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We revisit the fundamental problem of the splitting instability of a doubly quantized vortex in uniform single-
component superfluids at zero temperature. We analyze the system-size dependence of the excitation frequency of a
doubly quantized vortex through large-scale simulations of the Bogoliubov—de Gennes equation, and find that the sys-
tem remains dynamically unstable even in the infinite-system-size limit. Perturbation and semi-classical theories reveal
that the splitting instability radiates a damped oscillatory phonon as an opposite counterpart of a quasi-normal mode.

Introduction Vortices appear in many branches of physicsnanner:®-1% obfuscating the underlying physics. Lundh and
In particular, the structure, stability, and dynamics of vorticeBlilsen made progress in understanding the splitting instability
in nonlinear fields share common features in many physby employing a perturbation theory; however, no quantitative
cal systemd) Quantized vortices are prototypes among thosevaluation was carried out because of the complicated behav-
vortices, playing a key role in the fluid dynamics of superior of the imaginary part of excitation frequency (see Fig. 3 in
fluid helium and Bose—Einstein condensates (BEC®)In  Refl%).
general, quantized vortices are characterized by the wind-Currently, we do not have a definite answer to the ques-
ing number of the phase of the superfluid order parametgon “does the splitting instability occur ibulk superfluids at
around the vortex core. A vortex whose winding number zero temperatur®’. This is partly because long-time numeri-
is more than unity is called drquantized or multiply quan- cal simulations with high-spec computers are required for in-
tized vortex (MQV). Since the energy of &guantized vor- vestigating the dynamic stability more precisely. According
tex is generally larger than the sum of energied eingly to the previous studies on trapped BE€3,) it is not easy
guantized vortices (SQVs), an MQV is energetically unstao answer this question, because the finite-sitece is es-
ble and splits into SQVs in uniform systefidn fact, MQVs  sential there. Although Aranson and Steind&rgoncluded
have never been observed in equilibrium. However, this athat the lifetime of an MQV may become infinite without a
gument does not eliminate the possibility that MQVs survivérap in their numerical simulation, its system-size dependence
as a metastable state at very low temperatures when ener@s not been clarified systematically. This problem is of fun-
dissipation is negligible. damental importance in quantum fluid dynamics at very low

To investigate the splitting instability precisely, we need téeemperatures, and therefore, it is essential to understamd,
analyze the microscopic structure of the vortex core. Itfis-di quantum turbulence of helium superfititland large two-
cult to demonstrate such an analysis in the strongly correlatdinensional (2D) BEC3? where the problems become more
superfluid*He. Experimentally, there is no established techeomplicated if the presence of MQVs is permitted.
nigue to prepare an MQV in helium superfluids as an initial Here, we consider the most fundamental situation of a dou-
state of the instability problem. The realization of MQV inbly quantized vortex (DQV) in a uniform 2D system. We
the BECs of ultra-cold gases sheds light on this problem, asthow that a DQV is dynamically unstable in uniform BECs.
vortex splitting has been observéd) The MQV in trapped Our large-scale numerical computation of the BdG equations
systems can be dynamically unstable, and split into vorticesveals a nontrivial system-size dependence of the excitation
with smaller winding numbers according to the Bogoliubov$requency and its asymptotic behavior in the infinite-system-
de Gennes (BdG) analysis at zero temperatti’é) Dynamic  size limit. The nontrivial dependence is well-characterized by
instability may occur when the excitation modes have conthe “mixing” between the core mode and phonon with our
plex frequencies as a result of coupling or “mixing” betweemescaling perturbation theory. The semi-classical theory, ex-
two modes with positive and negative excitation energies. Thended to the case of complex eigenvalue, reveals that the
negative energy mode, called the core mode, is localized at timstability causes spontaneous radiation and amplification of
vortex core and decreases the angular momentum of the sgsiasi-normal modes such as the damped oscillatory phonons
tem by-I7 in the direction along the core. The positive energwith anomalously long attenuation length. We discuss an
mode is a collective mode of the condensate. The instabilignalogy between this phenomenon and the rotational super-
depends on the atomic interaction strength in a complicateddiance, which was observed recently as an amplification of

surface water waves by a draining vorféx.
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Formulation We consider BECs in a quasi-2D sys- | &

tem at zero temperature when the degrees of freedom, | |,
along the zaxis are not consideréd The conden- ]
sate is well-described by the order parametg,t), of_]
which obeys the Gross—Piteavskii (GP) Lagrangian
L = [y (indi—H-dyP)y. Here, we use

— _j2y2 _ ; ; Fig. 1. (Color online) Dependence of the dimensionless eigenvalue of the
H v /(Zma) K with the atomic massm, the splitting instability onR for R < 200 (a) and the double logarithmic plot

cher_mcal potentigk, and thef Interaction anSta@t_ . . for R < 16384 (b). Solid (dashed) curves and squares (circles) represent
Without loss of generality, a DQV with positive wind- the numerical (analytical) result @, and ik, respectively. The analytical
ing numberl = 2 is considered. The stationary state ofesult is obtained by Eq. (3) with formula (7), presumed from the overall

a DQV is written asy(r,t) = ¢(r) = f(r)€'" with the Rdependence afiZ
cylindrical coordinates = (r,6). The real amplitudef(r)
obeys the GP equatiot[ + 1°72/(2mgr?) + gf?]f = 0 with

H = -#? (6rz+ r*lar) /(2my) — p. The dimensionless am- .
- & : ; lue forR z 500. This fact indicates that a DQV is dynam-
litude f = 4/g/uf is characterized by the rescaled lengt a ~

Pt g/ut i 2 y g ically unstable even in the infinite-system-size lifRit-> oo.

i = r/¢ with the healing lengtld = 7/ g, f approaches . . s L -
the aéf/mptotic fornf2 31 B ?2?22#) gorrfnaf 1 an%%z o 2 We estimated the values aizr"and; in this limit aswr —
- = —0.438969(2) andy — 1/7., = 0.002429(2¢* Here,

for ¥ — 0. In other words, our system is parameterized only* q h lar £ _& ik of th
by the dfective system siz& = R/¢ through the boundary ™ corresponds to the angular frequeiizy = Q..u/ of the

condition atr = R. The same statement is applicable to théOt‘f"tional m~otion of the.two parallel SQV,S into WNhiCh abQVv
BdG analysis below. spllts_, andr,, characterizes the growth time, = 7..i/u of
To investigate the stability, we introduce a fluctuatioﬁh?:?;t]atr;]cee:gsgefonntsr;gesrgi\éi‘ given below, we can expect
6(//(r,_t) - (_p(r,.t) - (1) = e [u(r)émg wa - V(e t]' __that the splitting instability should be less sensitiveRtéor
The linearization of the equation of motion of the Lagranglatﬁ _ oo, According to the theorv of Hamiltonian dvnamical
L with respect téy leads to the BAG equation fdr= (u, V)", o5 gtoth Ty . y :
systemg® the dynamic instability can be induced by a mix-
h, -gf? ing between positive and negative energy modes. Here, the
gf?  -h_ negative energy mode corresponds to the core mode local-
) (e ) o ized around the vortex core € 1). In trapped systems, the
with hy = Hr + 505 +29f<. The excitation energy, foran  ositive energy mode may correspond to a collective mode
eigensolutionw, l) = (w,,U,) is written ase, = hw,Noo-  that causes a ripple wave along the surface of the condensate.
Here, the excitations are labeled by the integerand the However, such a surface-localized mode cannot correlate with
norm Nos = 2r [ drrdid,ts = 0, is defined for real the core mode in the infinite-system-size limit. On the other
eigenvalues with a matrix;” = diag(1 -1) and the Kro- hand, phonons can play the role of the positive energy mode,
necker's deltas,s. From the orthogonality relationuf, —  because its wave function is distributed broadly within the
wi)Nag = 0. €, becomes zero with,, = 0 for Im(w,) # 0. bulk and its correlation to the core mode may remain even
The vortex state is dynamically unstable when there is at legsk R — oo in our problem.
one eigensolution with Inaf) > 0, because the corresponding  Rescaling perturbation analysi§o describe our problem
excitation is amplified exponentially ase™X. quantitatively, we introduce a perturbation analysis for the
Numerical resultsThe eigenvalue problem is numerically BdG equations in a fierent manner from that in R&%) We
analyzed for a cylindrical system of dimensionless ra8by  parameterize the chemical potential and the interaction coef-
diagonalizing Eq. (1) with the numerical solution bunder ficient with a perturbation parametef< 1) asy = uo(1 + 1)
the Neumann boundary conditionrat="R. Figure 1 shows andg — g, = go(1 + 1), respectively. Then, theffec-

the R-dependence of the dimensionless frequancy fiw/u  tive system size is represented Rs= Ry VI+ A through

hwt = ht = [ a 1)

of the instability mode wittm = - = —2 when the imaginary ¢ = &,/ V1 + 1. To express tha-dependence explicitly, we
parta, = Im(@) > 0 takes the largest val#@. The real part write f — f, andh — h; in the following.
is always negativayr = Re) < 0 for &, > 0. The perturbation for the BAdG equations is represented by

The eigenvalue is strgngly sensitivelioshowing anearly the deviation
periodic behavior belowr ~ 500. A similar behavior can be

seen in the numerical results for trapped BE&$> In these sh=h, —ho = /l[ _”0(;,26 N _E;ZG’ ] (2)
studies, the excitation frequency was parameterized by the in- Ho
teraction strength or particle number, which made the analysjgin o7 = lim o gﬂf;@lofoz = 9, (gﬂ ff) Suppose that the

of the problem complicated. B system becomes dynamically unstable whencreases from
Figure 1(b) shows that the peak valuesugfare propor- he ynperturbed statel (= 0) to a perturbed statel (# 0).

tional toR™*/% for R 5 500, whiledj; is asymptotic to a finite ¢ eigenvector in the perturbed state is described by a
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€Y (b)

|@R| lap for largeR, and the width of a region withw,~ = 0
—Ecore \i becomes smaller and disappearsRascreaseg” Finally,
51/:% N R 7 the asymptotlc values ofg) are given by Eqg. (3) with

g g pn(keore) = —Ecore Therefore, we may writ€,, — &core and

170 — |Wm|x| N

Fig. 2. (Color online) Schematics of a bubble for the splitting instability We can deduce the power-law behaviongf,x from the
(a) and the so-called avoided crossing (b). overall profile of; in Fig. 1 (b); Winix o« RY2 for R < 500

(solid line) andWpix ~ 1/7. for R > 500. Such a behavior

is anomalous in the sense that the length 500, around

which the power-law behavior changes, is irrelevant to any
linear combination of the eigenvectolis (¢ = 1,2,..) in  possible scale in our formalism described ab&Ve.
the unperturbed state aks= >, C,U,. The codficient vec- Extended semi-classical analysi3o demonstrate the
tor C = [C1,Ca,---]" obeys the eigenvalue equatiboC = anomalous behavior beyond the perturbation analysis, we
(7{0 + IW)C with Ho = diag (fiwy, fiw,, - - -) and [q?v] introduce the semi-classical theory for the BdG equations,
Wy = M fo drrﬂao-zéhljﬁ. which can be used to describe low-energy modes far from a

i ; 30)
When the frequencies of the two modes, namel, 1, 2, topological defect or an interfacé.3 Here, we extend the

are very close to each other, we may apply the two-mode ath_eory to our case with complex excitation frequencies.
y y apply PThe semi-classical theory starts from the Wentzel-

proximation as in conventional quantum mechariies,only Kramers—Brillouin (WKB) ansatz for the excitation wave
the contribution from the two modes is considered while ne: ig
unctiond in the first-order approximationi(r) = e+SU with

glecting that from all the other modé3. Dynamic instabil- S(r) = Solr) + 781(") andU = (U, V). Substituting the ansatz

off

ity can occur in the case oW11N2; = —1.1119 Consider Ea (1 btai

that the phonon and core mode correspondrte= 1 and into Eq. (1), we obtain

2, respectively. The core mode, whose angular momentum —-gf? n_ .

is —I#, should have the positive nori» = 1 for our case EU = [ gf2 -E_ U+ TDO’Z& (4)

of | = —m = 2, since the angular momentum carried by o2 )

the @ mode is given bymiN,,. Then, the eigenvalue for Where we use, = = e+ (Qﬂrj% +29f2 — p, (E.M, L) =
= [C1,C2]" reduces to (hw,im.al), P, = 9, andD(r) = Bds (R

2 The zeroth-order approximation, cal ed the classical I|m|t ne-
o= (écore— 5ph) /2 +i \/VNV%X - (éph + écore) /4. (3) glects the second term on the right hand side of Eq. (4), yield-
ing (E - E,) (E + E_) + g?f* = 0. The first-order correction

Here, we usedypn = £ andécore = &2 With the dimension-  reduces to the relatiothS, /dr = —(2r) L.

less forme, = Nao (iwa + AW, /p Of the perturbed exci-  Considering the bulk region, which is far from the vortex

tation energy without taking the mixing interactih?, = core ¢ > &), and neglecting the terms ﬁf(fz/rz)’ we have

A2 |'W1o/ul? into account. P2
The _phonon dispersion is represented by a functiof of E? = T 2m,

aSaph(k,) = k@ + k2/4)1/2 with the quantized wave number E/u = @r + i@ with |@g| > @ > 0, the radial momentum

k, = n(j + 1/2)/R, whereJ is the number of nodes in the Pr is written asP¢/h = k + i with & < k. Subsequently, we

radial direction. Here, the adjustmentlwas introduced by ©Ptain

considering the boundary conditie(f = 0) = 0 form = -2. k= —|orl (1 _ @%/8), k=& (1 - 3&%/8) (5)

The numberj is chosen such thaiph”(k) gives the closest

value to—&ore for a givenR. The dimensionless energyo=  Up to the order 0O (&)‘F‘Q). Here, the sign ok is negative since

of the core mode is independent Bffor R > 1 accord- the outgoing phonon hagi; < 0 in our perturbation analysis.

ing to the naive consideration above. In fagi,e has been As a result, we obtai(r) = kE + iRRE — % Inf + const

computed numerically by an approximate method in Ref. To demonstrate the accuracy of our theory, we de-

aséeore = —0.439, to whichQ., reduces, as we shall explainscribe an observable quantitye., the density fluctuation

below. on(r,6,t) = [yu(r,t)> — |¢(r)|? induced by the instability
Figure 2 (a) shows the schematic of tRelependence of mode. The semi-classical solution givérs ~ 2Re@*6y) =

@ described by Eq. (3). The imaginary part appears arour?é—e ir+at cosmg — wgt — ki + ®) with a constan® [also

R= R = n(j +1/2)/Keore, at whicha, takes a local maximum see Flg 3(a)]. For simplicity, we evaluate the semi-classical

value|Wmix| with Zpn(Keore) = ~Ecore This structure is called a result for the cross-section profile

bubbleof instability 2> The real partwr = (&core— &pn) /2 IS _ /2 —F S

negative in a bubble withegre < 0 andepn >(0. ’ ) 6n(r) = 6n(r, 0,0) < =% cos[k(r - R)] : (6)
In the numerical plots shown in Fig. 1, we can see thalere, we took the boundary conditionsrat Rinto account.

many bubbles similar to the structure of Fig. 2 (a) appeah Fig. 3(b), we compare the radial profidFsn(r) of the nu-
periodically aroundR = RJ The neighboring bubbles over-

2 .
( 2y Z,u) 31 For our case of a complex eigenvalue

3
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relation between dynamic instability and quasi-normal modes
has been also discussed in the context of BH physics iffRef.
. Discussion The radiation of the quasi-normal mode in the
splitting instability produces a double spiral density wave
= [Fig. 3(a)] in the early stage of instability development. We
}3' have no satisfactory explanation of why7l, is so small, al-
goo  though it might be related to the vortex-vortex interaction po-
tential. The quasi-normal mode can be observed experimen-
tally in highly oblate BECs whose size is much larger than the
Fig. 3. (Color online) (a) Schematic of the wavefront of radiated phonon if€aling length. The instability is induced by an external per-
the splitting instability of a DQV. Black circles represent two parallel SQVsturbation,i.e., an external optical potential that violates the
(b) The cross-section profile/Fén of the density fluctuation induced by the rotational symmetry of the initial state with a DQV.

instability mode foiR = 16384. The dashed line represents the overall damp- An incident plane wave of phonon, whose ene@)‘ is
ing o« e ¥ The inset shows the magnified image of the numerical plot (solid ' n

curve) and the analytical plot of Eq. (6) (dashed curve). The valuksofi Close tO—,u_Ecore, may _tr_igger the instability. Th?n' the incident
% are given by Eq. (5) with the numerical dataw dndc) in Fig. 1. phonon will be amplified due to the exponential growth of the

instability mode. This phenomenon is analogous to the rota-

tional superradiance that has been observed recently in clas-

sical fluids?? where the incident waves on the water surface
merical solution with Eq. (6), obtaining a good agreement bé'® amplified by a draining vortex. The experiment in the dis-
tween them for > 1. sipative classical fluid system did not reveal the mechanism

The semi-classical analysis suggests that the ovéall Pehind the negative energy mode, which exists along with a

dependence afy"is characterized by the rescaled dampin@os't've energy mode to obey the energy conservation law. In
rate in the infinite-system-size limit,.”= ¥(@r = Qoo = our isolated quantum fluid system, the superradiant amplifi-
#-1). If the rescaled attenuation length!"is much smaller qation is caused by the pair nucleation of positive and nega-
thanR, the boundary fect is negligible so that the instability Ve energy modes; the latter is represented by the core mode
is independent dk. This consideration is helpful in construct- &S @ound statavhose existence is classically limited inside
ing an analytic formula for the mixing interaction in orderth® so-called “ergo region” < re, and the former can prop-

to describe the overa-dependence. We found the simplesdate outside. Heree/¢ = /llml/zpn is the dfective ergo
interpolating formula between the two limits,R — 0 and radius at which the semi-classical energy becomes zero as
5 E ~ uépn + imQ(re) = 0 with £pn = —&core and the local
superfluid velocityr Q(r) = nthr Hence, our system could be
(7) useful for simulating BH physics, while a similar analogy has

The complex frequency of Eq. (3) with Eq. (7) describes thgeen discussed by considering a rotating object or a vortex in

. g Superfluid system¥:-38)
numerical result very well, as shown in Fig. 1. . .
. . . . We are grateful to S. Inouye, H. Ishihara, M. Kimura, Y.
Finally, we make a physical interpretation of such an : . . :
. L Kawaguchi, T. Kuwamoto, and T. Mizushima for useful dis-
anomalous damped oscillatory mode by regarding it as an_ . . .
oobosite counternart of a quasi-normal mode. which is ty5:USSIoNs and comments on this work. This work was sup-
opposit P q oL ' Y orted by KAKENHI from the Japan Society for the Promo-
ically discussed in the context of gravitational waves from

perturbed black hole (BH A perturbed BH evolves into ion of Science (Grants No. 17K05549, 17H02938, 26870295,

N L %6400371). The present research was also supported in part

the unperturbed spherical shape by decreasing its asymmeor : . . .
: e e . )ythe Osaka City University (OCU) Strategic Research Grant

exponentially in time; the deviation from a spherical shapE017 for VOUN researchers

is proportional toe/s with the decay timerg > 0. In this young '

process, the radiated gravity wave is described as the for-

mal solution of a Sclidinger-like equation, whose eigen-

value becomes complex through the boundafgat of the 1) | m. pismen,vortices in Nonlinear Field¢Oxford University Press,

BH, namely, the quasi-normal mode. In the WKB approxima-  Oxford 1999).

tion, the wave forms a growing oscillation with the growth 2) R.J. Donnelly_,Quantized Vortices in Helium (ICambridge University

ratexg = (crg)™!, wherec is the speed of light far from Press, Cambridge, UK 1991).

. L . - 3) C. J. Pethick and H. SmithBose-Einstein Condensation in Dilute
the BH. On the contrary, in the case of Spllttlng instability, Gases2nd ed. (Cambridge University, Cambridge, England, 2008).

a DQV is perturbed to .Split into two SQVs by in_Crea.Sing the 4) makoto Tsubota, Michikazu Kobayashi, Hiromitsu Takeu@iantum
asymmetry of the “oscillatory source” exponentially in time;  hydrodynamicsPhysics Report§22, 191 (2013).

d « &/~ The radiated phonon produces a damped oscilla-3) L. Pitaevskii and S. StringarBose-Einstein Condensation and Super-
tion with the damplng rate., ~ (CsToo)il characterized by fluidity (Oxford University Press, Oxford 2016).

= . . . . 6) The energy& of an |-quantized vortex is typically written a8 o
the speed:s = ypu/m of phonon’ which is consistent with 12In (R/£) with the system siz& and the healing lengti Therefore,

Eg. (5) in the linear dispersion approximati¢ig| ~ k. The the energy of ahquantized vortex is larger than the sum of the energies
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For the product state with the amplitude under the Pagl

Al The intervortex potential - PV ; ) ot 7 ~
Definition of the interaction potential approximation, the interaction energy(d) aroundd = 0
becomes

Since we are interested in the stability of a doubly quan-
tized vortex (DQV), we here discuss the interaction poten- Eni(d) = —0.327d% + O(d™). (A4)
gal between _two singly quantized vortices (SQV) in u.nlform]_ne flat structure ofi atd = 0 asdéim/da|a:0 _ 0 implies
ose—Einstein condensates (BECs). The results obtained Wt'lt"nat a DQV is marginally unstable
different methods are summarized in Fig. Al. ginaty :
First, we define the interaction energy between two vo
tices. We introduce the energ(d) of the statePy with two
SQVs as a function of distancebetween the two vortices,

rC_:omparison with the numerical results
Figure Al shows the interaction energy;: given by the
) product state with the Padapproximation (A3) (solid line),
h g that with the numerically obtained amplitude (open cir-
&(d) = | dx¥y(-5—V?+ 2|Wal?| Wa. y plitude (op
@ f d( 2m, 2| dl” | ¥ cles), and Eqg. (A2) (dashed line). The most precise result

Measuring the energy from the sum of the enefyik = (closed circles) are obtained from the ansatz

’;—anz of the bulk state and tha, of a DQV, the interaction int = T (F, )0~ 0/2+6(%+d/2)

energy&in(d) between two SQVs may be defined by by numerically computindin(, d). The exact interaction en-

Eint(d) = &(d) - & — Epui. ergy&ini(d) atd = 0 is flatter than approximated ones with the
product states. All datas converge to the same behavior except
Estimations in the hydrodynamic and Padé approximations for constants at large.
Conventionally, the dimensionless ene&gy= & g/(u%?)
of al-quantized vortex is estimated as

~ . S ‘

& = nl%logR, (A1) \ Numerical .
where we approximate the dimensionless order parar_i)e:ter ‘\\ Product o
/gy for al-quantized vortex ag,(0) with ¢ (%, §) ~ €'® 0 Padé i
ando(X) = arctar*()—’{). For integrationy "= 1 andr"= R are . —2m log(ad) _____

chosen as the lower and upper digorespectively. Equation ’I?: _s
(A1) shows that the energf = 128, for I-quantized vortex is ,035
larger than the enerdy; for | SQVs. In the similar approxi-

mation, the interaction enerdyn(d) between two SQVs with _10-
the distancel = £d > ¢ can be estimated as
Eim(d) = —2rlog(ad), (A2) 15
where we approximate the order parameter as a product of 0 10 20 30

S

two SQV solutions agin(F, d) =~ 1 (X—d/2, §)i (%+d/2, ).
The dimensionless constamt= O(1) in Eq. (A2) depends o
on the lower cutff of the integration. The monotonically de- Fig- Al. HlntebraC_tiog enlergxflingd) for t_W(|> Ssz- Crllosefi_girlples SthW thT‘

. T N numerical obtained values. en circles and the solid line show values
_creasmg S.trUCture @iny(d) in Eq'.(AZ) supports that a DQV given by thye product of two SQVpsolutions obtained numerically and by the
is energetically unfavorak_)le aga'_nSt two SNQV~S' Padk-approximation (A3) respectively. Dashed line shows values in Eq. (A2),

We next calculate the interaction enei@y(d) more pre-  wherea ~ 0.319 is chosen as a fitting parameter.
cisely at smalld. A naive estimation o&;,; can be done by
the product state

ine =~ Fo(% = 4/2,9) fu (% + d/2,§)e AR, A2 Technical description on the numerical analysis
wheref; (%, §) is the solution of the amplitud&(F) foraSQV Dimensionless equations and the boundary conditions
at the centex = § = 0. Although the product of; for two The stationary solution of a DQV was obtained by employ-
SQVs should be replaced Hy for a DQV , we do not con- ing the method of steepest descent for the Gross—Pitaevskii
sider this change within our naive estimation. Within theéPad(Gp) equation. By rescaling the order parameter amplitude

approximation,f1(%, ) can be obtained as and the radial coordinate ds= +/u/gf andr = &F, respec-
= = tively, the GP equation for the DQV state is reduced to
f(5.9) ~ af? + a4 (A3) )
1Xy) = 1+b1F2+a2F4 _}d__ig_1+3+f2 f~:0
2dr2  2rdr 2

with 72 = %2 + §2. Here,a;, ap, andb; satisfya; = (73 +
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Fig. A3. The Af-dependence ofwr) and(w,). The error bars shows the
amplitudesor, of the sinusoidal oscillation within the largednge (16306
Fig. A2. The radia~LI profile of the amplitudes| and|v| of the instability < 1638). The bars are barely seen behind the marks.

mode (n = -2) for R = 16384. The dashed curve represents the rescaled

profile | f(F) of the order parameter amplitude.

@, on the numerical grid siz&fF within the range 1630<

This equation was solved numerically under the boundar@S .163.8 (see F|g. A.3)' WheR IS Sme.'emly Iarge,|wR~|
= - of (t) is simply oscillating like a sinusoidal function d®
conditions,f(f = 0) = 0 and WL; =0. around its averaged valgg|) ((@)) with a small amplitude
Similarly, the Bogoliubov—de Gennes (BdG) equation (155g,. The asymptotic valu€,, = —0.438969+ 0.000002
can be reduced to a dimensionless form. The solved equatign! = 0.002429+ 0.000002) of(wr) ((&)) for the limit
is AF — 0 is determined by fitting the plot with a quadratic
B h, -f2 function, (|@Rly = arAT? + |Qu| (@1) = aAF? + 732) with
ol = f2  _h_ ] a (AS) " the method of least squares; = —0.031606+ 0.000007 and
. , , . a = —0.000192+ 0.000007. The errors are computed by re-
with & = % andh. = -3 - 14 14+ &0 1 2f2 The garding the small amplitud&ig, as the error of the numerical
boundary condition at = Ris ¥| .= %¥| _.=0.Atf=0, data
we employu(f = 0) = 0 form = -2 andv(f = 0) = 0 for
m = 2, otherwise%|_, = %¥|._, = 0. The rescaled BdG A3 The two-mode approximation
equation was solved numerically by using the Linear Algebra Let us derive the expression of Eq. (3). The perturbed and
PACKage (LAPACK). The numerical plots of Fig. 1 were ob-unperturbated states obey the BdG equations:

tained for a mesh siz&r = 0.2¢ in finite difference methods. hod = Pyd= (b + o), (A6)

Spatial profile around the vortex core hw,U, = hol,, (A7)
Because of the symmetry of Eq. (1), if there is a solution (i?espectively. By inserting the expansi@in= 3., C.0, into
(w, m, u, v) with a complex frequency, we have always other Eq. (A6), we have
three solutions (i) €w, —m, v, u), (iii) (w*, m u*,v*), and (iv) )
(-w*, -m,v*, u"). Consider a mode (i) with Ina) > 0. Then, hw Y Colly = > hwaColly + . Cathily. (A8)
the mode (iv) with Im¢w*) > 0 is also amplified, while we @ @ 2
have ImEw) < 0 for (ii) and Im*) < O for (iii). The solution By changing the sfix o to 8, multiplying d’ &, from the left
(iv) is physically identical to the partner (i), because the WQjde, and integrating byzafm rdr, we get
solutions yield the same fluctuation §y. For our problem, 0
we may consider only (i) with Inag) > 0 by neglecting the thCﬁNaﬁ = Zhwﬁcﬁ/vaﬁ
solutions (ii-iv). B B
Figure A2 shows the radial profile of amplitudes and
|v| for the instability moderg = -2). In the vicinity of the
vortex core of a DQV (/¢ < 1), the asymptotic behaviors of

the excitation wave functions are given @s< (r/«f)z”_” —  The normalization factol,s is written asN,,d,s With Ny, =
const andv o« (r/¢)=™ — 0 due to their &ective centrifugal +1 and the Kronecker’s deltis. Then, dividing Eq. (A9) by

potentials” 20" — 0 and™ 1" = 8 oo inthe BAG A, we have

Hamiltonianh, respectively. There, the density fluctuation due

: P P : hwCo = hweCq aps Al
to the collective excitation is given bin ~ |6y|? — |u® with WCa = hweCo + /l;Cﬁ(W A (AL0)
f o (r/€)2.

+

PN f 2nrdrd) 6-,0hds. (A9)
B 0

where we defined

The asymptotic values a@fz and @, _ 2n f"" F A
We have determined the asymptotic valu@s, and 72, Wap = MWNoo Jo rdrd, 20N
by considering the dependence of the valugg<™ 0) and

(A11)
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Here, we introduce the two-mode approximation by taking Let us consider the situation in whighis a complex value.
only « = 1,2 to analyze Eqg. (A10). The eigenvalue equatioWhenE is real, the momentur®; is also a real value, ac-
is given by cording to Eq. (A14). Whelk is complex, the momenturd,

L Hwy + AWy AWy c sho_uld be V\_/ri_tten a®, = 7k + ink. WhenEg = Re(I_E) >

hw( c ) = ( W o + 1W. )( C ) E = Im(I_E), it is reasonab_le tp assumelas> «. Substltutmg
2 21 2 22 2 E = Er+IE, andP; = fik+ifk into Eq. (A14), and comparing
By using the notatiors, = (hw, + AWea)Nae/1t and the the real and imaginary parts of the both sides of the equation,

relationW,; = W, the secular equation is written as we have
2(12 2 2(12 2 a,2,2
o o Was 2 2 2 he(ke — k%) [ A5(ke — «9) KK
(N1181 — &) (Naafz — &) - 2| —2| =0, S 2m, 2my + m
) 5 thK hZ k2_ 2

whose solution is JELE, - i [ ( — ), 2,u]
~ _ Nuéi+ N Niidr = Nooio\2 [ AW , . _ , . -
w= 2 + 2 1L By introducing the dimensionless values, = Egr,/u, k =

. . ) ) ké, k = k&€ with ¢ = h/ /mgu, the above equation can be
For N11 = =1 andN2, = 1, this form is consistent with Eq. (3) \yritten as

by introducingW?2. = A2 |Wio/ul. Sy an T2 e
mix ~2 ~2 ke —k° | ke -k ~o~2
W — W = 5 5 + 2| - kK,
A4  The semi-classical approximation
. . _ 2¢4 _ o
Starting from the equatio(E - E,) (E + E_) + g°f 0 2nin = K@ -RB+2).

within the zeroth order approximation, we can calculate the
eigenenerg. Here,E. is given by For E3 > E? andk? > «?, the above equations can be further

duced to
P2 + 2 re
g, o ML o, (A12) 2 ke
2m,  2myr2 SRS E(E+2)’
When we consider the bulk region far from the vortex core,
the density profile is approximately written af? ~ u — 20r0  ~ ki(iC+2).

L2/(2mar?), so that . .
/(2mer) By solving these equations, we can get

2
Eizi(p,2+M—2)+gfziL—M2. (A13) _ ) 2
2m, r mer ko~ xlanl(1- 2, (A15)
Furthermore, we neglect the higher order t@fr~2), having -

thenu ~ gf2 andE, = P?/(2my) + u. We eventually get o~ O ( - TRJ (A16)

P2 P2

2_ _r |

= m (Zma + 2,u) . (Al4)



