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ASYMPTOTIC BEHAVIOR OF LEAST ENERGY1

SOLUTIONS TO THE FINSLER LANE-EMDEN2

PROBLEM WITH LARGE EXPONENTS3

SADAF HABIBI1 AND FUTOSHI TAKAHASHI24

Abstract. In this paper we are concerned with the least energy
solutions to the Lane-Emden problem driven by an anisotropic
operator, so-called the Finsler N -Laplacian, on a bounded domain
in RN . We prove several asymptotic formulae as the nonlinear
exponent gets large.

Key words: Finsler Lane-Emden problem, Finsler Laplacian, Least
energy solution
2010 Mathematics Subject Classification: 35J60, 35J20

1. Introduction5

Let N ≥ 2 be an integer. In this paper, we study the following6

Lane-Emden problem driven by an anisotropic operator QN :7

(1.1)


−QNu = up in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN , p > 1 is any positive8

number, and QN is a quasilinear operator, so-called the Finsler N-9

Laplacian, defined by10

QNu =
N∑
i=1

∂

∂xi

(
H(∇u)N−1Hξi(∇u)

)
.

Here H ∈ C2(RN \ {0}) is any norm on RN and Hξi(ξ) =
∂H(ξ)
∂ξi

. We11

assume that HN ∈ C1(RN) and Hess
(
HN(ξ)

)
is positive definite for12
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2 S. HABIBI AND F. TAKAHASHI

any ξ ∈ RN , ξ 6= 0. Note that QNu can be written as1

QNu = div

(
∇ξ(

1

N
H(ξ)N)

∣∣∣
ξ=∇u

)
=

N∑
i,j=1

aij(∇u)
∂2u

∂xi∂xj
,

where aij(∇u) = Hess( 1
N
HN(ξ))i,j

∣∣∣
ξ=∇u

. If H(ξ) = |ξ| (the Euclidean

norm), thenQNu coincides with theN -Laplacian ∆Nu = div(|∇u|N−2∇u)
of a function u. In this case, the problem (1.1) was treated by Ren and
Wei [21] [22] when N = 2, and in [23] for general N ≥ 2. Ren and Wei
[23] considered the least energy solution up of the following quasilinear
problem 

−∆Nu = up in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN . They studied the as-2

ymptotic behavior of up as the nonlinear exponent p→ ∞, and proved3

that the least energy solutions remain bounded in L∞-norm regardless4

of p. When the dimension N = 2, they showed that the least energy5

solutions must develop one “peak” in the interior of Ω ⊂ R2, that is,6

the shape of graph of up looks like a single spike as p→ ∞. Moreover7

they showed that this peak point must be a critical point of the Robin8

function of the domain. For other generalizations of this problem to9

various situations, see for example, [28], [29], [30], [24], [25].10

Now, main aim of the paper is to extend the results of Ren and Wei11

[21], [22], [23] to the anisotropic problem (1.1).12

As in [21], [22], [23], we restrict our attention to the least energy13

solutions to (1.1) constructed as follows:14

Consider the constrained minimization problem:15

(1.2) Cp = inf{
∫
Ω

H(∇u)Ndx : u ∈ W 1,N
0 (Ω),

∫
Ω

|u|Lp+1(Ω)dx = 1}.

Since the Sobolev imbedding W 1,N
0 (Ω) ↪→ Lp+1(Ω) is compact for any16

p > 1, we have at least one minimizer up for the problem (1.2), where17

up ∈ W 1,N
0 (Ω), ‖up‖p+1 = 1. As |up| ∈ W 1,N

0 (Ω) also achieves Cp, we18

may assume up > 0. Note that QN(cu) = cN−1QN(u) for a constant19

c > 0. Thus if we define20

up = C
1

p+1−N
p up,

then up solves (1.1) and Cp =
∫
Ω
H(∇up)Ndx/(

∫
Ω
|up|p+1dx)

N
p+1 . Stan-21

dard regularity argument implies that any weak solution u ∈ W 1,N
0 (Ω)22
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satisfies u ∈ C1,α(Ω) for some α ∈ (0, 1). We call up the least energy1

solution to (1.1).2

Our first result is the following L∞-bound of least energy solutions.3

Theorem 1.1. Let up be a least energy solution to (1.1). Then there4

exist C1, C2 (independent of p), such that5

0 < C1 ≤ ‖up‖L∞(Ω) ≤ C2 <∞

for p large enough.6

Furthermore, we have

lim
p→∞

pN−1

∫
Ω

H(∇up)Ndx = lim
p→∞

pN−1

∫
Ω

up+1
p dx =

(
NeβN
N − 1

)N−1

where βN = N(NκN)
1

N−1 , κN = |W| is the volume (with respect to the7

N-dimensional Hausdorff measure) of the unit Wulff ball associated8

with the dual norm H0 of H:9

W = {x ∈ RN : H0(x) < 1}.

On the asymptotic behavior of the L∞-norm of up, we have10

Theorem 1.2. Let up be a least energy solution to (1.1). Then it holds11

that12

1 ≤ lim sup
p→∞

‖up‖L∞(Ω) ≤ e
N−1
N .

To state further results, we need some definitions. Set13

(1.3) vp =
up

(
∫
Ω
uppdx)

1
N−1

.

Then vp is a weak solution of14

(1.4)


−QNvp = fp(x) =

up
p∫

Ω up
pdx

in Ω,

vp > 0 in Ω,

vp = 0 on ∂Ω.

For X,Y ∈ RN , X, Y 6= 0, X 6= Y , we put15

d(X,Y ) =

(
HN−1(X)(∇ξH)(X)−HN−1(Y )(∇ξH)(Y )

)
· (X − Y )

HN(X − Y )
,

and16

(1.5) dN = inf{d(X,Y ) | X,Y ∈ RN , X, Y 6= 0, X 6= Y },
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where X · Y =
∑N

j=1XjYj denotes the usual inner product for X,Y ∈1

RN . As in [32] Lemma 5.1, we can obtain the estimate2

min{ λ

βN
, 1} ≤ dN ≤ 1

where λ is the least eigenvalue of Hess
(

1
N
HN(ξ)

)
, which is positive by

the assumption (2.2) and β is as in (2.3), see §2. Also define

L0 = lim sup
p→∞

p
(∫

Ω
uppdx

) 1
N−1(

N
N−1

e
N−1
N

) , L1 = d
−( 1

N−1)
N L0.(1.6)

For a sequence vpn of vp, we define the blow-up set S of {vpn} as usual:

S = {x ∈ Ω : ∃a subsequence vp′n ,∃{xn} ⊂ Ω s.t. xn → x and vp′n(xn) → ∞}.

In the following, ]A denotes the cardinality of a set A and [·] denotes3

the Gauss symbol.4

Theorem 1.3. Let Ω ⊂ RN be a smooth bounded domain. Then for5

any sequence vpn of vp with pn → ∞, the blow-up set S of vpn is non-6

empty. Also there exists a subsequence (still denoted by vpn) such that7

the estimate8

](S ∩ Ω) ≤

[
e

N−1
N

dN

]
holds true for this subsequence.9

Assume S ∩ Ω = {x1, · · · , xk} ⊂ Ω. Then we have10

(i)

fn =
upnpn∫

Ω
upnpndx

∗
⇀

k∑
i=1

γiδxi

in the sense of Radon measures of Ω, where11

γi ≥
(
βN
L1

)N−1

and
∑k

i=1 γi ≤ 1.12

(ii) vpn → G in C1
loc(Ω \ (S ∩ Ω)) for some function G satisfying13 

−QNG = 0 inΩ \ (S ∩ Ω),

G = +∞ onS ∩ Ω,

G = 0 on ∂Ω \ (∂Ω ∩ S).

(iii) ‖upn‖L∞(K) → 0 as n→ ∞ for any compact set K ⊂ Ω\(S∩Ω).14
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In [23], Ren and Wei obtained an estimate of the number of interior1

blow-up set2

](S ∩ Ω) ≤

[
1

dN

(
N

N − 1

)N−1
]

when H(ξ) = |ξ| case. Since ex < 1
1−x

for x ∈ (0, 1), we check that3

e
N−1
N <

(
N

N−1

)N−1
for all N ≥ 2. Thus the estimate in Theorem 1.3 is4

better than that in [23] even when H(ξ) coincides with the Euclidean5

norm |ξ|. Also, Theorem 1.2 seems new even for H(ξ) = |ξ| and N > 26

case.7

Finally, we prove that if the blow-up set consists of one point, it8

must be an interior point of Ω.9

Theorem 1.4. Assume ]S = 1 and S = {x0}, x0 ∈ Ω. Then x0 ∈ Ω10

must hold.11

The organization of the paper is as follows: In §2, we recall basic12

properties of the Finsler norm and collect useful lemmas about the13

Finsler N -Laplacian. In §3, we obtain asymptotic formula for Cp as14

p→ ∞, and prove the latter half part of Theorem 1.1. In §4, we prove15

the L∞-bound of least energy solutions in Theorem 1.1. In §5, we prove16

Theorem 1.2 using an argument by Adimurthi and Grossi [1]. In §6,17

we prove Theorem 1.3. We use a notion of (L, δ)-regular, or irregular18

points, which was originally introduced by Brezis and Merle [6]. Finally19

in §7, we prove Theorem 1.4 by using a local Pohozaev identity and an20

idea by Santra and Wei [25].21

2. Notations and basic properties22

Let H be any norm on RN , i.e., H is convex, H(ξ) ≥ 0 and H(ξ) = 023

if and only if ξ = 0, and H satisfies24

(2.1) H(tξ) = |t|H(ξ), ∀ξ ∈ RN , ∀t ∈ R.

By (2.1), H must be even: H(−ξ) = H(ξ) for all ξ ∈ RN . Throughout25

of the paper, we also assume that H ∈ C2(RN \ {0}), HN ∈ C1(RN),26

and27

(2.2) Hess
(
HN(ξ)

)
is positive definite for any ξ ∈ RN , ξ 6= 0.

Since all norms on RN are equivalent to each other, we see the existence28

of positive constants α and β such that29

(2.3) α|ξ| ≤ H(ξ) ≤ β|ξ|, ξ ∈ RN .
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The dual norm of H is the function H0 : RN → R defined by1

H0(x) = sup
ξ∈RN\{0}

ξ · x
H(ξ)

.

It is well-known that H0 is also a norm on RN and satisfies the inequal-2

ity3

1

β
|x| ≤ H0(x) ≤ 1

α
|x|, ∀x ∈ RN .

The set4

W = {x ∈ RN : H0(x) < 1}
is called the Wulff ball, or the H0-unit ball, and we denote κN =5

HN(W), where HN denotes the N -dimensional Hausdorff measure on6

RN . We also denote Wr = {x ∈ RN |H0(x) < r} for any r > 0.7

For a domain Ω ⊂ RN and a Borel set E ⊂ RN , the anisotropic8

H-perimeter of a set E with respect to Ω is defined as9

PH(E,Ω) = sup

{∫
E∩Ω

divσdx : σ ∈ C∞
0 (Ω,RN), H0(σ(x)) ≤ 1

}
.

If E is Lipschitz, then it holds PH(E,Ω) =
∫
Ω∩∂∗E

H(ν)dHN−1, where10

∂∗E denotes the reduced boundary of the set E and ν(x) is the mea-11

sure theoretic outer unit normal of ∂∗E (see [16]). Also we have12

PH(W ,RN) = NκN . For more explanation about the anisotropic13

perimeter, see [3] and [5].14

Here we just recall some properties of H and H0. These will be15

proven by using the homogeneity property of H and H0, see [4] Lemma16

2.1, and Lemma 2.2.17

Proposition 2.1. Let H be a Finsler norm on RN . Then the following18

properties hold true:19

(1) |∇ξH(ξ)| ≤ C for any ξ 6= 0.20

(2) ∇ξH(ξ) · ξ = H(ξ), ∇xH(x) · x = H(x) for any ξ 6= 0, x 6= 0.21

(3) (∇ξH) (tξ) = t
|t| (∇ξH) (ξ) for any ξ 6= 0, t 6= 0.22

(4) H (∇H0(x)) = 1. H0 (∇ξH(ξ)) = 1.23

(5) H0(x) (∇ξH) (∇xH
0(x)) = x.24

Finally, given a smooth function u on RN , the Finsler Laplace oper-
ator of u (associated with H) is defined by

Qu(x) = div (H(∇u(x)) (∇ξH) (∇u(x)))

=
N∑
j=1

∂

∂xj

(
H(ξ)Hξj(ξ)

∣∣∣
ξ=∇u(x)

)
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and, more generally, for any 1 < q <∞, the Finsler q-Laplace operator1

Qq by2

Qqu(x) = div
(
Hq−1(∇u(x))(∇ξH)(∇u(x))

)
.

If we assume that Hess(Hq(ξ)) is positive definite on RN \ {0}, Qq3

becomes a uniformly elliptic operator locally. The Finsler q-Laplacian4

has been widely investigated in literature by many authors in different5

settings, see [2], [5], [8], [9], [10], [12], [13], [14], [17], [20] [34] and the6

references therein.7

We collect here several useful facts.8

Theorem 2.2. (Finsler Trudinger-Moser inequality [32]) Let Ω be a9

bounded domain in RN , N ≥ 2. Let u ∈ W 1,N
0 (Ω) satisfy

∫
Ω
H(∇u)Ndx ≤10

1. Then there exists a constant C depending only on the dimension N11

such that12 ∫
Ω

exp
(
β|u|

N
N−1

)
dx ≤ C|Ω|

holds for any β ≤ βN = N(NκN)
1

N−1 . Furthermore, βN is opti-13

mal in the sense that there exists a sequence {un} ⊂ W 1,N
0 (Ω) with14 ∫

Ω
H(∇un)Ndx ≤ 1, such that

∫
Ω
exp

(
β|un|

N
N−1

)
dx→ +∞ as n→ ∞15

for β > βN .16

Next is the unique existence of the Green function for the Finsler17

p-Laplacian.18

Theorem 2.3. ([32]) Let Ω ⊂ RN be a bounded domain containing the19

origin. Define Ω∗ = Ω \ {0} and20

Γ(x) =

{
C(p,N)(H0(x))

p−N
p−1 for 1 < p < N,

C(N) log 1
H0(x)

for p = N,

where C(p,N) = p−N
p−1

(NκN)
− 1

p−1 and C(N) = (NκN)
− 1

N−1 . Then

there exists a unique function G(·, 0) ∈ C1,α(Ω∗) with |∇G| ∈ Lp−1(Ω),
G/Γ ∈ L∞(Ω), satisfying{

−QpG(·, 0) = δ0 in Ω,

G(·, 0) = 0 on ∂Ω.

Moreover, g = G− Γ satisfies g ∈ C(Ω) and limx→0H
0(x)∇g(x) = 0.21

We recall here useful regularity estimates which are valid for the22

Finsler N -Laplacian equations, under the assumption (2.2); see Serrin23

[26], Tolksdorf [31], DiBenedetto [15] and Lieberman [19].24
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Theorem 2.4. Let Ω ⊂ RN be a smooth bounded domain. Then the1

following statements are true.2

(1) Let u ∈ W 1,N(Ω) be a weak solution of −QNu = f in Ω, where3

f ∈ Lq(Ω) for some q > 1. Then for any subdomain Ω′ ⊂⊂ Ω,4

there exists a constant C = C(Ω,Ω′, q, N) > 0 such that5

‖u‖L∞(Ω′) ≤ C
(
‖f‖Lq(Ω) + ‖u‖LN (Ω)

)
holds.6

(2) Let u ∈ W 1,N(Ω) be a weak solution of −QNu = f in Ω. Sup-7

pose ‖u‖L∞(Ω) ≤ a and ‖f‖L∞(Ω) ≤ b for some a, b < ∞.8

Then u ∈ C1,α
loc (Ω) for some α ∈ (0, 1) and for any subdomain9

Ω′ ⊂⊂ Ω, there exists a constant C = C(Ω,Ω′, a, b, α) > 0 such10

that11

‖u‖C1,α(Ω′) ≤ C

holds. If, in addition, u satisfies the Dirichlet boundary con-12

dition u = φ on ∂Ω where φ ∈ C1,β(∂Ω), β ∈ (0, 1), then13

u ∈ C1,α(Ω) for some α ∈ (0, 1) holds.14

(3) (Harnack inequality) Let u ∈ W 1,N(Ω) be a nonnegative weak15

solution of −QNu = f in Ω. Suppose ‖f‖Lq(Ω) ≤ b for some16

q > 1. Then for any subdomain Ω′ ⊂⊂ Ω, there exists a con-17

stant C = C(Ω,Ω′, q, b) > 0 such that18

sup
x∈Ω′

u(x) ≤ C

(
1 + inf

x∈Ω′
u(x)

)
holds.19

Next is the result from [33] (Theorem 1.1 and Theorem 1.2).20

Theorem 2.5. (Finsler Brezis-Merle type inequality [33]) Let Ω be a21

bounded domain in RN , N ≥ 2.22

(1) Suppose u is a weak solution to{
−QNu = f(x) in Ω,

u = 0 on ∂Ω,

where f ∈ L1(Ω). Then for any ε ∈ (0, βN) where βN =23

N(NκN)
1

N−1 , it holds that24 ∫
Ω

exp

(βN − ε)|u(x)|

‖f‖
1

N−1

L1(Ω)

 dx ≤ βN
ε
|Ω|.
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(2) Suppose u and v are weak solutions to1

−QNu = f(x) > 0 in Ω

and2

−QNv = 0 in Ω v = u on ∂Ω,

respectively. Then for any ε ∈ (0, βN), we have3 ∫
Ω

exp

(βN − ε)d
1

N−1

N |u(x)− v(x)|

‖f‖
1

N−1

L1(Ω)

 dx ≤ |Ω|
ε
,

where dN is defined in (1.5).4

Next is the Pohozaev identity for the Finsler q-Laplacian problem5

without the boundary condition. This is a special case of much more6

general identity proved in [11]. The identity below is known to hold7

for solutions in C1(Ω) ∩ C2(Ω). The important point is that we can8

remove the condition u ∈ C2(Ω) with the cost of the convexity and the9

C1(RN)-regularity of the map RN 3 ξ 7→ Hq(ξ). This improvement is10

crucial for the application to the Finsler Laplacian problem, since the11

best possible regularity result of solutions is C1,α, not C2, see Theorem12

2.4.13

Theorem 2.6. ([11]) Let 1 < q <∞. Let u ∈ C1(Ω) be a weak solution
of −Qqu = f(u) in Ω, where Ω ⊂ RN is a domain with the boundary
of class C1, and f ∈ C(R,R). Assume the map RN 3 ξ 7→ Hq(ξ) is
convex and belongs to C1(RN). Then the identity

N

∫
Ω

F (u)dx−
(
N − q

q

)∫
Ω

Hq(∇u)dx

=

∫
∂Ω

F (u)(x− y) · ν(x)dsx

− 1

q

∫
∂Ω

Hq(∇u)(x− y) · ν(x)dsx

+

∫
∂Ω

(
Hq−1(∇u)(∇ξH)(∇u) · ν(x)

)
((x− y) · ν(x))dsx

holds true for any y ∈ RN . Here ν is the outer unit normal of ∂Ω and14

F (s) =
∫ s

0
f(t)dt.15

Proof. Indeed, since L(x, s, ξ) = 1
q
Hq(ξ) − F (s) is of the “splitting”

form, F ∈ C1(R), and ξ 7→ Hq(ξ) is convex and in C1(RN), Lemma 5,
thus the equation (3) in [11] holds as it is. Also, if we do not impose
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the boundary condition u = 0 on ∂Ω (and put f = 0 there) in Lemma
2 in [11], we obtain the identity∫

∂Ω

L(x, u,∇u)(h · ν)dsx −
N∑

i,j=1

∫
∂Ω

hjDξiL(x, u,∇u)Dxj
uνidsx

=

∫
Ω

(divh)L(x, u,∇u)dx−
N∑

i,j=1

∫
∂Ω

DihjDξiL(x, u,∇u)Dxj
udx

for every h ∈ C1(Ω,RN). Inserting h(x) = x leads to the claim.1

Finally, we prove the following simple lemma.2

Lemma 2.7. Let u ∈ W 1,N
0 (Ω) be a weak solution to −QNu = f(u)3

in Ω ⊂ RN , where f : R → R is continuous. Let a, c > 0, d ∈ R and4

b ∈ RN . Then v(x) = cu(ax+ b)+d, x ∈ Ωa,b =
Ω−b
a

is a weak solution5

to6

−QNv = aNcN−1f

(
v − d

c

)
in Ωa,b, v = 0 on ∂Ωa,b.

Proof. For x ∈ Ωa,b, put y = ax + b ∈ Ω. Then for any φ ∈ C∞
0 (Ωa,b),

φ̃(y) = φ(x) belongs to C∞
0 (Ω). Therefore we have∫

Ωa,b

HN−1(∇v(x))(∇ξH)(∇v(x)) · ∇φ(x)dx

=

∫
Ωa,b

HN−1(ca(∇u)(ax+ b))(∇ξH)(ca(∇u)(ax+ b)) · ∇φ(x)dx

=

∫
Ω

cN−1aN−1HN−1(∇u(y))(∇ξH)((∇u(y)) · a∇φ̃(y)a−Ndy

= cN−1

∫
Ω

HN−1(∇u(y))(∇ξH)(∇u(y)) · ∇φ̃(y)dy

= cN−1

∫
Ω

f(u(y))φ̃(y)dy

= cN−1

∫
Ωa,b

f

(
v(x)− d

c

)
φ(x)aNdx,

where we have used (2.1) and Proposition 2.1 (3). Thus we see∫
Ωa,b

HN−1(∇v(x))(∇ξH)(∇v(x)) · ∇φ(x)dx = aNcN−1

∫
Ωa,b

f

(
v(x)− d

c

)
φ(x)dx.

This holds true for any φ ∈ C∞
0 (Ωa,b), which implies Lemma.7
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3. Asymptotic estimate for Cp1

In this section, first by using the Finsler Trudinger-Moser inequality2

Theorem 2.2, we establish the refined Sobolev embedding.3

Lemma 3.1. Let Ω ⊂ RN be a bounded domain. For any t ≥ 2, there4

exists Dt > 0 such that for any u ∈ W 1,N
0 (Ω),5

‖u‖Lt(Ω) ≤ Dtt
N−1
N ‖H(∇u)‖LN (Ω)

holds true. Furthermore, we have6

lim
t→∞

Dt =

(
1

Nκ
1/N
N

)(
N − 1

Ne

)N−1
N

.

Proof. Let u ∈ W 1,N
0 (Ω). By the elementary inequality xs

Γ(s+1)
≤ ex for

x ≥ 0 and s ≥ 0, where Γ(s) is the Gamma function, and the Finsler
Trudinger-Moser inequality, we have

1

Γ(N−1
N
t+ 1)

∫
Ω

|u|tdx

=
1

Γ(N−1
N
t+ 1)

∫
Ω

(
βN

(
|u|

‖H(∇u)‖LN (Ω)

) N
N−1

)N−1
N

t

dxβ
−N−1

N
t

N ‖H(∇u)‖tLN (Ω)

≤
∫
Ω

exp

((
βN

|u(x)|
‖∇u‖LN (Ω)

) N
N−1

)
dxβ

−N−1
N

t

N ‖H(∇u)‖tLN (Ω)

≤ C|Ω|β−N−1
N

t

N ‖H(∇u)‖tLN (Ω).

Put7

Dt = Γ

(
N − 1

N
t+ 1

)1/t

C1/t|Ω|1/tβ−N−1
N

N t−
N−1
N .

Then we have8

‖u‖Lt(Ω) ≤ Dtt
N−1
N ‖H(∇u)‖LN (Ω).

Stirling’s formula implies that9 (
Γ

(
(N − 1)t

N
+ 1

)) 1
t

∼
(
N − 1

Ne

)N−1
N

t
N−1
N

as t→ ∞. So we have10

lim
t→∞

Dt = β
−N−1

N
N

(
N − 1

Ne

)N−1
N

=

(
1

Nκ
1/N
N

)(
N − 1

Ne

)N−1
N

,

which is a desired result.11
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Recall that Cp is defined in (1.2). Using the above Lemma and energy1

comparison, we get the following.2

Proposition 3.2. We have3

lim
p→∞

pN−1Cp =

(
Ne

N − 1
βN

)N−1

.

where βN = N(NκN)
1

N−1 .4

Proof. Lower bound lim infp→∞(p+1)N−1Cp ≥
(

Ne
N−1

βN
)N−1

is a direct5

consequence of Lemma 3.1 and the fact6

(3.1) Cp =
‖H(∇up)‖NLN (Ω)

‖up‖NLp+1(Ω)

for least energy solutions up.7

Therefore we must prove only the upper bound. We will do this by8

constructing a suitable test function for the value Cp.9

We may assume that 0 ∈ Ω and WL ⊂ Ω where WL = {x ∈ RN :10

H0(x) < L}. For 0 < l < L, consider the Finsler Moser function11

ml(x) =
1

(NκN)1/N


(
log L

l

)N−1
N , 0 ≤ H0(x) ≤ l,

log L
H0(x)

(log L
l
)
1
N
, l ≤ H0(x) ≤ L,

0, L ≤ H0(x).

We check that the Moser functionml ∈ W 1,N
0 (Ω) and ‖H(∇ml)‖LN (Ω) =12

1. Also it is easily checked that13 (∫
Ω

mp+1
l dx

) 1
p+1

≥
(∫

Wl

mp+1
l dx

) 1
p+1

≥ 1

(NκN)1/N

(
log

L

l

)N−1
N (

lNκN
) 1

p+1 .

Choosing l = L exp
(
−(N−1

N2 )(p+ 1)
)
, we have14

‖ml‖Lp+1(Ω) ≥
1

(NκN)1/N

(
N − 1

N2

)N−1
N

e−
N−1
N (p+ 1)

N−1
N

(
LNκN

) 1
p+1 .

and15

Cp ≤
‖H(∇ml)‖NLN (Ω)

‖ml‖NLp+1(Ω)

≤ NκN

(
N2e

N − 1

)N−1

(p+1)−(N−1)(LNκN)
− N

p+1 ,

which implies lim supp→∞(p+ 1)N−1Cp ≤
(

Ne
N−1

βN
)N−1

.16
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Since1 ∫
Ω

H(∇up)Ndx =

∫
Ω

up+1
p dx

and (3.1), we have the following lemma.2

Lemma 3.3.

lim
p→∞

pN−1

∫
Ω

H(∇up)Ndx = lim
p→∞

pN−1

∫
Ω

up+1
p dx =

(
Ne

N − 1
βN

)N−1

.

4. Proof of Theorem 1.13

To obtain a lower bound for ‖up‖L∞(Ω), define the first eigenvalue of4

the Finsler N -Laplacian QN :5

λ1(Ω) = inf{
∫
Ω

H(∇u)Ndx : u ∈ W 1,N
0 (Ω),

∫
Ω

|u|Ndx = 1}.

It is known that 0 < λ1(Ω) <∞ and6 ∫
Ω

up+1
p dx =

∫
Ω

H(∇up)Ndx ≥ λ1(Ω)

∫
Ω

uNp dx.

Thus7 ∫
Ω

(up+1
p − λ1(Ω)u

N
p )dx ≥ 0,

which implies8

(4.1) ‖up‖p+1−N
L∞(Ω) ≥ λ1(Ω).

To obtain a uniform upper bound of ‖up‖L∞(Ω), we use an argument
with the coarea formula and the Finsler isoperimetric inequality in RN .
Set

γp = max
x∈Ω

up(x),

Ωt = {x ∈ Ω : up(x) > t},

A = {x ∈ Ω : up(x) >
γp
2
}.

By Lemma 3.1 with t = Np
N−1

and by Lemma 3.3, we have9 (∫
Ω

u
Np
N−1
p dx

)N−1
Np

≤ D Np
N−1

(
Np

N − 1

)N−1
N

‖H(∇up)‖LN (Ω) ≤M

where M is independent of p if p large. From this and Chebyshev’s10

inequality, we have11

(4.2)
(γp
2

) Np
N−1 |A| ≤M

Np
N−1 .
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On the other hand, by approximating the constant 1 on Ωt by C
∞
0 -1

functions, we have2

−
∫
Ωt

div
(
H(∇up)N−1(∇ξH)(∇up)

)
dx =

∫
Ωt

uppdx.

Thus integration by parts leads to∫
Ωt

uppdx = −
∫
∂Ωt

H(∇up)N−1(∇ξH)(∇up) · νds

=

∫
∂Ωt

H(∇up)N−1(∇ξH)(∇up) · ∇up
|∇up|

ds(4.3)

=

∫
∂Ωt

H(∇up)N

|∇up|
ds,

since the outer unit normal ν to ∂Ωt is ν = − ∇up

|∇up| . Here we used3

Proposition 2.1 (3) in the last equality. Coarea formula implies4

|Ωt| =
∫
Ωt

1dx =

∫ ∞

t

∫
{up=s}

ds

|∇up|
.

Thus5

(4.4) − d

dt
|Ωt| =

∫
∂Ωt

ds

|∇up|
.

By (4.3), (4.4), and the Schwartz inequality, we have(
− d

dt
|Ωt|
)N−1 ∫

Ωt

uppdx =

(∫
∂Ωt

1

|∇up|
ds

)N−1(∫
∂Ωt

HN(∇up)
|∇up|

ds

)
≥
(∫

∂Ωt

H(∇up)
|∇up|

ds

)N

(4.5)

=

(∫
∂Ωt

H(ν)ds

)N

= PH(Ωt,RN)N ≥ NNκN |Ωt|N−1.

In the last inequality of (4.5), we used the Finsler isoperimetric in-6

equality in RN [3], [27], [18]:7

(4.6) PH(E,RN) ≥ Nκ
1
N
N |E|

N−1
N

for any set of finite perimeter E ⊂ RN with respect to H.8

Now, define r(t) > 0 such that9

|Ωt| = κNr
N(t).
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Then1

d

dt
|Ωt| = NκNr

N−1(t)r′(t).

Note that r′(t) < 0. Putting this in (4.5), we have(
−NκNrN−1(t)

dr

dt
(t)

)N−1 ∫
Ωt

uppdx ≥ NNκN |Ωt|N−1,(
−dr
dt

)N−1 ∫
Ωt

uppdx ≥ (NκN)r
N−1,

− dt

dr
≤
(∫

Ωt

uppdx

) 1
N−1

(NκN)
− 1

N−1 r−1

≤ Cr−1γ
p

N−1
p |Ωt|

1
N−1 = Cγ

p
N−1
p r

1
N−1 ,

where C is a constant dependent only on N and varies from line to2

line. Integrating the last inequality from r = 0 to r = r0, we have3

t(0)− t(r0) ≤ Cγ
p

N−1
p r

N
N−1

0 .

Choose r0 such that t(r0) =
γp
2
. Then the above inequality implies

γp ≤ Cγ
p

N−1
p r

N
N−1

0 , i.e., γp ≤ Cγ
p

N−1
p |A|

1
N−1 .

Combining this with (4.2), we have

γp ≤ Cγ
p

N−1
p

 M
Np
N−1(γp

2

) Np
N−1

 1
N−1

= Cγ
− p

(N−1)2

p M
Np

(N−1)2 ,

γ
1+ p

(N−1)2

p ≤ CM
Np

(N−1)2 ,

γp ≤ C
(N−1)2

(N−1)2+pM
Np

(N−1)2+p .

From this, we conclude that there exists C > 0 (independent of p) such4

that γp ≤ C for p large.5

The latter half part of Theorem 1.1 is already proven in Lemma 3.3.6

Thus we have completed the proof of Theorem 1.1.7

From Theorem 1.1, we have the following consequence.8

Corollary 4.1. There exist C,C ′ > 0 independent of p large such that9

C ≤ pN−1

∫
Ω

uppdx ≤ C ′

holds true.10
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Proof. By Theorem 1.1, we have1

1

C2

pN−1

∫
Ω

up+1
p dx ≤

‖up‖L∞(Ω)

C2

pN−1

∫
Ω

uppdx ≤ pN−1

∫
Ω

uppdx

where C2 is as in Theorem 1.1. The left-hand side of the above inequal-2

ity is bounded from below by a positive constant by Lemma 3.3. On3

the other hand, Hölder’s inequality implies4

pN−1

∫
Ω

uppdx ≤
(
pN−1

∫
Ω

up+1
p dx

) p
p+1

p
1

p+1 |Ω|
1

p+1

and the right-hand side of the above inequality is bounded from above5

by Lemma 3.3. This proves the conclusion.6

5. Proof of Theorem 1.27

In this section, we prove Theorem 1.2. Since lim supp→∞ ‖up‖L∞(Ω) ≥8

1 immediately follows from (4.1) (this is true for any solution se-9

quence, not necessary least energy solutions), we just need to prove10

lim supp→∞ ‖up‖L∞(Ω) ≤ e
N−1
N . For this purpose, we follow the argu-11

ment by Adimurthi and Grossi [1].12

Let xp ∈ Ω be a point so that the least energy solution to (1.1) takes13

its maximum: up(xp) = ‖up‖L∞(Ω). As in [1], We make a change of14

variable15

(5.1) zp(x) =
p

up(xp)
(up(εpx+ xp)− up(xp)) , x ∈ Ωp =

Ω− xp
εp

,

where εp > 0 is defined so that16

(5.2) εNp p
N−1up(xp)

p+1−N ≡ 1.

By Theorem 1.1, we see εp → 0 as p→ ∞. Since up is a weak solution
to (1.1), zp is a weak solution to

−QNzp =
(
1 + zp

p

)p
in Ωp,

zp|∂Ωp = −p,
maxx∈Ωn

zn(x) = zn(0) = 0,

−p < zp ≤ 0 in Ωp

(5.3)

by Lemma 2.7. We want to pass to the limit as p → ∞ in (5.3). For
this purpose, take any ball BR(0) ⊂ Ωp centered at the origin and
radius R. Consider{

−QNwp =
(
1 + zp

p

)p
in BR(0),

wp|∂BR(0) = 0.
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Comparison principle for −QN (see for example, [33] Theorem 3.1) and1

Serrin’s elliptic estimate Theorem 2.4 yield that 0 ≤ wp ≤ C on BR(0)2

where C is a constant independent of p. Set ψp(x) = wp(x)−zp(x), x ∈3

BR(0). Then ψp is a nonnegative in BR(0) and ψp(0) = wp(0)−zp(0) =4

wp(0) ≤ C uniformly in p. Moreover, we have5

0 = −(QNwp −QNzp) = −Q̃N(wp − zp) = −Q̃Nψp

where

Q̃N(wp − zp)

=
N∑

i,j=1

∂

∂xi

[∫ 1

0

1

N

∂2HN

∂ξi∂ξj
(t∇wp + (1− t)∇zp)dt

∂

∂xj
(wp(x)− zp(x))

]
.

Thanks to the assumption that HessHN(ξ) is positive definite, Q̃N is6

a quasilinear elliptic differential operator. Thus we can apply Serrin’s7

Harnack inequality (Theorem 2.4 (3)) to ψp, which implies that there8

exists C = C(R, r) > 0 for any 0 < r < R such that9

sup
Br(0)

ψp(x) ≤ C

(
1 + inf

x∈Br(0)
ψp(x)

)
≤ C(1+ψp(0)) = C(1+wp(0)) ≤ C.

Thus we have10

0 ≥ zp(x) = wp(x)− ψp(x) ≥ −C
for x ∈ Br(0). Since 0 < r < R is arbitrary, we have {|zp|} ⊂11

L∞
loc(BR(0))) is uniformly bounded in p. Again Serrin’s regularity es-12

timate implies that {zp} is bounded in C1,α
loc (BR(0))) for any R > 013

uniformly in p.14

Now, we consider two cases:15

Case (i): dist(xp,∂Ωp)

εp
→ +∞16

Case (ii): dist(xp,∂Ωp)

εp
is bounded and17

Ωp → RN
+ (s0) = {x = (x′, xN) ∈ RN : xN > s0} (p→ ∞)

for some s0.18

In the case (i), note that Ωp → RN as p→ ∞. Hence by the Ascoli-19

Arzelá theorem, we know that (up to a subsequence), {zp} converges20

to some function z ∈ C1(RN) and z satisfies21

−QNz = ez inRN .

Now we claim that
∫
RN e

zdx < +∞. In fact, since zp → z in22

C1
loc(RN), we obtain23

1Ωp(x)

(
1 +

zp(x)

p

)p

→ ez(x)
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pointwisely for x ∈ RN , where 1Ωp is the characteristic function of Ωp.
By using Fatou’s lemma and Hölder’s inequality, we deduce∫

RN

ezdx ≤ lim inf
p→∞

∫
Ωp

(
1 +

zp(x)

p

)p

dx

≤ lim
p→∞

pN−1

(up(xp))N−1

∫
Ω

(up(y))
pdy

≤ lim
p→∞

pN−1

(up(xp))N−1

(∫
Ω

(up(y))
p+1dy

)p/(p+1)

|Ω|1/(p+1)

≤ C <∞

where we have used the facts that
∫
Ω
up+1
p dy = O(1)

pN−1 by Lemma 3.31

and up(xp) ≥ C1 > 0 by Theorem 1.1. Hence, we check that the limit2

function satisfies3

(5.4)


−QNz = ez inRN ,

z ≤ 0, inRN ,∫
RN e

zdx <∞.

In the case (ii), almost the same proof works, and we see that the4

limit function z is a solution of5

(5.5)


−QNz = ez inRN

+ (s0),

z ≤ 0, inRN
+ (s0),

z = −∞, on ∂RN
+ (s0),∫

RN
+ (s0)

ezdx <∞.

Now we prove the following lemma. The case N = 2 was treated by6

Ding (see [7]) when H(ξ) = |ξ|, and by Wang and Xia [32] for general7

H(ξ).8

Lemma 5.1. If z is a C1 weak solution of (5.4), then we have9 ∫
RN

ezdx ≥
(

N

N − 1

)N−1

NNκN .

If z is a C1 weak solution of (5.5), then we have10 ∫
RN
+ (s0)

ezdx ≥
(

N

N − 1

)N−1

NNκN .

Proof. As in the proof of Theorem 1.1, we use a level set argument.11

First, we assume z is a solution of (5.4). Put12

Ωt = {x ∈ RN : z(x) > t}, µ(t) = |Ωt|.
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Integration by parts on Ωt leads to∫
Ωt

ezdx = −
∫
Ωt

QNzdx =

∫
∂Ωt

HN−1(∇z)(∇ξH)(∇z) · ∇z
|∇z|

dsx

=

∫
∂Ωt

HN(∇z)
|∇z|

dsx.

By the Finsler isoperimetric inequality (4.6) and Hölder’s inequality,
we see

Nκ
1/N
N |Ωt|

N−1
N ≤ PH(Ωt,RN) =

∫
∂Ωt

H(∇z)
|∇z|

dsx

≤
(∫

∂Ωt

HN(∇z)
|∇z|

dsx

) 1
N
(∫

∂Ωt

dsx
|∇z|

)N−1
N

=

(∫
Ωt

ezdx

) 1
N

(−µ′(t))
N−1
N ,

here we have used coarea formula1

µ(t) =

∫ ∞

t

∫
{x:z(x)=s}

dsx
|∇z|

ds.

Thus we have2

µ(t) ≤

{
1

Nκ
1/N
N

(∫
Ωt

ezdx

) 1
N

(−µ′(t))
N−1
N

} N
N−1

.

Therefore, we obtain∫
RN

ezdx =

∫ max z

−∞
etµ(t)dt

≤

(
1

Nκ
1/N
N

) N
N−1 ∫ max z

−∞
et
(∫

Ωt

ezdx

) 1
N−1

(−µ′(t))dt

=

(
1

Nκ
1/N
N

) N
N−1 (

N − 1

N

)∫ max z

−∞

d

dt

(∫
Ωt

ezdx

) N
N−1

dt

=

(
1

Nκ
1/N
N

) N
N−1 (

N − 1

N

)(∫
RN

ezdx

) N
N−1

,

which implies3 (
N

N − 1

)N−1

NNκN ≤
∫
RN

ezdx.
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The proof when z is a solution to (5.5) is similar, since the boundary1

condition z = −∞ on ∂RN
+ (s0) assures that all level sets of z are2

confined in RN
+ (s0).3

By the change of variables, we have4

(5.6) pN−1

∫
Ω

up+1
p (y)dy = uNp (xp)

∫
Ωp

(
1 +

zp(x)

p

)p+1

dx.

Let us take lim supp→∞ of both sides of (5.6). Then we see5

lim sup
n→∞

LHS of (5.6) =

(
Ne

N − 1

)N−1

NNκN

by Lemma 3.3. On the other hand, Fatou’s lemma and Lemma 5.1
implies

lim sup
p→∞

RHS of (5.6) ≥ (lim sup
p→∞

up(xp))
N ×

{∫
RN e

zdx when case (i)∫
RN
+ (s0)

ezdx when case (ii)

≥ (lim sup
p→∞

up(xp))
N

(
N

N − 1

)N−1

NNκN .

Hence, we have6

eN−1 ≥ (lim sup
p→∞

‖up‖L∞(Ω))
N .

which implies Theorem 1.27

6. Proof of Theorem 1.38

In this section, we prove Theorem 1.3. Given any sequence pn of p
with pn → ∞, let us recall (1.3) and (1.6) for p = pn, un = upn .

vn =
un
λn

=
un

(
∫
Ω
upnn dx)

1
N−1

, λn =

(∫
Ω

upnn dx

) 1
N−1

,

fn(x) =
upnn∫

Ω
upnn dx

,

L0 = lim sup
n→∞

pn
(∫

Ω
upnn dx

) 1
N−1(

N
N−1

e
N−1
N

) , L1 = d
−( 1

N−1)
N L0.

Then vn is a weak solution of (1.4) for p = pn. By Hölder’s inequality9

and Theorem 1.1, we see10

pN−1
n

∫
Ω

upnn dx ≤ pN−1
n

(∫
Ω

upn+1
n dx

) pn
pn+1

|Ω|
1

pn+1 →
(

Ne

N − 1
βN

)N−1
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as n→ ∞. This shows that1

L0 ≤ e
1
N βN , L1 ≤ e

1
N βNd

−( 1
N−1

)

N .

First, we prove S 6= φ for any sequence vn = vpn of vp with pn → ∞.2

Indeed, by Theorem 1.1, we have ‖un‖L∞(Ω) ≥ C1 > 0 for any n ∈ N.3

Let xn ∈ Ω be a point such that un(xn) = ‖un‖L∞(Ω), then4

vn(xn) =
un(xn)

(
∫
Ω
upnn dx)

1
N−1

≥ C1

(
∫
Ω
upnn dx)

1
N−1

=
C1

O( 1
pn
)
→ +∞

by Lemma 3.3. This implies that any accumulation point of {xn} is5

contained in S and hence S 6= φ.6

Next, as in [6], [21], [22], we define (L, δ)-regular set and (L, δ)-7

irregular set of a sequence {un}. Since8

fn =
upnn∫

Ω
upnn dx

∈ L1(Ω), fn ≥ 0,

∫
Ω

fndx = 1,

there exists a subsequence (still denoted by n) such that9

fn
∗
⇀ µ, µ(Ω) ≤ 1

in the sense of Radon measures of Ω, where µ is a nonnegative Radon10

measure.11

Given L > 0 and δ > 0, we call a point x0 ∈ Ω a (L, δ)-regular point12

of {un} if there exists ϕ ∈ C0(Ω), 0 ≤ ϕ ≤ 1 with ϕ ≡ 1 near x0 such13

that14 ∫
Ω

ϕdµ <

(
βN

L+ 3δ

)N−1

where βN = N(NκN)
1

N−1 is as in Theorem 2.2. We put

RL(δ) = {x0 ∈ Ω : x0 is a (L, δ)-regular point},
ΣL(δ) = Ω \RL(δ).

We call a point in ΣL(δ) an (L, δ)-irregular point of the sequence {un}.15

Note that (L, δ)-regular, or (L, δ)-irregular points are automatically16

interior points of Ω. Also note that if x0 ∈ ΣL(δ), then we have17

(6.1) µ({x0}) ≥
(

βN
L+ 3δ

)N−1

.

Since18

1 ≥ µ(Ω) ≥
(

βN
L+ 3δ

)N−1

]ΣL(δ)

by (6.1), we see that ΣL(δ) is a finite set for any L > 0 and δ > 0.19

Next Lemma is the key to analyze the interior blow-up set S ∩ Ω.20
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Lemma 6.1. (smallness of µ implies boundedness) Let x0 be a (L1, δ)-1

regular point of a sequence {un} where L1 is defined in (1.6). Then2

{vn} is bounded in L∞(BR0(x0)) for some R0 > 0.3

Proof. Key point in the proof is to get the following pointwise estimate4

(6.2) fn(x) < exp

(
(L1 + δ/2)d

1
N−1

N vn(x)

)
, x ∈ Ω.

In checking (6.2), we use the elementary inequality5

(6.3)
log x

x
≤ log y

y
for any 0 < x ≤ y ≤ e.

Let6

αn =
‖un‖L∞(Ω)(∫
Ω
upnn dx

) 1
pn

=
‖un‖L∞(Ω)

λ
N−1
pn

n

,

and recall that λn = O
(

1
pn

)
by Corollary 4.1, so λ

N−1
pn

n = O
(

1
pn

)N−1
pn →7

1 as n→ ∞. Thus we have8

lim sup
n→∞

αn = lim sup
n→∞

‖un‖L∞(Ω) ≤ e
N−1
N

by Theorem 1.2. From this, we see that for any small ε′ > 0,9

un(x)

λ
N−1
pn

n

≤ αn ≤ e
N−1
N + ε′ < e

holds for any x ∈ Ω and for large n. Therefore by (6.3), we have for10

fixed small ε > 011

log

(
un(x)

λ
N−1
pn

n

)
un(x)

λ
N−1
pn

n

≤ logαn

αn

≤
(
N − 1

N

)
1

e
N−1
N

+ ε

for large n. Hence

log fn(x) = pn log
un(x)

λ
N−1
pn

n

≤ pn

(
un(x)

λ
N−1
pn

n

)(
N − 1

N

1

e
N−1
N

+ ε

)
= pnλn

(
N − 1

N
e−

N−1
N + ε

)
vn(x)

λ
N−1
pn

n

≤
(

N

N − 1
e

N−1
N L1d

1
N−1

N + ε

)(
N − 1

N
e−

N−1
N + 2ε

)
vn(x),
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here we have used limn→∞ λ
N−1
pn

n = 1 and1

pnλn ≤ N

N − 1
e

N−1
N L1d

1
N−1

N + ε

for large n by the definition of L1. Therefore2

log fn(x) ≤
(
(L1 + δ/2)d

1
N−1

N

)
vn(x)

holds if we choose ε > 0 small enough. This proves the pointwise3

estimate (6.2).4

Next, by the use of Brezis-Merle theory for the Finsler N -Laplacian,5

we obtain the integral estimate6

(6.4)

∫
BR1/2

(x0)

exp

(
(L1 + δ)d

1
N−1

N vn(x)

)
dx ≤ C

for some R1 > 0 small and C > 0 independent of n, here x0 is a7

(L1, δ)-regular point.8

Indeed, by the definition of (L1, δ)-regular point, we can find R1 > 09

such that10 ∫
BR1

(x0)

fndx ≤
(

βN
L1 + 2δ

)N−1

.

Also by Theorem 2.5 (i) and the fact that ‖fn‖L1(Ω) = 1, we have11 ∫
Ω

exp ((βN − ε)vn(x)) dx ≤ βN
ε
|Ω|

for any ε ∈ (0, βN). From this, we obtain12

(6.5) ‖vn‖LN (Ω) ≤ C

where C > 0 is independent of n. Next, let φn be a weak solution of13

−QNφn = 0 inBR1(x0) φn = vn on ∂BR1(x0).

Then by Theorem 2.5 (2) and the fact that ‖fn‖
1

N−1

L1(BR1
(x0))

< βN

L1+2δ
, we14

have15

(6.6)

∫
Ω

exp

(
(L1 + δ)d

1
N−1

N |vn(x)− φn(x)|
)
dx ≤ C

if we choose ε ∈ (0, βN) sufficiently small. By the comparison prin-16

ciple for the Finsler N -Laplacian (see [33] Theorem 3.2) and Serrin’s17

estimates Theorem 2.4 (i), we have18

‖φn‖L∞(BR1/2
(x0)) ≤ ‖vn‖L∞(BR1/2

(x0)) ≤ C‖vn‖LN (BR1
(x0)) ≤ C

where we have used (6.5). Combining this with (6.6), we obtain the19

desired integral estimate (6.4).20
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Comparing (6.4) and (6.2), we see that fn is bounded uniformly in n1

in Lq(BR1/2(x0)) where q = L1+δ
L1+δ/2

> 1. Therefore, Serrin’s regularity2

estimate Theorem 2.4 (i) again implies that3

‖vn‖L∞(BR1/4
(x0)) ≤ C

independent of n. Taking R0 = R1/4 ends the proof of Lemma 6.1.4

We know that ΣL1(δ) is a set of finite points, all of those are interior5

of Ω. From Lemma 6.1, we obtain S ∩ Ω = ΣL1(δ) for any δ > 0 and6

1 ≥ µ(Ω) ≥
(

βN
L1 + 3δ

)N−1

](ΣL1(δ)) =

(
βN

L1 + 3δ

)N−1

](S ∩ Ω).

Hence7

](S ∩ Ω) ≤
(
L1 + 3δ

βN

)N−1

≤

e 1
N βNd

−( 1
N−1

)

N + 3δ

βN

N−1

.

Taking a limit δ → 0, we have8

](S ∩ Ω) ≤ e
N−1
N d−1

N

This proves the first part of Theorem 1.3.9

If x0 ∈ S ∩ Ω = ΣL1(δ), then for any R > 0, we have10

(6.7) lim
n→∞

‖vn‖L∞(BR(x0)) = +∞.

Indeed, if for some R > 0, assume there exists C > 0 independent of n11

such that ‖vn‖L∞(BR(x0)) ≤ C for all large n. Then12

fn =
vpnn

λN−1−pn
n

≤ CpnO

(
1

pn

)pn−(N−1)

→ 0 (n→ ∞)

uniformly on BR(x0). This implies x0 is a (L1, δ)-regular point, which13

is absurd. The same kind of argument leads to that the limit measure14

µ is atomic and of the form15

µ =
k∑

i=1

γiδxi

where S ∩Ω = {x1, · · · , xk}. Since µ(Ω) ≤ 1, we have
∑k

i=1 γi ≤ 1 and16

γi ≥ (
βN
L1

)N−1

for all i = 1, · · · , k by letting δ → 0 in (6.1) with L = L1. This proves17

Theorem 1.3 (i).18
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On any compact sets in Ω\(S∩Ω), {vn} is uniformly bounded. Then1

by Serrin’s and Tolksdorf’s regularity estimate, {vn} is also bounded in2

C1,α
loc (Ω\(S∩Ω)) for some α ∈ (0, 1). By Ascoli-Arzelá theorem, we have3

a subsequence and a function G such that vn → G in C1
loc(Ω \ (S ∩Ω)).4

That this G satisfies Theorem 1.3 (ii) is clear.5

Finally, since λn = O( 1
pn
) as n → ∞ and vn(x) =

un(x)
λn

is uniformly6

bounded in L∞
loc(Ω\ (S∩Ω)), we easily see that Theorem 1.3 (iii) holds.7

Thus all the proof of Theorem 1.3 has been completed.8

7. Proof of Theorem 1.49

In this section, we prove Theorem 1.4.10

Proof. Assume the contrary that x0 ∈ ∂Ω, where x0 is the unique blow-
up point of a sequence vn = vpn with pn → +∞ as n→ ∞. For R > 0
small, we may use the Pohozaev identity Theorem 2.6 on Ω ∩ BR(x0),
with the aid of Theorem 2.4:

N

pn + 1

∫
Ω∩BR(x0)

upn+1
n dx =

∫
∂(Ω∩BR(x0))

upn+1
n

pn + 1
(x− y) · ν(x)dsx

(7.1)

− 1

N

∫
∂(Ω∩BR(x0))

HN(∇un)(x− y) · ν(x)dsx

+

∫
∂(Ω∩BR(x0))

(
HN−1(∇un)(∇ξH)(∇un) · ν(x)

)
(x− y) · ν(x)dsx.

In order to remove the integral terms involving ∂Ω, we use a trick in11

[25]. Define12

ρn =

∫
∂Ω∩BR(x0)

HN(∇un)(x− x0) · ν(x)dsx∫
∂Ω∩BR(x0)

HN(∇un)ν(x0) · ν(x)dsx

and put yn = x0 + ρnν(x0). We assume R > 0 so small such that13

1/2 ≤ ν(x0) · ν(x) ≤ 1 for x ∈ ∂Ω ∩ BR(x0). Then we have that14

ρn ≤ 2R. By the definition of yn and ρn, we see that15 ∫
∂Ω∩BR(x0)

HN(∇un)(x− yn) · ν(x)dsx ≡ 0
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for all n ∈ N. Also since un = 0 on ∂Ω and un > 0 in Ω, we see

ν(x) = − ∇un(x)
|∇un(x)| . By using these, we see (7.1) with y = yn becomes

N

pn + 1

∫
Ω∩BR(x0)

upn+1
n dx =

1

pn + 1

∫
Ω∩∂BR(x0)

upn+1
n (x− yn) · ν(x)dsx

(7.2)

− 1

N

∫
Ω∩∂BR(x0)

HN(∇un)(x− yn) · ν(x)dsx

+

∫
Ω∩∂BR(x0))

(
HN−1(∇un)(∇ξH)(∇un) · ν(x)

)
(x− yn) · ∇un(x)dsx.

Multiplying ( 1
λn
)N to both sides of (7.2) and recalling vn = un

λn
, we have

N

pn + 1

(
1

λn

)N ∫
Ω∩BR(x0)

upn+1
n dx

(7.3)

=
1

pn + 1

(
1

λn

)N ∫
Ω∩∂BR(x0)

upn+1
n (x− yn) · ν(x)dsx

− 1

N

∫
Ω∩∂BR(x0)

HN(∇vn)(x− yn) · ν(x)dsx

+

∫
Ω∩∂BR(x0))

(
HN−1(∇vn)(∇ξH)(∇vn) · ν(x)

)
(x− yn) · ∇vn(x)dsx

= I + II + III.

We estimate the terms I, II, III on the right-hand side of (7.3) as
follows:

|I| = 1

pn + 1

(
1

λn

)N ∣∣ ∫
Ω∩∂BR(x0)

upn+1
n (x− yn) · ν(x)dsx

∣∣
≤ O(pNn )

pN−1
n (pn + 1)

‖pN−1
n upn+1

n ‖L∞(Ω∩∂BR(x0))

∫
Ω∩∂BR(x0)

|(x− yn) · ν(x)|dsx

=
O(pNn )

pN−1
n (pn + 1)

‖pN−1
n upn+1

n ‖L∞(Ω∩∂BR(x0))O(R
N−1).

We note that since S ∩ Ω = φ by assumption,1

fn =
upnn
λN−1
n

→ 0

uniformly on compact sets in Ω and2

pN−1
n upn+1

n (x) ≤ ‖un‖L∞(Ω)p
N−1
n upnn (x) ≤ C

upnn (x)

λN−1
n

≤ Cfn(x)



FINSLER LANE-EMDEN PROBLEM 27

by Theorem 1.1 and the fact that λn = O( 1
pn
) as n → ∞. Thus we1

have2

‖pN−1
n upn+1

n ‖L∞(Ω∩∂BR(x0)) → 0 as n→ ∞
and thus3

lim
R→0

lim
n→∞

|I| = 0.

Also, by Theorem 1.3 (ii), we have vn → G in C1,α
loc (Ω \ (S ∩ Ω)).

Thus we have HN(∇vn) = O(1) on Ω ∩ ∂BR(x0), which implies

|II| = 1

N

∣∣∣ ∫
Ω∩∂BR(x0)

HN(∇vn)(x− yn) · ν(x)dsx
∣∣∣

≤ O(1)

∫
Ω∩∂BR(x0)

|(x− yn) · ν(x)|dsx ≤ O(1)O(RN−1),

|III| =
∣∣∣ ∫

Ω∩∂BR(x0))

(
HN−1(∇vn)(∇ξH)(∇vn) · ν(x)

)
(x− yn) · ∇vn(x)dsx

∣∣∣
≤ O(1)

∫
Ω∩∂BR(x0)

|(x− yn) · ν(x)|dsx ≤ O(1)O(RN−1).

Therefore we have4

lim
R→0

lim
n→∞

|II| = lim
R→0

lim
n→∞

|III| = 0.

From these, we obtain5

(7.4) lim
R→0

lim
n→∞

(RHS of (7.3)) = 0.

On the other hand, recall

zn(x) =
pn

un(xn)
(un(εnx+ xn)− un(xn)) ,

x ∈ ΩR,n =
(Ω ∩BR(x0))− xn

εn
,

where εNn p
N−1
n un(xn)

pn+1−N ≡ 1. Then we see from Fatou’s lemma,
Theorem 1.1, and Lemma 5.1, that

lim
R→0

lim
n→∞

∫
Ω∩BR(x0))

pN−1
n upn+1

n (y)dy

= lim
R→0

lim
n→∞

un(xn)
N

∫
ΩR,n

(
1 +

zn(x)

pn

)pn+1

dx

≥ CN
1

∫
U

ezdx ≥ CN
1

(
N

N − 1

)N−1

NNκN

where u = RN or RN
+ (s0) for some s0 > 0 according to the cases6

dist(xn,∂ΩR,n)

εn
→ +∞ or

dist(xn,∂ΩR,n)

εn
→ s0. Note that our assumption7
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]S = 1 assures that we can choose xn as a maximum points of un.1

From this and the fact that λn = O( 1
pn
) as n→ ∞, we have2

(7.5) lim
R→0

lim
n→∞

(LHS of (7.3)) ≥ C > 0

for some positive constant C > 0 independent of n.3

Clearly (7.5) contradicts to (7.4), and we conclude that x0 6∈ ∂Ω.4

Finally, as a corollary, we prove the following.5

Corollary 7.1. Let R > 0 and let {up} be a sequence of least energy6

solutions to7

(7.6)


−QNup = upp in WR,

up > 0 in WR,

up = 0 on ∂WR

where WR = {x ∈ RN : H0(x) < R}. Then the blow-up set S of vp
satisfies S ∩WR = {0}, and

up → G(·, 0) in C1
loc(WR \ {0})

where G is the unique Green function on WR obtained in Theorem 2.3,
and

fp =
upp∫

WR
uppdx

∗
⇀ δ0

in the sense of Radon measures on WR, along the full sequence.8

Proof. The usual method of moving plane to prove the symmetry of
solutions is not applicable in the anisotropic situation. However, we
can use Theorem 4.1 in [5] under the convexity and C1-assumption of
the map ξ 7→ HN(ξ). (Note that the key point of the proof of Theorem
4.1 in [5] is the Pohozaev identity Theorem 4.2 in [5] for C1(Ω)-weak
solutions, which is valid by the above assumptions). Thus we assure
that any positive solution up to (7.6) is Finsler-radial, that is, all level
sets of up are homothetic to WR for any p > 1. Let S be the blow-up
set of vp. Then we see that S ∩ WR = {0}. Indeed, if there were
a point x0 ∈ S ∩ WR, then all points on the level set of up passing
through x0 must be blow-up points of vp, which contradicts to the fact
that ](S ∩WR) is finite. Thus by Theorem 1.3, we see

vp → G(·, 0) in C1
loc(WR \ {0})

for some function G along a subsequence. The limit function must9

be the unique Green function constructed in Theorem 2.3, and by the10

uniqueness, the convergence is true for the full sequence.11



FINSLER LANE-EMDEN PROBLEM 29

Acknowledgments.1

This work was partly supported by Osaka City University Advanced2

Mathematical Institute MEXT Joint Usage / Research Center on Math-3

ematics and Theoretical Physics JPMXP0619217849. The second au-4

thor (F.T.) was supported by JSPS KAKENHI Grant-in-Aid for Scien-5

tific Research (B), JP19H01800, and JSPS Grant-in-Aid for Scientific6

Research (S), JP19H05597.7

References8

[1] Adimurthi, and M. Grossi: Asymptotic estimates for a two-dimensional prob-9

lem with polynomial nonlinearity, Proc. Amer. Math. Soc., 132, no. 4, (2003),10

1013–1019.11

[2] A. Alvino, V. Ferone, A. Mercaldo, F. Takahashi, R. Volpicelli: Finsler Hardy-12

Kato’s inequality, J. Math. Anal. Appl., 470, no. 1, (2019), 360–374.13

[3] A. Alvino, V. Ferone, G. Trombetti, and P. L. Lions: Convex symmetrization14

and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), no. 2,15
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