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LIOUVILLE THEOREMS FOR THE STOKES EQUATIONS WITH
APPLICATIONS TO LARGE TIME ESTIMATES

K. ABE

Abstract. We study Liouville theorems for the non-stationary Stokes equations in exterior
domains in Rn under decay conditions for spatial variables. As applications, we prove that
the Stokes semigroup is a bounded analytic semigroup on L∞σ of angle π/2 for n ≥ 3. We
also prove large time estimates for n = 2 with zero net force.

1. Introduction

We consider the Stokes equations:

(1.1)

∂tv − ∆v + ∇q = 0, div v = 0 in Ω × (0,∞),
v = 0 on ∂Ω × (0,∞),
v = v0 on Ω × {t = 0},

for exterior domains Ω ⊂ Rn, n ≥ 2. It is known that a solution operator (called the Stokes
semigroup) S (t) : v0 7−→ v(·, t) = (vi(·, t))1≤i≤n forms an analytic semigroup on Lp

σ for
p ∈ (1,∞), of angle π/2 [57], [31], i.e., S (t)v0 is a holomorphic function in the half plane
{Re t > 0} on Lp

σ. Here, Lp
σ denotes the Lp-closure of C∞c,σ, the space of all smooth solenoidal

vector fields with compact support in Ω. We define S (t) by the Dunford integral of the
resolvent of the Stokes operator Ap = P∆ by using the Helmholtz projection P : Lp −→ Lp

σ

[29], [48], [56]. See, e.g., [42] for analytic semigroups.
We say that an analytic semigroup is a bounded analytic semigroup of angle π/2 if the

semigroup is bounded in the sector Σθ = {t ∈ C\{0} | | arg t| < θ} for each θ ∈ (0, π/2) [8,
Definition 3.7.3]. The boundedness in the sector implies the bounds on the positive real line

||S (t)|| ≤ C, ||ApS (t)|| ≤ C′

t
, t > 0,(1.2)

where || · || denotes the operator norm. The estimates (1.2) are important to study large time
behavior of solutions to (1.1). In terms of the resolvent, the boundedness of S (t) of angle
π/2 is equivalent to the estimate

||(λ − Ap)−1|| ≤ Cθ

|λ| , λ ∈ Σθ+π/2.(1.3)
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When Ω is a half space, S (t) is a bounded analytic semigroup on Lp
σ of angle π/2 [47], [62],

[13]. The problem becomes more difficult when Ω is an exterior domain. For n ≥ 3, the
boundedness of S (t) on Lp

σ is proved in [15] based on the resolvent estimate

|λ|||v||Lp + |λ|1/2||∇v||Lp + ||∇2v||Lp ≤ C|| f ||Lp , 1 < p <
n
2
,(1.4)

for v = (λ − Ap)−1 f and λ ∈ Σθ+π/2 ∪ {0}. The estimate (1.4) implies (1.3) for p ∈ (1, n/2)
and the case p ∈ [n/2,∞) follows from a duality. Due to the restriction on p, the two-
dimensional case is more involved. Indeed, (1.4) is optimal in the sense that

||∇2v||Lp ≤ C||Apv||Lp , v ∈ D(Ap),

is not valid for any p ∈ [n/2,∞) [14]. Here, D(Ap) = W2,p∩W1,p
0 ∩Lp

σ and W1,p
0 denotes the

space of all f ∈ W1,p vanishing on ∂Ω. For n = 2, the boundedness of the Stokes semigroup
on Lp

σ is proved in [17] based on layer potentials for the Stokes resolvent (see also [63]).
We study the case p = ∞. When Ω is a half space, S (t) is a bounded analytic semigroup

on L∞σ of angle π/2 by explicit solution formulas [27], [58]. Here, L∞σ is defined by

L∞σ (Ω) =
{

f ∈ L∞(Ω)
∣∣∣∣∣ ∫
Ω

f · ∇Φdx = 0, ∇Φ ∈ G1(Ω)
}
,

and G1(Ω) = {∇Φ ∈ L1(Ω) | Φ ∈ L1
loc(Ω)}. For a half space and domains with compact

boundary, L∞σ agrees with the space of all f ∈ L∞ satisfying div f = 0 in Ω and f · N = 0
on ∂Ω. Here, N is the unit outward normal vector field on ∂Ω. Since S (t) is bounded on
L∞, the associated generator A∞ is defined also for p = ∞. For bounded domains [3] and
exterior domains [4], analyticity of the semigroup on L∞σ follows from the a priori estimate

||v||L∞ + t1/2||∇v||L∞ + t||∇2v||L∞ + t||∂tv||L∞ + t||∇q||L∞ ≤ C||v0||L∞ ,(1.5)

for v = S (t)v0 and t ≤ T . The estimate (1.5) implies (1.2) for t ≤ T and that S (t) is analytic
on L∞σ . Moreover, the angle of analyticity is π/2 by the resolvent estimate on L∞σ [5]. When
Ω is bounded, the sup-norms in (1.5) exponentially decay as t → ∞ and S (t) is a bounded
analytic semigroup on L∞σ of angle π/2. For exterior domains, it is non-trivial whether the
Stokes semigroup is a bounded analytic semigroup on L∞σ .

For the Laplace operator or general elliptic operators, it is known that corresponding
semigroups are analytic on L∞ of angle π/2 [46], [61], [42]. Moreover, if the operators are
uniformly elliptic, by Gaussian upper bounds for complex time heat kernels, the semigroups
are bounded analytic on L∞ of angle π/2. See [26, Chapter 3]. In particular, the heat semi-
group with the Dirichlet boundary condition in an exterior domain for n ≥ 2 is a bounded
analytic semigroup on L∞ of angle π/2. For the Stokes equations, the Gaussian upper bound
may not hold. See [27], [58], [51] for a half space.

Large time L∞-estimates of the Stokes semigroup have been studied for n ≥ 3. Maremonti
[43] proved the estimate
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||S (t)v0||L∞ ≤ C||v0||L∞ , t > 0,(1.6)

for exterior domains and n ≥ 3 based on the short time estimate in [3]. Subsequently, Hieber-
Maremonti [36] proved the estimate t||AS (t)v0||L∞ ≤ C||v0||L∞ for t > 0 and the results are
extended in [12] for complex time t ∈ Σθ and θ ∈ (0, π/2) based on the approach in [43]. Of
these papers, the case n = 2 is excluded. We are able to observe the difference between n ≥ 3
and n = 2 from the representation formula of the Stokes flow due to Mizumachi [49], [35].
See below (1.9). In this paper, we study large time behavior of Stokes flows for n ≥ 2 by a
different approach.

Our approach is by a Liouville theorem. A Liouville theorem is a fundamental property
to study regularity problems. It rules out non-trivial solutions defined in Ω× (−∞, 0], called
ancient solutions. See [40], [54] for Liouville theorems of the Navier-Stokes equations
and [39] for the Stokes equations. Liouville theorems are also important to study large time
behavior of solutions. In this paper, we prove non-existence of ancient solutions of (1.1) in
exterior domains under spatial decay conditions. We then apply our Liouville theorems and
prove the large time estimate (1.6) for complex time t ∈ Σθ and θ ∈ (0, π/2).

We say that v ∈ L1
loc(Ω × (−∞, 0]) is an ancient solution to the Stokes equations (1.1) if

div v = 0 in Ω × (−∞, 0), v · N = 0 on ∂Ω × (−∞, 0) and

∫ 0

−∞

∫
Ω

v · (∂tφ + ∆φ)dxdt = 0,(1.7)

for all φ ∈ C2,1
c (Ω×(−∞, 0]) satisfying div φ = 0 inΩ×(−∞, 0) and φ = 0 on ∂Ω×(−∞, 0)∪

Ω × {t = 0}. The conditions div v = 0 and v · N = 0 are understood in the sense that

∫
Ω

v · ∇Φdx = 0, a.e. t ∈ (−∞, 0),

for all Φ ∈ C1
c (Ω). Our first result is:

Theorem 1.1 (Liouville theorem). Let Ω be an exterior domain with C3-boundary in Rn,
n ≥ 2. Let v be an ancient solution to the Stokes equations (1.1). Assume that

v ∈ L∞(−∞, 0; Lp) for p ∈ (1,∞).(1.8)

Then, v ≡ 0.

If one removes the spatial decay condition (1.8), the assertion of Theorem 1.1 becomes
false for n ≥ 3 due to existence of stationary solutions which are asymptotically constant
as |x| → ∞ [14]. See Remarks 2.7. For n = 2, it is known that bounded stationary so-
lutions do not exist [22]. We show that ancient solutions in L∞(−∞, 0; Lp) are extendable
to bounded entire functions by using boundedness and analyticity of the Stokes semigroup.
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The Liouville theorem then follows from the kernel property of the Stokes operator on Lp
σ,

i.e., N(Ap) = {v ∈ D(Ap) | Apv = 0} = {0}. See [33] for n ≥ 3 and [22], [17] for n = 2.
Theorem 1.1 is useful to study the large time estimate (1.6) for t > 0. We invoke the

representation formula of the Stokes flow

v(x, t) =
∫
Ω

Γ(x − y, t)v0(y)dy +
∫ t

0

∫
∂Ω

V(x − y, t − s)T (y, s)N(y)dH(y)ds.(1.9)

Here, T = ∇v + ∇T v − qI is the stress tensor and V = (Vi j(x, t))1≤i, j≤n is the Oseen tensor

Vi j(x, t) = Γ(x, t)δi j + ∂i∂ j

∫
Rn

E(x − y)Γ(y, t)dy,(1.10)

defined by the heat kernel Γ(x, t) = (4πt)−n/2e−|x|
2/4t and the fundamental solutions of the

Laplace equation E, i.e., E(x) = (n(n−2)α(n))−1|x|−(n−2) for n ≥ 3 and E(x) = −(2π)−1 log |x|
for n = 2, where α(n) denotes the volume of the unit ball in Rn. The formula (1.9) is obtained
by regarding v = S (t)v0 as the Stokes flow in Rn with a measure as the external force. See
Lemma 3.8. It describes the asymptotic behavior of bounded Stokes flows as |x| → ∞. We
show that if the Stokes flow is bounded for all t > 0, the stress tensor is also bounded on ∂Ω.
Observe that by the pointwise estimate of the Oseen tensor

|V(x, t)| ≤ C
(|x| + t1/2)n , x ∈ Rn, t > 0,(1.11)

the remainder term is estimated by∣∣∣∣∣v(x, t) −
∫
Ω

Γ(x − y, t)v0(y)dy
∣∣∣∣∣ ≤ C
|x|n−2 sup

0<s≤t
||T ||L∞(∂Ω)(s),(1.12)

for |x| ≥ 2R0 and t > 0 such that Ωc ⊂ B0(R0), where B0(R0) denotes the open ball centered
at the origin with radius R0 > 0. The right-hand side is decaying as |x| → ∞ uniformly
for t > 0 if n ≥ 3. We show that the large time estimate (1.6) is reduced to showing non-
existence of ancient solutions by a contradiction argument. Since (1.12) yields a spatial
decay condition for ancient solutions as |x| → ∞, we are able to derive a contradiction by
applying the Liouville theorem (Theorem 1.1).

We apply a similar argument on the half line γ = {t ∈ C\{0}| arg t = θ} and prove (1.6)
for complex time t ∈ Σθ and θ ∈ (0, π/2). To this end, we consider ancient solutions in the
sector

Λ =
{
t ∈ C\{0} | − π + θ ≤ arg t ≤ −π/2} .

We set the segment IT = {t ∈ Λ | − T ≤ Re t ≤ 0, Im t = −T tan θ} for T > 0. We say that
v is an ancient solution in Ω ×Λ if v satisfies the Stokes equations (1.1) on each segment IT

for T > 0 in a weak sense, i.e., v ∈ L1
loc(Ω × IT ) satisfies div v = 0 in Ω × IT , v · N = 0 on

∂Ω × IT and
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∫ 0

−T

∫
Ω

v(x, α + iβ)(∂αφ + ∆φ)dxdα = −
∫
Ω

v(x,−T + iβ)φ(x,−T )dx,(1.13)

for β = −T tan θ and all φ ∈ C2,1
c (Ω × [−T, 0]) satisfying div φ = 0 in Ω × (−T, 0) and φ = 0

on ∂Ω × (−T, 0) ∪Ω × {α = 0}. We prove non-existence of ancient solutions in the sector Λ
under the condition v ∈ L∞(Λ; Lp) for p ∈ (1,∞) (Theorem 2.6). Since the formula (1.9) is
extendable for complex time, we apply the Liouville theorem in the sector and obtain (1.6)
for t ∈ Σθ and θ ∈ (0, π/2). We now state our main results.

Theorem 1.2. When n ≥ 3, the Stokes semigroup is a bounded analytic semigroup on L∞σ of
angle π/2.

For n = 2, the remainder term estimate (1.12) is different. By a simple calculation from
the formula (1.9), we see an asymptotic profile of the two-dimensional Stokes flow:

∣∣∣∣∣∣v(x, t) −
∫
Ω

Γ(x − y, t)v0(y)dy −
∫ t

0
V(x, t − s)F(s)ds

∣∣∣∣∣∣ ≤ C
|x| sup

0<s≤t
||T ||L∞(∂Ω)(s),(1.14)

for |x| ≥ 2R0 and t > 0, with the net force

F(s) =
∫
∂Ω

T (y, s)N(y)dH(y).

Since |
∫ t

0 V(x, s)ds| ≲ log (1 + t/|x|2) by (1.11), the decay as |x| → ∞ of the third term in
(1.14) is not uniform for t > 0 in contrast to (1.12) for n ≥ 3. If the net force vanishes, the
situation is the same as n = 3 and we are able to prove (1.6). For example, if initial data
is rotationally symmetric, the net force vanishes. Following [18], we consider initial data
invariant under a cyclic group or a dihedral group. For integers m ≥ 2, we set the matrices

Rm =

(
cos(2π/m) − sin (2π/m)
sin (2π/m) cos (2π/m)

)
, J =

(
1 0
0 −1

)
.

Let Cm denote the cyclic group of order m generated by the rotation Rm. Let Dm denote
the dihedral group of order 2m generated by Rm and the reflection J. Any finite subgroup
of the orthogonal group O(2) is either a cyclic group or a dihedral group. See [34, Chapter
2]. Let G be a subgroup of O(2) and Ωc be a disk centered at the origin. We say that a
vector field v is G-covariant if v(x) = tAv(Ax) for all A ∈ G and x ∈ Ω. It is known that if
v0 is Cm-covariant, so is v = S (t)v0 and the net force vanishes, i.e., F ≡ 0 [35]. Thus for
Cm-covariant vector fields v0 ∈ L∞σ , the remainder term estimate is the same as n = 3.

Theorem 1.3. For n = 2, the estimate (1.6) holds for t ∈ Σθ and v0 ∈ L∞σ , for which the net
force vanishes (e.g., Cm-covariant vector fields when Ωc is a disk.)
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Theorem 1.3 improves the pointwise estimates of the two-dimensional Navier-Stokes
flows for rotationally symmetric initial data [35], in which (1.6) is noted as an open question
together with the applications to the nonlinear problem. We are able to apply (1.6) to im-
prove the results although initial data is restricted to rotationally symmetric. See Remarks
5.4 (iii).

We hope it is possible to extend our approach to study the case with net force, for which
(1.6) is unknown even if initial data is with finite Dirichlet integral. The estimate (1.6) with
non-vanishing net force is important to study large time behavior of asymptotically constant
solutions as |x| → ∞. We refer to [2] for asymptotically constant solutions of the two-
dimensional Navier-Stokes equations. See also [44].

This paper is organized as follows. In Section 2, we prove Theorem 1.1. In Section 3,
we give a spatial decay estimate of S (t)v0 to prove (1.6) by a contradiction argument. In
Section 4, we prove (1.6) for positive time. In Section 5, we prove (1.6) for complex time
(Theorems 1.2). After the proof of Theorem 1.2, we note the case n = 2 (Theorem 1.3).

2. Liouville theorems on Lp

We prove Theorem 1.1. We represent ancient solutions v ∈ L∞(−∞, 0; Lp) as v(t) =
S (t + T )v(−T ) for T > 0 by the Stokes semigroup S (t). Since S (t) is analytic and bounded
in the sector Σθ for θ ∈ (0, π/2), ancient solutions are bounded entire functions on Lp, i.e.,
∂tv ≡ 0. Theorem 1.1 then easily follows from the kernel property of the Stokes operator
N(Ap) = {v ∈ D(Ap) | Apv = 0} = {0}.

2.1. An adjoint problem. To represent ancient solutions by S (t), we prove a uniqueness
theorem for the Stokes equations (1.1) (Lemma 2.5). We apply a duality argument and
reduce the uniqueness to existence of solutions to an adjoint problem (Lemma 2.3). To do
this, we recall the Helmholtz projection and the Stokes operator on Lp.

Proposition 2.1. (i) Let C∞c,σ(Ω) = {v ∈ C∞c (Ω) | div v = 0},

Lp
σ(Ω) = C∞c,σ(Ω)

||·||Lp
, Gp(Ω) = {∇Φ ∈ Lp(Ω) | Φ ∈ Lp

loc(Ω)}, p ∈ (1,∞).

For f ∈ Lp, there exists a unique f0 ∈ Lp
σ and ∇Φ ∈ Lp such that f = f0 + ∇Φ and

|| f0||Lp + ||∇Φ||Lp ≤ C|| f ||Lp ,

with some constant C, independent of f . We call P : f 7−→ f0 the Helmholtz projection
operator. Moreover, we have

Lp
σ(Ω) =

{
f ∈ Lp(Ω)

∣∣∣∣∣ ∫
Ω

f · ∇Φdx = 0, ∇Φ ∈ Gp′(Ω)
}
, 1/p + 1/p′ = 1.(2.1)
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The space G0(Ω) = {∇Φ | Φ ∈ C∞c (Ω)} is dense in Gp(Ω) with respect to ||∇ · ||Lp .
(ii) Set

(2.2)
Ap f = P∆ f , f ∈ D(Ap),

D(Ap) = W2,p ∩W1,p
0 ∩ Lp

σ(Ω),

with the graph-norm ||v||D(Ap) = ||v||Lp + ||Apv||Lp . Then, D(Ap) ⊂ W2,p with continuous
injection.
(iii) The Stokes operator Ap generates a bounded C0-analytic semigroup S (t) = etAp on Lp

σ of
angle π/2. Moreover, N(Ap) = {v ∈ D(Ap) | Apv = 0} = {0} and R(Ap) = {Apv | v ∈ D(Ap)}
is dense in Lp

σ. In particular, we have

lim
t→∞
||S (t)v0||Lp = 0, v0 ∈ Lp

σ(Ω).(2.3)

Proof. The assertions (i) and (ii) are proved in [56, Theorem 1.4, Lemma 3.7] and [19]. The
boundedness of S (t) is proved in [15] for n ≥ 3 and [17] for n = 2. The properties of the
kernel and the range are proved in [33, Corollary 3.6 (i)] for n ≥ 3 and [22], [17, p.297] for
n = 2. The decay (2.3) follows from the density of R(Ap) in Lp

σ. □

Proposition 2.2. For g0 ∈ C∞c (Ω × (0,T )) satisfying div g0 = 0, there exists a solution
(ψ,∇s) ∈ C2,1(Ω × [0,T ]) ×C(Ω × [0,T ]) of

(2.4)
∂tψ − ∆ψ + ∇s = g0, div ψ = 0 in Ω × (0,T ),

ψ = 0 on ∂Ω × (0,T ) ∪Ω × {t = 0},

such that ∂s
t ∂

k
xψ,∇s ∈ L∞(0,T ; Lq) for 2s + |k| ≤ 2 and q ∈ (1,∞).

Proof. We set

ψ(x, t) =
∫ t

0
S (t − s)g0(s)ds, ∇s = (1 − P)∆ψ.

Since g0 is smooth and D(Aq) ⊂ W2,q by Proposition 2.1 (ii), ∂s
t ∂

k
xψ,∇s ∈ L∞(0,T ; Lq) for

2s + |k| ≤ 2. Since ∂tψ − Aqψ = g0 on Lq, (ψ, π) satisfies (2.4).
It remains to show that (ψ, s) is continuous up to second orders in Ω × [0,T ]. Since g is

smooth, in particular Aqψ ∈ C1([0,T ]; Lq) ∩ C([0,T ]; W1,q). We take bounded domains Ω′′

and Ω′ such that Ω′′ ⊂ Ω′ ⊂ Ω. Since the boundary is C3, we apply the higher regularity
estimate for the Stokes operator [30, Theorem IV.5.1] to estimate

||ψ||W3,q(Ω′′) + ||s||W2,q(Ω′′) ≤ C(||Aqψ||W1,q(Ω′) + ||ψ||W1,q(Ω′) + ||s||Lq(Ω′)).
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Thus, ψ ∈ C([0,T ]; W3,q
loc (Ω)). By the Sobolev embedding for q > n, we see that ∇2ψ is

continuous in Ω × [0,T ]. Since Aq∂tψ ∈ C([0,T ]; Lq), ∂tψ is continuous in Ω × [0,T ]. By
(2.4), ∇s is continuous in Ω × [0,T ]. This completes the proof □

Lemma 2.3. For f0 ∈ C∞c (Ω × (0,T )) satisfying div f0 = 0, there exists a solution (φ,∇π) ∈
C2,1(Ω × [0,T ]) ×C(Ω × [0,T ]) of

(2.5)
∂tφ + ∆φ − ∇π = f0, div φ = 0 in Ω × (0,T ),

φ = 0 on ∂Ω × (0,T ) ∪Ω × {t = T },

such that ∂s
t ∂

k
xφ,∇π ∈ L∞(0,T ; Lq) for 2s + |k| ≤ 2 and q ∈ (1,∞).

Proof. For g(x, t) = − f (x,T−t), we take (ψ, s) by Proposition 2.2 and set φ(x, t) = ψ(x,T−t),
π(x, t) = s(x,T − t). Then, (φ, π) satisfies the desired properties. □

2.2. Uniqueness. We apply Lemma 2.3 to prove the uniqueness (Lemma 2.5). For the
proof, we use the Bogovskiı̆ operator.

Proposition 2.4. (i) Let D = {x ∈ Rn | 1 < |x| < 2} and Lq
av(D) = {h ∈ Lq(D) |

∫
D hdx = 0}.

There exists a bounded linear operator B : Lq
av(D) −→ W1,q

0 (D), q ∈ (1,∞), such that
w = B(h) satisfies

div w = h in D, w = 0 on ∂D.(2.6)

Moreover, the operator B acts as a bounded operator from Wk,p
0 (D) to Wk+1,q

0 (D) for positive
integers k. Here, Wk,q

0 (D) denotes the Wk,q-closure of C∞c (D).
(ii) Let DR = {R < |x| < 2R}. There exists a bounded operator BR : Lq

av(DR) −→ W1,q
0 (DR)

satisfying (2.6) in DR. Moreover, the estimate

||∇k+1BR(h)||Lq(DR) ≤ C||∇kh||Lq(DR)(2.7)

holds with some constant C, independent of R > 0.

Proof. See [10], [16], [30, Theorem III.3.3] for the assertion (i). The operator BR is con-
structed by (i) and dilation. □
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Lemma 2.5 (Uniqueness). Let v ∈ L1
loc(Ω × [0,T ]) satisfy div v = 0 in Ω × (0,T ), v · N = 0

on ∂Ω × (0,T ) and

∫ T

0

∫
Ω

v · (∂tφ + ∆φ)dxdt = 0(2.8)

for all φ ∈ C2,1
c (Ω × [0,T ]) such that div φ = 0 in Ω × (0,T ), φ = 0 on ∂Ω × (0,T ) and

Ω × {t = T }. Assume that

v ∈ L∞(0,T ; Lp) for p ∈ (1,∞).(2.9)

Then, v ≡ 0.

Proof. We first extend test functions so that solutions of (2.5) satisfy (2.8). We then apply a
duality argument.

Step 1. We show that (2.8) holds for all φ ∈ C2,1(Ω × [0,T ]) such that div φ = 0 in
Ω × (0,T ), φ = 0 on ∂Ω × (0,T ) ∪Ω × {t = T },

∂s
t ∂

k
xφ ∈ L∞(0,T ; Lp′), 2s + |k| ≤ 2, 1/p + 1/p′ = 1.(2.10)

We consider a cut-off function argument. Let B0(R0) denote an open ball centered at the
origin with radius R0 > 0. We take R0 > 0 so that Ωc ⊂ B0(R0). Let θ ∈ C∞c [0,∞) be a
function such that θ ≡ 1 in [0, 1] and θ ≡ 0 in [2,∞). We set θR(x) = θ(|x|/R) for R ≥ R0.
Since div φ = 0 in Ω and φ = 0 on ∂Ω, the average of hR = φ · ∇θR in DR is zero. We set
wR = BR(hR) by Proposition 2.4 (ii) and consider its zero extension to Rn (still denoted by
wR). Since φ ∈ C2,1(Ω × [0,T ]), applying (2.7) implies that wR ∈ C([0,T ]; W3,q(Rn)) for
q ∈ (1,∞). Thus ∇2wR ∈ Cc(R2×[0,T ]) by the Sobolev embedding. Since ∂twR = BR(∂thR),
we have ∂twR ∈ Cc(Rn × [0,T ]). Thus wR ∈ C2,1

c (Rn × [0,T ]). We set

φR = φθR − wR

so that φR ∈ C2,1
c (Ω × [0,T ]) satisfies div φR = 0 in Ω and φR = 0 on ∂Ω for t ∈ [0,T ]. By

substituting φR into (2.8), we see that

0 =
∫ T

0

∫
Ω

v · (∂tφθR + ∆φθR + 2∇φ · ∇θR + φ∆θR)dxdt −
∫ T

0

∫
Ω

v · (∂twR + ∆wR)dxdt.

By (2.9) and (2.10), we have

lim
R→∞

∫ T

0

∫
Ω

v · (∂tφθR + ∆φθR + 2∇φ · ∇θR + φ∆θR)dxdt =
∫ T

0

∫
Ω

v · (∂tφ + ∆φ)dxdt.
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Since ∂twR = B(∂thR), by the Poincaré inequality [28, 5.8.1 THEOREM] and (2.7) we
estimate

||∂twR||Lp′ (DR) ≲ R||∇∂twR||Lp′ (DR) = R||∇BR(∂thR)||Lp′ (DR) ≲ R||∂thR||Lp′ (DR) ≲ ||∂tφ||Lp′ (DR).

In a similar way, we estimate ||∇2wR||Lp′ (DR) ≲ ||∇hR||Lp′ (DR) ≲ ||φ||W1,p′ (DR). It follows that

∣∣∣∣∣∣
∫ T

0

∫
Ω

v · (∂twR + ∆wR)dxdt

∣∣∣∣∣∣ ≲ ||v||L∞(0,T ;Lp(Ω))

(∫ T

0

(
||∂tφ||Lp′ (DR) + ||φ||W1,p′ (DR)

)
dt

)
→ 0, as R→ ∞.

Thus (2.8) holds for φ satisfying (2.10).
Step 2. We apply a duality argument. Since div v = 0 in Ω, v · N = 0 on ∂Ω, we have

∫
Ω

v(x, t) · ∇Φ(x)dx = 0, a.e. t ∈ (0,T ),

for all ∇Φ ∈ G0. Since G0 is dense in Gp′ by Proposition 2.1 (i), this equality is extendable
for all ∇Φ ∈ Gp′ . Hence, v(·, t) ∈ Lp

σ by (2.1).
We take arbitrary f0 ∈ C∞c,σ(Ω) and η ∈ C∞c (0,T ). We take a solution (φ, π) of (2.5) for

f̃0(x, t) = f0(x)η(t) by Lemma 2.3. Since φ satisfies (2.10), we have

∫ T

0
η(t)

(∫
Ω

v(x, t) · f0(x)dx
)

dt =
∫ T

0

∫
Ω

v · f̃0dxdt =
∫ T

0

∫
Ω

v · (∂tφ + ∆φ − ∇π)dxdt = 0.

Since η is arbitrary, we have

∫
Ω

v(x, t) · f0(x)dx = 0, a.e. t ∈ (0,T ).

By taking closure of C∞c,σ in Lp′ , the above equality is extendable for all f0 ∈ Lp′
σ . For an

arbitrary f ∈ C∞c , we set f0 = P f and ∇Φ = (I−P) f by Proposition 2.1 (i). Since v(·, t) ∈ Lp
σ,

it follows that

∫
Ω

v(x, t) · f (x)dx =
∫
Ω

v(x, t) · ( f0(x) + ∇Φ(x))dx = 0, a.e. t ∈ (0,T ).

We proved v ≡ 0. The proof is now complete. □
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2.3. Liouville theorems. We apply Lemma 2.5 to prove Theorem 1.1.

Proof of Theorem 1.1. We take an arbitrary T > 0 and set u(t) = v(t − T ) for t ∈ [0,T ]. By
(1.7), u satisfies

∫ T

0

∫
Ω

u · (∂tφ + ∆φ)dxdt = −
∫
Ω

u(x, 0) · φ(x, 0)dx(2.11)

for all φ ∈ C2,1
c (Ω × [0,T ]), div φ = 0 in Ω × (0,T ), φ = 0 on ∂Ω × (0,T ) ∪ Ω × {t = T }.

We set ũ(t) = S (t)u(0). Since S (t) is a bounded analytic semigroup of angle π/2 on Lp
σ,

ũ(t) is defined for Re t > 0 and bounded in Σθ for each θ ∈ (0, π/2). Since ũ(t) = S (t)u(0)
also satisfies (2.11), applying Lemma 2.5 implies u(t) = S (t)u(0). Thus u(t) is uniquely
continued for Re t > 0 and satisfies

sup
{||u||Lp(t)

∣∣∣ t , 0, | arg t| ≤ θ} ≤ C||u||Lp(0).

Hence we have

sup
{||v||Lp(t)

∣∣∣ t , −T, arg (t + T )| ≤ θ} ≤ C||v||Lp(−T ).

Since the right-hand side is uniformly bounded for T > 0 by (1.8), by taking a supremum
for T > 0, the ancient solution is a bounded entire function on Lp. Thus, ∂tv ≡ 0 by the
classical Liouville theorem. Since ∂tv − Av = 0, we have Av ≡ 0. Since N(Ap) = {0} by
Proposition 2.1 (iii), v ≡ 0 follows. □

To prove (1.6) for complex time, we prepare a Liouville theorem for ancient solutions in
the sector Λ = {t ∈ C\{0} | − π + θ ≤ arg t ≤ −π/2} for θ ∈ (0, π/2).

Theorem 2.6. Let v be an ancient solution to (1.1) in Ω × Λ for θ ∈ (0, π/2). Assume that

v ∈ L∞(Λ; Lp) for p ∈ (1,∞).(2.12)

Then, v ≡ 0.

Proof. We take an arbitrary T > 0 and set T̃ = T + iT tan θ. By translation, we set u(t) =
v(t − T̃ ) so that u satisfies (1.1) in Ω × (0,T ). In fact, by (1.13) we have

∫ T

0

∫
Ω

u(x, t)(∂tφ + ∆φ)dxdt = −
∫
Ω

u(x, 0)φ(x, 0)dx,

for φ ∈ C2,1
c (Ω×[0,T )) satisfying div φ = 0 inΩ×(0,T ) and φ = 0 on ∂Ω×(0,T )∪Ω×{t = T }.
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Then by Lemma 2.5, we have u(t) = S (t)u(0). Hence u(t) is uniquely continued for Re t > 0
and bounded in Σθ′ for θ′ ∈ (θ, π/2), i.e.,

sup
{||u||Lp(t)

∣∣∣ t , 0, | arg t| ≤ θ′} ≤ C||u||Lp(0).

Since v(t) = S (t + T̃ )v(−T̃ ), v(t) is continued for Re t > −T and

sup
{
||v||Lp(t)

∣∣∣ t , −T̃ , | arg(t + T̃ )| ≤ θ′
}
≤ C||v||Lp(−T̃ ).

Since the right-hand side is uniformly bounded for T > 0 by (2.12), v(t) is a bounded entire
function on Lp. Hence v ≡ 0 follows as we proved Theorem 1.1. □

Remarks 2.7. (i) Liouville theorems for the Navier-Stokes equations are studied in [40] in
connection with the regularity problem. It is proved in [40] that bounded ancient solutions
u ∈ L∞(Rn × (−∞, 0)) must be constant for n = 2 and for axisymmetric solutions without
swirl. For the case with swirl, a Liouville theorem is proved under the decay condition

|u(x, t)| ≤ C√
x2

1 + x2
2

, x ∈ R3, t ≤ 0.

It is conjectured in [54] that any bounded ancient solutions is constant. See [52], [32], [9]
for a half space. For stationary solutions, a Liouville theorem is known to hold under the
condition u ∈ L9/2(R3) [30]. See, e.g., [21], [20], [53], [41], [55] and the references therein
for further improvements.
(ii) For the Stokes flow, Liouville theorems are studied in [39] for domains. It is proved
in [39] that bounded ancient solutions v ∈ L∞(Ω × (−∞, 0)) must be trivial for Ω = Rn,Rn

+

and bounded domains for n ≥ 2. For exterior domains for n ≥ 3, Liouville theorem does not
hold for merely bounded ancient solutions due to existence of stationary solutions which are
asymptotically constant as |x| → ∞. See, e.g., [30]. It is shown in [39] that bounded ancient
solutions v(x, t) must satisfy

v(x, t) − a(t) = O(|x|−n+2) as |x| → ∞,

for some constant a(t). This characterization is based on the representation formula (1.9).
We proved a Liouville theorem for exterior domains for n ≥ 2 under the decay condition
for the spatial variable v ∈ L∞(−∞, 0; Lp) for p ∈ (1,∞) based on the boundedness of the
Stokes semigroup on Lp

σ [15], [17].
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3. Spatial decay estimates of the Stokes flow

We prepare a spatial decay estimate of the Stokes flow (Lemma 3.8) to prove (1.6) by a
contradiction argument. To do this, we prove the representation formula (1.9). We regard
S (t)v0 as the Stokes flow in Rn with an external force and apply the Duhamel’s principle.

3.1. The Stokes flow on L∞. We recall solutions of (1.1) for bounded data v0 ∈ L∞σ . Solu-
tions of (1.1) for v0 ∈ L∞σ are constructed by approximation by elements of C∞c,σ.

Proposition 3.1. There exists C > 0 such that for v0 ∈ L∞σ there exists {v0,m} ⊂ C∞c,σ such
that

(3.1)
||v0,m||L∞ ≤ C||v0||L∞ ,

v0,m → v0 a.e. x ∈ Ω as m→ ∞.

In particular, we have L∞σ = { f ∈ L∞ | div f = 0 in Ω, f · N = 0 on ∂Ω}. If v0 ∈ BUCσ,
v0,m → v0 locally uniformly in Ω, where

BUCσ(Ω) =
{
f ∈ BUC(Ω)

∣∣∣∣ div f = 0 in Ω, f = 0 on ∂Ω
}
.

Proof. See [4, Lemma 5.1]. □

Proposition 3.2. (i) Let T > 0. There exists C > 0 such that

sup
0<t≤T

(
t
|k|
2 +s||∂s

t ∂
k
xv||L∞(t) + t||∇q||∞(t)

)
≤ C||v0||L∞(3.2)

for v = S (t)v0 and ∇q = (I − P)∆v for v0 ∈ C∞c,σ and 2s + |k| ≤ 2. The associated pressure q
satisfies

sup
x∈Ω

d(x)|∇q(x, t)| ≤ C||w||L∞(∂Ω)(t),(3.3)

for w = −(∇v − ∇T v)N and t > 0 with d(x) = inf{|x − y| | y ∈ ∂Ω }.
(ii) For v0 ∈ L∞σ and v0,m ∈ C∞c,σ satisfying (3.1), vm = S (t)v0,m subsequently converges to a
limit v locally uniformly in Ω × (0,∞) together with ∂s

t ∂
k
xvm and ∇qm for 2s + |k| ≤ 2.

Proof. The a priori estimates (3.2) and (3.3) are proved in [3] for admissible domains. See
also [4, Lemmas 2.8, 2.12]. It is shown in [4, Theorem 3.1] that exterior domains of class
C3 are admissible. The assertion (ii) is based on (3.1), (3.2) and Hölder estimates for the
Stokes equations [59], [60]. See the proof of Theorem 3.2 in [4]. □
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Proposition 3.3. (i) For v0 ∈ L∞σ , there exists a unique solution (v,∇q) ∈ C2,1(Ω × (0,T ]) ×
C(Ω × (0,T ]) of (1.1) satisfying (3.2), (3.3), and v(·, t)→ v0 weakly-star on L∞ as t → 0.
(ii) The solution operator S (t) : v0 7−→ v(·, t) forms an analytic semigroup on L∞σ of angle
π/2 and satisfies

sup
0<t≤T

t
|k|
2 +s||∂s

t ∂
k
xS (t)v0||L∞ ≤ C||v0||L∞ .(3.4)

The semigroup S (t) is weakly-star continuous on L∞σ at t = 0 and strongly continuous on
BUCσ.

Proof. Proposition 3.2 (ii) implies existence of solutions to (1.1) for v0 ∈ L∞σ . The unique-
ness follows from a blow-up argument [4, Lemma 2.12]. Since (3.2) is inherited to v, (3.4)
follows. The estimate (3.4) implies analyticity of S (t) on L∞σ [4, Theorem 3.2]. The angle
π/2 follows from a resolvent estimate on L∞ [5, Theorem 1.3]. □

Remark 3.4. (The Stokes operator on L∞σ ). We define the Stokes operator on L∞σ by

(3.5)
A∞ f = lim

t→0

S (t) − I
t

f , f ∈ D(A∞),

D(A∞) = { f ∈ L∞σ | A∞ f ∈ L∞σ }.

The domain D(A∞) is equipped with the graph-norm || f ||D(A∞) = || f ||L∞ + ||A∞ f ||L∞ . See also
[27]. Although A∞ may not be represented by the projection P, by the following Proposition
3.5, we have D(A∞) ⊂ W2,p

ul (Ω) for p > n with continuous injection. In the sequel, we write
A = A∞ if there is no confusion.

Proposition 3.5. For f ∈ L∞σ , there exists a unique solution (v,∇q) ∈ W2,p
ul (Ω)×

(
Lp

ul(Ω) ∩ L∞d (Ω)
)
,

p > n, of the Stokes equations

(3.6)
v − ∆v + ∇q = f , div v = 0 in Ω,

v = 0 on ∂Ω,

satisfying the estimate

||v||W2,p
ul (Ω) + ||∇q||Lp

ul(Ω) ≤ C|| f ||L∞(Ω).(3.7)

Here, Lp
ul(Ω) denotes the uniformly local Lp space equipped with the norm

||g||Lp
ul(Ω) = sup

{
||g||Lp(Bx0 (1)∩Ω)

∣∣∣∣ x0 ∈ Ω
}
.

The space W2,p
ul (Ω) is equipped with the norm ||v||W2,p

ul (Ω) =
∑
|k|≤2 ||∂k

xv||Lp
ul(Ω) and L∞d (Ω)

denotes the space of functions g ∈ L1
loc(Ω) such that dg ∈ L∞(Ω).



15

Proof. See [5, Theorem 1.1]. □

Remark 3.6. For domains with non-compact boundaries Ω ⊂ Rn, analyticity of S (t) on L∞σ
is also studied. See [1] for a perturbed half space (n ≥ 3), [6] for a sector-like domain
(n = 2), and [7] for cylinders (n ≥ 2). For layers (n ≥ 3), S (t) may not be bounded on
L∞σ [11], [64].

3.2. Spatial decay estimates. We estimate the stress tensor on ∂Ω by using the resolvent
estimate (3.7). We then prove a spatial decay estimate of S (t)v0 from the representation
formula (1.9).

Proposition 3.7. Let Ω0 = Ω ∩ B0(R0) and R0 > 0 such that Ωc ⊂ B0(R0). There exists
C > 0 such that

sup
0<s≤t
||T ||L∞(∂Ω)(s) ≤ C

(
||v0||D(A) + sup

0<s≤t
||v||L∞(Ω)(s)

)
, t > 0,(3.8)

for T = ∇v + ∇T v − qI, v = S (t)v0, v0 ∈ D(A) and q satisfying∫
Ω0

q(x, t)dx = 0.(3.9)

Proof. Since the average of q inΩ0 is zero, by the Poincaré inequality [28, 5.8.1 THEOREM
1], we estimate

||q||Lp(Ω0) ≤ C||∇q||Lp(Ω0) ≤ C′||∇q||Lp
ul(Ω).

By the Sobolev inequality for p > n, we estimate

||q||L∞(Ω0) ≤ C||q||W1,p(Ω0) ≤ ||∇q||Lp
ul(Ω).

Since v = S (s)v0 satisfies (3.6) for f = v + Av and D(A) ⊂ W2,p
ul (Ω) ⊂ W1,∞(Ω) by Remark

3.3, we have

||T ||L∞(∂Ω) ≤ C(||v||W2,p
ul (Ω) + ||∇q||Lp

ul(Ω)) ≤ C′||v||D(A).

We estimate the right-hand side for s ≤ t. We may assume that t > 1. For s ∈ (0, 1), we
apply (3.4) to estimate

||v||D(A)(s) = ||S (s)v0||L∞ + ||AS (s)v0||L∞ ≤ C(||v0||L∞ + ||Av0||L∞) = C||v0||D(A).
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For s ∈ [1, t], we have

||v||D(A)(s) = ||S (s)v0||L∞ + ||AS (1)S (s − 1)v0||L∞
≤ ||S (s)v0||L∞ +C||S (s − 1)v0||L∞ ≤ C′ sup

0<s≤t
||v||L∞(s).

Thus (3.8) holds. □

Lemma 3.8 (Spatial decay estimate). (i) Let v = S (t)v0 and v0 ∈ D(A). Then,

(3.10) v(x, t) =
∫
Ω

Γ(x − y, t)v0(y)dy +
∫ t

0

∫
∂Ω

V(x − y, t − s)T (y, s)N(y)dH(y)ds,

for x ∈ Ω and t > 0.
(ii) Let n ≥ 3. There exists C > 0 such that

|v(x, t)| ≤ ||v0||L∞ +
C

d(x)n−2 sup
0<s≤t
||T ||L∞(∂Ω)(s), x ∈ Ω, t > 0.(3.11)

If q satisfies (3.9), then

|v(x, t)| ≤ ||v0||L∞ +
C

d(x)n−2

(
||v0||D(A) + sup

s>0
||v||L∞(s)

)
, x ∈ Ω, t > 0.(3.12)

Proof. By (1.11), we estimate∣∣∣∣∣∣
∫ t

0

∫
∂Ω

V(x − y, t − s)T (y, s)N(y)dH(y)ds

∣∣∣∣∣∣ ≲ sup
0<s≤t
||T ||L∞(∂Ω)(s)

∫ t

0

∫
∂Ω

dH(y)ds
(|x − y| + s1/2)n

≲
1

d(x)n−2 sup
0<s≤t
||T ||L∞(∂Ω)(s)

∫ ∞

0

ds
(1 + s1/2)n .

The right-hand side is finite for n ≥ 3. Thus (3.11) follows from (3.10). The estimate (3.12)
follows from (3.11) and (3.8).

We prove (3.10). Let (v̄, q̄) be the zero extension of (v, q) to Rn. Then, (v̄, q̄) satisfies

(3.13)
∂tv̄ − ∆v̄ + ∇q̄ = µ, div v̄ = 0 in Rn × (0,∞),

v̄ = v̄0 on Rn × {t = 0},

for a measure µ(·, t) ∈ M(Rn) such that

(µ, φ) =
∫
∂Ω

T (y, t)N(y)φ(y)dH(y), φ ∈ C0(Rn).
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See [39]. Here, C0(Rn) is the L∞-closure of C∞c (Rn) and M(R2) is the space of finite regular
Borel measures onRn, equipped with the total variation. The bracket (·, ·) denotes the pairing
for C0 and the adjoint space M. Indeed, by integration by parts, (v̄, q̄) satisfies (3.13) in the
sense that

d
dt

∫
Rn

v̄ · φdy −
∫
Rn

v̄ · ∆φdy −
∫
Rn

q̄div φdy =
∫
∂Ω

T N · φdH(y), φ ∈ C∞c (Rn).

Since T ∈ L∞(∂Ω×(0,T0)) for T0 > 0 by (3.8), we have µ ∈ L∞(0,T0; M). We set vε = ηε∗v̄,
qε = ηε ∗ q̄ and µε = ηε ∗ µ with the mollifier ηε ∈ C∞c (Rn). Then, by substituting ηε(x − y)
into the above, we have

(3.14)
∂tvε − ∆vε + ∇qε = µε, div vε = 0 in Rn × (0,∞),

vε = v0,ε on Rn × {t = 0}.

Since µε ∈ L∞(0,T ; Lp(Rn)) for p ∈ [1,∞] and V(x, t) is the kernel of et∆P, applying the
Duhamel’s principle implies

vε(x, t) = et∆v0,ε +

∫ t

0
e(t−s)∆Pµε(s)ds

= ηε ∗
(∫
Ω

Γ(· − y, t)v0(y)dy +
∫ t

0

∫
∂Ω

V(· − y, t − s)T (y, s)N(y)dyds
)
.

The right-hand side converges locally uniformly in Ω for each t > 0. Since vε → v locally
uniformly in Ω, sending ε→ 0 yields (3.10). □

3.3. The case for complex time. We extend (3.12) for complex time 0 ≤ arg t ≤ θ.

Lemma 3.9. Let γ = {t ∈ C\{0} | arg t = θ} for θ ∈ (0, π/2). We set γt = {s ∈ γ | |s| ≤ |t|} for
t ∈ γ.
(i) There exists C > 0 such that

sup
s∈γt

||T ||L∞(∂Ω)(s) ≤ C
(
||v0||D(A) + sup

s∈γt

||v||L∞(s)
)
, t ∈ γ,(3.15)

for v = S (t)v0, v0 ∈ D(A) and q satisfying (3.9).
(ii) The formula

v(x, t) =
∫
Ω

Γ(x − y, t)v0(y)dy +
∫
γt

∫
∂Ω

V(x − y, t − s)T (y, s)N(y)dH(y)ds,(3.16)

holds for x ∈ Ω and t ∈ γ. The second term is the line integral on γt.
(iii) Let n ≥ 3. There exists C > 0 such that
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|v(x, t)| ≤ C
(
||v0||L∞ +

1
d(x)n−2 sup

s∈γt

||T ||L∞(∂Ω)(s)
)
, x ∈ Ω, t ∈ γ.(3.17)

If (3.9) holds, then

|v(x, t)| ≤ C
{
||v0||L∞ +

1
d(x)n−2

(
||v0||D(A) + sup

{||v||L∞(s) | 0 ≤ arg s ≤ θ} )} ,(3.18)

for x ∈ Ω and 0 ≤ arg t ≤ θ.

Proof. The estimate (3.15) follows in the same way as (3.8) by using the semigroup property

S (t + s) = S (t)S (s), t, s ∈ Σθ.

Since (vε, qε) solves (3.14) in Rn × γ, applying the Duhamel’s principle on γt yields (3.16).
Since the Oseen tensor satisfies

|V(x, t)| ≤ Cθ

(|x| + |t|1/2)n , x ∈ Rn, t ∈ Σθ,

(3.17) follows from (3.16). We set γ′ = {arg t = θ′} for θ′ ∈ [0, θ]. By (3.17) and (3.15), we
have

|v(x, t)| ≤ C
||v0||L∞ +

1
d(x)n−2

||v0||D(A) + sup
s∈γ′
||v||L∞(s)


≤ C

{
||v0||L∞ +

1
d(x)n−2

(||v0||D(A) + sup
{||v||L∞(s) | 0 ≤ arg s ≤ θ})}

for x ∈ Ω, t ∈ γ′. By taking a supremum for θ′ ∈ [0, θ], we obtain (3.18). □

Lemma 3.10. For n = 2, we have

|v(x, t)| ≤ ||v0||L∞ +
C
|x|

(
||v0||D(A) + sup

s>0
||v||L∞(s)

)
, |x| ≥ 2R0, t > 0,(3.19)

(3.20)
|v(x, t)| ≤ C

{
||v0||L∞ +

1
|x|

(
||v0||D(A) + sup

{||v||L∞(s) | 0 ≤ arg s ≤ θ} )} ,
|x| ≥ 2R0, 0 ≤ arg t ≤ θ,

for v = S (t)v0, v0 ∈ D(A) and q satisfying (3.9) with zero net force
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F(s) =
∫
∂Ω

T (y, s)N(y)dH(y) ≡ 0.

Proof. Since the Oseen tensor satisfies

|∇V(x, t)| ≤ Cθ

(|x| + |t|1/2)3 x ∈ Rn, t ∈ Σθ,

by a simple calculation, we have

|V(x − y, t) − V(x, t)| ≤ C
(|x| + |t|1/2)3 , |x| ≥ 2R0, y ∈ ∂Ω.

Hence∣∣∣∣∣∣
∫
γt

∫
∂Ω

V(x − y, t − s)T (y, s)N(y)dH(y)ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
γt

∫
∂Ω

(V(x − y, t − s) − V(x, t − s)) T (y, s)N(y)dH(y)ds

∣∣∣∣∣∣
≲ sup

s∈γt

||T ||L∞(∂Ω)(s)
∫ |t|

0

dr
(|x| + (|t| − r)1/2)3 ≲

1
|x| sup

s∈γt

||T ||L∞(∂Ω)(s)
∫ ∞

0

dr
(1 + r1/2)3 .

Since (3.8) and (3.10) hold also for n = 2, (3.19) follows in the same way as (3.12). Since
(3.15) and (3.16) hold for n = 2, (3.20) follows. □

4. The large time estimate for positive time

We prove the estimate (1.6) for t > 0. We first prove a large time estimate of S (t)v0 for
v0 ∈ D(A) ∩ L2. Since D(A) ∩ L2 ⊂ L∞σ ∩ L2 ⊂ Lp

σ for p ∈ [2,∞], by (2.3) and the Sobolev
embedding we have

lim
t→∞
||S (t)v0||L∞ = 0.

In particular, ||S (t)v0||L∞ is bounded for all t > 0.

Lemma 4.1. There exists C > 0 such that

sup
t>0
||S (t)v0||L∞(t) ≤ C||v0||D(A), v0 ∈ D(A) ∩ L2.(4.1)
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Proof. We argue by a contradiction. Suppose on the contrary that (4.1) were false. Then,
for any m ≥ 1 there exists ṽ0,m ∈ D(A) ∩ L2 such that

Mm := sup
t>0
||ṽm||L∞(t) > m||ṽ0,m||D(A),

for ṽm = S (t)ṽ0,m. We set vm = ṽm/Mm so that

sup
t>0
||vm||L∞(t) = 1, ||v0,m||D(A) <

1
m
.

We normalize the associated pressure qm so that∫
Ω0

qm(x, t)dx = 0,

for Ω0 = B0(R0) ∩Ω and R0 > 0 such that Ωc ⊂ B0(R0). Then by (3.12), we have

|vm(x, t)| ≤ 1
m
+

C
d(x)n−2

(
1
m
+ 1

)
, x ∈ Ω, t > 0,(4.2)

with some constant C, independent of m. We take tm ∈ (0,∞) such that ||vm||L∞(tm) ≥ 1/2.
By (3.4), we may assume that tm → ∞. We take xm ∈ Ω such that

|vm(xm, tm)| ≥ 1
4
.

Case 1. limm→∞d(xm) = ∞. We may assume that limm→∞ d(xm) = ∞ by choosing a
subsequence. By (4.2), we see that

1
4
≤ |vm(xm, tm)| ≤ 1

m
+

C
d(xm)n−2

(
1
m
+ 1

)
→ 0, as m→ ∞.

Thus Case 1 does not occur.

Case 2. limm→∞d(xm) < ∞. We may assume that xm → x∞ ∈ Ω by choosing a subsequence.
We set

um(x, t) = vm(x, t + tm), pm(x, t) = qm(x, t + tm).

Then, (um, pm) is a solution of (1.1) in Ω × (−tm, 0]. By (4.2), we have

|um(x, t)| ≤ 1
m
+

C
d(x)n−2

(
1
m
+ 1

)
, x ∈ Ω, t > −tm.

Since um is bounded in Ω × (−tm, 0], ∂s
t ∂

k
xum are bounded in Ω × (−T, 0] for 2s + |k| ≤ 2
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and T > 0 by (3.4). Thus, there exists a subsequence (still denoted by um) such that um

converges to a limit u locally uniformly in Ω × (−∞, 0]. By sending m→ ∞, we have

|u(x, t)| ≤ C
d(x)n−2 x ∈ Ω, t ∈ R.(4.3)

It is not difficult to see that the limit u is an ancient solution to (1.1). We take φ ∈ C2,1
c (Ω ×

(−∞, 0]) satisfying div φ = 0 in Ω× (−∞, 0) and φ = 0 on ∂Ω× (−∞, 0)∪Ω× {t = 0}. Since
um satisfies (1.1) in Ω × (−tm, 0] and φ is supported in Ω × (−tm, 0] for sufficiently large m,
by multiplying φ by (1.1) and integration by parts, we have

∫ 0

−tm

∫
Ω

um · (∂tφ + ∆φ)dxdt = 0.

Sending m → ∞ implies (1.7). The limit u also satisfies div u = 0 in Ω × (−∞, 0) and
u ·N = 0 on ∂Ω× (−∞, 0). Since u ∈ L∞(−∞, 0; Lp) for p ∈ (n/(n−2),∞) by (4.3), applying
the Liouville theorem (Theorem 1.1) implies that u ≡ 0. This contradicts |u(x∞, 0)| ≥ 1/4.
Thus Case 2 does not occur.

We reached a contradiction. The proof is now complete. □

Lemma 4.2. There exists C > 0 such that

sup
t>0
||S (t)v0||L∞ ≤ C||v0||L∞ , v0 ∈ L∞σ .(4.4)

Proof. It suffices to show (4.4) for v0 ∈ C∞c,σ by Proposition 3.2 (ii). Since S (t)v0 is bounded
on L∞σ for t ∈ (0, 1] by (3.3), we consider the case t ≥ 1. Since S (1)v0 ∈ D(A) ∩ L2 and

||S (1)v0||D(A) = ||S (1)v0||∞ + ||AS (1)v0||∞ ≤ C||v0||L∞ ,

we apply (4.1) to estimate

||S (t)v0||L∞ = ||S (t − 1)S (1)v0||L∞ ≤ C||S (1)v0||D(A) ≤ C′||v0||L∞ .

We proved (4.4). □

5. Extensions to complex time

We prove Theorem 1.2. We begin with a maximum principle in a sector.
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Proposition 5.1. Let θ ∈ (0, π/2) and γ = {t ∈ C\{0} | arg t = θ}. For v0 ∈ D(A) ∩ L2,

lim
|t|→∞

sup
{||S (t)v0||L∞

∣∣∣ arg t = θ
}
= 0,(5.1)

sup
{||S (t)v0||L∞

∣∣∣ 0 ≤ arg t ≤ θ} ≤ max
{

sup
t>0
||S (t)v0||L∞ , sup

t∈γ
||S (t)v0||L∞

}
.(5.2)

Proof. We shall show that

lim
T→∞

sup
{||S (t)v0||Lp

∣∣∣ Re t = T, 0 ≤ arg t ≤ θ} = 0, p ∈ [2,∞].(5.3)

The property (5.1) follows from (5.3). Since v0 ∈ D(A), S (t)v0 is strongly continuous on L∞

at t = 0. Since S (t)v0 is holomorphic in Σθ and continuous in Σθ, (5.2) follows from (5.3)
and the maximum principle.

We take θ′ ∈ (θ, π/2). For Re t = T , 0 ≤ arg t ≤ θ, there exists t1 > 0 and t2 such that
t = t1 + t2 and

t1 ≥ T
(
1 − tan θ

tan θ′

)
, arg t2 = θ′.

Since S (t2)v0 is bounded on Lp for t2 ∈ Σθ′ , by S (t) = S (t2)S (t1) and (2.3) we have

sup
{||S (t)v0||Lp | Re t = T, 0 ≤ arg t ≤ θ } ≤ C sup

{
||S (t1)v0||Lp

∣∣∣∣∣ T
(
1 − tan θ

tan θ′

)
≤ t1 ≤ T

}
→ 0 as T → ∞.

Thus (5.3) holds for p ∈ [2,∞). Since D(Ap) ⊂ W2,p by Proposition 2.1 (ii), by the Sobolev
embedding, we estimate

||S (t)v0||L∞ ≤ C||S (t)v0||W1,p ≤ C′(||S (t)v0||Lp + ||ApS (t)v0||Lp).

Since ||ApS (t)v0||Lp = ||ApS (1)S (t − 1)v0||Lp ≤ C||S (t − 1)v0||Lp , (5.3) holds for p = ∞. □

We prove (4.1) on the half line γ.

Proposition 5.2. There exists C > 0 such that

sup
t∈γ
||S (t)v0||L∞ ≤ C||v0||D(A), v0 ∈ D(A) ∩ L2.(5.4)
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Proof. Suppose that (5.4) were false. Then, for m ≥ 1 there exisits v0,m ∈ D(A) ∩ L2 such
that

sup
t∈γ
||vm||L∞(t) = 1, ||v0,m||D(A) <

1
m
,

for vm = S (t)v0,m. Since supt>0 ||vm||L∞ ≤ 1 for sufficiently large m by (4.4), we apply (5.2)
to estimate

sup
{||vm||L∞(t)

∣∣∣ 0 ≤ arg t ≤ θ} ≤ 1.(5.5)

We normalize the pressure qm so that (3.9) is satisfied. By (3.18), we have

|vm(x, t)| ≤ C
{

1
m
+

1
d(x)n−2

(
1
m
+ 1

)}
, x ∈ Ω, 0 ≤ arg t ≤ θ,(5.6)

with some constant C, independent of m. We take tm ∈ γ such that ||vm||L∞(tm) ≥ 1/2. We
may assume that |tm| → ∞ by Proposition 3.3 (ii). We take xm ∈ Ω such that |vm(xm, tm)| ≥
1/4.

Case 1. limm→∞d(xm) = ∞. We may assume that limm→∞d(xm) = ∞. By (5.6), we have

1
4
≤ |v(xm, tm)| ≤ C

{
1
m
+

1
d(xm)n−2

(
1
m
+ 1

)}
→ 0, as m→ ∞.

Thus Case 1 does not occur.

Case 2. limm→∞d(xm) < ∞. We may assume that xm → x∞ ∈ Ω by choosing a subsequence.
We set

um(x, t) = vm(x, t + tm), pm(x, t) = qm(x, t + tm).

Then (um, pm) satisfies (1.1) in Ω × Λm for

Λm =

{
t ∈ C\{0}

∣∣∣∣∣ t , −tm, −π + θ ≤ arg t ≤ −π
2
, Im t ≥ −|tm| sin θ

}
.

Since |tm| → ∞, the domain Λm approaches to the sector

Λ =

{
t ∈ C\{0}

∣∣∣∣∣ −π + θ ≤ arg t ≤ −π
2

}
.

By (5.6), we have
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|um(x, t)| ≤ C
{

1
m
+

1
d(x)n−2

(
1
m
+ 1

)}
, x ∈ Ω, t ∈ Λm.(5.7)

Since ∂s
t ∂

k
xum for 2s + |k| ≤ 2 are uniformly bounded for each bounded domain in Ω × Λ by

Proposition 3.3 (ii), there exists a subsequence (still denoted by um) such that um converges
to a limit u locally uniformly in Ω × Λ. For each T > 0, we set

IT = {t ∈ Λ | − T ≤ Re t ≤ 0, Im t = −T tan θ}.

Since IT ⊂ Λm for sufficiently large m, (um, pm) satisfies (1.1) inΩ× IT . We take an arbitrary
φ ∈ C2,1

c (Ω×[−T, 0]) satisfying div φ = 0 inΩ×[−T, 0] and φ = 0 on ∂Ω×(−T, 0)∪Ω×{t =
0}. By multiplying φ by (1.1) in Ω × IT and integration by parts, it follows that

∫ 0

−T

∫
Ω

um(x, α + iβ)(∂αφ + ∆φ)dxdα = −
∫
Ω

um(x,−T + iβ)φ(x,−T + iβ)dx, β = −T tan θ.

Sending m→ ∞ implies that

∫ 0

−T

∫
Ω

u(x, α + iβ)(∂αφ + ∆φ)dxdα = −
∫
Ω

u(x,−T + iβ)φ(x,−T + iβ)dx.

Since div u = 0 in Ω × Λ and u · N = 0 on ∂Ω × Λ, the limit u is an ancient solution in
Ω ×Λ. Since u ∈ L∞(Λ; Lp) for p ∈ (n/(n − 2),∞) by (5.7), applying the Liouville theorem
(Theorem 2.6) implies u ≡ 0. This contradicts |u(x∞, 0)| ≥ 1/4. Thus Case 2 does not occur.
We reached a contradiction. The proof is now complete. □

Lemma 5.3. There exists C > 0 such that

sup
t∈Σθ
||S (t)v0||L∞ ≤ C||v0||L∞ , v0 ∈ L∞σ .(5.8)

Proof. We observe that

sup
t∈γ
||S (t)v0||L∞ ≤ C||v0||L∞ , v0 ∈ D(A) ∩ L2.(5.9)

The estimate (5.9) holds for |t| ≤ 1 by Proposition 3.3 (ii). For |t| ≥ 1, we take t1 = eiθ and
set t = t1 + t2. Since S (t1)v0 ∈ D(A) ∩ L2, by (5.4) we estimate

||S (t)v0||L∞ = ||S (t2)S (t1)v0||L∞ ≤ C||S (t1)v0||D(A) ≤ C′||v0||L∞ .

Thus (5.9) holds. By (4.4), (5.9) and (5.2), we obtain
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sup{||S (t)v0||L∞ | 0 ≤ arg t ≤ θ} ≤ C||v0||L∞ .

Since the same estimate holds for −θ ≤ arg t ≤ 0, (5.8) holds for v0 ∈ D(A) ∩ L2.
For v0 ∈ L∞σ we take a sequence {v0,m} ⊂ C∞c,σ satisfying (3.1). Then by choosing a

subsequence (still denoted by vm), vm = S (t)v0,m converges to S (t)v0 locally uniformly in
Ω × (0,∞) by Proposition 3.2 (ii). By (5.8) and (3.1), we have

sup
t∈Σθ
||vm||L∞ ≤ C||v0||L∞ .(5.10)

Since vm is uniformly bounded in Ω × Σθ, ∂s
t ∂

k
xvm is uniformly bounded in Ω × {δ ≤

Re t, | arg t| ≤ θ} for 2s + |k| ≤ 2 and each δ > 0. Thus by choosing a subsequence, vm

converges to a limit v locally uniformly in Ω × {δ ≤ Re t, | arg t| ≤ θ}. Since vm(·, t) satis-
fies (3.2), the limit v(·, t) is also analytic on L∞ for t ∈ Σθ. Since v agrees with S (t)v0 for
t ∈ (0,∞), we have v = S (t)v0 for all t ∈ Σθ. Since (5.10) is inherited to v = S (t)v0, (5.8)
holds. The proof is now complete. □

Proof of Theorem 1.2. The assertion follows from Lemma 5.3. □

Proof of Theorem 1.3. For n = 2 and solutions with zero net force, the spatial decay esti-
mates (3.19) and (3.20) hold. By using (3.19) and the Liouville theorem (Theorem 1.1) for
p ∈ (2,∞), we are able to prove (4.4) in the same way as n ≥ 3. For complex time, we use
(3.20). □

Remarks 5.4. (i) (Decay for the time derivative) Theorems 1.2 implies the large time esti-
mate

sup
t>0
{||S (t)v0||L∞ + t||AS (t)v0||L∞} ≤ C||v0||L∞ , v0 ∈ L∞σ .(5.11)

Since S (t) is bounded on γ = {arg t = θ} for θ ∈ (0, π/2), we are able to change the integral
path of the Laplace transform from (0,∞) to γ, i.e.,

(λ − A)−1 f =
∫ ∞

0
e−λtS (t) f dt =

∫
γ

e−λtS (t) f dt.

See [50, Theorem 5.2]. This gives the resolvent estimate

||(λ − A)−1 f ||L∞ ≤
Cθ

|λ| || f ||L
∞ , λ ∈ Σθ+π/2, θ ∈ (0, π/2).(5.12)
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Since S (t) is represented by the Dunford integral of the resolvent (λ − A)−1, (5.11) follows
from (5.12).
(ii) (Decay for the spatial derivative) By (3.4), for each T > 0 we have

||∇S (t)v0||L∞ ≤
C

t1/2 ||v0||L∞ , 0 < t ≤ T.(5.13)

We are not able to take T = ∞ in (5.13). To see this, we recall the decay estimate

||∇S (t)v0||Lp ≤ C
tn/2(1/q−1/p)+1/2 ||v0||Lq , t > 0, v0 ∈ Lq

σ, 1 < q ≤ p ≤ n.(5.14)

See [38] for n ≥ 3, [24] for n = 2 and [45]. The condition p ≤ n is optimal in the sense that
(5.14) for p > n is not valid for all t ≥ 1 and v0 ∈ Lq

σ [45], [37, Corollary 2.4]. If (5.13) were
true for all t > 0, by the semigroup property and the decay estimate

||S (t)v0||L∞ ≤
C

tn/(2q) ||v0||Lq , t > 0,

proved in [38], [23] for n ≥ 3, [25] for n = 2, we would obtain (5.14) for p = ∞.
(iii) Theorem 1.3 improves the pointwise estimates of the two-dimensional Navier-Stokes
flows for rotationally symmetric initial data around a unit disk Ωc. Let u be a global-in-
time solution of the Navier-Stokes equations for initial data u0 ∈ L2

σ ∩ L1 ∩W2−2/q,q
0 (Ω) for

q ∈ (1, 4/3]. It is proved in [35, Theorem 5.8] that if u0 is Dm+2-covariant for some m ≥ 0
and satisfies u0 ∈ W1,2

0 (Ω), (1 + |x|)m+3|u0(x)| ∈ L∞(Ω) and (1 + |x|)m+1|u0(x)| ∈ L1(Ω), then
u is Dm+2-covariant and satisfies the pointwise estimates

|u(x, t)| ≲
 |x|−(m+3), |x| ≥ 2, t > 0,

t−(m+3)/2, x ∈ Ω, t > 0.
(5.15)

The estimate (5.15) is obtained from the representation formula of the Navier-Stokes flows.
Although the right-hand side is unbounded at x = 0 and t = 0, respectively, by estimating
the integral form of u by using (1.6), we are able to show that u is bounded in Ω × (0,∞).
Hence (5.15) is improved to

|u(x, t)| ≲
 (1 + |x|)−(m+3),

(1 + t)−(m+3)/2, x ∈ Ω, t > 0,

as noted in [35, p.1546, Remarks (ii)].
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