
Sharp Hardy-Leray inequality for
three-dimensional solenoidal fields with
axisymmetric swirl

言語: English

出版者: American Institute of Mathematical Sciences

公開日: 2021-07-16

キーワード (Ja): 

キーワード (En): Hardy-Leray inequality, solenoidal

fields, swirl, axisymmetry, best constant

作成者: 濱本, 直樹, 高橋, 太

メールアドレス: 

所属: Osaka City University, Osaka City University

メタデータ

https://ocu-omu.repo.nii.ac.jp/records/2019786URL



In April 2022, Osaka City University and Osaka Prefecture University marge to Osaka Metropolitan University 
 

Hamamoto, N., & Takahashi, F. (2020). Sharp Hardy-Leray inequality for three-dimensional solenoidal 
fields with axisymmetric swirl. Communications on Pure & Applied Analysis, 19(6), 3209–3222. 
https://doi.org/10.3934/cpaa.2020139 

Sharp Hardy-Leray inequality for 
three-dimensional solenoidal fields with 
axisymmetric swirl 

 

Naoki Hamamoto & Futoshi Takahashi 

 
Citation Communications on Pure and Applied Analysis. 19(6): 3209-3222. 

Issue Date 2020-06 
Type Journal Article 

Textversion Author 

Relation 

This is a pre-copy-editing, author-produced PDF of an article accepted for publication 
in Communications on Pure and Applied Analysis following peer review. The 
definitive publisher-authenticated version Vol.19, Issu.6, p.3209-3222. is available 
online at: https://doi.org/10.3934/cpaa.2020139.  

DOI 10.3934/cpaa.2020139 
 

Self-Archiving by Author(s) 
Placed on: Osaka City University Repository  

 

https://doi.org/10.3934/cpaa.2020139


Manuscript submitted to doi:10.3934/xx.xx.xx.xx
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

SHARP HARDY-LERAY INEQUALITY FOR

THREE-DIMENSIONAL SOLENOIDAL FIELDS WITH

AXISYMMETRIC SWIRL

Naoki Hamamoto

Department of Mathematics, Osaka City University
3-3-138 Sugimoto, Sumiyoshi-ku

Osaka, 558-8585, Japan

Futoshi Takahashi∗

Department of Mathematics, Osaka City University
3-3-138 Sugimoto, Sumiyoshi-ku

Osaka, 558-8585, Japan

(Communicated by the associate editor name)

Abstract. In this paper, we prove Hardy-Leray inequality for three-dimensional
solenoidal (i.e., divergence-free) fields with the best constant. To derive the

best constant, we impose the axisymmetric condition only on the swirl compo-

nents. This partially complements the former work by O. Costin and V. Maz’ya
[4] on the sharp Hardy-Leray inequality for axisymmetric divergence-free fields.

1. Introduction. Let N ≥ 3 be an integer and γ ∈ R be a real number. In
what follows, Dγ(RN )N denotes the set of all smooth vector fields u : RN → RN ,
u(x) =

(
u1(x), u2(x), · · · , uN (x)

)
for x = (x1, x2, · · · , xN ) with compact support

such that u(0) = 0 if γ ≤ 1 − N
2 . Then, the Hardy-Leray inequality with weight

γ ∈ R is given by(
γ + N

2 − 1
)2 ∫

RN

|u|2

|x|2
|x|2γdx ≤

∫
RN

|∇u|2|x|2γdx (1)

for all u ∈ Dγ(RN )N , where the constant
(
γ + N

2 − 1
)2

is known to be sharp. This
was proved for N = 3, γ = 0 by J. Leray [12] along his study on the Navier-Stokes
equations, as an N -dimensional generalization of the one-dimensional inequality by
H. Hardy [8]. For general γ ̸= 0, the inequality (1) was derived as a special case of
more general one given by Caffarelli-Kohn-Nirenberg [3]. In the context of hydro-
dynamics, it is an interesting problem whether the value of the optimal constant
increases by imposing u to be solenoidal, i.e., divu = 0. Costin and Maz’ya [4] ob-
tained a positive answer in every dimension N ≥ 3, under the additional assumption
of axisymmetry. Corresponding result is recently obtained for irrotational vector
fields, i.e., curlu = 0 in [7].
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2 NAOKI HAMAMOTO AND FUTOSHI TAKAHASHI

Hereafter let us restrict ourselves to the case N = 3. Main result in [4] in the
three dimensional case reads as follows:

Theorem 1.1 (O. Costin and V. Maz’ya [4]). Let γ ∈ R and let u ∈ Dγ(R3)3 be
an axisymmetric solenoidal vector field. Then

Cγ

∫
R3

|u|2

|x|2
|x|2γdx ≤

∫
R3

|∇u|2|x|2γdx

holds with the sharp constant Cγ =


(
γ + 1

2

)2 4+(γ− 3
2 )

2

2+(γ− 3
2 )

2 , for γ ≤ 1(
γ + 1

2

)2
+ 2 , for γ > 1 .

It is clear that Cγ > (γ+ 1
2 )

2 for γ ̸= − 1
2 , so we see the solenoidal and axisymmet-

ric constraint improves the best constant of the Hardy-Leray inequality. However,
since the sole assumption of axisymmetry does not change the optimality of the con-
stant (γ+ 1

2 )
2 in (1)N=3, it is expected that the condition of axisymmetry in Theorem

1.1 can be relaxed. Indeed, we shall show in this paper that Theorem 1.1 does hold
by imposing only one component of u to be axisymmetric. To be more precise, let
us introduce the spherical polar coordinates (ρ, θ, φ) ∈ [0,∞) × [0, π] × [0, 2π) in
which x ∈ R3 is represented by

x = ρσ , σ = (cos θ, sin θ cosφ, sin θ sinφ) ∈ S2.
For each (θ, φ), define the orthonormal frame (σ, eθ, eφ) ∈ SO(3) by

eθ = (− sin θ, cos θ cosφ, cos θ sinφ) ,

eφ = (0,− sinφ, cosφ) .

Then a vector field u : R3 → R3 at every point x = ρσ is expanded in that frame
as

u = σuρ + eθuθ + eφuφ,

where the last term eφuφ is called the swirl part of u, which we abbreviate as
uφ = eφuφ. Also, the scalar function uφ is called the swirl component of u. 1

A vector field u is called axisymmetric if its three components uρ, uθ and uφ are
independent of φ.

Now, let us assume that u ∈ Dγ(R3)3, and that its swirl part uφ is axisymmetric,
i.e., uφ is independent of φ. Then as we shall show later, uφ becomes a solenoidal
field and satisfies the inequality(

(γ + 1
2 )

2 + 2
) ∫

R3

|uφ|2

|x|2
|x|2γdx ≤

∫
R3

|∇uφ|2|x|2γdx (2)

with the optimal constant (γ+ 1
2 )

2+2 . Since it is just the same as Cγ in Theorem
1.1 if γ > 1 , we observe that the effect of the swirl part is dominant in this case.
Accordingly, it is also interesting to evaluate the constant if we fix the swirl part of
u.

Now our main theorem is the following:

Theorem 1.2. Let u ∈ Dγ(R3)3 be a solenoidal field. If u is swirl-free, i.e.,
uφ ≡ 0, then the inequality

C

∫
R3

|u|2

|x|2
|x|2γdx ≤

∫
R3

|∇u|2|x|2γdx (3)

1In many papers, swirl component is defined in the cylindrical coordinates in R3. However,

there are no differences between the two definitions.



SHARP HARDY-LERAY INEQUALITY 3

holds with the optimal constant C = Cγ,0 given by

Cγ,0 = (γ + 1
2 )

2 + 2 +min
x≥0

(
x+ 8(γ−1)

x+2+(γ− 3
2 )

2

)

=


(
2
√
γ − 1 +

√
2
)2
, for 3

2 ≤ γ ≤ γ0,(
γ + 1

2

)2 4+(γ− 3
2 )

2

2+(γ− 3
2 )

2 , otherwise,

where γ0 = 3
2 + (4 + 4

√
31

33/2
)

1
3 − 4

3
(
4+ 4

√
31

33/2

) 1
3
≃ 2.8646556.

More generally, for a given non-zero scalar function g : R3 → R3 which is
independent of φ such that g = geφ ∈ Dγ(R3)3, let us define

G :=
{
u ∈ Dγ(R3)3 : divu = 0 , uφ = g

}
.

Then (3) holds for any u ∈ G with the sharp constant C = Cγ,g, where

Cγ,g = min

{
Cγ,0 ,

∫
R3 |∇g|2|x|2γdx∫
R3 |g|2|x|2γ−2dx

}
.

Since Cγ,0 ≥ Cγ and

∫
R3 |∇g|2|x|2γdx∫
R3 |g|2|x|2γ−2dx

≥
(
γ + 1

2

)2
+ 2 ≥ Cγ by (2), we have

Cγ,g ≥ Cγ for all γ ∈ R. Then it directly follows from Theorem 1.2 that:

Corollary 1. Let u ∈ Dγ(R3)3 be a solenoidal vector field. We assume that uφ is
axisymmetric, i.e., the swirl component uφ is independent of φ. Then the inequality

Cγ

∫
R3

|u|2

|x|2
|x|2γdx ≤

∫
R3

|∇u|2|x|2γdx

holds with the same constant Cγ in Theorem 1.1.

This corollary shows that the axisymmetry assumption of u in Theorem 1.1
can be weakened to that of the swirl part uφ. In other words, the non-swirl part
u − uφ = eρuρ + eθuθ need not be axisymmetric to obtain the optimality of the
constant in Theorem 1.1. Moreover, in a recent paper [6] it turned out that the
axisymmetric assumption in Corollary 1 can be further removed completely; the
same Cγ in Theorem 1.1 was derived by decomposing solenoidal fields into “poloidal-
toroidal” (or shortly “P-T”) parts; in fact, the Cγ,0 in Theorem 1.2 coincides with
the best constant of Hardy-Leray inequality for “poloidal” fields. However, the “P-
T” decomposition method is not suitable for the proof of Theorem 1.2, since the
swirl-free field u − uφ is not necessarily “poloidal.” Thus we emphasize that the
result of Theorem 1.2 is not still included in that of [6]; our calculation method for
the proof of Theorem 1.2 is elementary and quite different from [6].

In the context of fluid mechanics, the effect of the swirl component of a velocity
vector field is well-studied from various view points; see for example, [11], [15], [1],
[9]. [10], [13], [16], to name a few. By Corollary 1, we see that the effect of the swirl
component is significant also from the view point of general optimal inequalities,
such as Hardy-Leray inequality with the improved best constant.

2. Preparation. Here we give some basic tools that will be needed for the proof of
our main theorem. As introduced in §1, the position of every point x = (x1, x2, x3) ∈
R3 is written in the spherical polar coordinates (ρ, θ, φ) ∈ [0,∞) × [0, π] × [0, 2π)
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by x = ρσ, where σ ∈ S2 together with the orthonormal basis (σ, eθ, eφ) ∈ SO(3)
given by 

σ = (cos θ, sin θ cosφ, sin θ sinφ),

eθ = ∂θσ = (− sin θ, cos θ cosφ, cos θ sinφ) ,

eφ = �∂φσ = (0,− sinφ, cosφ).

(4)

Hereafter we use the notations ∂θ = ∂
∂θ , ∂φ = ∂

∂φ , and also we use the abbreviation

�∂φ = 1
sin θ∂φ.

By differentiating σ, eθ and eφ, we verify that{
∂θeθ = −σ , ∂θeφ = 0 ,

�∂φeθ = eφ cot θ , �∂φeφ = −σ − eθ cot θ .
(5)

We expand the gradient operator ∇ = ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

) in the frame (4). By use of

the chain rule together with (4), we have

∂ρ =
∂x

∂ρ
· ∇ = σ · ∇ , ∂θ =

∂x

∂θ
· ∇ = ρeθ · ∇ , ∂φ =

∂x

∂φ
· ∇ = (ρ sin θ)eφ · ∇ ,

where “ · ” denotes the standard inner product in R3. Then it turns out that

∇ = σ∂ρ +
1
ρ ∇σ ,

where ∇σ = eθ∂θ + eφ�∂φ is the spherical gradient operator.
(6)

Now let u = σuρ + eθuθ + eφuφ be a smooth vector field in R3. By using (4), (5)
and (6) we can check that the divergence of u is given by

ρ divu = ρ∇ · u =
(
σρ∂ρ + eθ∂θ + eφ�∂φ

)
· (σuρ + eθuθ + eφuφ)

= (ρ∂ρ + 2)uρ +Dθuθ + �∂φuφ , (7)

where we have introduced the derivative operator Dθ = ∂θ + cot θ which is the
L2(S2)-adjoint of −∂θ:

−
∫
S2
(∂θf)gdσ =

∫
S2
fDθgdσ , dσ = sin θdθdφ (8)

for any f, g ∈ C∞(S2). From (7), it is clear that

divuφ = 0 ,

divu = div(u− uφ)

}
if we assume that ∂φuφ = 0 . (9)

As for the L2 integral of ∇u under such assumption, we have the following lemma.

Lemma 2.1. Let u = σuρ + eθuθ + eφuφ be a smooth vector field in R3\{0}.
Assume that the swirl part uφ = eφuφ is axisymmetric. Then we have∫

S2
|∇u|2dσ =

∫
S2
|∇(u− uφ)|2dσ +

∫
S2
|∇uφ|2dσ ,

where the two terms in the right-hand side are expressed in terms of components as

ρ2
∫
S2
|∇(u− uφ)|2dσ =

∫
S2

(
(ρ∂ρuρ)

2 + (ρ∂ρuθ)
2 + 2u2ρ + (∂θuρ)

2

+(Dθuθ)
2 − 4uθ∂θuρ + (�∂φuρ)2 + (�∂φuθ)2

)
dσ ,

ρ2
∫
S2
|∇uφ|2dσ =

∫
S2

(
(ρ∂ρuφ)

2 + (Dθuφ)
2
)
dσ .



SHARP HARDY-LERAY INEQUALITY 5

Proof. By use of (6), (4) and (5), we directly have the following calculations:

ρ2|∇u|2 = |ρ∂ρu|2 + |∇σu|2,
|∇σu|2 = |∂θu|2 + |�∂φu|2

=
∣∣∂θ(σuρ + eθuθ + eφuφ)

∣∣2 + ∣∣�∂φ(σuρ + eθuθ + eφuφ)
∣∣2

=
∣∣eθuρ + σ∂θuρ − σuθ + eθ∂θuθ + eφ∂θuφ

∣∣2
+
∣∣eφuρ + σ�∂φuρ + eφ(cot θ)uθ + eθ�∂φuθ + (−σ − eθ cot θ)uφ + eφ�∂φuφ

∣∣2
= (∂θuρ − uθ)

2 + (uρ + ∂θuθ)
2 + (∂θuφ)

2 + (�∂φuρ − uφ)
2

+ (�∂φuθ − uφ cot θ)2 + (uρ + uθ cot θ + �∂φuφ)2.

We now assume that uφ is axisymmetric. Then ∂φuφ = 0 and integration by parts
yield∫

S2
|∇σu|2dσ =

∫
S2

(
(∂θuρ − uθ)

2 + (uρ + ∂θuθ)
2 + (∂θuφ)

2 + (�∂φuρ − uφ)
2

+ (�∂φuθ − uφ cot θ)2 + (uρ + uθ cot θ)
2
)
dσ

=

∫
S2

 2u2ρ + (∂θuρ)
2 + (∂θuθ)

2 +
u2θ

(sin θ)2

−2uθ∂θuρ + 2uρDθuθ + (�∂φuρ)2 + (�∂φuθ)2

 dσ

+

∫
S2

(
(∂θuφ)

2 +
u2φ

(sin θ)2

)
dσ

=

∫
S2

(
2u2ρ + (∂θuρ)

2 + (Dθuθ)
2 − 4uθ∂θuρ + (�∂φuρ)2 + (�∂φuθ)2

)
dσ

+

∫
S2
(Dθuφ)

2dσ ,

where the last equality follows from (8) and the commutation relation

∂θDθ −Dθ∂θ =
−1

(sin θ)2
.

Then adding to the both sides of the above integral equation by∫
S2
|ρ∂ρu|2dσ =

∫
S2

(
(ρ∂ρuρ)

2 + (ρ∂ρuθ)
2
)
dσ +

∫
S2
(ρ∂ρuφ)

2dσ ,

we have

ρ2
∫
S2
|∇u|2dσ =

∫
S2

(
(ρ∂ρuρ)

2 + (ρ∂ρuθ)
2 + 2u2ρ + (∂θuρ)

2

+(Dθuθ)
2 − 4uθ∂θuρ + (�∂φuρ)2 + (�∂φuθ)2

)
dσ

+

∫
S2

(
(ρ∂ρuφ)

2 + (Dθuφ)
2
)
dσ .

This, together with letting uφ = 0 or uρ = uθ = 0, gives the desired formula.

3. Proof of Theorem 1.2. As in [4], let u ̸≡ 0 and let the right-hand side of (3)
be finite:

∫
R3 |∇u|2|x|2γdx < ∞, since otherwise there is nothing to prove. Then

the smoothness of u implies the existence of an integer m > −γ − 3
2 such that
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∇u = O(|x|m) as |x| → 0. Moreover, the condition u(0) = 0 for γ ≤ − 1
2 in the

definition of Dγ(R3)3 leads to

|x|γ+ 1
2u(x) = O(|x|β) , where β =

{
m+ γ + 3

2 , if γ ≤ − 1
2 ,

γ + 1
2 , if γ > − 1

2 .
(10)

Since β > 0, this ensures the finiteness of the left-hand side of (3):
∫
R3 |u|2|x|2γ−2dx <

∞. We now introduce the vector field v : R3 → R3 as the left-hand side of (10):

v(x) = |x|γ+ 1
2u(x),

which is called the Brezis-Vázquez-Maz’ya transformation [2],[14]. Then the right-
hand side of (3) is written in terms of v as∫

R3

|∇u|2|x|2γdx

=

∫∫
R+×S2

∣∣∇(ρ−(γ+ 1
2 )v
)∣∣2ρ2γρ2dρdσ

=

∫∫
R+×S2

∣∣∣ρ−(γ+ 1
2 )
(
∇v − (γ + 1

2 )
∇ρ
ρ v
)∣∣∣2ρ2γ+2dρdσ

=

∫∫
R+×S2

(
|∇v|2 + (γ + 1

2 )
2 |v|2

ρ2

)
ρdρdσ − (γ + 1

2 )

∫∫
R+×S2

∂ρ|v|2dρ

=

∫
R3

|∇v|2

|x|
dx+ (γ + 1

2 )
2

∫
R3

|v|2

|x|3
dx ,

where the last equality follows from |v(0)| = 0 and the support compactness of v.
Dividing the both sides by

∫
R3 |u|2|x|2γ−2dx =

∫
R3 |v|2|x|−3dx, we have

∫
R3 |∇u|2|x|2γdx∫
R3 |u|2|x|2γ−2dx

= (γ + 1
2 )

2 +

∫
R3 |∇v|2 dx

|x|∫
R3 |v|2 dx

|x|3
. (11)

Therefore, the minimization problem of the left-hand side, the Hardy-Leray quotient
for u with weight γ, is reduced to that for v with weight −1/2 .

3.1. The case uφ ≡ 0. In this case, u−uφ ̸≡ 0 by the assumption u ̸≡ 0. Firstly,
we evaluate the infimum value of the Hardy-Leray quotient for v ̸≡ 0 under the
assumption of swirl free. To do so, let h and f denote the components of the 1-D
Fourier transform of v(x) = v(ρσ) = v(etσ) with respect to the radial variable
t = log ρ :

v̂(λ,σ) =
1√
2π

∫
R
e−iλtv(etσ)dt = σh(λ,σ) + eθf(λ,σ)

for (λ,σ) ∈ R× S2. Then the radial and spherical components of ρ̂∇v are given by

ρ̂∂ρv(λ,σ) = ∂̂tv(λ,σ) = iλ v̂(λ,σ) , ∇̂σv = ∇σv̂ .
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By use of these relations and Lemma 2.1, the Hardy-Leray quotient of v with weight
−1/2 in (11) is calculated as follows :

∫
R3 |∇v|2 dx

|x|∫
R3 |v|2 dx

|x|3
=

∫∞
0

(
ρ2
∫
S2 |∇v|2dσ

)
dρ
ρ∫∞

0

( ∫
S2 |v|2dσ

)
dρ
ρ

=

∫∫
R+×S2

(
(ρ∂ρvρ)

2 + (ρ∂ρvθ)
2 + 2v2ρ + (∂θvρ)

2

+(Dθvθ)
2 − 4vθ∂θvρ + (�∂φvρ)2 + (�∂φvθ)2

)
dρ

ρ
dσ∫∫

R+×S2
(v2ρ + v2θ)

dρ

ρ
dσ

=

∫∫
R×S2

(
λ2|h|2 + λ2|f |2 + 2|h|2 + |∂θh|2

+|Dθf |2 − 4Re(f∂θh) + |�∂φh|2 + |�∂φf |2

)
dλdσ∫∫

R×S2

(
|h|2 + |f |2

)
dλdσ

.

(12)

Here the last equality follows from the isometric relation
∫
R(v

2
ρ + v2θ)

dρ
ρ =

∫
R(v̂ρ

2 +

v̂θ
2)dλ.
On the other hand, we now represent the solenoidal condition divu = 0 in terms

of v :

0 = ρdivu = ρdiv (ρ−γ− 1
2v) = (−γ − 1

2 )ρ
−γ− 1

2∇ρ · v + ρ−γ− 1
2 ρ div v

= ρ−γ− 1
2

(
ρdiv v − (γ + 1

2 )vρ
)
,

which is equivalent to

ρdiv v = (ρ∂ρ + 2)vρ +Dθvθ = (γ + 1
2 )vρ

by (7) and the assumption vφ = 0. That is,

(
∂t − γ + 3

2

)
vρ = −Dθvθ (13)

since ρ∂ρ = ∂t. Integrating both sides of (13) with the complex measure e−iλtdt
over R , we find the equivalent solenoidal condition written in terms of v̂ = σh+eθf
as

(
iλ− γ + 3

2

)
h = −Dθf , that is,

h =
Dθf

γ − 3
2 − iλ

for all λ ̸= 0 .
(14)
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Now let us substitute (14) into (12). Then integration by parts in each of the
numerator and the denominator in (12) yields∫

R3 |∇v|2 dx
|x|∫

R3

|v|2
|x|3 dx

=

∫∫
R×S2

 (2+λ2)|Dθf |2+|∂θDθf |2
(γ− 3

2 )
2+λ2 − 4Re f ∂θDθf

γ− 3
2−iλ

+ |Dθf |2

+λ2|f |2 + |�∂φh|2 + |�∂φf |2

 dλdσ

∫∫
R×S2

(
|Dθf |2

(γ− 3
2 )

2+λ2
+ |f |2

)
dλdσ

=

∫∫
R×S2

 f(λ,σ)

(
(∂θDθ)

2

(γ− 3
2 )

2+λ2 −
(

λ2+4γ−4
(γ− 3

2 )
2+λ2 + 1

)
∂θDθ + λ2

)
f(λ,σ)

+|�∂φh|2 + |�∂φf |2

 dλdσ

∫∫
R×S2 f(λ,σ)

(
−∂θDθ

(γ− 3
2 )

2+λ2 + 1
)
f(λ,σ)dλdσ

=

∫∫
R×S2

(
fQ(λ,−Tθ)f + |�∂φh|2 + |�∂φf |2

)
dλdσ∫∫

R×S2 fq(λ,−Tθ)fdλdσ
, (15)

where we have introduced the second-order differential operator

Tθ = ∂θDθ ,

and where q(λ,−Tθ) and Q(λ,−Tθ) are operators defined by the polynomials in α,
q(λ, α) =

α

(γ − 3
2 )

2 + λ2
+ 1 ,

Q(λ, α) =
α2

(γ − 3
2 )

2 + λ2
+

(
λ2 + 4γ − 4

(γ − 3
2 )

2 + λ2
+ 1

)
α+ λ2,

by putting α = −Tθ. To evaluate (15), we expand f by using eigenfunctions
{ψν(θ)}ν∈N ⊂ C∞

0 ([0, π]) of −Tθ as

f(λ, θ, φ) =

∞∑
ν=1

fν(λ, φ)ψν(θ), where

{
−Tθψν = ανψν ,

∫
S2 |ψν |2dσ = 1 ,

αν = ν(ν + 1).

(See Lemma 4.1 in Appendix.) Discarding the non-negative term |�∂φh|2 + |�∂φf |2
in the right-hand side of (15), we then see∫

R3 |∇v|2 dx
|x|∫

R3 |v|2 dx
|x|3

≥
∫∫

R×S2 fQ(λ,−Tθ)fdλdσ∫∫
R×S2 fq(λ,−Tθ)fdλdσ

=

∑∞
ν=1

∫
R\{0}Q(λ, αν)|fν(λ, φ)|2dλdσ∑∞

ν=1

∫
R\{0} q(λ, αν)|fν(λ, φ)|2dλdσ

≥ inf
λ̸=0

inf
ν∈N

Q(λ, αν)

q(λ, αν)
= inf

x≥0
inf
ν∈N

Fγ(x, αν), (16)
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where Fγ is defined by

Fγ(x, αν) =
Q(

√
x, αν)

q(
√
x, αν)

=

α2
ν

(γ − 3
2 )

2 + x
+

(
x+ 4γ − 4

(γ − 3
2 )

2 + x
+ 1

)
αν + x

αν

(γ − 3
2 )

2 + x
+ 1

= x+

(
1− 4(1− γ)

x+ αν + (γ − 3
2 )

2

)
αν

for x ≥ 0. Here we note that Fγ(x, αν) is just the same as the equation (2.36)n=3

in [4]. As in [4] again, by observing that

Fγ(x, αν) ≥ F (0, αν) =
(
1− 4(1−γ)

αν+(γ− 3
2 )

2

)
αν ,

∂F (0,αν)
∂αν

= 1− 4(1−γ)(γ− 3
2 )

2

(αν+(γ− 3
2 )

2)
2 > 0

 for γ ≤ 1 ,

∂Fγ(x, αν)

∂αν
= 1 +

4(γ − 1)
(
x+ (γ − 3

2 )
2
)(

x+ αν + (γ − 3
2 )

2
)2 > 0 for γ > 1 ,

we find

inf
x≥0

inf
ν∈N

Fγ(x, αν) = min
x≥0

Fγ(x, α1) (17)

=


Fγ(0, α1) = 2− 8(1−γ)

2+(γ− 3
2 )

2 , for γ ≤ 1 ,

2 + min
x≥0

(
x+ 8(γ−1)

x+2+(γ− 3
2 )

2

)
, for γ > 1 .

(18)

Combining (17) to (16), we arrive at∫
R3 |∇v|2 dx

|x|∫
R3 |v|2 dx

|x|3
≥ min

x≥0
Fγ(x, α1).

To show that

inf
v ̸≡0,

divu=uφ=0

∫
R3 |∇v|2 dx

|x|∫
R3 |v|2 dx

|x|3
= min

x≥0
Fγ(x, α1) , (19)

let λγ ∈ R denote the value of λ that attains the minimum of Fγ(λ
2, α1). Define

the sequence {vn : R3 → R3}n∈N of smooth vector fields by

vn(x) = vn(e
tσ) =

(
− σDθ + eθ(∂t − γ + 3

2 )
)(
ξ( t

n ) cos(λγt) sin θ
)

for every n ∈ N , where ξ : R → R is an even smooth function ̸≡ 0 with compact
support on R. It is clear that vn satisfies (13), and so un = ρ−γ− 1

2vn is certainly
solenoidal with compact support on R3\{0}. Also note that ψ1(θ) = sin θ is the
first eigenfunction of −Tθ = −∂θDθ associated with α1 = 2, see Lemma 4.1 in
Appendix. Now let us denote the radial and angular components of v̂n respectively



10 NAOKI HAMAMOTO AND FUTOSHI TAKAHASHI

as hn and fn. Then the 1-D Fourier integration of vn gives

v̂n(λ,σ) =
1√
2π

∫
R
e−iλtvn(e

tσ)dt = σhn(λ,σ) + eθfn(λ,σ)

=
1√
2π

(
− 2σ cos θ + eθ

(
iλ− γ + 3

2

)
sin θ

)∫
R
e−iλtξ( t

n ) cos(λγt)dt

=
n√
2π

(
− 2σ cos θ + eθ

(
iλ− γ + 3

2

)
sin θ

)∫
R

e−in(λ+λγ)t + e−in(λ−λγ)t

2
ξ(t)dt.

Extracting the coefficients of σ and eθ, we have �∂φhn = �∂φfn = 0 and

fn(λ,σ) =
n

2

(
iλ− γ + 3

2

)
(sin θ)

(
ξ̂
(
n(λ+ λγ)

)
+ ξ̂
(
n(λ− λγ)

))
,

where ξ̂(λ) := 1√
2π

∫
R e

−iλtξ(t)dt for all λ ∈ R . Also the first eigenvalue equation

−Tθfn = α1fn follows directly from −∂θDθ sin θ = 2 sin θ. Then inserting v = vn

and (h, f) = (hn, fn) into (15), we find∫
R3 |∇vn|2 dx

|x|∫
R3 |vn|2 dx

|x|3
=

∫∫
R×S2 fnQ(λ,−Tθ)fndλdσ∫∫
R×S2 fnq(λ,−Tθ)fndλdσ

=

∫
RQ(λ, α1)

(
λ2 + (γ − 3

2 )
2
)∣∣ξ̂(n(λ+ λγ)

)
+ ξ̂
(
n(λ− λγ)

)∣∣2dλ∫
R q(λ, α1)

(
λ2 + (γ − 3

2 )
2
)∣∣ξ̂(n(λ+ λγ)

)
+ ξ̂
(
n(λ− λγ)

)∣∣2dλ
−→

(n→∞)

Q(λγ , α1)

q(λγ , α1)
= Fγ(λ

2
γ , α1) = min

λ∈R
Fγ(λ

2, α1) .

Therefore, {vn}n∈N is certainly a minimizing sequence for the v-part of the Hardy-
Leray quotient, which completes the proof of equation (19).

Returning to (18), we compute the minimum value of Fγ(x, α1) = 2 + x +
8(γ−1)

x+2+(γ− 3
2 )

2 for γ > 1 : by differentiation of this equation, we have

∂

∂x
Fγ(x, α1) =

Gγ(x)(
x+ 2 +

(
γ − 3

2

)2)2 ,

whereGγ(x) =
(
x+ 2 +

(
γ − 3

2

)2)2−8(γ−1) . It is easy to check that the quadratic

function Gγ has the two roots x±γ = −2 −
(
γ − 3

2

)2 ± 2
√
2
√
γ − 1 . By numerical

calculation, they satisfyx
−
γ < 0 < x+γ < 0, if 3

2 < γ < γ0 = 3
2 + (4 + 4

√
31

33/2
)

1
3 − 4

3
(
4+ 4

√
31

33/2

) 1
3
,

x−γ < x+γ ≤ 0, otherwise.

Thus it turns out that

min
x≥0

Fγ(x, α1) =

Fγ(x
+
γ , α1) = 4

√
2
√
γ − 1−

(
γ − 3

2

)2
, for 3

2 ≤ γ ≤ γ0 ,

Fγ(0, α1) = 2 + 8(γ−1)

2+(γ− 3
2 )

2 , otherwise.
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Now the computation of (18) is done. Finally, combining this to (19)=(18) and
returning to (11), we arrive at:

inf
u̸≡0,

divu=uφ=0

∫
R3 |∇u|2|x|2γdx∫
R3 |u|2|x|2γ−2dx

=


(γ + 1

2 )
2 + Fγ(x

+
γ , α1) =

(
2
√
γ − 1 +

√
2
)2
, for 3

2 ≤ γ ≤ γ0 ,

(γ + 1
2 )

2 + Fγ(0, α1) =
(
γ + 1

2

)2 4+(γ− 3
2 )

2

2+(γ− 3
2 )

2 , otherwise,

= Cγ,0 ,

which completes the proof of Theorem 1.2 for uφ ≡ 0.

3.2. The case u − uφ ≡ 0. In this case, u = uφ ̸≡ 0 is an axisymmetric swirl
field by assumption. This also implies that v − vφ ≡ 0, and that v = vφ ̸≡ 0 is
also axisymmetric swirl. By Lemma 2.1, the Hardy-Leray quotient for v = vφ with
weight −1/2 is estimated from below as∫

R3 |∇v|2 dx
|x|∫

R3 |v|2 dx
|x|3

=

∫
R3 |∇vφ|2 dx

|x|∫
R3 |vφ|2 dx

|x|3
=

∫∫
R+×S2

(
(ρ∂ρvφ)

2 + (Dθvφ)
2
)

dρ
ρ dσ∫∫

R+×S2 v
2
φ
dρ
ρ dσ

≥

∫∫
R+×S2(Dθvφ)

2 dρ
ρ dσ∫∫

R+×S2 v
2
φ
dρ
ρ dσ

=

∫∫
R+×S2 vφ(−Tθ)vφ

dρ
ρ dσ∫∫

R+×S2 v
2
φ
dρ
ρ dσ

≥ α1 .

To see the infimum of the left-hand side among such v is equal to the right-hand
side, we choose a sequence of axisymmetric swirl fields {vn}n∈N as

vn(e
tσ) = eφξ(t/n) sin θ ,

where ξ : R → R is a smooth function ̸≡ 0 with compact support. Then it is easy
to check that ∫

R3 |∇vn|2 dx
|x|∫

R3 |vn|2 dx
|x|3

−→ α1 as n→ ∞ .

Therefore we have

inf
v=vφ ̸≡0,
∂φvφ=0

∫
R3 |∇v|2 dx

|x|∫
R3 |v|2 dx

|x|3
= α1 = 2 .

Returning to (11), we have the inequality (2) for any axisymmetric uφ with the
optimal constant (γ + 1

2 )
2 + 2.

3.3. The case u ∈ G. In this case, the swirl part uφ = g = geφ ∈ Dγ(R3)3 is
non-zero and axisymmetric. We may assume u − uφ ̸≡ 0 by the results in the
former subsections. By Lemma 2.1, we can split the Hardy-Leray quotient for u
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into the swirl and the non-swirl parts:∫
R3 |∇u|2|x|2γdx∫
R3 |u|2|x|2γ−2dx

=

∫
R3 |∇(u− uφ)|2|x|2γdx+

∫
R3 |∇uφ|2|x|2γdx∫

R3 |u− uφ|2|x|2γ−2dx+
∫
R3 |uφ|2|x|2γ−2dx

=

∫
R3 |∇(u− uφ)|2|x|2γdx+

∫
R3 |∇g|2|x|2γdx∫

R3 |u− uφ|2|x|2γ−2dx+
∫
R3 |g|2|x|2γ−2dx

≥ min

{∫
R3 |∇(u− uφ)|2|x|2γdx∫
R3 |u− uφ|2|x|2γ−2dx

,

∫
R3 |∇g|2|x|2γdx∫
R3 |g|2|x|2γ−2dx

}
≥ min

{
Cγ,0 ,

∫
R3 |∇g|2|x|2γdx∫
R3 |g|2|x|2γ−2dx

}
= Cγ,g , (20)

where the last inequality follows from the result in subsection 3.1, since u − uφ is
swirl-free and solenoidal by (9).

To see that the infimum of the left-hand side of (20) among G is equal to the
right-hand side, we choose a sequence {ũn}n∈N of solenoidal and swirl-free fields
such that∫

R3

|ũn|2|x|2γ−2dx = 1 and

∫
R3

|∇ũn|2|x|2γdx −→ Cγ,0 as n→ ∞.

On the other hand, since ∂φg ≡ 0, the vector field g = geφ is also solenoidal by
(7). Then it follows that the sequence {un = nũn + g}n∈N belongs to G and that∫

R3 |∇un|2|x|2γdx∫
R3 |un|2|x|2γ−2dx

→ Cγ,0 as n→ ∞. Consequently, we reach to the desired result.

4. Appendix. The second-order derivative operator Tθ = ∂θDθ = ∂θ(∂θ + cot θ)
is self-adjoint in L2(S2). Here we specify its spectrum:

Lemma 4.1. Let C∞
0 ([0, π]) =

{
ψ ∈ C∞([0, π]) ; ψ(0) = ψ(π) = 0

}
and let

T = d
dθ (

d
dθ + cot θ) be the second-order derivative operator in C∞

0 ([0, π]). Then the
set of eigenvalues of −T is given by

Spec(−T ) =
{
αν = ν(ν + 1) ; ν ∈ N

}
.

Correspondingly, the eigenfunction of −T belonging to αν for every ν ∈ N is given
by

ψν(θ) = Pν−1(− cos θ) sin θ

(up to multiplying constant) for some polynomial Pν−1 of degree ν − 1. More-
over, the sequence {ψν}ν∈N spans a complete orthogonal basis of the Hilbert space
L2([0, π], sin θdθ).

Proof. Let ψ ∈ C∞
0 ([0, π]) and put ψ(θ) = ϕ(θ) sin θ. Then we can see the function

ϕ : [0, π] → R is smooth in (0, π) and continuous on [0, π], that is,

ϕ ∈ C∞((0, π)) ∩ C([0, π]).

Also, abbreviating as ∂θ = d
dθ , we have

Tψ = ∂θ
(
∂θ + cot θ

)
(ϕ sin θ)

= (sin θ)
(
(∂θ + 3 cot θ)∂θ − 2

)
ϕ .

Then the eigenequation −Tψ = αψ for α ∈ R is reduced to

− (∂θ + 3 cot θ)∂θϕ = (α− 2)ϕ . (21)
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We now transform the variable θ into x = − cos θ ∈ [−1, 1], whose differential obeys
the chain rule ∂θ = (sin θ)∂x . Then the derivative operator in the left-hand side of
(21) is written as(

∂θ + 3 cot θ
)
∂θ =

(
∂θ + 3 cot θ

)
(sin θ)∂x

= (cos θ)∂x + (sin θ)∂θ∂x + 3(cos θ)∂x

= (1− x2)∂2x − 4x∂x .

Hence equation (21) is transformed into

(1− x2)∂2xϕ− 4x∂xϕ+ (α− 2)ϕ = 0 . (22)

The solutions of this eigenequation are known to be given by the 5-dimensional
Legendre Polynomials {Pν−1}ν∈N :

Pν−1(x) = (1− x2)−1
( d
dx

)ν−1

(1− x2)ν ,

with eigenvalue α = αν = ν(ν + 1) for each ν. (See, e.g. [5].) Consequently, the
ν-th eigenfunction of −T is given by ψν(θ) = Pν−1(− cos θ) sin θ.

By the Weierstrass approximation theorem, the sequence

{ψν(θ) = Pν−1(− cos θ) sin θ}ν∈N

spans a dense subspace of C∞
0 ([0, π]) with respect to the topology of uniform con-

vergence, since every ψ ∈ C∞
0 ([0, π]) is expressed as ψ(θ) = ϕ(θ) sin θ for some

ϕ ∈ C([0, π]). Additionally, it is well-known that C∞
0 ([0, π]) is a dense subspace of

L2([0, π], dθ). Therefore, we obtain

span{ψν}ν∈N ⊂
dense

L2([0, π], dθ).

This holds also with respect to the measure sin θdθ, which concludes the lemma.
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