𝑠(𝑟)) = 𝜆−
𝑁−1
𝑁 𝑤(𝑅1−𝜆𝑠(𝑟)𝜆) =

(
𝜆−1∕𝛼

) 𝑚−𝑁
𝑁 𝑤(𝑠(𝜇𝑟))

= 𝜇
𝑚−𝑁
𝑁 𝑢(𝜇𝑟) = 𝑢𝜇(𝑟).

The proof of 𝑢𝜇(𝑟(𝑠)) = 𝑤𝜆(𝑠) for 𝜆 = 𝜇−𝛼 , is similar.
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