Behaviors and energy source of Mycoplasma gallisepticum gliding

メタデータ	言語: English
	出版者: American Society for Microbiology
	公開日: 2020-03-09
	キーワード (Ja): マイコプラズマ, アドヘシン, 運動性,
	シアル酸
	キーワード (En): ATP, ATP, adhesins, motility, sialic
	acid, viscosity
	作成者: 水谷, 雅希, 宮田, 真人
	メールアドレス:
	所属: Osaka City University, Osaka City University
URL	https://ocu-omu.repo.nii.ac.jp/records/2019950

Behaviors and energy source of *Mycoplasma gallisepticum* gliding

Masaki Mizutani, Makoto Miyata

Citation	Journal of Bacteriology. 201(19); e00397-19
Issue Date	2019-09-06
Туре	Journal Article
Textversion	author
Deletion	The following article has been accepted by Journal of Bacteriology.
Relation	After it is published, it will be found at <u>https://doi.org/10.1128/JB.00397-19</u> .
DOI	10.1103/PhysRevB.98.104419

Self-Archiving by Author(s) Placed on: Osaka City University

JB Accepted Manuscript Posted Online 15 July 2019 J. Bacteriol. doi:10.1128/JB.00397-19 Copyright © 2019 American Society for Microbiology. All Rights Reserved.

$\frac{1}{2}$	To Journal of Bacteriology (Research article) (JB00317-19, ver3)
3	Behaviors and energy source of Mycoplasma gallisepticum gliding
4	
5	Masaki Mizutani, ^a Makoto Miyata ^{a,b} #
6	
7	^a Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
8	^b The OCU Advanced Research Institute for Natural Science and Technology
9	(OCARINA), Osaka City University, Sumiyoshi-ku, Osaka, Japan
10	
11	Running Title: Mycoplasma gliding behaviors
12	
13	
14	# Address correspondence to Makoto Miyata, miyata@sci.osaka-cu.ac.jp
15	
16	

18 ABSTRACT

19	Mycoplasma gallisepticum, an avian-pathogenic bacterium, glides on host tissue
20	surfaces by using a common motility system with Mycoplasma pneumoniae. In the
21	present study, we observed and analyzed the gliding behaviors of M. gallisepticum in
22	detail by using optical microscopes. <i>M. gallisepticum</i> glided at a speed of 0.27 ± 0.09
23	$\mu m/s$ with directional changes relative to the cell axis of 0.6 \pm 44.6 degrees/5 s without
24	the rolling of the cell body. To examine the effects of viscosity on gliding, we analyzed
25	the gliding behaviors under viscous environments. The gliding speed was constant in
26	various concentrations of methylcellulose but was affected by Ficoll. To investigate the
27	relationship between binding and gliding, we analyzed the inhibitory effects of
28	sialyllactose on binding and gliding. The binding and gliding speed sigmoidally
29	decreased with sialyllactose concentration, indicating the cooperative binding of the cell.
30	To determine the direct energy source of gliding, we used a membrane-permeabilized
31	ghost model. We permeabilized M. gallisepticum cells with Triton X-100 or Triton
32	X-100 containing ATP and analyzed the gliding of permeabilized cells. The cells
33	permeabilized with Triton X-100 did not show gliding; in contrast, the cells
34	permeabilized with Triton X-100 containing ATP showed gliding at a speed of 0.014 \pm
35	$0.007\ \mu\text{m/s}.$ These results indicate that the direct energy source for the gliding motility
36	of <i>M. gallisepticum</i> is ATP.
37	

38 IMPORTANCE

39 *Mycoplasmas*, the smallest bacteria, are parasitic and occasionally commensal.

40 Mycoplasma gallisepticum is related to human pathogenic Mycoplasmas—Mycoplasma

41 pneumoniae and Mycoplasma genitalium—which cause so-called 'walking pneumonia'

42 and non-gonococcal urethritis, respectively. These *Mycoplasmas* trap sialylated 43 oligosaccharides, which are common targets among influenza viruses, on host trachea or 44 urinary tract surfaces and glide to enlarge the infected areas. Interestingly, this gliding 45 motility is not related to other bacterial motilities or eukaryotic motilities. Here, we 46 quantitatively analyze cell behaviors in gliding and clarify the direct energy source. The 47 results provide clues for elucidating this unique motility mechanism. 48

49 INTRODUCTION

50 Members of the bacterial class *Mollicutes*, including the genus *Mycoplasma*, are

51 parasitic, occasionally commensal, and characterized by small cells and genomes as

52 well as the absence of a peptidoglycan layer (1, 2). More than ten *Mycoplasma* species,

such as the fish pathogen *Mycoplasma mobile* (3-6) and the human pathogen

54 Mycoplasma pneumoniae (6-8), have membrane protrusions and exhibit gliding motility

55 in the direction of the membrane protrusion on solid surfaces, which enables

56 *Mycoplasmas* to parasitize higher animals.

57 Interestingly, Mycoplasma gliding does not involve flagella or pili and is entirely

58 unrelated to other bacterial motility systems and the conventional motor proteins that

are common in eukaryotic motility systems (9, 10).

60 The gliding motilities of *Mycoplasmas* are classified into two systems; *M. mobile*-type

61 and *M. pneumoniae*-type (5, 6). Although the appearance of gliding and the binding

- 62 target, sialylated oligosaccharides (SOs) are common, the gliding mechanisms should be
- 63 completely different, because they do not share any of the structures and the component
- 64 proteins in the gliding machineries. It is remarkable that two gliding mechanisms were
- 65 established independently in class *Mollicutes*, a rather small group of bacteria. *M*.

66	pneumoniae-type gliding has until now been studied mainly in M. pneumoniae and
67	Mycoplasma genitalium. A structure outline of the gliding machinery has been
68	suggested, including that for fifteen component proteins (6-8, 11). The gliding
69	machinery, called the 'attachment organelle,' is composed of an internal core and
70	adhesin complexes (12-14). The internal core is divided into three parts, the bowl
71	complex, paired plates, and terminal button (3, 7, 13-15). It has been suggested that the
72	bowl complex connects the internal core to the cell body and may be responsible for the
73	generation or transmission of force (6, 16, 17). Furthermore, paired plates are the
74	scaffold for formation and force transmission of the gliding machinery (6, 18-24). The
75	terminal button is thought to tightly bind to the front side of the cell membrane (6, 23,
76	25-27). The adhesin complex is composed of P1 adhesin and P90 (28). P90 is encoded
77	in tandem with P1 adhesin and is cleaved from another protein, P40, for maturation (29,
78	30). A recent study shows that the homolog of P40/P90 in <i>M. genitalium</i> , P110, has a
79	binding pocket of SOs (31), which are binding targets for Mycoplasma infection and
80	gliding. The mechanism of the gliding motility has been proposed as an 'inchworm
81	model,' in which a cell catches SOs on solid surfaces through the adhesin complexes
82	and is propelled by the repetitive extensions and retractions of the internal core $(3, 6, 8)$.
83	The gliding motility of <i>M. mobile</i> is driven by ATP using 'gliding ghost' which has a
84	permeabilized membrane and can be reactivated by the addition of ATP (32-34). In
85	contrast, the direct energy source for <i>M. pneumoniae</i> -type gliding motility is still
86	unclear (6).
87	Mycoplasma gallisepticum is an avian pathogen that causes chronic respiratory disease
88	in chickens and infectious sinusitis in turkeys. The cells transmit from breeder birds to
89	their progeny in ovo (1, 35, 36). M. gallisepticum glides using the M. pneumoniae-type

M. pneumoniae whose identities for amino acids range from 20% to 45% (36-39). The 91structure of the gliding machinery is similar to that in *M. pneumoniae* (37, 39). *M.* 92 93 gallisepticum has a faster growth rate and more stable cell shape than M. pneumoniae, 94 which is beneficial for the motility study (37). In this study, we observe and analyze the gliding behaviors of *M. gallisepticum* in detail, 95and clarify the direct energy source of the gliding motility by modified gliding ghost 96 97 experiments. 98 RESULTS 99 100 **Gliding behaviors** 101 The gliding motility of *M. gallisepticum* has been reported previously (37, 40), but the 102details have not yet been examined. Therefore, these details were examined in this study. 103 *M. gallisepticum* cells were collected, suspended in phosphate-buffered saline (PBS) 104 containing 10% non-heat-inactivated horse serum, and inserted into a tunnel chamber 105constructed by taping coverslips and precoated with non-heat-inactivated horse serum 106 and bovine serum albumin. Then, the tunnel chamber was washed with PBS containing 107 20 mM glucose (PBS/G) and was observed by phase-contrast microscopy. We did not 108 apply heat treatment to the serum, because the cells glided with much higher ratio with 109 non-heated serum than heated one (37). The cells showed a flask shape (Fig. 1A) and 110glided in the direction of the tapered end, as previously reported (Fig. 1B; see Movie S1 111 in the supplemental material) (37). The complement in non-heated serum may be 112removed by the wash, alternatively it may not damage the gliding machinery. The

motility system and has eight homologs of component proteins of gliding machinery in

proportions of gliding cells to all cells and the gliding speeds averaged for 60 s at 1 s

90

ല്

cript	114	intervals were 62% \pm 6% (n = 454) and 0.27 \pm 0.09 $\mu m/s$ (n = 231), respectively (Fig.
nus	115	1B and C), which is consistent with those reported in the previous study (37). To
Ma	116	analyze the gliding direction, we traced the angles between the cell axis and the
fed	117	following gliding direction for 60 s at 5 s intervals, as previously described (41). The
cep	118	averaged gliding direction relative to the cell axis was 0.6 ± 44.6 degrees/5 s (n = 231
Ac	119	(Fig. 1D), indicating that <i>M. gallisepticum</i> has no significant directional bias.
	120	Possibility of rolling around the cell axis
	121	A previous study shows that the adhesin complexes of <i>M. pneumoniae</i> exist around th
	122	membrane protrusion (8). M. gallisepticum may have a similar distribution because it
	123	uses similar gliding machinery to M. pneumoniae (36-39). The distribution of adhesin
À	124	complexes suggests that cells may roll around the cell axis during gliding. To examine
ariolog	125	this possibility, we traced the movement of 40 nm colloidal gold labeled to a gliding c
f Bacte	126	<i>M. gallisepticum</i> cells were biotinylated on the cell surface through amino groups, the
a lo		

117	following gliding direction for 60 s at 5 s intervals, as previously described (41). The
118	averaged gliding direction relative to the cell axis was 0.6 ± 44.6 degrees/5 s (n = 231)
119	(Fig. 1D), indicating that <i>M. gallisepticum</i> has no significant directional bias.
120	Possibility of rolling around the cell axis
121	A previous study shows that the adhesin complexes of <i>M. pneumoniae</i> exist around the
122	membrane protrusion (8). M. gallisepticum may have a similar distribution because it
123	uses similar gliding machinery to M. pneumoniae (36-39). The distribution of adhesin
124	complexes suggests that cells may roll around the cell axis during gliding. To examine
125	this possibility, we traced the movement of 40 nm colloidal gold labeled to a gliding cell.
126	M. gallisepticum cells were biotinylated on the cell surface through amino groups, then
127	mixed with 40 nm colloidal gold conjugated with streptavidin in the tunnel chamber and
128	observed by dark-field microscopy. The cells labeled with colloidal gold glided at a
129	similar speed to cells without colloidal gold (see Fig. S1 and Movie S2 in the
130	supplemental material). All pairs of mass centers of cells and colloidal gold moved
131	while maintaining a constant distance $(n = 20)$ (Fig. 1E; see Fig. S1 in the supplemental
132	material), showing that the cells glide without rolling of the cell body.
133	Gliding in viscous environments
134	A previous study shows that <i>M. mobile</i> gliding is drastically inhibited by viscous
135	environments created using methylcellulose (MC) or Ficoll (41). To examine the effects

- 136of viscosity on M. gallisepticum gliding, we analyzed the gliding behaviors under
- viscous buffers including MC or Ficoll. MC is a long, linear, and slightly branched 137

ല്പ

138	polymer, and forms a gel-like three-dimensional network. Ficoll is a highly branched
139	polymer which increases viscosity and does not form a network (42, 43). M.
140	gallisepticum cells were suspended in PBS/G containing various concentrations of MC
141	or Ficoll, inserted into the tunnel chamber, observed by phase-contrast microscopy, and
142	analyzed for gliding speed and direction (Fig. 2A). The gliding speed did not
143	significantly change with an increase in viscosity from 0.22 \pm 0.06 $\mu m/s$ (n = 50) at 0.66
144	mPa s to $0.19\pm0.04~\mu m/s$ (n = 50) at 7.3 mPa s with 0% and 0.50% MC, respectively.
145	However, the gliding speed did significantly decrease to $0.11\pm0.04~\mu\text{m/s}$ (n = 50) at 4.6
146	mPa s with 15% Ficoll (P<0.001 by Student's <i>t</i> -test) (Fig. 2B and C). The averaged
147	gliding direction relative to the cell axis did not change significantly with an increase in
148	viscosity for all examined conditions. However, the standard deviations of gliding
149	direction significantly decreased in Ficoll conditions (P<0.001 by F-test) from 27.4
150	degrees/5 s (n = 48) in 0% to 12.4 degrees/5 s (n = 50) in 15% Ficoll (Fig. 2B and C).
151	These results indicate that the gliding motility of <i>M. gallisepticum</i> is affected by Ficoll
152	but not MC.
153	Inhibition of binding and gliding by free sialyllactose
154	Previous studies show that <i>M. mobile</i> glides via dozens of working legs, the numbers of
155	which can be reduced by the addition of free SOs (33, 44-46). To examine the
156	relationship between binding and gliding, we added various concentrations of free
157	3'-N-acetylneuraminyllactose (3'-sialyllactose, SL), an SO, to gliding M. gallisepticum
158	cells. The cell suspension was inserted into the tunnel chamber and observed by

- 159 phase-contrast microscopy. After 60 s, the buffer was replaced by the buffers containing
- 160 0.5 mM SL. The gliding cells slowed down after the addition of free SL, and some of
- 161 them detached from the glass surface (Fig. 3A and B). However, most of the cells which

162	were stopped by the addition of SL kept binding to glass at their front end of the
163	membrane protrusion (see Fig. S2 in the supplemental material). The inhibition ratio for
164	binding was calculated from the number of gliding cells at 40 s after the addition of SL
165	to the number before the SL treatments (45). The ratio decreased with SL concentration
166	from 88% \pm 11% (n = 14) in 0 mM to 13% \pm 11% (n = 21) in 0.5 mM SL (Fig. 3C). The
167	gliding speed at 40 s after the addition of SL also decreased with SL concentration, from
168	$0.17\pm0.06~\mu m/s~(n=58)$ in 0 mM to 0.06 \pm 0.04 $\mu m/s~(n=54)$ in 0.5 mM SL (Fig. 3D).
169	The Hill constant of binding was calculated as previously described (45) to be about
170	1.55 (see Fig. S3 in the supplemental material), indicating cooperativity in binding
171	between cells and SL.
172	Gliding ghost experiment for specification of direct energy source
173	Previous studies show that the gliding motility of <i>M. mobile</i> is driven by ATP hydrolysis
174	based on gliding ghost experiments. In these experiments, M. mobile cells were
175	permeabilized with Triton X-100 and stopped for gliding. Gliding was then reactivated
176	by the addition of ATP (32-34). In contrast, the reactivation of permeabilized cells of M .
177	pneumoniae-type gliding Mycoplasmas has not been successful so far (6). At first, the
178	same method was tried for M. gallisepticum, but about half of the cells permeabilized
179	with Triton X-100 detached from the glass surfaces after the addition of ATP solution.
180	Cells were permeabilized with Triton X-100 and ATP to efficiently observe the
181	behaviors of permeabilized cells in the presence of ATP. This strategy was applied to M .
182	mobile to confirm whether it was efficient. Cultured M. mobile cells were suspended in
183	bufferA (10 mM HEPES pH 7.4, 100 mM NaCl, 2 mM MgCl ₂ , 1 mM EGTA, 1 mM
183 184	bufferA (10 mM HEPES pH 7.4, 100 mM NaCl, 2 mM MgCl ₂ , 1 mM EGTA, 1 mM DTT, 0.1% MC) containing 20 mM glucose and inserted into the tunnel chamber. We
183 184 185	bufferA (10 mM HEPES pH 7.4, 100 mM NaCl, 2 mM MgCl ₂ , 1 mM EGTA, 1 mM DTT, 0.1% MC) containing 20 mM glucose and inserted into the tunnel chamber. We avoided to use phosphate buffer, because it inhibits phosphate release in ATPase activity

<u>У</u> Е
logy
iology
teriology
acteriology
Bacteriology
of Bacteriology
al of Bacteriology
rnal of Bacteriology
ournal of Bacteriology

186	(32). Then, the cells were permeabilized with 0.013% Triton X-100 containing 1 mM $$
187	ATP + 0.01 mM ADP or 1 mM ADP. The cells permeabilized with Triton X-100
188	containing 1 mM ATP + 0.01 mM ADP glided at a similar speed to the intact cells. The
189	cells permeabilized with Triton X-100 containing 1 mM ADP stopped gliding when they
190	were permeabilized (see Movie S3 and S4 in the supplemental material). These results
191	indicate that this method works efficiently. This method was then applied to M .
192	gallisepticum. Cultured M. gallisepticum cells were suspended in bufferA containing
193	10% non-heat-inactivated horse serum, inserted into the tunnel chamber, washed by
194	bufferA containing 20 mM glucose, and observed by phase-contrast microscopy. Under
195	these conditions, the proportion of gliding cells to all cells and the averaged gliding
196	speed were 74% \pm 3% (n = 2011) and 0.36 \pm 0.06 $\mu m/s$ (n = 220), respectively (see Fig.
197	S4 in the supplemental material). The buffer was then replaced by 0.007% Triton X-100
198	containing no ATP, 1 mM ATP + 0.01 mM ADP, or 1 mM ADP in bufferA. The cells
199	became round at 10–30 s from the addition of Triton solutions (Fig. 4A and B) causing
200	the gliding speeds to decrease (Fig. 4C; see Fig. S5 in the supplemental material). The
201	round cells showed three levels of cell-image density shifts; (i) the image density did
202	not decrease, (ii) the image density decreased to be about 75% of the intact cell, (iii) the
203	image density decreased to half of the intact cell (Fig 4D and E; see Fig. S5 in the
204	supplemental material). The cells which decreased to be about 75% of the cell-image
205	density showed slow gliding when they were permeabilized with Triton X-100
206	containing 1 mM ATP + 0.01 mM ADP (Fig. 4A and C; see Fig. S5 and Movie S5 in the
207	supplemental material). The cells permeabilized with Triton X-100 containing no ATP
208	or 1 mM ADP solution did not show gliding ($n_{intact} = 3943$ and 2604, respectively) (Fig.
209	4F). These results indicate that we succeeded in forming gliding ghosts of M .

210	gallisepticum. The occurrence ratio of gliding ghosts was calculated to be 0.41% from
211	the numbers of gliding ghosts and intact cells before Triton treatment ($n_{intact} = 11528$
212	and $n_{ghost} = 47$). The gliding speed of ghosts in 1 mM ATP + 0.01 mM ADP was
213	averaged for 150 s at 10-s intervals and found to be 0.014 \pm 0.007 $\mu\text{m/s}$ (Fig. 4G). The
214	62.9% of gliding ghosts continued to glide for 17 min of video recording. In the ATP
215	hydrolysis cycle, the ATP state becomes the ADP or P_i state through the ADP + P_i state.
216	Vanadate ion (V _i) with ADP can mimic the ADP + P_i state. V _i acts as a phosphate analog
217	to form an ADP-V $_i$ complex which occupies the catalytic site of ATPase and blocks the
218	hydrolysis cycle (47, 48). The cells were permeabilized with Triton containing 1 mM
219	ATP + 0.5 mM V_i to examine whether V_i affects the gliding of ghosts, (Fig. 4F). The
220	gliding ghosts in ATP + V_i glided with 0.011 \pm 0.010 $\mu m/s$ (n = 9) at an occurrence ratio
221	of ghost to all intact cells 0.37% ($n_{intact} = 2439$ and $n_{ghost} = 9$) (Fig. 4H and I), similar to
222	the ghosts constructed by Triton X-100 containing 1 mM ATP + 0.01 mM ADP.
223	However, only 33.3% of ghosts continued to glide for 17 min of video recording under
224	$ATP + V_i \ conditions, \ which \ is \ half \ of \ the \ ghosts \ constructed \ by \ Triton \ X-100 \ containing$
225	1 mM ATP + 0.01 mM ADP (Fig. 4J), suggesting that $V_{\rm i}$ gradually stopped the gliding
226	of ghosts. These results indicate that the gliding motility of <i>M. gallisepticum</i> is driven
227	by ATP hydrolysis.
228	Damage to cell membranes by treatment with Triton X-100
229	Cells treated with 0.007% Triton X-100 became round and showed three levels of

cell-image density shifts (Fig. 4D and E; see Fig. S5 in the supplemental material).

231 Negative-staining electron microscopy was carried out to analyze the morphological

changes and the cell-image density shifts observed under optical microscopy in detail.

233 Intact cells showed a pear-shape with a membrane protrusion called a 'bleb' and

235	solution containing $1 \text{ mM ATP} + 0.01 \text{ mM ADP}$ showed a round cell shape (Fig. 5B),
236	consistent with our observations by optical microscopy. Some of the cells had large or
237	small holes on the cell membrane (Fig. 5C-E). These results indicate that the cells
238	treated with Triton X-100 solution have a permeabilized membrane causing the loss of
239	cytoplasm. We could not distinguish the permeabilized cells corresponding to those with
240	75% and half cell density of original cells which were observed in the optical
241	microscopy (Fig. 4).
242	
243	DISCUSSION
244	Gliding behaviors
245	In the present study, we observed and analyzed the gliding behaviors of M .
246	gallisepticum by using optical microscopes. The gliding speed of M. gallisepticum
247	measured in the present study was about 0.27 $\mu\text{m/s}$ (Fig. 1C), which is comparable to
248	the reported gliding speeds of <i>M. pneumoniae</i> and <i>M. genitalium</i> , about 0.64 μ m/s and
249	0.15 μ m/s, respectively (39). A previous study shows that <i>M. genitalium</i> has curved
250	attachment organelles and a circular trajectory of gliding, but the deletion mutant of
251	MG_217 protein shows straight attachment organelles and a straight trajectory,
252	suggesting that the gliding direction is determined by the alignment of the attachment
253	organelle (23). M. gallisepticum does not have a strong bend in attachment organelles
254	(Fig. 5A) (37), and the average gliding direction was 0.6 ± 44.6 degrees/5 s (Fig. 1D),
255	which is consistent with previous observations (23, 41). However, cells sometimes
256	glided to the left or the right (Fig. 1B). In these cases, the cells bind to glass surfaces at
257	the end of the membrane protrusion so that the thermal fluctuations and drag of the cell

'infrableb,' as previously reported (Fig. 5A) (37, 49). Cells treated with Triton X-100

258body likely changes the gliding direction to left or right.

259

260

280

ല്

<u>Journal of Bacteriology</u>

261with adhesin complexes working as a 'leg' around the membrane protrusion (41, 50, 51). 262M. gallisepticum and M. mobile glide on the ciliated epithelial cells of birds and the gills 263of fresh-water fish in nature, respectively. The distribution of adhesin complexes may be 264an advantage for binding to host surfaces because these tissue surfaces are 265three-dimensionally aligned. 266In this study, it was found that Ficoll has inhibitory effects on *M. gallisepticum* gliding 267but MC does not (Fig. 2). The reduction of gliding speed by Ficoll is unlikely caused by 268the increased friction applied to the cell body, because the force generated by friction is 269estimated as 2.3 fN even in the highest Ficoll concentration used here (52). Considering 270that the force generated by a single motor proteins ranges 2-7 pN and the force of M. 271mobile gliding ranges 27-113 pN, the 2.3 fN cannot reduce the gliding speed (46, 53-56). 272Perhaps, Ficoll interrupts the conformational changes of adhesion complex involved in 273the gliding mechanism, as suggested for *M. mobile* gliding (41). This assumption is 274consistent with the observation that MC does not reduce the gliding speed even if it 275increases the solution viscosity to the similar level to that by Ficoll. 276**Cooperativity in binding** 277Binding and gliding speed sigmoidally decreased by free SL (Fig. 3C and D), 278suggesting that the adhesin complex on the *M. gallisepticum* cells work cooperatively. 279Previous studies show that one adhesin complex of *M. pneumoniae* is composed of two

M. gallisepticum did not roll around the cell axis during gliding (Fig. 1E; see Fig. S1 in

the supplemental material). Previous studies show that *M. mobile* does not roll even

- heterodimers, one of each is assembled by one P1 adhesin molecule and one P90
- 281molecule (28). The adhesin complex in M. genitalium is also composed of a dimer of

282	heterodimers constructed by P110 and P140, the homologs of P1 adhesin and P90,
283	respectively (57). P110 has a binding site for SOs, so one adhesin complex binds two
284	SOs (31). The adhesin complex of <i>M. gallisepticum</i> is assumed to have two binding
285	sites for SOs because the components adhesin complex, CrmA and GapA have
286	similarity with P110 and P140, respectively, in their amino acid sequences. This
287	assumption is consistent with 1.55 of the Hill constant, a parameter presenting
288	cooperativity (see Fig. S3 in the supplemental material). The Hill constant of binding
289	between <i>M. pneumoniae</i> cells and sialic compounds ranges from 1.5 to 2.5 (45),
290	comparable to 1.55 of the Hill constant for <i>M. gallisepticum</i> .
291	In 0.5 mM SL conditions, cells rotating around the end of the membrane protrusion
292	were observed (see Fig. S2 in the supplemental material). A previous study shows that
293	the ghosts of <i>M. mobile</i> exhibit directed rotational motility around the membrane
294	protrusion driven by the linear motion of the legs (34) . In contrast, rotary motion in M .
295	gallisepticum seems to be driven by thermal fluctuation because it has no regularity of
296	rotational direction (see Fig. S2 in the supplemental material), suggesting the possibility
297	that adhesin complexes exist with high density at the end of the membrane protrusion.
298	Energy source
299	In the present study, we succeeded in forming the gliding ghosts of M. gallisepticum and
300	clarified that the direct energy source of gliding is ATP (Fig. 4). In this method, we
301	added 0.01 mM ADP to 0.007% Triton X-100 and 1 mM ATP solution because cells
302	permeabilized with 0.007% Triton X-100 and 1 mM ATP solution easily detached from
303	glass surfaces, and the addition of ADP reduced these detachments.
304	In a previous study, the gliding ghosts of <i>M. mobile</i> glided at similar speeds to intact
305	cells, and 85% of ghosts showed gliding (32). However, the gliding speed of <i>M</i> .

306	gallisepticum ghosts was 4% of that of the intact cells, and 0.4% of the intact cells
307	became gliding ghosts (Fig. 4I and J). Kawamoto et al. showed in 2016 that the
308	translucent area surrounding the internal core in <i>M. pneumoniae</i> might be occupied by
309	less-diffusive materials and play a role in transmitting the movements of the paired
310	plates originating in the bowl complex to the adhesin complexes (8). The low
311	occurrence ratio of gliding ghosts in M. gallisepticum may be caused by the
312	permeabilization of cells resulting in the elution of less-diffusive materials. The cells
313	treated with Triton X-100 show three levels of cell-image density shifts (Fig. 4D and E).
314	The cells which decreased in the cell-image density to be 75% of the intact cells
315	probably have permeabilized cell membranes which retain most of the less-diffusive
316	materials.
317	In the gliding motility of <i>M. mobile</i> , complexes of MMOBs 1660 and 1670 in internal
318	jellyfish-like structures have been proposed to hydrolyze ATP molecules as a motor (5,
319	58). Therefore, which proteins work as a motor in the <i>M. pneumoniae</i> -type gliding
320	system need to be identified. Fifteen component proteins of the attachment organelles in
321	M. pneumoniae have been identified until now (6). One of these proteins has been
322	annotated as Lon, an ATP-dependent protease (6). This protein possibly works as a
323	motor for gliding.
324	Generally, respirable bacteria generate a proton gradient across the cell membrane in the
325	respiratory process. The proton gradient causes proton motive force which drives F-type
326	ATP synthase and bacterial flagella (59, 60). However, Mycoplasmas have no genes for
327	electron transport and synthesize ATP molecules by glycolysis (61). The membrane
328	potential of <i>M. gallisepticum</i> was -48 mV, much smaller than that of typical bacteria,
329	which is -150 mV (62-65). Therefore, ATP is more convenient for <i>Mycoplasmas</i> for the

and energy source of gliding motilities rather than proton motive force.

331

332 MATERIALS AND METHODS

Cultivation. The *M. gallisepticum* S6 strain was grown in Aluotto medium at 37°C, as
previously described (37).

Observations of gliding behaviors. The cells were cultured to reach an optical density 335 336 at 595 nm of around 0.1. The cultured cells were collected by centrifugation at $12,000 \times$ 337 g for 10 min at room temperature (RT) and suspended in PBS consisting of 75 mM 338 sodium phosphate (pH 7.3) and 68 mM NaCl. The cell suspension was centrifuged at 339 $12,000 \times g$ for 5 min at RT, suspended in PBS containing 10% non-heat-inactivated horse serum (Gibco; Thermo Fisher Scientific, Waltham, MA), poured through a 340 341 0.45-um pore size filter and incubated for 15 min at RT. Then, the cell suspension was 342poured twice more and inserted into a tunnel chamber which was assembled by taping 343 coverslips cleaned with saturated ethanolic KOH and precoated with 100% 344 non-heat-inactivated horse serum for 60 min and 10 mg/ml bovine serum albumin 345(Sigma-Aldrich, St. Louis, MO) in PBS for 60 min at RT. The tunnel chamber was 346 washed with PBS containing 20 mM glucose, incubated at 37°C on an inverted 347 microscope (IX83; Olympus, Tokyo, Japan) equipped with a thermo plate 348 (MATS-OTOR-MV; Tokai Hit, Shizuoka, Japan) and a lens heater (MATS-LH; Tokai 349 Hit), observed by phase-contrast microscopy at 37°C and recorded with a 350charge-coupled device (CCD) camera (LRH2500XE-1; DigiMo, Tokyo, Japan). Video data were analyzed by ImageJ 1.43u (http://rsb.info.nih.gov/ij/), as previously described 351

352 (37, 41).

353 To investigate the effect of viscosity on gliding, the cultured cells were washed with

ല്

354	PBS containing 10% non-heat-inactivated horse serum and 0.10%, 0.25%, and 0.50%
355	MC (Methyl Cellulose #400; nacalai tesque, Kyoto, Japan) or 5%, 10%, and 15% Ficoll
356	(M.W. 400,000; nacalai tesque, Kyoto, Japan), poured and incubated. Then, the cell
357	suspension was poured and inserted into a cleaned and precoated tunnel chamber. The
358	tunnel chamber was washed with various concentrations of viscous buffer containing 20
359	mM glucose, observed by phase-contrast microscopy at 37°C and recorded. The
360	viscosities were measured using dynamic viscoelasticity measuring apparatus
361	(Rheosol-G5000; UBM, Kyoto, Japan) at 37°C as follows: 0.66 mPa s for PBS/G, 2.5,
362	5.5, 7.3 mPa s for 0.10%, 0.25%, 0.50% MC, 2.3, 3.0, 4.6 mPa s for 5%, 10%, 15%
363	Ficoll.
364	Cells on the tunnel chamber were treated with various concentrations of 3'-sialyllactose
365	sodium salt (Nagara Science Co., Ltd, Tokyo, Japan) in PBS/G, observed by
366	phase-contrast microscopy at 37°C and recorded to examine the binding features.
367	The cultured cells were collected, suspended in PBS containing 10 mM
368	Sulfo-NHSLC-LC-Biotin (Thermo Fisher Scientific) and incubated for 15 min at RT to
369	observe cell rolling. The cell suspension was centrifuged, suspended in PBS containing
370	10% non-heat-inactivated horse serum, poured, and incubated. Then, the cell suspension
371	was poured and inserted into a cleaned and precoated tunnel chamber. The tunnel
372	chamber was washed by PBS/G containing streptavidin conjugated 40 nm colloidal gold
373	(Cytodiagnostics, Ontario, Canada), observed by dark-field microscopy using an upright
374	microscope (BX50; Olympus) at 37°C and recorded by a CCD camera (WAT-120N;
375	Watec Co. Ltd., Yamagata, Japan). Video data were analyzed by ImageJ 1.43u and
376	IGOR Pro 6.33J (WaveMetrics, Portland, OR).
377	Gliding ghost

378	The cultured cells were collected and suspended in HEPES buffer (10 mM HEPES pH
379	7.4, 100 mM NaCl). The cell suspension was centrifuged, suspended in bufferA, poured,
380	and incubated for 15 min at RT. Then, the cell suspension was poured and inserted into
381	a cleaned and precoated tunnel chamber. The tunnel chamber was washed with bufferA
382	containing 20 mM glucose, observed by phase-contrast microscopy at 37°C, and
383	recorded. After 70 s, the buffer was replaced with 0.007% Triton X-100 (MP
384	Biomedicals, Santa Ana, CA) containing 1 mM ATP and 0.01 mM ADP or 0 mM ATP or
385	1 mM ADP or 1 mM ATP and 0.5 mM Na_3VO_4 . Video data were analyzed by ImageJ
386	1.43u.
387	Negative-staining electron microscopy. The cultured cells were collected, suspended
388	in PBS containing 10% non-heat-inactivated horse serum, poured through a 0.45 - μ m
389	pore size filter and incubated for 15 min at RT. Then, the cell suspension was placed on
390	a carbon-coated grid and incubated for 10 min at RT. The grid was treated with 0.007%
391	Triton X-100 containing 1 mM ATP and 0.01 mM ADP to permeabilize cells, incubated
392	for 1 min at RT and fixed with 1% glutaraldehyde in bufferA for 1 min at RT. The fixed
393	cells were washed with water, stained with 0.5% ammonium molybdate, and observed
394	using a transmission electron microscope (JEM-1010; JEOL, Tokyo, Japan) at 80 kV

equipped with a CCD camera (FastScan-F214 (T); TVIPS, Gauting, Germany).

396

397 ACKNOWLEDGMENTS

We thank Yuhei O Tahara at Osaka City University for technical assistance withnegative-staining electron microscopy. This work was supported by a Grant-in-Aid for

- 400 Scientific Research in the innovative area of "Harmonized Supramolecular Motility
- 401 Machinery and Its Diversity' (Ministry of Education, Culture, Sports, Science, and

402	Tec	hnology KAKENHI; grant number 24117002), by a Grants-in-Aid for Scientific
403	Res	earch (A) (Ministry of Education, Culture, Sports, Science, and Technology
404	KA	KENHI; grant number 17H01544), and Jutenkenkyu from Osaka City University to
405	М.	Miyata. M. Mizutani is the recipient of a Research Fellowship of the Japan Society
406	for	the Promotion of Science (18J15362).
407		
408	RE	FERENCES
409 410	1.	Razin S, Yogev D, Naot Y. 1998. Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 62:1094-156
411	2.	Razin S, Hayflick L. 2010. Highlights of mycoplasma researchan historical
412		perspective. Biologicals 38:183-90.
413	3.	Miyata M. 2008. Centipede and inchworm models to explain <i>Mycoplasma</i> gliding.
414		Trends Microbiol 16:6-12.
415	4.	Miyata M. 2010. Unique centipede mechanism of <i>Mycoplasma</i> gliding. Annu Rev
416		Microbiol 64:519-37.
417	5.	Miyata M, Hamaguchi T. 2016. Prospects for the gliding mechanism of
418		Mycoplasma mobile. Curr Opin Microbiol 29:15-21.
419	6.	Miyata M, Hamaguchi T. 2016. Integrated information and prospects for gliding
420		mechanism of the pathogenic bacterium Mycoplasma pneumoniae. Front Microbiol
421		7:960.
422	7.	Nakane D, Kenri T, Matsuo L, Miyata M. 2015. Systematic structural analyses of
423		attachment organelle in Mycoplasma pneumoniae. PLoS Pathog 11:e1005299.
424	8.	Kawamoto A, Matsuo L, Kato T, Yamamoto H, Namba K, Miyata M. 2016.
425		Periodicity in attachment organelle revealed by electron cryotomography suggests
426		conformational changes in gliding mechanism of Mycoplasma pneumoniae. MBio
427		7:e00243-16.
428	9.	Dandekar T, Huynen M, Regula JT, Ueberle B, Zimmermann CU, Andrade MA,
429		Doerks T, Sanchez-Pulido L, Snel B, Suyama M, Yuan YP, Herrmann R, Bork P.
430		2000. Re-annotating the Mycoplasma pneumoniae genome sequence: adding value,
431		function and reading frames. Nucleic Acids Res 28:3278-88.
432	10.	Jaffe JD, Stange-Thomann N, Smith C, DeCaprio D, Fisher S, Butler J, Calvo S,
433		Elkins T, FitzGerald MG, Hafez N, Kodira CD, Major J, Wang S, Wilkinson J,

434		Nicol R, Nusbaum C, Birren B, Berg HC, Church GM. 2004. The complete genome
435		and proteome of Mycoplasma mobile. Genome Res 14:1447-61.
436	11.	Seybert A, Gonzalez-Gonzalez L, Scheffer MP, Lluch-Senar M, Mariscal AM,
437		Querol E, Matthaeus F, Pinol J, Frangakis AS. 2018. Cryo-electron tomography
438		analyses of terminal organelle mutants suggest the motility mechanism of
439		Mycoplasma genitalium. Mol Microbiol 108:319-329.
440	12.	Meng KE, Pfister RM. 1980. Intracellular structures of Mycoplasma pneumoniae
441		revealed after membrane removal. J Bacteriol 144:390-9.
442	13.	Henderson GP, Jensen GJ. 2006. Three-dimensional structure of Mycoplasma
443		pneumoniae's attachment organelle and a model for its role in gliding motility. Mol
444		Microbiol 60:376-85.
445	14.	Seybert A, Herrmann R, Frangakis AS. 2006. Structural analysis of Mycoplasma
446		pneumoniae by cryo-electron tomography. J Struct Biol 156:342-54.
447	15.	Hegermann J, Herrmann R, Mayer F. 2002. Cytoskeletal elements in the bacterium
448		Mycoplasma pneumoniae. Naturwissenschaften 89:453-8.
449	16.	Pich OQ, Burgos R, Ferrer-Navarro M, Querol E, Pinol J. 2006. Mycoplasma
450		genitalium mg200 and mg386 genes are involved in gliding motility but not in
451		cytadherence. Mol Microbiol 60:1509-19.
452	17.	Jordan JL, Chang HY, Balish MF, Holt LS, Bose SR, Hasselbring BM, Waldo RH,
453		3rd, Krunkosky TM, Krause DC. 2007. Protein P200 is dispensable for
454		Mycoplasma pneumoniae hemadsorption but not gliding motility or colonization of
455		differentiated bronchial epithelium. Infect Immun 75:518-22.
456	18.	Popham PL, Hahn TW, Krebes KA, Krause DC. 1997. Loss of HMW1 and HMW3
457		in noncytadhering mutants of Mycoplasma pneumoniae occurs post-translationally.
458		Proc Natl Acad Sci U S A 94:13979-84.
459	19.	Hahn TW, Willby MJ, Krause DC. 1998. HMW1 is required for cytadhesin P1
460		trafficking to the attachment organelle in Mycoplasma pneumoniae. J Bacteriol
461		180:1270-6.
462	20.	Seto S, Miyata M. 2003. Attachment organelle formation represented by
463		localization of cytadherence proteins and formation of the electron-dense core in
464		wild-type and mutant strains of Mycoplasma pneumoniae. J Bacteriol 185:1082-91.
465	21.	Kenri T, Seto S, Horino A, Sasaki Y, Sasaki T, Miyata M. 2004. Use of
466		fluorescent-protein tagging to determine the subcellular localization of Mycoplasma
467		pneumoniae proteins encoded by the cytadherence regulatory locus. J Bacteriol
468		186:6944-55.
469	22.	Burgos R, Pich OQ, Querol E, Pinol J. 2007. Functional analysis of the

470		Mycoplasma genitalium MG312 protein reveals a specific requirement of the
471		MG312 N-terminal domain for gliding motility. J Bacteriol 189:7014-23.
472	23.	Burgos R, Pich OQ, Querol E, Pinol J. 2008. Deletion of the Mycoplasma
473		genitalium MG_217 gene modifies cell gliding behaviour by altering terminal
474		organelle curvature. Mol Microbiol 69:1029-40.
475	24.	Bose SR, Balish MF, Krause DC. 2009. Mycoplasma pneumoniae cytoskeletal
476		protein HMW2 and the architecture of the terminal organelle. J Bacteriol
477		191:6741-8.
478	25.	Jordan JL, Berry KM, Balish MF, Krause DC. 2001. Stability and subcellular
479		localization of cytadherence-associated protein P65 in Mycoplasma pneumoniae. J
480		Bacteriol 183:7387-91.
481	26.	Chang HY, Prince OA, Sheppard ES, Krause DC. 2011. Processing is required for a
482		fully functional protein P30 in Mycoplasma pneumoniae gliding and cytadherence.
483		J Bacteriol 193:5841-6.
484	27.	Hasselbring BM, Sheppard ES, Krause DC. 2012. P65 truncation impacts P30
485		dynamics during Mycoplasma pneumoniae gliding. J Bacteriol 194:3000-7.
486	28.	Nakane D, Adan-Kubo J, Kenri T, Miyata M. 2011. Isolation and characterization
487		of P1 adhesin, a leg protein of the gliding bacterium Mycoplasma pneumoniae. J
488		Bacteriol 193:715-22.
489	29.	Layh-Schmitt G, Herrmann R. 1992. Localization and biochemical characterization
490		of the ORF6 gene product of the Mycoplasma pneumoniae P1 operon. Infect
491		Immun 60:2906-13.
492	30.	Catrein I, Herrmann R, Bosserhoff A, Ruppert T. 2005. Experimental proof for a
493		signal peptidase I like activity in Mycoplasma pneumoniae, but absence of a gene
494		encoding a conserved bacterial type I SPase. FEBS J 272:2892-900.
495	31.	Aparicio D, Torres-Puig S, Ratera M, Querol E, Pinol J, Pich OQ, Fita I. 2018.
496		Mycoplasma genitalium adhesin P110 binds sialic-acid human receptors. Nat
497		Commun 9:4471.
498	32.	Uenoyama A, Miyata M. 2005. Gliding ghosts of Mycoplasma mobile. Proc Natl
499		Acad Sci USA 102:12754-8.
500	33.	Kinosita Y, Nakane D, Sugawa M, Masaike T, Mizutani K, Miyata M, Nishizaka T.
501		2014. Unitary step of gliding machinery in Mycoplasma mobile. Proc Natl Acad Sci
502		USA 111:8601-6.
503	34.	Kinosita Y, Miyata M, Nishizaka T. 2018. Linear motor driven-rotary motion of a
504		membrane-permeabilized ghost in Mycoplasma mobile. Sci Rep 8:11513.
505	35.	Levisohn S, Kleven SH. 2000. Avian mycoplasmosis (Mycoplasma gallisepticum).

506		Rev Sci Tech 19:425-42.
507	36.	Indikova I, Vronka M, Szostak MP. 2014. First identification of proteins involved in
508		motility of Mycoplasma gallisepticum. Vet Res 45:99.
509	37.	Nakane D, Miyata M. 2009. Cytoskeletal asymmetrical dumbbell structure of a
510		gliding mycoplasma, Mycoplasma gallisepticum, revealed by negative-staining
511		electron microscopy. J Bacteriol 191:3256-64.
512	38.	Indikova I, Much P, Stipkovits L, Siebert-Gulle K, Szostak MP, Rosengarten R,
513		Citti C. 2013. Role of the GapA and CrmA cytadhesins of Mycoplasma
514		gallisepticum in promoting virulence and host colonization. Infect Immun
515		81:1618-24.
516	39.	Miyata M, Nakane D. 2013. Gliding mechanism of the Mycoplasma pneumoniae
517		subgroup implications from studies on Mycoplasma mobile. in Molecular and Cell
518		Biology of Mollicutes, eds G Browning and C Citti (Norfolk: Horizon Press):237-
519		252.
520	40.	Erdmann T. 1976. Untersuchungen zur morphologie, vermehrung und
521		beweglichkeit von Mycoplasma gallisepticum. MD thesis Johannes Gutenberg
522		Universita [®] t, Mainz, Germany.
523	41.	Morio H, Kasai T, Miyata M. 2016. Gliding direction of Mycoplasma mobile. J
524		Bacteriol 198:283-90.
525	42.	Magariyama Y, Kudo S. 2002. A mathematical explanation of an increase in
526		bacterial swimming speed with viscosity in linear-polymer solutions. Biophys J
527		83:733-9.
528	43.	Nakamura S, Adachi Y, Goto T, Magariyama Y. 2006. Improvement in motion
529		efficiency of the spirochete Brachyspira pilosicoli in viscous environments.
530		Biophys J 90:3019-26.
531	44.	Nagai R, Miyata M. 2006. Gliding motility of <i>Mycoplasma mobile</i> can occur by
532		repeated binding to N-acetylneuraminyllactose (sialyllactose) fixed on solid
533		surfaces. J Bacteriol 188:6469-75.
534	45.	Kasai T, Nakane D, Ishida H, Ando H, Kiso M, Miyata M. 2013. Role of binding in
535		Mycoplasma mobile and Mycoplasma pneumoniae gliding analyzed through
536		inhibition by synthesized sialylated compounds. J Bacteriol 195:429-35.
537	46.	Mizutani M, Tulum I, Kinosita Y, Nishizaka T, Miyata M. 2018. Detailed analyses
538		of stall force generation in <i>Mycoplasma mobile</i> gliding. Biophys J 114:1411-1419.
539	47.	Shimizu T, Johnson KA. 1983. Presteady state kinetic analysis of vanadate-induced
540		inhibition of the dynein ATPase. J Biol Chem 258:13833-40.
541	48.	Burgess SA, Walker ML, Sakakibara H, Knight PJ, Oiwa K. 2003. Dynein structure

g

542		and power stroke. Nature 421:715-8.
543	49.	Maniloff J, Morowitz HJ, Barrnett RJ. 1965. Ultrastructure and Ribosomes of
544		Mycoplasma gallisepticum. J Bacteriol 90:193-204.
545	50.	Miyata M, Uenoyama A. 2002. Movement on the cell surface of the gliding
546		bacterium, Mycoplasma mobile, is limited to its head-like structure. FEMS
547		Microbiol Lett 215:285-9.
548	51.	Uenoyama A, Kusumoto A, Miyata M. 2004. Identification of a 349-kilodalton
549		protein (Gli349) responsible for cytadherence and glass binding during gliding of
550		Mycoplasma mobile. J Bacteriol 186:1537-45.
551	52.	Rosengarten R, Kirchhoff H. 1988. Energetic aspects of the gliding motility of
552		mycoplasmas. Current Microbiology 16:247-252.
553	53.	Fujita K, Iwaki M, Iwane AH, Marcucci L, Yanagida T. 2012. Switching of
554		myosin-V motion between the lever-arm swing and brownian search-and-catch. Nat
555		Commun 3:956.
556	54.	Kojima H, Muto E, Higuchi H, Yanagida T. 1997. Mechanics of single kinesin
557		molecules measured by optical trapping nanometry. Biophys J 73:2012-22.
558	55.	Miyata M, Ryu WS, Berg HC. 2002. Force and velocity of Mycoplasma mobile
559		gliding. J Bacteriol 184:1827-31.
560	56.	Takagi Y, Homsher EE, Goldman YE, Shuman H. 2006. Force generation in single
561		conventional actomyosin complexes under high dynamic load. Biophys J
562		90:1295-307.
563	57.	Scheffer MP, Gonzalez-Gonzalez L, Seybert A, Ratera M, Kunz M, Valpuesta JM,
564		Fita I, Querol E, Pinol J, Martin-Benito J, Frangakis AS. 2017. Structural
565		characterization of the NAP; the major adhesion complex of the human pathogen
566		Mycoplasma genitalium. Mol Microbiol 105:869-879.
567	58.	Nakane D, Miyata M. 2007. Cytoskeletal "Jellyfish" structure of Mycoplasma
568		mobile. Proc Natl Acad Sci USA 104:19518-19523.
569	59.	Berg HC. 2003. The rotary motor of bacterial flagella. Annu Rev Biochem
570		72:19-54.
571	60.	Noji H, Ueno H, McMillan DGG. 2017. Catalytic robustness and torque generation
572		of the F ₁ -ATPase. Biophys Rev 9:103-118.
573	61.	Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult
574		CJ, Kerlavage AR, Sutton G, Kelley JM, Fritchman RD, Weidman JF, Small KV,
575		Sandusky M, Fuhrmann J, Nguyen D, Utterback TR, Saudek DM, Phillips CA,
576		Merrick JM, Tomb JF, Dougherty BA, Bott KF, Hu PC, Lucier TS, Peterson SN,
577		Smith HO, Hutchison CA, 3rd, Venter JC. 1995. The minimal gene complement of

578	Mycoplasma genitalium. Science 270:397-403.
579	62. Griniuviene B, Chmieliauskaite V, Grinius L. 1974. Energy-linked transport of
580	permeant ions in Escherichia coli cells: evidence for membrane potential
581	generation by proton-pump. Biochem Biophys Res Commun 56:206-13.
582	63. Mates SM, Eisenberg ES, Mandel LJ, Patel L, Kaback HR, Miller MH. 1982.
583	Membrane potential and gentamicin uptake in Staphylococcus aureus. Proc Natl
584	Acad Sci U S A 79:6693-7.
585	64. Schiefer HG, Schummer U. 1982. The electrochemical potential across
586	mycoplasmal membranes. Rev Infect Dis 4 Suppl:S65-70.
587	65. Lo CJ, Leake MC, Pilizota T, Berry RM. 2007. Nonequivalence of membrane
588	voltage and ion-gradient as driving forces for the bacterial flagellar motor at low
589	load. Biophys J 93:294-302.
590	

593 Fig. 1 Gliding behaviors.

(A) Phase-contrast micrograph of M. gallisepticum cells. The cells on the glass are 594595gliding in the direction of the membrane protrusion marked by white triangles. (B) Field image of phase-contrast micrograph (left) and cell trajectories for 30 s, changing color 596597 with time from red to blue (right). (C) Distribution of gliding speeds averaged for 60 s 598at 1-s intervals was fitted with a Gaussian curve (n = 231). (D) Schematic illustration 599showing the measurement of gliding direction (left) and the distribution of gliding 600 directions (right). Five consecutive cell images at 5 s intervals are shown in the same 601 field. The cell axis and gliding directions are shown by black lines and yellow sectors, 602 respectively. The cell glided in the direction indicated by the black arrow (left). The 603 distribution was fitted with a Gaussian curve (right). (E) Dark-field micrograph of a cell 604 labeled with colloidal gold (left) and trajectories (right). Four consecutive images of a 605cell labeled with colloidal gold at 10 s intervals are shown in the same field. The cell 606 glided in the direction indicated by the white arrow (left). The trajectories of the mass 607 centers of the cell and colloidal gold are indicated by black and red lines, respectively 608 (right).

- 611 Fig. 2 Effects of MC and Ficoll on gliding.
- 612 (A) Cell trajectories for 60 s under PBS/G (top), 0.50% MC (middle) and 15% Ficoll
- 613 (bottom). The color changes with time from red to blue. (B) Distributions of gliding
- 614 speeds and directions under PBS/G (top), PBS/G containing 0.5% MC (middle) and
- 615 15% Ficoll (bottom) were fitted with Gaussian curves. (C) Gliding speeds and
- 616 directions under various concentrations of MC or Ficoll. The average gliding speeds for
- 617 60 s at 1 s intervals and the average gliding directions every 5 s for 60 s under PBS/G
- 618 containing 0%, 0.10%, 0.25%, 0.50% MC or 5%, 10%, 15% Ficoll conditions are
- 619 plotted with standard deviations. Black, red, and blue circles indicate PBS/G, MC, and
- 620 Ficoll, respectively.

621

- 623 Fig. 3 Effects of SL on binding and gliding
- 624 (A) Cell trajectories for 60 s under various concentrations of SL. The color changes
- 625 with time from red to blue. (B) Changes in gliding speeds by the addition of SL. Dotted
- 626 lines indicate the time point when various concentrations of SL were added. The gliding
- speeds of individual cells are plotted as dots for every 10 s. $(n_{cells} = 9, 9, 10, 6, 6, 9 \text{ for } 0, 8 \text{ for$
- 628 0.1, 0.2, 0.3, 0.4, 0.5 mM SL, respectively). The average gliding speeds are shown with
- solid lines. The gliding speeds from 0 to 10 s in each condition are normalized as 100%.
- 630 (C) The gliding cell ratios under each SL concentration are plotted with standard
- 631 deviations and fitted with a sigmoidal curve. (D) The gliding speeds under each SL
- 632 concentration are plotted with standard deviations and fitted with a sigmoidal curve.

635 Fig. 4 Gliding ghost

636	(A) Trajectories for 250 s at 5 s intervals of all cells (left) and the cell to be the gliding
637	ghost (right). The color changes with time from red to blue. The 0.007% Triton X-100
638	containing 1 mM ATP + 0.01 mM ADP solution was added at 0 s. (B) Phase-contrast
639	micrographs of intact (upper), pre-permeabilized (middle) and post-permeabilized cells
640	(lower) marked with white triangles in (A). The time points after the addition of Triton
641	solutions are shown in each panel. (C) Transitions of gliding speeds and cell-image
642	densities. The average gliding speeds and cell-image densities for 10 s at 1-s intervals
643	are plotted as black circles and gray triangles, respectively. The average cell-image
644	densities from -60 to -50 s is normalized as 100%. 'Tri' and 'Per' indicate the time
645	points when 0.007% Triton X-100 containing 1 mM ATP + 0.01 mM ADP solution was
646	added, and the density shift occurred, respectively. (D) The phase-contrast micrograph
647	of cells treated with Triton solution. Cells showed three levels of cell-image density
648	shifts; the image density did not decrease (right-upper), the image density decreased to
649	be about 75% of the intact cell (left-upper), and the image density decreased to half of
650	the intact cell (left-lower). (E) Distribution of cell-image densities at 90 s after the
651	addition of Triton solution was fitted by the sum of three Gaussian curves. The
652	individual Gaussian curves and the sum of three Gaussian curves are indicated by black
653	broken and magenta solid lines, respectively. The cell-image density before Triton
654	treatment is normalized as 100%. The positions of peak tops are indicated by black
655	triangles. (F) Ghosts constructed by Triton X-100 solutions including nucleotides. Intact,
656	pre-permeabilized, post-permeabilized, and trajectories of ghosts for 15 min are shown
657	from left to right panels. The color changes with time from red to blue. The time points
658	after the addition of Triton solutions are shown in each panel. The cells indicated by

659	black circles decrease for the cell-image densities to be about 75% at
660	post-permeabilized panels. (G) Distribution of gliding speeds of ghosts constructed by
661	0.007% Triton X-100 containing 1 mM ATP + 0.01 mM ADP solution fitted with a
662	Gaussian curve. (H) The average gliding speeds of ghosts constructed with Triton
663	X-100 solution including ATP or ATP-V $_i$ are shown with standard deviations. (I) The
664	occurrence ratios of gliding ghosts to all intact cells are shown. (J) The ratios of ghosts
665	which continued to glide through 17 min of video recording are shown.

- 668 Fig. 5 Negative-staining electron micrographs of cell permeabilization.
- 669 (A) Intact cells. The cells featured by the bleb and infrableb are shown. (B–E) Cells
- treated with 0.007% Triton X-100 containing 1 mM ATP + 0.01 mM ADP. Some of the
- 671 permeabilized cells have large (C) or small (D) holes marked by yellow triangles. (E)
- 672 Magnified images of red boxed areas in (D). A-D show the same magnification. Two
- 673 examples of images are shown for each category.

