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Raman spectra of charcoal fragments in cumulative soils in central Japan, where grasslands have been sustained
using intentional burning for ~1000 years, were obtained and compared to those of fresh charcoal fragments
after modern grass burning to clarify their disappearance and alteration process in the soils. Although the values
of each Raman-spectrum parameter of the soil charcoal and fresh charcoal fragments are partially similar, certain
differences indicating their alteration or disappearance were observed. Charcoal fragments with lower graphiti-
zation in soils altered chemically with age at decadal to century scale, suggested by changes in distance between
defects or defect type of their chemical structures. Charcoal fragments with higher graphitization were found in
fresh charcoal samples, whereas very few charcoal fragments were found in both young and old soils, indicating

Keywords:
Carbonization
Graphitization

Degradation that these charcoal fragments disappeared instantly after they were formed. This fact implies that charcoal frag-
Black carbon ments with higher graphitization tend to not remain in soils, possibly owing to their physical properties such as
Biochar

fragility, density, and hydrodynamic behavior. Our findings suggest that charcoal's physical properties have a
vital influence on charcoal residues in soils, as do charcoal's chemical properties.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Charcoals are produced from plant combustion such as forest fires,
grassland fires, and other fires. Charcoals can be utilized by putting
them in soils for several purposes, e.g., soil improvement, pollutant im-
mobilization, and carbon sequestration, so-called “biochar” (Jeffery et
al., 2015). Because charcoal has a polyaromatic structure, in general, it
is thought to be much more chemically stable than other organic mate-
rials (Deluca and Boisvenue, 2012; Haumaier and Zech, 1995; Santin et
al,, 2015; Schmidt et al.,, 2011). Therefore, charcoal in soils or sediments
could contribute to a major atmospheric carbon sink or slow-cycling
carbon pools (Lehmann et al., 2006; Masiello, 2004; Preston and
Schmidt, 2006). However, the stability of charcoal in soils is yet to be
elucidated, although the stability of the charcoal has been examined
and discussed for decades. This is because the chemical and physical
properties of charcoals vary widely depending on the thermal condition
and their precursors, and their stability could be different owing to the
difference of their properties (Antal and Grenli, 2003; Ascough et al.,
2008; Bergeron et al., 2013; Bourke et al., 2007; de Lafontaine and
Asselin, 2012; Gundale and Deluca, 2006; Kasin and Ohlson, 2013;
Keiluweit et al., 2010; Nichols et al., 2000; Ohlson, 2012; Santin et al.,
2015; Scott, 2000; Scott and Jones, 1994; Spokas, 2010). These previous
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studies show that higher charring temperatures generally result in char-
coals with higher carbon content and more polyaromatic structures,
which would be a higher recalcitrant to chemical attack such as oxida-
tion (Ascough et al.,, 2010, 2011). Even in a single fire (e.g., forest fire
or grassland fire), the thermal conditions are spatially different and
the material varies in terms of plant species and organs, resulting in
charcoal fragments with various chemical properties (Ohlson, 2012;
Scott and Jones, 1994; Scott et al., 2000). Therefore, even a single fire
produces charcoal fragments with variations in their stability.

Recent studies have examined the alteration of charcoal or charcoal
fragments in soils or sediments in various ways and these studies indi-
cate that charcoal fragments possibly altered over time through both bi-
otic and abiotic mechanisms in soils (Ascough et al., 2011; Bird et al.,
1999; Braadbaart et al., 2009; Cheng et al., 2006; Inoue and Inoue,
2009; Kasin and Ohlson, 2013; Sultana et al., 2010; Nishimura et al.,
2012; Steinbeiss et al., 2009; Zimmerman, 2010). Most of the studies ex-
amined masses of charcoal fragments in soils to clarify their chemical
properties, and some studies compared these fragments to freshly pro-
duced charcoal fragments. These studies have contributed to further un-
derstanding the degradation process of charcoal fragments in soils. As
mentioned above, however, the stability of charcoals varies widely de-
pending on the thermal conditions and materials, suggesting that exam-
ination of respective charcoal fragments is necessarily to evaluate the
degradation of charcoal fragments in soils in detail. Raman spectroscopy
(using visible or infra-red excitation) has become an important

0016-7061/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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technique for characterizing materials, especially those with rich sp?
carbon structures. The technique has also been adapted to examine
thermal alteration or carbonization processes of plant materials
(Ascough et al., 2010; Francioso et al., 2011; Ishimaru et al., 2007;
Kawakami et al., 2005; McDonald-Wharry et al., 2013; Smith et al.,
2016; Yamauchi and Kurimoto, 2003; Zickler et al., 2006). As Raman
spectroscopy is very sensitive to alteration of the carbon structure, the
technique would also contribute to the evaluation of the degradation
of charcoals in soils. Furthermore, the spectra can be acquired on
small areas, enabling the evaluation of the carbonization and alteration
of respective charcoal fragments.

Here, we examine the carbon structures of respective charcoal frag-
ments in cumulative soils in central Japan using Raman spectroscopy to
evaluate the alteration of the charcoal fragments. The cumulative soils
have deposited for over several thousands of years, where the Japa-
nese-pampas grassland has been burned intentionally and distributed
for ~1000 years. The history of the intentional burning and grassland
development was reconstructed from phytolith assemblages, charcoal
concentrations, and radiocarbon dating of the cumulative soils
(Okunaka et al., 2012) and palynological data obtained from lacustrine
sediments nearby (Inoue et al., 2012). In this study, we used charcoal
fragments extracted from soil samples dated to after 1000 years ago.
We also examined fresh charcoal fragments produced after modern
grassland fires in the area and compared parameters of the Raman spec-
tra of soil charcoal and fresh charcoal to clarify the alteration process of
charcoal fragments in the cumulative soils. The profiles of soils and
charcoal fragments reconstructed paleoecologically would provide a
meaningful context to clarify the alteration process in the area, because
the context confirms that the precursors and thermal condition of the
charcoal fragments in the soils are similar to those of fresh charcoal
found after present-day grassland fires. The facts indicate that, in this
area, the chemical properties and structure of soil charcoal fragments
were originally similar to those of fresh charcoal fragments. Thus, the
differences of the parameters of the Raman spectra between soil char-
coal and fresh charcoal imply the influences of charcoal alteration or
other processes on the cumulative soils.

2. Materials and methods
2.1. Study site and soil charcoal samples

For Raman spectra analysis of soil charcoals, we used soil samples
collected from the Soni plateau in central Japan. The plateau is covered
with grassland, dominated by Miscanthus sinensis (Japanese pampas
grass) and locally covered by Sasa nipponica (a kind of dwarf bamboo).
The grassland is burnt intentionally every year to enhance its survival.
Okunaka et al. (2012) reconstructed the history of intentional fires
and grassland developments by phytolith analysis and charcoal analysis
(charcoal concentrations) of cumulative soils distributed on the pla-
teau; the beginning of intentional fires and grassland developments
dates back at least ~1000 years ago and intentional fires and grassland
developments have continued until the present day. In the current
study, we examined the soil samples collected by Okunaka et al.
(2012). The samples have been preserved in a refrigerator (at 5 °C).

The soils of the Soni plateau are characterized by a thick (up to
70 cm) black high-humic A-horizon that is loosely compact, classified
as Andisols, as indicated on a soil map (Nara Prefecture, 1973, 1986;
Okunaka et al., 2012). The detailed soil descriptions and radiocarbon
ages are shown in Okunaka et al. (2012), implying that the soils devel-
oped upward, i.e., they are cumulative soils. For Raman spectra analysis,
we used soil samples of 0-3 cm and 14-25 cm depths in the A-horizon
from the soil profile at Site 1 (34°31’10"N, 136°09’45”E) in Okunaka et
al. (2012). The reason for selection of these samples is that these soils in-
clude a large number of charcoal fragments (> 1000 fragments per cm ™ >
of soil) certainly developed under the grasslands by intentional fire, as
shown in Okunaka et al. (2012). Radiocarbon dating of the age of

humin (including charcoal fragments) and humic acids in the soil sam-
ples at 14-25 cm and 3-14 cm depths is 693-910 years before present
(cal BP) and O cal BP, respectively. This suggests that the charcoal frag-
ments in the soil samples at 14-25 c¢cm were produced around
800 years ago and those at 0-3 cm depth were produced in modern
times (probably, at most 100 years ago).

To extract charcoal fragments from the soil samples and remove
humic acid, fulvic acid, and carbonate from the charcoal fragments, we
treated the samples as follows. First, the soil samples were treated
with 1.5 M KOH solution for 24 h, and then >125 um fragments were
collected using a sieve with a 125 pm mesh size. The fragments were
placed in the 1.5 M KOH solution for 24 h. After washing the fragments
well with pure water, the fragments were placed in 1.0 M HCl solution
for 24 h. Then the fragments were washed and placed in pure water
for 1 h. After that, we collected 125-250 um fragments using sieves of
125 and 250 um mesh sizes for Raman spectra analysis. During each
treatment, the solutions containing fragments were stirred slowly (~
70 rpm) using a magnetic stirrer, and room temperature was main-
tained at approximately 25 °C using an air conditioner. The reasons
that 125-250 um fragments were selected for Raman spectra analysis
is that all fragments in this size range can be discriminated with certain-
ty between charcoal fragments and other fragments using a microscope,
and the soil samples used in this study have a large number of charcoal
fragments <250 um.

2.2. Fresh charcoal samples

Fresh charcoal samples were collected right after intentional burn-
ing on the Soni plateau on March 21, 2015 (Fig. 1). To obtain a represen-
tative fresh charcoal sample, 8 sites were selected to collect charcoal
samples, and the sites were at a distance of 50-200 m from each
other. Charcoal samples were collected in areas of several hundreds of
cm? at each site and preserved in stainless steel cups (Fig. 1). All the
charcoal in these samples was broken up into fragments (less than ~
1 cm length) by using scissors. Charcoal fragments with a mass of
0.1 g were taken from each sample and mixed together, and the char-
coal fragments in the mixed sample were then crushed into smaller
fragments. These small charcoal fragments were gently washed through
nested sieves (mesh sizes: 125 and 250 um) to yield 125-250 pm frag-
ments similar to the soil charcoal samples. For Raman spectrum analy-
sis, the fresh charcoal samples were subjected to the same chemical
treatments as the soil samples.

2.3. Raman spectra analysis

For Raman spectra analysis of the charcoal fragments, charcoal selec-
tion was restricted to fragments that were silky, black, completely
opaque, and angular under a microscope. The appearance of the char-
coal fragments in the soil samples was similar to that of the fresh char-
coal fragments (Fig. 2).

Raman spectra were acquired with a NRS-3300 Raman spectrometer
(Jasco) equipped with a cooled CCD detector, which is housed at the
Technology Research Institute of Osaka Prefecture. A 532 nm green
laser was adopted as the excitation source and was focused to a beam
approximately 3 pm in diameter at a power of 1-1.5 mW at the sample
surface. Data points were recorded at 1 cm™ ! intervals between 100 and
3900 cm™!. The Raman measurements were performed at four points
on each charcoal fragment. For analysis we avoided areas with adherent
mineral particles on charcoal fragments. We measured the Raman spec-
trum of 100 charcoal fragments in each sample. The spectra obtained
were modified and each parameter of the Raman spectrum was defined
by referring to McDonald-Wharry et al. (2013) as follows (Fig. 3). First,
each spectrum was digitally smoothed using a 15 cm™ ! moving mean
before measuring the parameters. A photoluminescence background
slope was calculated using linear regression through the data points
on the smoothed spectra between 700 and 2000 cm™ ! while excluding
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Fig. 1. (a-c) Charcoal distributions at some sites from where we collected samples after intentional grassland fire in the Soni plateau, central Japan, March 21, 2015. (d) Charcoal in a
stainless steel cup we collected at a site after the intentional grassland fire.

Fresh charcoals Soil charcoals

0-3 cm depth 14-25 cm depth

Fig. 2. Appearance of fresh charcoal fragments, charcoal fragments in 0-3 cm depth soil (young soils), and those in 14-25 cm depth soils (old soils) under incident light using a microscope.
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Fig. 3. An example of a raw Raman spectrum (left) and the modified spectrum (right) to obtain the parameters according to the procedure described by McDonald-Wharry et al. (2013). A
regression line slope is a photoluminescence background slope. The modified spectrum was obtained after smoothing the raw spectrum with the 15 cm™! moving mean, and the

regression line values were subtracted from the smoothed spectrum.

all the data points between 1000 and 1700 cm™'. To obtain the value of
each parameter, the regression line values were subtracted from the
smoothed spectrum. G band position was measured at the maximum
intensity between 1450 and 1700 cm™ !, and G band height (I¢) was
measured as the maximum intensity in that range. D band position

was measured at the maximum intensity between 1210 and 1410

cm™ !, and D band height (Ip) was measured as the maximum intensity

in that range. The height of the valley (Iy) between the G band and the D
band positions was measured as the minimum intensity between 1400
and 1550 cm™ . Following McDonald-Wharry et al. (2013), the param-
eters of Ip/Ig, Iv/Ig, and the photoluminescence slope/I were calculated.
The slope of the photoluminescence background line was divided by the
G band height (Ig) and then multiplied by 10,000 pm/cm to give a value
in pm. For each fragment, the means of each Raman spectra parameter
obtained on four data points were calculated.
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Fig. 4. Deconvolution of the Raman spectra of a fresh charcoal fragment after a modern
grassland fire, referring to Smith et al. (2016). Red line indicates a summation of curves,
and solid blue line represents the original experimental intensity from the background.
Dotted black lines represent the assigned curves.

To assess how the Ip/Ig and Iy/Ig parameters represent the original
Raman spectrum peaks, a deconvolution of the Raman spectra of 50
modern charcoal fragments was conducted (Fig. 4). For the
deconvolution of the Raman spectra, we used the peak fit tool in
MagicPlot ver. 2.7 (Magic Plot Systems, LLC). A version of the software
(MagicPlot Student) is available as a free download (http://magicplot.
com). Referring to Smith et al. (2016), we deconvoluted the Raman
spectra following the procedure below.

1. The spectrum between 900 cm ™' and 2000 cm~! was used for the
deconvolution. A linear background correction was employed using
the minimum intensity between 900 and 1000 cm ™! and 1800 and
2200 cm~ ! as anchor points. We subtracted the background value
from each value of the spectrum between 900 and 2000 cm™ !, and
the values (intensities) were used to find the fitting curves.

2. The values (positions and intensities) were imported into MagicPlot,

and the spectrum line was drawn. The Gaussian and Lorentzian
curves were added, and their peaks were placed on the local maxima
near 1350 cm™ ! and 1600 cm™ !, respectively. Next, the data were fit
via a sum of the curves. The “minimum deviation of residual sum of
squares,” and “maximum number of iterations” were set to 1E-9
and 10,000, respectively. The settings were fixed for “fit the data by
sum of curves” for all steps.

3. A new Gaussian curve was subsequently added. The values of

the amplitudes and the x-position of the Lorentzian curve were
imported to those of the new Gaussian curve (each value was copied
and pasted). Then, the Lorentzian curve was deleted. The half
width at half maximum (HWHM) of the curve with its peak near
1350 cm™ ! was set to 60, and the HWHM of the curve with its
peak near 1600 cm™ ! was set to 50. These curves were the prelimi-
nary D and G peaks, respectively.

4, Other peaks were added, and the values (amplitude, x-position,

HWHM) of each peak were set as follows: S; (0, 1025, 60), S (0,
1175, 60), Ds (0, 1275, 60), A; (0, 1430, 60), A, (0, 1515, 60), and
Gy (50, 1650, 50). All curves were Gaussian-type curves, except for
G, which was a Lorentzian-type curve.

5. All values (amplitude, x-position, and HWHM) of D, G¢, and G, were

locked. In addition, the x-position and HWHM of the others were
locked (the amplitudes were unlocked). Then, the data were fit via
a sum of the curves to establish all the preliminary curves.

6. The amplitude and x-position of all curves were locked (the HWHM s

were unlocked), except the G, curve, wherein all values were locked.
Then, the data were fit via a sum of the curves to determine their
HWHM values.
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7. The amplitude and HWHM of all curves were locked (their x-posi-
tions were unlocked), except the G, curve, wherein all values were
locked. Then, the data were fit via a sum of the curves to determine
their x-position values.

8. The values of all curves were locked, except the Gg and G, curves,
wherein all values were unlocked. Then, the data were fit via a sum
of the curves to determine all the values of these curves.

We deconvoluted 50 Raman spectra of fresh charcoal fragments fol-
lowing this procedure, and their coefficients of determination (adjusted
R?) were 0.996-0.998. The peaks of the deconvoluted spectra were gen-
erally in the positions summarized by Smith et al. (2016).

3. Results
The Raman spectra parameters of the G band position, D band posi-

tion, Ip/Ig, Iv/Ig, and the photoluminescence slope/Ig of soil charcoal and
fresh charcoal samples are shown in Fig. 5. Yamauchi and Kurimoto
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(2003) and McDonald-Wharry et al. (2013) showed that the G band
position blueshifts with increase in charring temperature. Furthermore,
McDonald-Wharry et al. (2013) showed that Iy/lg and the
photoluminescence slope/lg decrease with increases in charring
temperature, especially at lower temperatures (<700 °C). Because the
G band positions correlate well with the thermal conditions at low tem-
peratures (<800 °C) independent of the precursors (McDonald-Wharry
et al., 2013; Yamauchi and Kurimoto, 2003), here, we adapted the G
band position as a standard parameter. In Fig. 5, the horizontal axis
denotes the G band positions and the vertical axis denote other param-
eters. The values of the photoluminescence slope/I; are on a logarithmic
scale, because this parameter has been reported to exponentially
increase with hydrogen content when using visible light excitation
(Adamopoulos et al., 2004; Buijnsters et al., 2009; Casiraghi et al.,
2005; Ferrari and Robertson, 2004; McDonald-Wharry et al., 2013).
Although the ranges of each Raman spectra parameter in each sam-
ple are partially similar to each other, the distribution of the parameter
values have some differences, e.g., in Fig. 5a, fresh charcoal is dominant
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described by McDonald-Wharry et al. (2013); G band position (horizontal axes) with (a) D band position; (b) Ip/I; (intensity height ratios between the D band and the G band); (c)
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and the intensity height of the G band).
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in the area of lower D position (<1350 nm) with higher G position
(>1585 nm); in Fig. 5d, fresh charcoal is dominant in the area of lower
photoluminescence slope/I; (<~1) with higher G position (>1585 nm).

Fig. 6a shows the relation between Ip/Ig and I(D)/I(Gg + G.) (the
ratio between the peak intensities or the sum of the peak intensities)
of 50 deconvoluted Raman spectra of modern charcoal fragments, and
Fig. 6b shows the relation between Iy/Ig and I1(A;)/I(Gg + Gr) and
I(A2)/1(Gg + Gy). Ip/Ig correlates strongly with I(D)/I(Gg + G.) (R =
0.80), indicating that Ip/Ig predominantly represents I(D)/I(Gg + Gr),
particularly the intensity ratios between I(D) and I(Gg). This is because
the intensities of the Gg peaks are generally much higher than those of
the G peaks. Iy/Ig is closely related to I(A2)/I(Gg + Gr) (R = 0.90),
whereas there is no relation between Iy/Ig and I(A;)/I(Gg + Gr)
(R = —0.24). This suggests that the change in Iy/Ig primarily represents
changes in the ratios of the A, intensity to the G intensity.

4. Discussion
4.1. Interpretations of each Raman parameter for fresh charcoal

To interpret the Raman parameters of fresh charcoal, a factor analy-
sis was applied to the parameters (the G band position, the D band
position, Ip/Ig, Iy/Ig, and the photoluminescence slope/Ig) of the fresh
charcoal fragments. Each eigenvalue of Factors 1 and 2 was >1. The
components of Factors 1 and 2 are shown in Fig. 7. Factor 1 shows a
strong positive loading for the G band position and moderate to strong
negative loadings for Iy/Ig, the photoluminescence slope/Ig, and the D
band position. Factor 2 shows positive moderate to strong loadings for
Ip/lg and Iv/lc.

The G band position has a strong positive loading for Factor 1. Previ-
ous studies (McDonald-Wharry et al., 2013; Yamauchi and Kurimoto,
2003) indicate that the wavenumber of the G positions generally in-
creases (blueshifts) with increasing charring temperature and that the
G positions are strongly correlated with the thermal conditions (primar-
ily the heating temperature) at low temperatures (<800 °C) indepen-
dent of the precursor. Iy/Ig, the photoluminescence slope/Ic, and the D
band position are also predominantly dependent on the thermal condi-
tions. In addition, temperatures in Japanese grassland fires are generally
below 800 °C (Iwanami, 1972), and the heating duration of the fire in
the study area was likely several to tens of minutes. Therefore, Factor
1 (the horizontal axis in Fig. 6) primarily represents the thermal condi-
tions, in particular the heating temperature, when the fresh charcoal
was produced. Changes in the G band position could represent the for-
mation of larger, less distorted ring systems with the removal of the

oxygen functional group, sp> bonding, and other defects, as the heating
temperature increased (McDonald-Wharry et al., 2013; Smith et al.,
2016).

In contrast, the Iy/Ig has a strong negative loading for Factor 1, indi-
cating that the Iy/I decrease with increasing charring temperature. This
is consistent with the finding that I/l is largely dependent on the char-
ring temperature, as suggested by McDonald-Wharry et al. (2013). The
decrease in Iy/Ig with increasing temperature is likely due to the remov-
al of oxygenated defects. This is because ly/Ig primarily represents the
A intensity, as mentioned above, and based on their computational
simulations of the relation between Raman spectra and molecule struc-
tures, Smith et al. (2016) suggest that oxygenated defects contribute to
the intensity of the A, region. The photoluminescence slope/I for char-
coal represents the hydrogen content in the C-H groups, not the hydro-
gen content in the C-OH functional groups (McDonald-Wharry et al.,
2013). Therefore, the negative loading of Factor 1 likely represents the
additional removal of C-H groups with increasing temperature.

The D band position also has a moderate negative loading on Factor
1. The wavenumber of the D band positions generally decreases (red-
shifts) with increasing charring temperature (McDonald-Wharry et al.,
2013; Smith et al., 2016). This decrease is thought to be related to the
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Fig. 7. The factor loading of each parameter estimated from the factor analysis of
parameters in the Raman spectra of 100 fresh charcoal fragments.
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removal of sp> bonded amorphous structures with increasing tempera-
tures resulting in graphite or graphene-like structures that have sp?
bonded edges terminated with radicals, hydrogen, and oxygen func-
tional groups and/or various edge-reconstructions (McDonald-Wharry
etal,, 2013).

As mentioned above, the Ip/Ig height ratios have a strong positive
loading on Factor 2. The G band peak is due to the bond stretching of
all pairs of sp? atoms in both rings and chains, whereas the D band
peak is due to the breathing modes of the sp? atoms in rings (Ferrari
and Robertson, 2004; McDonald-Wharry et al., 2013). Even though,
for certain precursors, the Ip/Ig height ratios generally increase with in-
creasing charring temperatures (McDonald-Wharry et al., 2013; Smith
et al, 2016), the values of Ip/Ig vary significantly depending on the pre-
cursor, especially below 700 °C (McDonald-Wharry et al., 2013). Based
on the relation between the carbon structure and the G band position
suggested in Ferrari and Robertson (2004 ), because the G positions of
the fresh charcoal in this study are between ~1570 and ~1590 nm
(Fig. 4), this charcoal is likely composed of nanocrystalline graphite
and amorphous carbon. On the carbon structure of the fresh charcoal,
the Ip/Ig height ratios are related to the in-plane crystallite graphite
size and/or the average distance between defects (McDonald-Wharry
et al,, 2013). Because the chemical structures of plants can significantly
vary, depending on their organs (e.g., their compositions and types of
cellulose, hemicellulose, and lignin) and because the precursors of
fresh charcoal fragments in this study are also varied, we assume that
Factor 2 primarily represents the differences in the precursors of the
charcoal fragments via the in-plane crystallite graphite size and/or the
distance between defects in those fragments with low carbonization
degrees (under the low temperature and/or short heating duration of
the grassland fire at the study site). In addition, the defect type and
edge type of the structure are likely related to Factor 2, which is likely
dependent on the precursor under low carbonization, as suggested by
Smith et al. (2016); that is, the spectrum peak's intensity and position
differs according to the defect and edge types. These assumptions are
consistent with Iy/Ig having a moderate positive loading on Factor 2 be-
cause Iy primarily results from oxygenated defects, as discussed above.

4.2. Disappearance and alteration process of charcoal fragments in the soils

Assuming that the distributions of each Raman spectrum parameter
of the soil charcoal samples are originally similar to the fresh charcoal,
the scores of Factors 1 and 2 for each charcoal fragment (those collected
after the modern fire, those in the young soils, and those in the old soils)
were calculated to assess the alteration process of the charcoal frag-
ments in soil with time. In the calculations, we used the loading of
each parameter for the factor analysis in Fig. 7. Over a quarter (26%) of
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the fresh charcoal fragments had high Factor 1 scores exceeding 2,
whereas very few soil charcoal fragments (2%) had such high scores
(Fig. 8). For Factor 2, 16% of fresh charcoal had high scores exceeding
1, and 25% of charcoal in young soils and 30% of charcoal in old soils
had high scores (Fig. 8).

The high Factor 1 scores of some fresh charcoal fragments but very
few soil charcoal fragments imply that these fresh charcoal fragments
were carbonized at high temperatures, and were not significantly in-
cluded in the soils at the study sites. This is because Factor 1 primarily
represents the thermal conditions, as mentioned in the previous sec-
tion. The very few soil charcoal fragments produced at high tempera-
tures indicate that these charcoal fragments generally tend to alter or
disappear soon after they are formed because, even in young soils
formed in the last few decades, such fragments are under-represented.
Charcoal produced at higher temperatures is generally more chemically
stable than that produced at lower temperatures (Ascough et al., 2010,
2011) because higher charring temperatures result in highly graphitic
or polyaromatic microcrystalline domains within charcoal microstruc-
tures (Cohen-Ofri et al., 2006; Darmstadt et al., 2000). This suggests
that charcoal produced under high temperatures, found primarily in
fresh charcoal samples, is chemically stable and has not been altered
significantly. Therefore, we assume that charcoal fragments produced
at high temperature disappear nearly instantly (they are neither altered
nor chemically degraded) after they are formed or that the soils initially
contain none or few of these charcoal fragments. The thermal condi-
tions (especially the charring temperature and duration) when the
charcoal forms generally determine not only the charcoal's chemical
properties but also its physical properties, such as its density, reflec-
tance, fragility, pore space, surface area, and hydrodynamic behavior
(Bourke et al., 2007; Bustin and Guo, 1999; Chia et al., 2015; Crawford
and Belcher, 2014; Gundale and DeLuca, 2006; Jones et al., 1991;
Keiluweit et al., 2010; Nichols et al., 2000; Scott and Jones, 1994).
Nichols et al. (2000) demonstrated that the waterlogging time of char-
coal when it floats on water is dependent on its charring temperature.
In addition, Rumpel et al. (2006) showed that charcoal (black carbon)
is more prone to removal from soils than other organic matter, and
Rumpel et al. (2015) suggested that different soil-charcoal types (bio-
char types) could be affected differently by water erosion processes.
Therefore, charcoal fragments formed at different temperatures could
be separated by water flow. Furthermore, the fragility (or abrasion) of
charcoal is dependent on the thermal conditions (Crawford and
Belcher, 2014; Nichols et al., 2000); the fragility likely increases with in-
creasing charring temperature (Scott, 2010). This is probably because
higher charring temperatures result in higher percentages of pore
space in charcoal (Chia et al., 2015; Gundale and Deluca, 2006;
Keiluweit et al., 2010; Yu et al., 2006), more micro-cracks in the cell
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Fig. 8. Factor scores for fresh charcoal, soil charcoal at 0-3 cm depth (young charcoal), and soil charcoal at 14-25 cm depth (old charcoal) calculated from factor loadings in Fig. 7 and
parameters in Fig. 5, assuming that the distributions of each Raman spectrum parameter of soil charcoal fragments were originally similar to fresh charcoal. Exceptional scores for very

few charcoals are shown in Supplementary data.
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structures of charcoal (McParland et al., 2007; Scott and Jones, 1991),
and more graphene-like domains since some layers of the graphene-
like domains are held together by weak Van der Waals forces. These
physical properties of charcoal fragments, which depend on the thermal
conditions, influence the residue rate of the charcoal fragments in soils
relative to whole charcoal fragments produced from a fire. Therefore,
we assume that the disappearance of high-temperature charcoal frag-
ments is due to their fragility or a characteristic of their hydrodynamic
behavior; that is, after these charcoal fragments were formed, they
were physically broken down and/or swept away by rainwater.

The charcoal fragments in some Japanese Andisols have a reflectance
that is small or not >2%; however, in Japan, some charcoal fragments
made by grass and forest fires have higher reflectance (Inoue and
Inoue, 2009; Nishimura et al., 2012). The difference between the reflec-
tance of soil charcoal and fresh charcoal is not due to alterations via
chemical processes because the reflectance is strongly dependent on
the thermal conditions. The reflectance generally increases with char-
ring temperature (Bustin and Guo, 1999; Jones et al., 1991; Scott and
Jones, 1991), and the original reflectance is retained even after exposure
to highly oxidizing conditions (Ascough et al.,, 2010). This suggests that
charcoal fragments with high reflectance disappeared from the soils or
disappeared prior to being buried in the soils, which is consistent with
our assumption.

For Factor 2, excluding the charcoal fragments with Factor 1 scores
>2, even though the means of the scores were not different, as shown
by a t-test yielding p-values > 0.1, the percentages of high scores >1
were different, as mentioned above. Furthermore, the percentages of
charcoal with high Factor 2 scores increased with charcoal age in the
soils, and these differences could imply the alteration of the charcoal
in the soils at the study site. As mentioned above, Factor 2 represents
the in-plane crystallite graphite size and/or the distance between de-
fects in the charcoal fragments, and/or a difference in the defect and
edge types under low degrees of carbonization. Because the crystallite
graphite size is assumed to alter little over short periods of time, the dif-
ference in the Factor 2 scores likely represents an alteration in the dis-
tance between defects in those fragments (i.e., the area of the defects)
and/or the defect and edge types of the chemical structure of the char-
coal fragments. Therefore, the changes in the scores suggest an increase
in the distance between defects and/or a change in the defect and edge
types in the charcoal fragments, i.e., a chemical alteration of the char-
coal. Changes in the Factor 2 scores between fresh charcoal and charcoal
in young soils is more marked than that between charcoal in young soils
and old soils, even though the number of elapsed years is much shorter.
This is likely because the biotic activity and weathering in the surface
soils is stronger than that in the deep soils. This implies that, at the
study site, the chemical alteration of the soil charcoal could occur over
decades or centuries.

5. Conclusion

Differences in Raman spectra among fresh charcoal fragments and
soil charcoal fragments in old and young soils indicate the alteration
or disappearance of charcoal fragments in cumulative soils. Some alter-
ation of charcoal fragments with lower graphitization occurred in the
soils, as indicated by the spectrum differences of charcoal fragments
among fresh charcoals and charcoals in young and old soils. Most char-
coal fragments with higher graphitization were probably broken down
or blown out owing to their physical properties, implied by the spec-
trum differences between fresh charcoal fragments and soil charcoal
fragments. We assume that charcoal fragments with more graphene-
like domains (produced under higher temperatures) are more chemi-
cally stable but less physically stable, resulting in their lower rate of res-
idue as fragments in soils. This possibly applies more to grass-charcoal
fragments than woody-charcoal fragments, because grass has no
woody component and its components are generally fragile. However,
our findings suggest that we should focus on not only charcoal's

chemical properties but also its physical properties when we estimate
the residue of charcoal fragments in soils. These results suggest that ex-
amining respective charcoal fragments in soils by use of Raman spectra
could contribute to the evaluation of the alteration or disappearance of
charcoals.

Exact evaluations of the degradation and disappearance of charcoal
fragments are also important to clarify the fire history from the charcoal
concentrations or fluxes in cumulative soils (e.g., Inoue et al., 2016). Fur-
thermore, charcoal in soils could be a major atmospheric carbon sink,
for which stability would be an important factor in the estimation of
the carbon cycle related to soil charcoals. Therefore, our suggestion pos-
sibly contributes to not only soil science but also other fields related to
soil charcoal.
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