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Significance and Impact of the Study: 

Amphotericin B, a polyene macrolide antifungal agent, is widely used to treat systemic 

mycoses; however, a reduced dosage is preferred to avoid side effects in patients during 

antifungal therapy. In this study, benzyl isothiocyanate, a cruciferous plant-derived compound, 

considerably enhanced the fungicidal activity of amphotericin B. This combinatorial lethal 

effect was attributed to vacuole disruption in both the model yeast Saccharomyces cerevisiae 

and the fungal pathogen, Candida albicans. The fungicidal activity of benzyl isothiocyanate 

and amphotericin B in combination may have significant implications on the development of 

vacuole-targeting chemotherapy against fungal infections. 
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Abstract 

Amphotericin B (AmB), a typical polyene macrolide antifungal agent, is widely used to treat 

systemic mycoses. In the present study, we show that the fungicidal activity of AmB was 

enhanced by benzyl isothiocyanate (BITC), a cruciferous plant-derived compound, in the 

budding yeast, Saccharomyces cerevisiae. In addition to forming a molecular complex with 

ergosterol present in fungal cell membranes to form K+-permeable ion channels, AmB has 

been recognized to mediate vacuolar membrane disruption resulting in lethal effects. BITC 

showed no effect on AmB-induced plasma membrane permeability; however, it amplified 

AmB-induced vacuolar membrane disruption in S. cerevisiae. Furthermore, the BITC-

enhanced fungicidal effects of AmB significantly decreased cell viability due to the disruption 

of vacuoles in the pathogenic fungus Candida albicans. The application of the combinatorial 

antifungal effect of AmB and BITC may aid in dose reduction of AmB in clinical antifungal 

therapy and consequently decrease side effects in patients. These results also have significant 

implications for the development of vacuole-targeting chemotherapy against fungal infections. 
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Introduction 

Amphotericin B (AmB, Fig. 1a) is a polyene macrolide antibiotic, which has been widely 

employed as a potent antifungal agent in topical and systemic therapy for fungal infections. 

Notably, AmB also affects the integrity of cell membranes in human cells and can be toxic at 

higher doses (Yano et al. 2009; Hamill 2013). The mechanism of action of AmB involves the 

binding of the hydrophobic moiety of AmB to ergosterol molecules embedded in the fungal 

plasma membrane to form K+-permeable ion channels (Baginski et al. 2005; Carrillo-Muñoz et 

al. 2006). However, alternative modes of action have also been proposed as ion leakage does 

not necessarily result in loss of cell viability (Chen et al. 1978). AmB also generates 

superoxide anions and causes oxidative damage in the pathogenic fungus, Candida albicans, 

although this mode of action likely depends on K+ efflux as well (Kim et al. 2012). The nss1 

mutants in Saccharomyces cerevisiae, characterized by severe defects in vacuolar protein 

sorting and morphology, are strongly sensitive to polyenes such as AmB (Bhuiyan et al. 

1999). While different modes of action are attributed to AmB, the precise mechanism of its 
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lethal action is poorly understood. As antifungals with novel mechanisms of action are being 

developed to treat fungal infectious diseases, the medical application of AmB awaits further 

improvement. 

We recently demonstrated that lethal doses of AmB dramatically alter the structure 

of fungal vacuoles (Ogita et al. 2006; Ogita et al. 2007; Borjihan et al. 2009; Ogita et al. 2010; 

Ogita et al. 2012). This mode of fungicidal action of AmB is markedly enhanced by allicin, an 

allyl sulfur compound from garlic, and is ineffective toward vacuole-deficient cells of human 

promyelocytic leukemia (HL-60) cell line (Ogita et al. 2006). The enhancement of the 

vacuole-targeting activity of AmB has also been shown to be amplified in C. albicans by the 

addition of a synthetic analog of the alkyl side chain of niphimycin known as N-methyl-N"-

dodecylguanidine (Yutani et al. 2011). These results indicate that the additive lethality of these 

compounds with AmB may not solely be due to an increase in plasma ion permeability (Ogita 

et al. 2006; Ogita et al. 2007; Ogita et al. 2010), and may be closely related to the vacuole 

trafficking machinery and/or increased susceptibility of the organelle membrane to the 
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disruptive action of AmB. Our recent research revealed that the fungicidal activity of AmB 

requires autophagy-dependent trafficking into the intra-vacuolar lumen, and AmB interacts 

with the luminal leaf of the vacuolar membrane to cause structurally catastrophic effects 

(Yoshioka et al. 2016). The use of synergistic compounds to enhance AmB lethality may 

reduce side effects by reducing the dose of AmB, thereby improving chemotherapy for fungal 

diseases. 

Benzyl isothiocyanate (BITC, Fig. 1b), a cruciferous plant-derived compound, has 

been shown to inhibit chemically-induced cancer in animal models (Srivastava and Singh 

2004) and growth suppression of pancreatic cancer cells due to NF-κB inactivation in vitro and 

in vivo (Batra et al. 2010). Methylsulfinylhexyl isothiocyanate, a compound similar to BITC, 

is known to have important medical benefits such as ameliorating diabetic nephropathy in 

mice (Fukuchi et al. 2004). BITC is a potential inducer of glutathione S-transferase (GST), 

decreasing intracellular glutathione (GSH) levels and inducing oxidative stress in rat liver 

epithelial RL34 cells (Nakamura et al. 2000). Also, BITC exhibits rapid and strong 
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bactericidal effect against oral pathogens involved in periodontal disease and other gram-

negative bacteria, whereas gram-positive bacteria mainly display growth inhibition or remain 

unaffected (Sofrata et al. 2011). Furthermore, the antifungal activities of BITC against 

Sclerotinia sclerotiorum (Lib.) de Bary and Gibberella moniliformis Wineland [anamorph 

Fusarium verticillioides (Sacc.) Nirenberg] have also been reported (Kurt et al. 2011; Azaiez 

et al. 2013). Although BITC is a promising health-promoting, anti-cancer, and antifungal 

compound, its application is limited due to its ability to cause morphological and functional 

aberrations to certain cells/tissues in vitro and in vivo (Bruggeman et al. 1986; Temmink et al. 

1986). 

In this study, we focused on the enhanced fungicidal effects exhibited by BITC in 

combination with AmB in S. cerevisiae and the pathogenic fungus, C. albicans. We 

investigated whether BITC could increase AmB efficacy at low concentrations, with the 

potential to minimize the drug-induced side effects of AmB during antifungal therapy. 
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and discussion     Results 

Effect of BITC on the fungicidal activity of AmB in S. cerevisiae 

Enhancement of the effects of polyenes such as AmB (see Fig. 1a) is essential in clinical 

therapy as a minimum dose is required to reduce side effects (Laniado-Laborín and Cabrales-

Vargas 2009). We first examined the effect of BITC on AmB lethality by measuring changes 

in the colony-forming capacity of S. cerevisiae cells. As shown in Fig. 2a, while cells are 

mostly resistant to the action of AmB at 0.15 µmol l-1, S. cerevisiae cells were subjected to 

considerable lethal damage when AmB was added at 1 µmol l-1 in a dose-dependent manner. 

BITC (see Fig. 1b) exhibited only a weak lethal effect against S. cerevisiae cells in S-buffer 

and slightly reduced the cell viability at 50 µmol l-1. The number of viable cells was reduced 

by approximately 50% after treatment with 100 µmol l-1 BITC for 2 h (Fig. 2b). Interestingly, 

AmB exhibited a drastically lethal effect on yeast cells even at 0.15 µmol l-1, a non-lethal 

concentration when used alone, in the presence of 50 µmol l-1 BITC (Fig. 2c). These results 

indicated that the simultaneous addition of BITC and a sub-inhibitory (non-lethal) 
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concentration of AmB was sufficient to reduce cell viability, suggesting that BITC enhanced 

the lethal effects of AmB. 

Effects of BITC and AmB on plasma membrane permeability 

Despite some models proposing alternate modes of action, it has been widely accepted that the 

fungicidal activity of AmB is a result of channel formation across the plasma membrane after 

it selectively binds to ergosterol, thereby enhancing the leakage of intracellular K+ ions and 

other ionic substances (Brajtburg et al. 1990; Ellis 2002; Baginski et al. 2005). Therefore, the 

effects of K+ ion leakage caused by BITC, AmB, and combinations from intact cells were 

investigated as an indicator of cell membrane damage to determine whether the lethal effects 

are associated with the cell membrane damage. AmB is usually used as a positive control for 

cell membrane integrity assays because it specifically leaks K+ ions from intact cells. 

However, this experiment focused on the action of AmB; the membrane-disruptive action 

should be compared with compounds other apart from AmB. On the other hand, ethanol has 
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been known to exhibit remarkable cell membrane damage on a wide range of microbial strains, 

causing the non-specific leakage of various substances, including intracellular ions, such as K+ 

and H+ ions, in yeast cells (Lam et al. 2014). Since almost all the intracellular K+ ions leak due 

to cell membrane damage from ethanol treatment, ethanol was used as an index to confirm the 

relative intracellular ion leakage scale, which is a measure of membrane damage effect. In line 

with the study by Lam et al. (2014), we observed that K+ ion leakage from intact cells of S. 

cerevisiae was drastically increased by the addition of 70% ethanol (v/v) in the S-buffer for 3 

h (Fig. 3). The membrane disruption, as represented by K+ ion leakage, upon addition of AmB 

at a non-lethal concentration (0.15 µmol l-1) was approximately 50% of that observed by the 

addition of 70% ethanol. The addition of 50 µmol l-1 BITC resulted in a disrupted membrane 

integrity effect comparable to that from the addition of AmB alone at a non-lethal 

concentration. Although amplifying fungicidal activity (see Fig. 2c), the membrane-disruptive 

action of AmB was not altered in the presence of BITC at 50 µmol l-1 (Fig. 3). These results 
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indicate that the enhanced lethal action of BITC and AmB in combination cannot be attributed 

to membrane disruption due to an enhanced efflux of K+ ion from intact cells. 

Effects of BITC and AmB on vacuole morphology 

Vacuoles are organelles involved in osmoregulation, ion homeostasis, and cell volume 

regulation in fungal cells (Wickner 2002). Various hydrolytic enzymes, including proteases 

and nucleases, are thought to accumulate in vacuoles; hence, damage to these organelles is 

considered a critical step in the induction of cell death (Obara et al. 2001). We recently 

reported a stimulatory effect of allicin, an allyl sulfur compound from garlic, on the fungicidal 

activity of AmB, in which the vacuole was determined to be the target of their combined 

actions (Ogita et al. 2012). As the yeast cells were sensitive to BITC and AmB in 

combination, we examined the mechanism of BITC-dependent fungicidal activity of AmB as 

regards yeast vacuolar morphology using the vacuolar-staining fluorescent dye FM4-64. 

Vacuoles of S. cerevisiae cells were observed to possess extremely spherical morphology in 
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cells treated with no drug, and such typical spherical morphology was also observed for 

vacuoles of most cells treated with either 50 µmol l-1 BITC or 0.15 µmol l-1 AmB, which are 

both non-lethal concentrations (Fig. 4a). In contrast, scattering of the fluorescent dye, FM4-64, 

into the cytoplasm was observed in cells treated with AmB at a lethal concentration of 1 µmol 

l-1 for 3 h, reflecting a defective vacuolar morphology (78.6 ± 12.6%). Furthermore, AmB-

treatment, even at a non-lethal concentration of 0.15 µmol l-1, was able to disrupt the vacuolar 

morphology in yeast cells (80.3 ± 4.6%) (Fig. 4a and b) in the presence of 50 µmol l-1 BITC. 

Since the ratio of these vacuole-disrupted cells appeared to reflect a decrease in cell viability 

(see Fig. 2), the combined fungicidal action of BITC and AmB was attributed to the disruption 

of vacuolar morphology rather than alteration of plasma membrane permeability. 

Effects of BITC and AmB in the pathogenic fungus, C. albicans 

C. albicans, a pathogenic fungus, is known to be the main causative agent of invasive

candidiasis and poses a serious healthcare problem with a high mortality rate in patients with 
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immune diseases (Thompson et al. 2019). Despite its toxicity at particular doses, AmB has 

been a mainstay of antifungal therapy and remained the ‘gold standard’ for treating 

disseminated life-threatening fungal infections primarily caused by C. albicans (Ellis 2002). 

We examined whether BITC enhances the fungicidal activity of AmB against C. albicans and 

observed changes in the vacuole morphology owing to the combined action of BITC and 

AmB. The cell viability of C. albicans NBRC 1061 was reduced to 11.0 ± 1.0% after a 3-h 

treatment with 50 µmol l-1 BITC (data not shown). Thus, C. albicans was more sensitive to 

BITC than S. cerevisiae considering the results in Fig. 2b, while 40 µmol l-1 BITC did not 

show any fungicidal effects against C. albicans (Fig. 5a). The concentration of BITC at 40 

µmol l-1, which is the highest concentration showing no lethal effect, was applied to confirm 

the amplification effect of the combination with AmB against C. albicans cells. In this 

experiment, 0.15 µmol l-1 AmB, which has no lethal effect against S. cerevisiae cells (see Fig. 

2a), slightly reduced the viability of C. albicans cells to 76.0 ± 4.1% (Fig. 5a). The 

observation that C. albicans cells were more sensitive to AmB than S. cerevisiae cells 
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supported a previous study describing the antifungal efficacy of AmB (Ogita et al. 2006). As 

expected, the combined action of BITC-AmB considerably reduced the colony-forming units 

of C. albicans cells after a 3-h treatment (Fig. 5a). Similar to cells treated with no drug, the 

vacuoles of C. albicans cells displayed spherical morphology in most cells treated individually 

with either 40 µmol l-1 BITC or 0.15 µmol l-1 AmB. In contrast, the vacuoles of BITC-AmB-

treated cells were mostly disrupted, reflected by the diffused FM4-64 staining observed in the 

cytoplasm of C. albicans cells (73.5 ± 4.6%) (Figs 5b and c). These results indicate that BITC 

enhances fungicidal effects mediated by AmB-induced vacuolar membrane disruption not only 

in S. cerevisiae but also in the pathogenic fungus, C. albicans. 

Numerous reports indicate that BITC prevents chemically-induced cancer in 

laboratory animals, and it has been postulated that BITC might also be chemoprotective in 

humans. On the other hand, there is accumulating evidence that this compound is a potent 

genotoxin in mammalian cells (Kassie et al. 1999). Although it may be necessary to eliminate 

the toxicity of BITC in patients, the combined fungicidal activities of AmB and BITC may 
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have significant implications for the development of vacuole-targeting chemotherapy with 

minimized antibiotic-induced side effects in clinical therapy against fungal infections. 

Materials and methods 

Chemicals 

Amphotericin B and benzyl isothiocyanate were obtained from Sigma-Aldrich (St. Louis, MO, 

U.S.A.). FM4-64 and K+ ion assay kit were purchased from Thermo Fisher Scientific

(Kanagawa, Japan) and HACH (Loveland, CO, U.S.A.), respectively. All other reagents were 

of analytical grade. 

Measurement of cell growth and viability 

S. cerevisiae W303-1A and C. albicans NBRC 1061 (formerly IFO 1061) cells were used in

this experiment. Cells were grown overnight at 30ºC with vigorous shaking in yeast-peptone-

dextrose (YPD) medium (1% yeast extract, 2% peptone, and 2% D-glucose). Overnight 
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cultured cells were harvested, washed with S-buffer (50 mmol l-1 succinate, pH 6.0), and

diluted into fresh S-buffer to a concentration of 5 × 107 cells ml-1. Cells were then incubated 

with vigorous shaking at 30°C in S-buffer with or without the addition of each compound at 

various concentrations and plated on YPD medium plates containing 1.8% (w/v) agar. The cell 

viability and lethality upon AmB treatment with or without BITC were characterized by 

assessing colony-forming units (CFU) after 48 h at 30°C. 

Leakage of K+ ions 

Cells cultured overnight in YPD medium were harvested by centrifugation, washed twice, and 

resuspended in S-buffer at a cell density of 5 × 107 cells ml-1. The cell suspensions were 

supplemented with or without each compound and incubated with vigorous shaking at 30°C 

for 3 h. The supernatants obtained after removal of the cells by centrifugation were used for 

the quantification of K+ ions released from the cells. K+ ions from the cells were reacted with 

sodium tetraphenylborate to form potassium tetraphenylborate, an insoluble white solid. The 



19 

amount of turbidity produced is proportional to the K+ concentration. The measurement 

wavelength is 650 nm for spectrophotometers. This quantification was performed with a K+ 

ion assay kit (Loveland, CO, U.S.A.) based on the tetraphenylborate method (Ramotowski and 

Szczesniak 1967). 

Vacuole staining 

Vacuoles were stained with the fluorescent probe FM4-64 (N-(3-triethylammoniumpropyl)-4-

(6-(4-(diethylamino)-phenyl)hexatrienyl)pyridinium dibromide) according to previously 

described methods (Vida and Emr 1995; Kato and Wickner 2001) with some modification. 

Cells from an overnight culture were inoculated into a freshly prepared YPD medium to obtain 

a density of approximately 5 × 107 cells ml-1. After incubation in YPD medium containing 5 

µmol l-1 FM4-64 at 30°C for 1 h, cells were collected by centrifugation, suspended into S-

buffer, and incubated again in the presence or absence of each compound at 30°C for 3 h. 

After washing the cells, they were resuspended in distilled water. The cells were observed 
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under a phase-contrast microscope and a fluorescence microscope at an excitation of 520-550 

nm and emission of 580 nm to visualize vacuoles. The percentage of cells with disrupted 

vacuoles was determined by counting 10 cells in 10 different microscopic fields. 

Statistical methods 

Statistical evaluation was performed using Student’s t-test; p < 0.05 was considered to 

represent statistical significance. 
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Legend to figures 

Figure 1. Structure of amphotericin B (a) and benzyl isothiocyanate (b). 

Figure 2. Effect of amphotericin B (AmB) on cell viability in the absence or presence of 

benzyl isothiocyanate (BITC) in S. cerevisiae. Cells (5 × 107 cells ml-1) were 

incubated with AmB alone at the following concentrations; 0 (¡), 0.15 (l), 0.5 (o), 

or 1 µmol l-1 (n) (a). Cells were incubated with BITC alone at 0 (¡), 50 (l), or 100 

µmol l-1 (o) (b). Cells were incubated with AmB at 0 (¡), 0.15 (l), or 0.5 µmol l-1 

(o) in the presence of 50 µmol l-1 BITC (c). Each data point represents the mean ±

standard deviation of triplicate assays. 

Figure 3. Effect of amphotericin B (AmB), benzyl isothiocyanate (BITC), and a combination 

of AmB and BITC on K+ leakage from intact cells of S. cerevisiae. Cells (5 × 107 

cells ml-1) were incubated in S-buffer at 30°C for 3 h with each compound at 

indicated concentrations. Each data point represents the mean ± standard deviation of 

triplicate assays, wherein n.s. indicates no significant differences between AmB and 
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BITC, AmB and BITC-AmB, or BITC and BITC-AmB-treated cells, and asterisk 

indicates significant differences between ethanol and AmB, BITC, or BITC-AmB-

treated cells (p < 0.05). 

Figure 4. Effect of amphotericin B (AmB), benzyl isothiocyanate (BITC), and a combination 

of AmB and BITC on the vacuole morphology. Cells (5 × 107 cells ml-1) were 

preincubated with FM4-64 followed by incubation at 30°C for 3 h in S-buffer in the 

absence or presence of each compound at the indicated concentrations and were 

imaged by bright-field (top) and fluorescence microscopy (bottom). The most 

representative photographic images of bright-field (top) and fluorescence microscopy 

(bottom) are shown (a); scale bar, 2 µm. The percentage of cells with disrupted 

vacuoles was determined by counting 10 cells in 10 different microscopic fields (b). 

The data are expressed as means ± standard deviation, and asterisk indicates 

significant differences compared to the cells treated with no drug (p < 0.05). 
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Figure 5. Effect of amphotericin B (AmB), benzyl isothiocyanate (BITC), and a combination 

of AmB and BITC on cell viability (a), the vacuole morphology (b), and the 

percentage of cells with disrupted vacuoles (c) in C. albicans. Cells (5 × 107 cells ml-

1) were incubated at 30°C for 3 h with S-buffer in the absence or presence of each

compound at the indicated concentrations (a). Cell viability is indicated by the 

percentage of CFU per ml after 3 h incubation, in which the initial inoculum size 

corresponding to 5 × 107 cells ml-1 was considered to be 100%. Each data point 

represents the mean ± standard deviation of triplicate assays. Asterisk indicates 

significant differences between AmB alone and BITC-AmB-treated cells (p < 0.05). 

Cells (5 × 107 cells ml-1) were preincubated with FM4-64 followed by incubation at 

30°C for 3 h in S-buffer in the absence or presence of each compound at the 

indicated concentrations and the most representative photographic images of bright-

field (top) and fluorescence microscopy (bottom) are shown (b); Scale bar, 2 µm. 

The percentage of cells with disrupted vacuoles was determined by counting 10 cells 
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in 10 different microscopic fields (c). The data are expressed as means ± standard 

deviation. Asterisk and n.s. indicate significant differences and no significant 

differences compared to the cells treated with no drug, respectively (p < 0.05). 
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