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RIGIDITY OF BELTRAMI FIELDS WITH A NON-CONSTANT
PROPORTIONALITY FACTOR

KEN ABE

Department of Mathematics, Graduate School of Science, Osaka Metropolitan University,
3-3-138 Sugimoto, Sumiyoshi-ku Osaka, 558-8585, Japan

Abstract. We prove that bounded Beltrami fields are symmetric if a proportionality factor
depends on 2 variables in the cylindrical coordinate and admits a regular level set diffeo-
morphic to a cylinder or a torus.

1. Introduction

We consider 3d steady states of ideal incompressible flows

(∇ × u) × u + ∇π = 0, ∇ · u = 0 in R3, (1.1)

where u is the velocity of fluid and π is the Bernoulli function. Integral curves of the velocity
and the vorticity ∇× u are called stream lines and vortex lines, respectively. If the Bernoulli
function π . const. is regular, they lie on level sets of π, called Bernoulli surfaces. It is
known [2] that Bernoulli surfaces are diffeomorphic to nested cylinders or tori if a domain is
bounded and velocity is analytic. The system (1.1) can be written as an elliptic system with
constraints, e.g. [23, p.34]. If there exists a current potential η such that ∇ × u = ∇π × ∇η, u
satisfies the elliptic problem,

∇ × u = ∇π × ∇η, ∇ · u = 0,
u · ∇π = 0, u · ∇η = 1.

The first line is an elliptic system for given π and η. The second line is constraints to them,
called a degenerate hyperbolic system.

The constraints are removed by symmetry, e.g. translation or rotation. In the axisymmet-
ric setting, solutions of (1.1) can be constructed by the Grad-Shafranov equation [24], [29].
Existence of solutions with compactly supported vorticity is well known in the study of vor-
tex rings, e.g. [12]. Moreover, compactly supported solutions are constructed in [20], [11],
[13]. Existence of smooth non-symmetric solutions to (1.1) with π . const. is unknown.

The non-existence of such non-symmetric solutions is a conjecture of Grad [22, p.144],
see Constantin et al. [9, p.529]. More precisely, symmetries in this conjecture are 4 types:
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translation, rotation, helix, reflection in a plane. This problem is considered as rigidity to
(1.1). For the 2d flows, a rigidity result that bounded solutions with no stagnation points are
shear flows is proved by Hamel and Nadirashvili [26]. See also rigidity in a strip [25] and in
a pipe for axisymmetric flows with swirl [9]. The full 3d rigidity to (1.1) with π . const. is
unknown, cf. [30]. Grad’s conjecture is also studied from existence of non-symmetric solu-
tions with piecewise constant Bernoulli function [3], [14] and of smooth non-axisymmetric
solutions with small force [10], cf. [5], [4].

Grad [23, p.36] also observed a similar constraint to Beltrami fields,

∇ × u = f u, ∇ · u = 0 in R3, (1.2)

i.e. π ≡ const. The function f is called a proportionality factor. If f ≡ const., u is
called a strong Beltrami field. Vortex lines of strong Beltrami fields can be chaotic and
non-symmetric, e.g. ABC flows [2]. In this sense, the system (1.2) for f ≡ const. is flexi-
ble, cf. [9]. It is known [15], [16] that strong Beltrami fields describe vortex lines of highly
non-trivial topology.

If f . const., vortex lines are confined to a level set f −1(c) = {x ∈ R3 | f (x) = c} for
c ∈ R since f is a first integral, i.e.

u · ∇ f = 0.

Topology of the surface f −1(c) is generally unknown since singular points {u = 0} may
appear on the surface. Under their absence, a closed surface is diffeomorphic to a torus [2].
Existence of solutions to (1.2) is unknown unless f ≡ const or under symmetry, see [7],
[31], [1] for axisymmetric solutions.

In contrast to (1.1) for π . const., rigidity results are known to (1.2). The first rigidity
results to (1.2) are Liouville theorems on decay conditions at space infinity [28], [6], e.g.
u = o(|x|−1) as |x| → ∞. This decay rate is sharp, cf. [15], [16]. The another type Liouville
theorem is based on a level set condition for f . const.

Theorem 1.1 ( [17]). Suppose that f ∈ C2+µ(R3) for some 0 < µ < 1. If f admits a regular
level set diffeomorphic to a sphere, then any solutions to (1.2) is identically zero.

This Liouville theorem implies non-existence to (1.2) for a broad class of f , e.g. radial
or having extrema. On the other hand, it implies a certain relation between existence and
symmetry of f since symmetric f does not take extrema.

The simplest symmetric f are those depending on 1 variable in the cylindrical coordinate
(r, θ, z), i.e. x1 = r cos θ, x2 = r sin θ, x3 = z. For such f , rigidity to (1.2) is known [19], [8]:

(i) For f = f (z), level sets are planes. Any solutions of (1.2) are harmonic on them and
singular points are isolated. In particular, bounded solutions depend only on z.
(ii) For f = f (r), level sets are cylinders. Any solutions of (1.2) are constant on them and
axisymmetric.
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(iii) For f = f (θ), level sets are half planes. No solutions exist to (1.2).

These results can be deduced from compatibility of a constrained evolution equation
equivalent to (1.2) [17], [8], see Remarks 2.2.

For f depending on 2 variables in (r, θ, z), a variety of surfaces appear as level sets of f
such as cylindrical surfaces for f = f (r, θ), surfaces of revolution for f = f (r, z) and right
conoids for f = f (θ, z). For f = f (r, θ) and f = f (r, z) having extrema on (x1, x2) or (r, z)-
planes, their level sets admit a cylinder or a torus, cf. [17]. We prove that for such f , any
bounded solutions are symmetric.

Theorem 1.2. Suppose that f ∈ C2+µ(R3) for some 0 < µ < 1.
(i) If f = f (r, θ) admits a regular level set diffeomorphic to a cylinder, then any bounded
solutions to (1.2) are translationally symmetric.
(ii) If f = f (r, z) admits a regular level set diffeomorphic to a torus, then any solutions to
(1.2) are rotationally symmetric.

In both (i) and (ii), velocity fields on the level sets are expressed by 2 linearly independent
tangential vector fields and have no singular points. In particular, stream lines are winding
on the level set and linearly independent u of (1.2) are at most 2.

Remarks 1.3. (i) Translationally symmetric solutions of (1.2) are locally expressed as

u = ∂2Ψe1 − ∂1Ψe2 + u3(Ψ)e3, f = u̇3(Ψ),

for some u3(·) and the stream function Ψ(x1, x2) satisfying −∆Ψ = u̇3(Ψ)u3(Ψ), where
e1, e2, e3 is the orthogonal basis in the Cartesian coordinate and u̇3(Ψ) denotes the deriv-
ative in Ψ.
(ii) Rotationally symmetric (axisymmetric) solutions of (1.2) are locally expressed as

u = −r−1∂zΨer + r−1Γ(Ψ)eθ + r−1∂rΨez, f = Γ̇(Ψ),

for some Γ(·) andΨ(r, z) satisfying −(∆z,r−r−1∂r)Ψ = Γ̇(Ψ)Γ(Ψ), where er =
t(cos θ, sin θ, 0),

eθ = t(− sin θ, cos θ, 0), ez =
t(0, 0, 1) are the orthogonal basis in the cylindrical coordinate.

These elliptic problems appear as free boundary problems for translating vortex pairs and
vortex rings, see Section 4. Under helical symmetry, (1.1) and (1.2) are reduced to the
helical Grad-Shafranov equation [18, p.196].

The proof of Theorem 1.2 is based on the facts that (1.2) can be recasted as a constrained
evolution equation on a level set of f [17], [8] and that Beltrami fields are solutions to the
elliptic equation −∆u = ∇ f × u + f 2u. Unfortunately, solutions of (1.1) with π . const. do
not possess neither of them and their rigidity is out of reach. Rigidity to (1.1) with π . const.
seems unknown even for π depending on 1 variable in (r, θ, z). A crucial difference is failure
of a unique continuation property to (1.1) with π . const. as compactly supported solutions
exist [20], [11], [13].
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2. Elliptic equations on surfaces

We derive elliptic equations on surfaces for symmetric f = f (r, θ) and f = f (r, z) in terms
of differential forms.

2.1. Fourier series. A simple proof to Theorem 1.2 (ii) (axisymmetry) is to use the Fourier
series in 0 ≤ θ ≤ 2π,

u =
∑
n∈Z

vneinθ, vn = vr(r, z)er(θ) + vθ(r, z)eθ(θ) + vz(r, z)ez.

The equations (1.2) are reduced to those for v = vn:

∇ × v + inv × ∇θ = f v,
∇ · v + inv · ∇θ = 0.

The condition u · ∇ f = 0 implies v · ∇ f = 0. For n , 0, taking the divergence to the 1st
equation implies that ∇× v · ∇θ = 0. By taking the inner product to the 1st equation with ∇θ,
we have v · ∇θ = 0. Thus v = ∇ × (Ψ∇θ) for some Ψ = Ψ(r, z). By taking the inner product
to the 1 st equation with ∇Ψ, ∇Ψ ≡ 0 and vn ≡ 0 for n , 0. Thus u = v0 is axisymmetric.

2.2. A constrained equation. The latter assertion in Theorem 1.2 is based on an elliptic
equation on the surface and the 1st de Rham cohomology group, see Remarks 2.1 (i). We
derive elliptic equations on surfaces in terms of differential forms and prove not only that u
is axisymmetric but also that linearly independent u to (1.2) is at most 2.

We first derive a constrained evolution equation to a dual 1-form [17] for general surfaces.
We assume that a level set f −1(c) for c ∈ R is regular in the sense that f −1(c+ t) is a smooth
surface for 0 ≤ t ≤ t0 with some t0 > 0 and ∇ f (x) , 0 for x ∈ f −1(c+ t). We parametrize the
surface f −1(c) by x = Φ0(ξ) with ξ = t(ξ1, ξ2) and defineΦ(ξ, t) by the flow of X = ∇ f /|∇ f |2,
i.e.

∂tΦ = X(Φ), t > 0,
Φ(ξ, 0) = Φ0(ξ).

The flow Φ(ξ, t) parametrizes the surface f −1(c+ t), i.e. Φ(ξ, t) ∈ f −1(c+ t). Since f ∈ C2+µ

for some 0 < µ < 1, Φ(ξ, t) is C1+µ. We may assume that Φ(·, t) is defined for 0 ≤ t ≤ t0.
The equations (1.2) for the dual 1-form α =

∑3
i=1 uidxi of u = (ui) are

dR3α = f ∗R3 α, dR3 ∗R3 α = 0, (2.1)

where dR3 and ∗R3 are the exterior derivative and the Hodge star operator in R3, respectively.
By the elliptic equation −∆u = ∇ f × u + f 2u and f ∈ C2+µ, u and α are C3+µ. The pullback
β = Φ∗α by the map Φ : (ξ, t) 7−→ x = Φ(ξ, t) satisfies
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dR3β = (c + t) ∗R3 β, dR3 ∗R3 β = 0, (2.2)

With the matrices F = (∂1Φ, ∂2Φ, ∂tΦ) and F̃ = |F|F−1,

β = (u1, u2, u3)F t(dξ1, dξ2, dt),

∗R3β = (u1, u2, u3)tF̃ t(dξ2 ∧ dt, dt ∧ dξ1, dξ1 ∧ dξ2),

where |F| denotes the determinant of F. Since u · ∂tΦ = 0, the pullback β is a 1-form on a
surface and C1+µ,

β = u(Φ(ξ, t)) · ∂1Φdξ1 + u(Φ(ξ, t)) · ∂2Φdξ2 =: β1(ξ, t)dξ1 + β2(ξ, t)dξ2.

We write the metric tensor by G = (∂iΦ · ∂ jΦ)1≤i, j≤2 and G−1 = (gi j)1≤i, j≤2. Since

tFF =
(
G 0
0 χ2

)
, χ = |∇ f |−1,

and (u1, u2, u3) = (β1, β2, 0)F−1, the Hodge dual in R3 is

∗R3 β = χ|G|1/2((β1g11 + β2g21)dξ2 ∧ dt + (β1g12 + β2g22)dt ∧ dξ1).

Then the equations (2.2) imply

∂1β2 − ∂2β1 = 0,

∂tβ1 = (c + t)χ|G|1/2(β1g12 + β2g22),

∂tβ2 = −(c + t)χ|G|1/2(β1g11 + β2g21),

∂1(χ|G|1/2(β1g11 + β2g21)) + ∂2(χ|G|1/2(β1g12 + β2g22)) = 0.

The last equation follows from the first 3 equations. They can be written as

vt = Av, ∇⊥ · v = 0, (2.3)

for v = t(v1, v2), vi = βi with the matrix

A = (c + t)χ|G|1/2
(

g12 g22

−g11 −g21

)
,

where ∇ = t(∂ξ1 , ∂ξ2) and ∇⊥ = t(∂ξ2 ,−∂ξ1). Taking the rotation implies that v satisfies the
elliptic equation ∇⊥ · (Av) = 0 and ∇⊥ · v = 0. With the Hodge star operator on the surface,
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∗t β = (β1, β2)|G|1/2G−1 t(dξ2,−dξ1),

the equations (2.3) are expressed as

βt = −(c + t)χ ∗t β, dβ = 0, (2.4)

where d is the exterior derivative on the surface.

Remarks 2.1. (i) Differentiating the first equation of (2.4) by d yields the elliptic equation

d(χ ∗t β) = 0, dβ = 0. (2.5)

If χ ≡ const., β is a harmonic differential form. For a closed surface with genus g ≥ 0, the
space of harmonic differential forms has dimension 2g.
(ii) Theorem 1.1 is the case g = 0. If the surface f −1(c + t) is diffeomorphic to a sphere, β is
an exact form, i.e. β = dψ. Thus ψ satisfies an elliptic equation of the divergence form

d(χ ∗t dψ) = 0.

By integration by parts on the surface, ψ is constant. Thus u vanishes in a neighborhood
of the regular level set and in R3 by unique continuation [17]. Theorem 1.2 (ii) is the case
g = 1, see Proposition 3.2.
(iii) The system (2.4) is overdetermined in the sense that the irrotational condition dβ = 0 is
generally not compatible with the evolution equation βt = −(c + t)χ ∗t β. Regarding (1.2) as
a constrained evolution equation originates from [15] in which Cauchy-Kowalevski theorem
is used to construct strong Beltrami fields for given initial surface and tangential data.
(iv) Clelland and Klotz [8] derived a similar evolution equation as (2.4) by using a moving
frame and studied (1.2) in terms of an integral manifold to an equivalent exterior differential
system by using the Cartan’s method. Among other results, they showed that associated
integral manifolds are at most 3-dimensional if level sets of f have no umbilic points.

2.3. Elliptic equations for symmetric f . We study symmetry of solutions to (2.5) for sym-
metric f depending on 2 variables in (r, θ, z).

(i) f = f (r, θ). We parametrize a curve in a plane by (r(ξ1, t), θ(ξ1, t)), i.e. x1 = r cos θ
x2 = r sin θ. Then, the map

Φ(ξ, t) = rer(θ) + zez (2.6)

for (r, θ, z) = (r(ξ1, t), θ(ξ1, t), ξ2), parametrizes a cylindrical surface. The matrix A forms
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A = (c + t)χ
(

0 ν
−1/ν 0

)
(2.7)

for

χ =
√
|∂tr|2 + r2|∂tθ|2, ν =

√
|∂1r|2 + r2|∂1θ|2.

(ii) f = f (r, z). We parametrize a curve in the (r, z)-plane by (r(ξ1, t), z(ξ1, t)). Then the map
(2.6) for (r, θ, z) = (r(ξ1, t), ξ2, z(ξ1, t)), parametrizes a surface of revolution. The matrix A is
the same form as (2.7) with different coefficients

χ =
√
|∂tr|2 + |∂tz|2, ν =

√
|∂1r|2 + |∂1z|2/r.

(iii) f = f (θ, z). We parametrize a curve in the (θ, z)-plane by (θ(ξ1, t), z(ξ1, t)). The map
(2.6) for (r, θ, z) = (ξ2, θ(ξ1, t), z(ξ1, t)) parametrizes a right conoid. The matrix A is the same
form as (2.7) with different coefficients

χ =
√

r2|∂tθ|2 + |∂tz|2, ν =
√

r2|∂1θ|2 + |∂1z|2.

In all the cases (i)-(iii), the elliptic problem for v is expressed as

∇ · (Bv) = 0, ∇⊥ · v = 0 (2.8)

with the matrix

B =
(

p 0
0 q

)
, p = χ/ν, q = χν.

In the cases (i) and (ii), B is independent of ξ2. Hence ∂2v = ∇v2 and

∇ · (B∇v2) = 0. (2.9)

In terms of the differential form, (2.9) is expressed as

d(χ ∗t dβ2) = 0. (2.10)
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Remarks 2.2. (i) For f = f (z), (1.2) is expressed as

∂zv = − f v⊥, ∇ · v = 0, ∇⊥ · v = 0,

for u = t(v, 0) and v = t(v1, v2), where v⊥ = t(−v2, v1) and ∇⊥ = (∂2,−∂1). The evolution
equation for z is compatible with the elliptic constraints and for a given harmonic vector
field v(r, θ, 0) on {z = 0} and f = f (z), there exists a (non-symmetric) solution to (1.2). If u
is bounded, v is constant in R2. Hence any bounded solutions depend only on z, i.e. u = u(z).
(ii) For f = f (r), we take r = r(t) satisfying d f (r(t))/dt = 1 and θ = ξ1, z = ξ2. Then,
the function Φ in (2.6) parametrizes a cylinder and v satisfies (2.8) for B = B(t). If p ≡ 1,
differentiating ∇ · (Bv) = 0 by t implies

0 = ∇ · (∂tBv + B∂tv) = ∇ · (∂tBv) = ∂tq∂2v2.

By ∇ · (Bv) = 0, ∂ivi = 0 for i = 1, 2. By differentiating each components of ∂tv = Av by
ξ1 and ξ2, v = v(t) follows. If p . 1, applying the same argument to ∇ · (p−1Bv) = 0 imples
v = v(t). Thus, u = uθ(r)eθ + uz(r)ez is constant and axisymmetric on cylinders.
(iii) For f = f (θ), we take θ = θ(t) satisfying d f (θ(t))/dt = 1 and r = ξ2, z = ξ1. Then, the
function Φ in (2.8) parametrizes a half plane. The first equation of (2.8) is ∇ · (ξ2v) = 0. By
differentiating this by t, ∇ · (ξ2

2v⊥) = 0 and v = 0 follow. Thus, no solutions exist to (1.2).

3. The Liouville theorem

The elliptic equation (2.10) implies local symmetry of u. The global symmetry follows
from unique continuation.

3.1. Local symmetry. For f = f (r, θ), we use the parameter ξ = t(ξ1, ξ2) for 0 ≤ ξ1 ≤ 2π
and ξ2 ∈ R to denote the surface diffeomorfic to a cylinderΦ(ξ, t) = r(ξ1, 1)er(θ(ξ1, t))+ξ2ez.
For f = f (r, z), we use the parameter ξ = t(ξ1, ξ2) for 0 ≤ ξ1 ≤ 2π and 0 ≤ ξ2 ≤ 2π to denote
the surface diffeomorfic to a torus Φ(ξ, t) = r(ξ1, t)er(ξ2) + z(ξ1, t)ez.

Proposition 3.1.

β1 = β1(ξ1, t), β2 = β2(t), 0 ≤ ξ1 ≤ 2π, 0 ≤ t ≤ t0. (3.1)

For each 0 ≤ t ≤ t0, β1(·, t) ≡ 0 or β1(ξ1, t) , 0 for all 0 ≤ ξ1 ≤ 2π.

Proof. For f = f (r, z), (2.10) and an integration by parts on the surface imply (3.1). For
f = f (r, θ), we consider the periodic extension of v2 for the ξ1-variable to R. Since the level
set f −1(c) is regular, ∇ f , 0 and ∂1Φ , 0 for 0 ≤ t ≤ t0 and ξ1 ∈ R. Thus, χ = |∇ f |−1 and
ν = |∂1Φ| are bounded from above and below by positive constants. We take some λ(t) and
Λ(t) such that

0 < λ(t) ≤ p(ξ1, t), q(ξ1, t) ≤ Λ(t), ξ1 ∈ R, 0 ≤ t ≤ t0.

Since the diagonal matrix B satisfies the elliptic condition, applying the Liouville theorem
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[21, Corollally 3.12, Theorem 8.20] for a bounded weak solution v2 ∈ C1+µ(R2) to (2.9)
implies that v2 is constant. By ∇⊥ · v = 0, v1 is independent of ξ2 and (3.1) follows.

For each 0 ≤ t ≤ t0, β1(ξ1, t)p(ξ1, t) = C(t) for some C(t) by (2.8). Since p(ξ1, t) , 0,
β1(·, t) ≡ 0 or β1(ξ1, t) , 0 for all 0 ≤ ξ1 ≤ 2π. □

Proposition 3.2. The space of solutions to (2.5) has dimension 2 in the sense that any solu-
tions are expressed by linear combinations of β1(ξ1, t)dξ1 and β2(t)dξ2 such that β1(ξ1, t) , 0
for all 0 ≤ ξ1 ≤ 2π. In particular, linearly independent u of (1.2) is at most 2.

Proof. Let β(ξ, t) = β1(ξ1, t)dξ1 + β2(t)dξ2 be a solution of (2.5) such that β1(ξ1, t) , 0 for
all 0 ≤ ξ1 ≤ 2π. Let β̃(ξ, t) = β̃1(ξ1, t)dξ1 + β̃2(t)dξ2 be another solution to (2.5). We
take µ(t) ∈ R such that β̃1(0, t) = µ(t)β1(0, t). Since β̃ − µβ is also a solution to (2.5),
β̃1(ξ1, t) = µ(t)β1(ξ1, t) for all 0 ≤ ξ1 ≤ 2π by Proposition 3.1. Thus β̃ is expressed by the
linear combinations of β1dξ2 and β2dξ2. □

Lemma 3.3. The solution u is translationally or rotationally symmetric in some symmetric
open set U ⊂ R3.

Proof. In both cases (i) and (ii) of Theorem 1.2, ∂1Φ and ∂2Φ are orthogonal. Thus u(Φ) =
u(Φ(ξ, t)) satisfies

u(Φ) = (u(Φ) · ∂1Φ)
∂1Φ

|∂1Φ|2
+ (u(Φ) · ∂2Φ)

∂2Φ

|∂2Φ|2

= β1(ξ1, t)
∂1Φ

|∂1Φ|2
+ β2(t)

∂2Φ

|∂2Φ|2
.

In the case (i), by differentiating Φ(ξ, t) = r(ξ1, t)er(θ(ξ1, t)) + ξ2ez by ξ1 and ξ2,

u(Φ) =
β1(ξ1, t)

|∂1r|2 + r2|∂1θ|2
(∂1rer + r∂1θeθ) + β2(t)ez.

The right-hand side is independent of ξ2 = z. Thus u is translationally symmetric on the
level set f −1(c + t) for 0 ≤ t ≤ t0. In particular, u is translationally symmetric in U = D × R
for some open set D in a plane.

In the case (ii), by differentiating Φ(ξ, t) = r(ξ1, t)er(ξ2) + z(ξ1, t)ez by ξ1 and ξ2,

u(Φ) =
β1(ξ1, t)

|∂1r|2 + |∂1z|2 (∂1rer + ∂1zez) +
β2(t)

r
eθ.

Each components in the cylindrical coordinate are independent of ξ2 = θ. Thus u is rota-
tionally symmetric on the level set f −1(c + t) for 0 ≤ t ≤ t0. In particular, u is rotationally
symmetric in a region U, rotation of some open set in the (r, z)-plane around the z-axis. □
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3.2. Unique continuation. We use a classical unique continuation result under the bound-
edness of |∆w|/|w|, e.g. [32].

Proposition 3.4. Let w ∈ C2(R3) satisfy

|∆w| ≤ CR|w| in {|x| < R},

for each R > 0 with some CR > 0. Assume that w vanishes in some open set in {|x| < R}.
Then, w ≡ 0.

Proof of Theorem 1.2. For translationally symmetric u in U, set w(x) = u(x)− u(x+ τez) for
τ ∈ R. Then, w is a Beltrami field with f and vanishes in U. Since −∆w = ∇ f × w + f 2w
in R3, by unique continuation, w ≡ 0 in R3. Thus u is translationally symmetric in R3, i.e.
u = u(x1, x2).

Similarly, for rotationally symmetric u in U, set w(x) = u(x) − tRτu(Rτx) with Rτ =
(er(τ), eθ(τ), ez) for τ ∈ [0, 2π]. Then, applying unique continuation to w implies that u is
rotationally symmetric in R3, i.e. u = ur(r, z)er(θ) + uθ(r, z)eθ(θ) + uz(r, z)ez.

By Proposition 3.2, velocity fields on the surface are expressed by combinations of 2
linearly independent tangential vector fields and have no singular points. The proof is com-
plete. □

Remarks 3.5. (i) A crucial step in the proof of Theorem 1.2 is to prove that the space
of solutions to (2.5) has dimension 2 (Proposition 3.2). Once we know this, we are able
to prove Theorem 1.2 without differential forms. Indeed, for a solution u to (1.2) with
f = f (r, z), ∂θu is also a solution to (1.2). The fields u and ∇θ are linearly independent
2 tangential vector fields on each torus. Therefore by Proposition 3.2, ∂θu is expressed by
their linear combinations as

∂θu = A1( f )u + A2( f )∇θ,

with some constants A1( f ) and A2( f ). By differentiating both sides by θ, ∂θ(∂θu) = A1( f )∂θu.
Since ∂θu is periodic in θ, A1( f ) = 0. By taking the rotation to both sides of ∂θu = A2( f )∇θ,

∇ × (∂θu) = f∂θu = f A2( f )∇θ,
∇ × (A2( f )∇θ) = Ȧ2( f )∇ f × ∇θ.

By taking the inner product to f A2( f )∇θ = Ȧ2( f )∇ f × ∇θ with ∇θ, A2( f ) = 0 and ∂θu = 0.
Thus u is locally axisymmetric and, by unique continuation, globally axisymmetric in R3.
(ii) Similarly by Proposition 3.2, we are able to express a solution u to (1.2) with f = f (r, θ)
on a cylinder as

∂zu = A1( f )u + A2( f )∇z.

By integrating ∂z(∂zu) = A1( f )(∂zu) in z, ∂zu(·, z) = eA1( f )z∂zu(·, 0). If A1( f ) = 0, by taking
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the rotation to both sides of ∂zu = A2( f )∇z, similarly as the rotationally symmetric case,
A2( f ) = 0 and ∂zu = 0. If A2( f ) , 0, by integrating ∂zu(·, z) = eA1( f )z∂zu(·, 0),

u(·, z) = u(·, 0) +
1

A2( f )
eA2( f )z∂zu(·, 0), z ∈ R.

Since u is bounded, ∂zu(·, 0) = 0 and u is translationally symmetric.
(iii) Under the translational symmetry, (1.2) is reduced to

∂2u3 = f u1, −∂1u3 = f u2, ∂1u2 − ∂2u1 = f u3, ∂1u1 + ∂2u2 = 0.

With a stream function Ψ, t(u1, u2) = ∇⊥Ψ and t(u1, u2) · ∇u3 = 0. Hence u3 = u3(Ψ),
f = u̇3(Ψ) and Ψ is a solution to −∆Ψ = u̇3(Ψ)u3(Ψ).
(iv) Under the rotational symmetry, (1.2) is reduced to

−∂zuθ = f ur, ∂zur − ∂ruz = f uθ, ∂ruθ + uθ/r = f uz, ∂rur + ur/r + ∂zuz = 0.

With a stream function Ψ, ruz = ∂rΨ, rur = −∂zΨ and t(ruz, rur) · ∇z,rΓ = 0 for Γ = ruθ.
Hence Γ = Γ(Ψ), f = Γ̇(Ψ) and Ψ is a solution to −(∆z,r − r−1∂r)Ψ = Γ̇(Ψ)Γ(Ψ).

4. Examples of symmetric solutions

We review existence of translationally and rotationally symmetric solutions to (1.2).

4.1. Vortex pairs. Translationally symmetric solutions can be constructed by the elliptic
problem for given u3(·),

−∆Ψ = u̇3(Ψ)u3(Ψ) in R2.

The simplest solutions are rotationally symmetric solutions, i.e. Ψ = Ψ(r). For such Ψ,
level sets of f are cylinders, i.e. f = f (r). If u̇3(Ψ)u3(Ψ) is compactly supported, the Biot-
Savart law implies the decay t(u1, u2) = O(r−1) as r → ∞, cf. [28], [6]. Besides rotationally
symmetric solutions, there exist periodic solutions for u̇3(t)u3(t) = t or et. For such solutions,
level sets of f are deformed cylinders in R3 and t(u1, u2) is merely bounded, e.g. [27, 2.2.2].

Variational solutions also exist. A vortex pair is a pair of translating 2 vortices with
opposite signs in R2. They are symmetric for the x2-variable and constructed via the half
plane problem:

−∆Ψ = u̇3(Ψ)u3(Ψ) in R2
+,

Ψ = −γ on ∂R2
+,

∂1Ψ→ 0, ∂2Ψ→ −W as x2
1 + x2

2 → ∞.

The constant W > 0 is a speed of a vortex and γ ≥ 0 is a flux measuring a distance from a
vortex to the boundary x2 = 0. A typical choice is u3(t) = tl

+ for l > 1 and t+ = max{t, 0}.
For such u3, variational solutions exist and their vortex is compactly supported in R2 [33].



12

Level sets of f are symmetric and deformed cylinders in R3 and the decay is t(u1, u2) =
const. + O(r−1) as r → ∞.

4.2. Vortex rings. Rotationally symmetric solutions can be constructed via the elliptic
problem for given Γ(·):

−(∆z,r − r−1∂r)Ψ = Γ̇(Ψ)Γ(Ψ) in R2
+,

Ψ = −γ on ∂R2
+,

r−1∂zΨ→ 0, r−1∂rΨ→ −W as z2 + r2 → ∞.

For the choice Γ(s) = sl
+ and l > 1, variational solutions exist and their vortex is compactly

supported in R3 [1]. Level sets of f are tori in R3 and the decay is u = const. + O(|x|−3) as
|x| → ∞.
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