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Abstract. Consider the Liouville-Gelfand type problems with nonlinear
Neumann boundary conditions

—Au+u=0 in €2,
g—z = Mf(u) on 012,

where Q C RY, N > 2, is a smooth bounded domain, f : [0, +o00) — (0, +00)
is a smooth, strictly positive, convex, increasing function with superlinear at
+o0o, and A > 0 is a parameter. In this paper, after introducing a suitable
notion of weak solutions, we prove several properties of extremal solutions
u* corresponding to A = \*, called an extremal parameter, such as regular-
ity, uniqueness, and the existence of weak eigenfunctions associated to the
linearized extremal problem.

Keywords: Extremal solutions, Weak solutions, Nonlinear Neumann bound-
ary conditions.

2010 Mathematics Subject Classifications: 35J20, 35J25. 35J60.

1 Introduction

Let @ € RY (N > 2) be a smooth bounded domain and let v denote the
unit outer normal to 0€2. Consider the Liouville-Gelfand type problems with
nonlinear Neumann boundary conditions

{—Au+u:0 in Q,

% = Af(u) on 02, (L)
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where A > 0 is a parameter. Throughout the paper, the nonlinearity f :
0, +00) — (0, +00) is assumed to satisfy

f € C'([0,+00)), f(0) > 0, convex, increasing, (1.2)
o f)
AT = 43

Then maximum principle implies that solutions are positive on .
Problem (1.1) may be considered as a variant of the well-studied problem

1.4
u=>0 on 012, (1.4)

{—Au:)\f(u) in Q,
where A > 0 and f is assumed to satisfy (1.2), (1.3). For the problem (1.4),
the notion of suitable weak solutions, the uniqueness and the regularity of
extremal solutions, and the existence of the weak eigenfunction correspond-
ing to zero eigenvalue of the linearized problem around the weak extremal
solution, have been studied so far, see [4], [6], [13], [17], [8], and the refer-
ences therein. Main purpose of this paper is to establish several facts for the
problem (1.1), known to be true for (1.4). For other type of variants of the
problem (1.4), see [3], [11].

Now, it is classic that the following proposition holds for the problem
(1.1). The proof will be obtained by a slight modification of that of the
similar proposition for the problem (1.4), see [9], [16], [10], [12], so we omit
it.

Proposition 1 Define
M =sup{\ > 0: (1.1)\ admits a classical solution € C*(Q)}. (1.5)

Then we have 0 < \* < oo and

(i) For every A € (0,\), (1.1)x has a positive, classical, minimal solution
uy in the sense that uy(z) < u(z)(Vx € Q) for any other solution u to
(1.1)x. This is the unique strictly stable solution of (1.1)y, in the sense
that

/(\Vgolz + @) dr > X [ f(uy)p?ds, (1.6)
0 09
holds for every ¢ € C*(Q), p # 0.
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(i) The map \ — ux(x) is continuous and increasing for any v € Q.

Motivated by the work by P. Quittner and W. Reichel [18], see also J.
Dévila [10], we define the notion of weak solutions of (1.1) as follows.

Definition 2 (/18]) Let L'(Q2x0Q) denote the space of measurable functions
w on §2 such that its pointwise restrictions u|q and ulsq satisfy (u|q,ulsq) €

LY Q) x LY09Q). LY(Q x 09) is a Banach space with the norm

[ullr@xan) = llulallLi@) + [[uloall L @0)-

As is remarked in [18], ulg and u|sq are not generally related with each
other for u € L'(Q x 9Q). The space L'(Q2 x 99Q) is isomorphic to L'(2) x
LY(9€2). We use the notation u = (ug, ug) € LY(Q) x L*(9R) for u € L' (N2 x
0Q), where u; = ulq, us = ulsq.

Definition 3 Let h € L'(9Q). We call a function v = (uy,uz) € L*(Q) X
LY(09) is a weak solution to

—A = n ()
. u+u=0 wn ), (1.7)
2. =nh on 0f,
if it holds
dp
(—Ap+ p)urde = [ (hp — =—uy)ds, (1.8)
Q Bly) ov

for any o € C*(Q). Also a function u = (uy,us) € L*(Q) x LY(0Q) is called
a weak solution to (1.1)y if f(uz) € L'(09) and

P
/Q (—Ag + @)urds = /8 JOVCSES 2 ua)ds, (1.9)
holds for any ¢ € C?(Q).

Remark 4 In some parts of the paper, admitting some ambiguity, we will
identify uy or ug with u for u € L'(Q x 09).

Remark 5 If u € HY(Q) is an energy solution to (1.1), that is, f(vy(u)) €
LY(09) and

[ u- e uppin = [ Arypds,

o0
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holds for any ¢ € CY(Q), then u is a weak solution in the sense of Definition
3 for uy = u and uy = y(u), here y(u) € HY?(0) is the usual trace of H*
function u on Q. In the following, we denote again y(u) = ulgq, or simply
u, for a Sobolev function u.

By Proposition 1, we may define a function

u*(z) = /I\ITI/{I up(z), €. (1.10)

Then u* = ((u*)1, (u*)2) = (u*|q, u*|sq) becomes a weak solution of (1.1)«
in the sense of Definition 3. Indeed, let A\; > 0 denote the first eigenvalue of
the Steklov type eigenvalue problem

—Ap+¢=0 in €, (111)
g—f =\ on 0f2, '

and ¢ the first eigenfunction. It is known that A; is simple, isolated and ¢,
can be chosen positive (see [19]). Multiplying ¢; to the equation of wuy, we
have

/\1/ urprdsy = A [ fux)pids,.
o0 o0

Since f satisfies the assumption (1.3), there exists a C' > 0 such that f(t) >

% — C for every t > 0. Thus when A € (A*/2, \*), it holds

/\1/ uyprdsy, = A | flux)pids,
o0 o0

> 2/\1/ urprds, — C (C' = O / p1ds,).
o0 2 Jago

independent of A € (A*/2,\*). Thus by Fatou’s lemma and the fact p1]gq >
co > 0 for some ¢g > 0, we obtain that u* € L'(09) and f(u*) € L'(99). To
see that u* € L1(Q), let ¢ € C%*(Q) be the solution of

{—Ag+g:1 inQ,

g—f/:() on Of).

Thus we have [, uxp1ds, < C and also [, f(ur)eids, < C, where C' is

Multiplying ¢ to the equation of uy, we have

/uAdx =\ fluy)Cds, < C.
Q

onN
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Fatou’s lemma again confirms that u* € L*(Q2). Since u, satisfies

/Q(—Ago + p)uydxr = / (Af(up)p — %u,\)ds:C

o0

for any ¢ € C%(Q), letting A 1 A\* and using Lebesgue’s dominated conver-
gence theorem on 2 and 0€2, we obtain that u* is a weak solution of (1.1)y-.
In the following, we call u* the extremal solution of (1.1).

Compared with the well-studied problem (1.4), the problem (1.1) has
several technical difficulties. For example, on 2 = B, a ball, explicit singular
extremal solutions are known for some specific nonlinearities such as f(u) =
e* or f(u) = (14 u)? for (1.4). However, we lose such explicit examples for
the problem (1.1). Also, for the problem (1.4), Hardy inequality

2
(%) Wdl« / VuPde, Vue HA(Q)

plays an important role when one studies the stability properties for the
singular extremal solutions, see [6]. We can not use the arguments in [6]
directly for (1.1).

In [4], [14], [15], the corresponding parabolic problems for (1.4) have been
treated and the global behavior of solutions, complete blow up phenomena,
and the instability of singular extremal solutions are studied. Corresponding
studies for the problem (1.1) will be future works.

The organization of the paper is as follows. In §2, we collect lemmas which
will be used in the later sections. Several facts analogous to those established
by Brezis, Cazenave, Martel and Ramiandrisoa [4] for (1.4) will be proved.
In §3, we treat the regularity property of the extremal solution to (1.1), as
in Nedev [17], see also Davila [10]. In §4, similarly to the result by Martel
[13], the uniqueness of the extremal solution among weak solutions will be
proved. In §5, we study the existence of weak eigenfunctions corresponding
to zero eigenvalue of the linearized eigenvalue problem around the extremal
solution. Corresponding result for the problem (1.4) has been studied by
Céabre and Martel [8].

2 Preliminaries

In this section, we prepare several useful lemmas in the sequel of the paper.



Lemma 6 Given h € L'(0N), there exists a unique weak solution u =
(u1,uz) € LY Q) x LY(09Q) to (1.7) in the sense of (1.8). Moreover, it holds

llurllz1) + luzllre) < CllR||Lioo)- (2.1)

for some C' > 0 independent of u and h. Also if h > 0 on 0€), then uy, uy > 0.

Proof. We prove the uniqueness first. Let u = (u1,us), @ = (41, U2) be weak
solutions. Then w = (wq,wsy), w; = uy — Uy, We = Uy — Usg, satisfies

0
/ (A + @)wide = / (— 9V ds,
Q a0 ov

for any o € C%(Q). Given ¢ € C®(99Q), let ¢ € C*(Q) be the solution to

{—A@+@:O in Q,

%f = on 0f2.
14

(2.2)

Then we have

/ wolCds, =0
o0

for such ¢, hence wy = 0 a.e. on 9. Similarly, for given n € Cg°(€2), let
© € C?(Q) be the solution to

—Ap+p=n in ,
2.3
{@:0 on 0f), (23)

ov
/ windz =0
Q

and conclude w; = 0 a.e. on 2. B
To prove the a priori estimate (2.1), let p,,¢_ € C%*(Q) be the solution

then we have

to
{—A@+¢=i1 in Q,

g—f:() on Of)

respectively. By the definition of the weak solution, we have

Jwde = [ (~ap.+ pouds = [ hprds, <l 1hlon)
Q Q a0 o0
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and similarly

/(—ul)dx = /(—A(p + o )urdr = / ho_ds, < max |p_|||h|| L1a0)-
Q Q o0 o8

By the maximum principle, max,epn |¢+(x)| < 1, thus we have |luq||p1) <
|2l L1 (o). Similarly, we have ||ug||z190) < C||h||L1@a0) if we take test func-
tions 1., _ as the solutions to

—AYp+9Y=0 in Q,
g—’lf:j:l on 0f

respectively.
To prove the existence, put

m if h(x) > m,
h(@) = { h(z) i [h(x)] < m, (2.4)
—-m if h(z) < —m.
for m € N. Since h,, € L>°(09Q), there exists u,, € H'(Q) such that

— Ay, + Uy =0 in €,
% = h,, on Of).

v

(2.5)

By the estimate (2.1), we have
(|t =t || 1) | tm |00 —tn| o0l 1 (90) < CllAm—"nllL100) = o(1), (m,n — 00).

Thus {tm fmen and {u,|aq }men are Cauchy sequences in L'(Q) and L'(99)
respectively. Then there exist u; € L'(Q2),uy € L'(09) such that

Uy —>u; 0 LNQ), Umlog — up  in LY(09).

Since u,, satisfies

/(—Aso + Q) updr = / (hso - 8_¢um|80) ds,
Q a0 v

for any ¢ € C%(Q), we easily see that (uy,us) € L'(Q) x L1(09Q) is a weak
solution of (1.7) by letting m — oc.

Lastly, if h > 0 on 02, we have h,, > 0 and the maximum principle
implies that u,, > 0 on Q. Thus u; > 0 on © and uy > 0 on 0. ]



Lemma 7 Let h € L'(0Q) and let u = (u1,uz) € LY(Q)x L (9Q) be the weak
solution to (1.7) in the sense of (1.8). Let ® € C*(R) be concave, with '
bounded and ®(0) = 0. Then v = (vy,v2) = (P(uy), P(uz)) € LY(Q) x L (09Q)

18 a weak supersolution to

—Av4+v=0 n €2,
% = @'(uy)h on 02,

in the sense that

/Q(_AQ/J + )vide > /{m {(I)/<U2)hw — Z—Z)UQ} ds,

for any ¢ € C*(Q), ¥ >0 on Q.

Proof. For h € L}(00Q) and m € N, define h,, as before in (2.4) and let
u, € H'(Q) be an energy solution of (2.5). By Lemma 6, we know w,, — u;
in LY(Q), unlag — ug in L'(0Q), where u = (u1,us) is a weak solution of
(1.7) in the sense of (1.8). From

1D (u1) = @ (um) 1) < NN oe@llur = tml| @),

1@ (u2) — @(umlon)llL100) < [P[lee @)Uz — wnloell L1 @0),

we obtain v = (v, v2) = (®(uy), P(ug)) € L'(Q) x LY(09). Since u,, satisfies

/ (Vo - Vu, + ouy,) de = / hmpds,
Q

o0N

for any ¢ € C?(Q), by density argument, this holds true for any ¢ € H Q).
We take p = ®'(u,,)? with ¢ € C%(Q), ¢ > 0 on €, then we find that

/Q [V (B () ) - Vit + & () b1t} i — / o ® (112 05

[2}9]

Noting ®” < 0 and ¥ > 0, we have

/Q {V (®(up)) - VU + @' (up)bu,y, } doe > /m P ® (| 0010 d S .



Now, since ® is concave with ®(0) = 0, we have % > ®'(uyy,). Therefore,

/Q{V (D(upm)) - Vb + O(up)} de > /ag P ® (U |aq) 0 d s,

holds for any v € C?(Q), ¢ > 0. Integration by parts leads to

/Q(—Awﬂ/})@(um)dxz/

) o
., {hm(I) (tUmlon) — @(um|39)%} ds,.

Passing to the limit with the estimates

=00+ 0)(@(w) - Blun)da
Q

< =AY + Yl Lo (@) [| V| oo @) 1um — ual[r2@) = o(1),

|| (@) = Bl G,

/ P ® (U |oq) 0 ds, — h®' (ug)vpds,,
09 00

< IV | oo (90 |9 [| oo () [t e — el 1 00) = o(1),

we confirm that v = ®(u) = (P(uq), P(ug)) is the desired weak supersolution.
Note that h,, — h in L'(99Q) strongly. Thus the last estimate is assured by
the Lebesgue dominated convergence theorem, since a.e. convergence along
a subsequence and the estimate |1, ®' (un|o0)Y] < || Q|| o) [|9 || Lo (002)| R | €
LY(09) hold true. 0

Lemma 8 Assume (1.1)\ has a weak supersolution w = (wy,wy) € L' () x
LY(09), in the sense that f(ws) € L*(9Q) and

/Q(—Ago + p)widr > /ag {Af(@g)go - g—fﬁg} ds,

for any o € C*Q), ¢ > 0 on Q. Then (1.1)) has a weak solution u =
(ul,u2) c Ll(Q) X Ll((?Q)

Proof. Proof consists of a standard monotone iteration argument in our
context. Define w® = (w!” w) = w = (wy,ws) € L'(Q) x L1(69). By



the definition, we have f(w$’) € L'(99). Let w® = (w!? w) be the
unique weak solution of
{—Aw?) + w?) =0 in €2,

&)
ag—i = )\f(wél)) on OS2

obtained by Lemma 6. Thus,

0
%2 02— i,

/ (~Ap + ) — w®)dr >
Q 0 ov

holds for any ¢ € C_Q(ﬁ), ¢ > 0on Q. As before, for given n € C2(Q2) n >0
on (2, take p € C?(2) as the solution of (2.3). Then we have

[l = iz =0,
)
and since n € C§°(2), n > 0 can be chosen arbitrary, we conclude that

wgl) > tﬁf) a.e. on . Similarly, for any ¢ € C*(99), ¢ > 0 on 09, let
¢ € C?(Q) be the solution to (2.2). Then we have

0> [ ¢(wd —wM)ds,,
o0

which implies that wéz) < wél) a.e. on 0f2. By induction, we obtain

w1:w§1)2w§ 2~-Zw§")2~-, a.e. on €,
wgzwgl)2w§2)2~~2w§")2~-, a.e. on OS).

By Lemma 6, we know w§") > 0 and wén) > (. By the monotone convergence

theorem, w™ and w{™ converges to uy, us respectively in L'(Q) and L'(99).
Since f is increasing, we have also f(w$™) < f(w") € L*(8Q) for any n € N,
which leads to f(ug) € L'(99). Finally, it is easy to check that u = (uq, uz)
is a desired weak solution to (1.1),. [

Main result in this section is the following nonexistence result for (1.1),
above the extremal parameter \*. See [4] Corollary 2, or [10] Theorem 3.8.

Theorem 9 Assume (1.2). If X > X*, then there is no solution to (1.1),,
even in the weak sense in Definition 3.

10



Actually, we prove the following proposition. Theorem 9 is an easy con-
sequence of this proposition and the definition of \* (1.5).

Proposition 10 Let A\ > 0 and assume that there exists a weak solution
u = (u,up) € LY(Q) x LY0Q) to (1.1)x. Then for any a € (0,1), the
problem

—Au+u=0 in §Q,

% =a\f(u) on 0L2,

has a classical solution.

Proof. Let u = (uy,us) € LY (Q) x L'(0), u1,us > 0 be a weak solution to
(1.1)5. Given a € (0,1), define

and
d(t) = H ' (aH(t)) (2.7)

for t > 0. Then by an easy observation, we see
(i) 0=®(0) < P(t) <t forallt >0,

(ii) @ is increasing, concave, ®'(t) < 1 for all t > 0,

(i) if limy, oo H(¢) is finite, then lim; ;o ®(¢) is also finite,

see [4]:Lemma 4. Also simple calculation shows

AP() f(t) = arf(D(t)) (2.8)

holds. Thus, by Lemma 7 and the relation (2.8), we see that v = (v1,v,) =
(@(u1), P(ug)) € L (N2) x L1(0N) satisfies

oY }
—A vidr > aAf(ve)p — —vy ¢ ds,
/Q( ¢+ ) >/m{ floa)p = =

for any ¢ € C?(Q), ¢ > 0 on Q. That is, v = (v1,v,) is a weak supersolution
to (1-1)04)\-

11



Suppose first that

o [f(s)

In this case, by (iii) above, we have ®(c0) < oo, which implies (vy,vq) =
(®(u1), (ug)) be a bounded weak supersolution to (1.1),,. By Lemma 8, we
have a weak solution to (1.1),,, which is bounded, hence classical solution.
This proves Proposition in this case.
Next, consider the case
> ds
- = TO00.

o f(s)

In this case, we set v = (vl o)) = (®(wy), B(us)) € LY(Q) x L1(9Q).
Then by (i), we have 0 < Ufl) < w; for i = 1,2, and since H is concave,

H(u) — HwM) < H' (07) (u; — oY)

holds. By the definitions (2.6) and (2.7), we have

1
H) = aH(uy), and H'(W) = :
A ()
Thus, we obtain
_ M
)\(1 — )H(UQ) ~ L (32 )
f(vy7)
hence by the assumption H(co) = +o0,
u
A1 — ) f(iV) < H(Z2) < O(1 4 uy) € LH09),

which leads to f(v{"”) € L(89). By Lemma 7, v® = (" vV} € L1(Q) x
LY (99) is a weak supersolution of (1.1),y. Therefore by Lemma 8, we obtain
a weak solution u® = (u{”, u{") € L1(Q) x L(89) with the property u'" <
vz-(l) for i = 1,2. Also since f is positive and increasing, 0 < f(ul") <
f (vél)) € L'(99Q). Hence by the elliptic L' estimate of Brezis and Strauss
5], we have u{") € Wh9(Q) for any 1 < ¢ < 2= and u{” € LP(8Q) for

N—1
any 1 < p < &=L (for any p < oo if N = 2). Now, set v? = (vg),vf)) =

(@(ugl)), @(uél))) and repeat the procedure. We confirm that v is a weak

12



supersolution to (1.1),2, and there exists a weak solution u? = (u?), ug ))

to (1.1)42) with the property that 0 < f( ) < f(v2 ) a.e. on 0f2,

A1 —a?)f(d) <

< C(1+ulV) e LP(09),

in particular, f(ul”) € LP(09) for any 1 < p < N L (for any p < oo if

N = 2). Then elliptic L? estimates ([1, 2]) that «\¥ € W'(Q) for any

g < 725 and the trace Sobolev embedding implies ug € LP(09) for any

p < J]\Vf—:g’ (for any p < oo if N = 3). By iteration, we find a weak solution

u®) = (ugk), uék)) to the problem

—Auk K =0 in €2,
o) — ’“/\f( M) on 99,

with the property that

N -1

€ LP(09Q), VP<—N—(k‘+1)‘

M ewhi(Q), Vq<

N —Fk’

Thus after iterating N times, we obtain that ugk) € L>®(Q) and u;k) €
L>®(09). That is, u® is a bounded, hence classical solution to (1.1).x,.
Since a € (0, 1) is arbitrary, we complete the proof. O

3 Regularity of extremal solutions

In this section, we prove the extremal solution u* to our problem (1.1) is
bounded for N = 2. We follow the argument by Nedev [17], in which the
extremal solution of (1.4) is bounded (hence regular by usual elliptic esti-
mates) when N < 3. Recently, this result for the extremal solution of (1.4) is
improved to N = 4 by Villegas [21], which uses a key estimate by X. Cabre
[7].

Theorem 11 Let u* = ((u*)1, (u*)2) be the extremal solution to (1.1)y«. As-
sume f € C*([0,+00)) satisfies (1.2), (1.3). Then we have:

(i) If N =2, then u* = ((u*)1, (u*)2) € L>®(Q) x L>(0).

13



(it) If N > 3, then (u*)y € LP(0RQ) for 1 < p < 8= (for any 1 < p < oo

when N =3). If N > 2, then f((u*)2) € LP(0Q) for any 1 <p < X=2
(for any 1 < p < oo when N = 2).

(i) (u*)y € WH(Q) for any 1 <~ < 25 when N >3 (for any 1 <y < o0
when N = 2). In particular, (u*); € H'(Q) if N < 3.

Proof. We obtain several estimates of minimal solutions wuy to (1.1), which
are independent of A € (0, \*). Following Nedev [17], see also [10], we put

ngfw@ﬂmtzo

Since f is C2, g is also a C? function. Multiplying g(uy) € C?*(Q) to the
equation of (1.1), satisfied by uy and integrating, we obtain

[ 1vunfde = [ flusgds, - [ ng)ds. (@1
Q 20 Q
Recall the stability of wuy:
/(|Vg0|2 +oBdr >N | f(un)p’ds,
0 20

holds for every ¢ € CY(Q). Applying this inequality to p = f(uy), f(t) =
f(t) — £(0), we obtain

o F(un) flur)ds, < /Q <f’(ux)2|VuA]2+ f(uw) dr.  (3.2)

By (3.1) and (3.2), we have

3 [ {7 f)? = Fuat) s <270) [ gtu)is,

Q

+/Q (fN(UA)2 - uAQ(“A)) dz. (3.3)

Let
hwzﬁf@ww—ﬂmw

14



Then we see h(t) > 0 and f'(t)f(t)? — f(t)g(t) = f(t)h(t). Also if we put

A(t) = f(t)* = tg(t),
then we see A € C*([0,0)), A(0) =0, A’(0) = 0 and

A"(t) = 2f"(O{f(t) = tf'(D)} <0,

since by the convexity of f and the assumption f € C? we have f”(t) > 0
and f'(t) > w for t > 0. Thus we obtain A(t) < 0 for all ¢ > 0, which

leads to
3 [ Fabun)ds, <A10) [ glun)is,
o9 o0
from (3.3). By the same argument in [17], we have
lim ht)
B P

and
o) = [[(Feds< [ 7 < rwie
which with (3.5) implies
on) _
t=oo g(t)
From (3.4),(3.5) and (3.6), we have, as in [17],

/ g(u)\)dsw < C, ]?(U)\)h(’U/)\)de < C
a0 a0
and also ) )
Fun s, <. [ 14 <o
5[9) 80  Ux

(3.4)

(3.5)

(3.8)

for C' > 0 independent of A. We prove here (3.7) only. Indeed, by (3.6), there

exists T' > 0 such that h(t)f(t) > 2f(0)g(t) for all ¢t > T". Let
8Q>\7T = {.73 € 0N | U)\(JJ) > T}

Then we have

zm%gmwms@ MMmmgﬂw&mw%
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by (3.4). This implies

/ g(us)ds, < / glun)ds. < g(T)|00)
o 1

B0\0Q 1

and

/ glun)ds, < 29(T)]09.
o0

Backing to (3.4), we have (3.7).

From (3.8) and the assumption lim;_,, @ = 400, we obtain that

for some C' > 0 independent of \. By the elliptic L! estimate of Brezis and
Strauss [5], we have

uy € WH(Q) for any 1 < ¢ < and

N-1’
_2, (1<p<o0if N=2).

N
uy € LP(0R2) forany 1 <p < N

Let a € (0,1) and define

A={z 00| fur(w)) < ur(a)"/},

B = {x € 82| f(ux(z))*/ur(x) > fux(x))*}.
Then by (3.8), we have

/B Flu(z))*ods, < C

and
/f(u,\)pdsx < / uf{/adsx <C
A A

if p/a < % Choosing « € (0,1) such that 2 — a = %, le., a=

(a > 0 is any small if N = 2), we see that

. a(N—-1) 2N-1
Pds, < C for1< = .
89f(m) sy <C forl<p<—r—= =0

16



Then, elliptic L estimate ([1], [2]) implies

Np < 2(N —1)

uy € WH(Q) fOT’Y:N_ly SPS o3

and by the trace Sobolev embedding W7 () < L5 (092),

2N — 1)

LP(O)) f 1< S
uy € LP(0Q) forany 1 <p < SN 5

(I1<p<xif N =2).

Now, we use a bootstrap argument. Assume we obtain that uy € LP(9S2) for
2

p < po. We choose a € (0,1) as 2 — a = apy, ie., o = oo Then ellip-

tic LP estimate and trace Sobolev embedding imply that uy € W17(Q) <

(-1)
N (092), where v = 22 s0 (NN v) = %V 1_p Also || f(ux)||Lran) < C for

any p < apg. Note that when p < 2p° then )p < 7= g(Nl)pg)p Let us
define

2(N B 1)poo
N1+ (N —3)ps’

Po =

that is, poo = X=%. Then we obtain |lu,||zr@9e) < C independent of A for

N=3
any p < &= and also || f(us)||zran) < C for any p < if’;; = Thus
by elliptic estimates, we have uy, € W(Q) for v = 5, p < . Thus
uy € WH(Q) for any v < &5 when N > 3. H

=2

=N

‘22

=2
w

For typical nonlinearities such as f(u) = e or f(u) = (1 + u)? for p > 1,
we improve the above result as follows:

u

Proposition 12 Let u* be the extremal solution to (1.1)y with f(u) = e*.
Then if N <5, we have u* € L>(Q).

Proposition 13 Let u* be the extremal solution to (1.1)y« with f(u) = (1 +
w)? for p > 1. Define

1 1
Ny=d+2(— 4 1+ —— 39
p=at <p—1+ +p—1) (39)
Then if N < N, we have u* € L>(1).
In particular, if N <6, or N > Tand1l <p < p (N) = NQ_(S’\]/V_J;‘)SZ\?_VE)N—Z‘,
then u* € L*(Q).

17



Note that for our problem (1.1), we do not know any information of the
explicit singular extremal solutions even when {2 = B is a ball and f is one
of the above nonlinearities.

Proof of Proposition 12. We follow the arguments in [9], [16] with some
modifications for out context. Recall the minimal solution u, satisfies the
stability inequality

/Q(|Vg0]2 + ¢*)dx > )\/m e p?ds,, Yo € CHQ)

and the weak form of the equation

/(V¢ - Vuy + upy)de = /\/ e pds,, Vi € CHQ).
Q

o0

We put ¢ = et and ¢ = 2> where t > 0. Testing with them we have

/(t262tu,\|vu)\|2 +€2tu>‘>dl‘ Z )\/ 6(2t+1)u’\d8x
Q o0N

and
/(21562“‘*|VUA|2 + upe?™)dz = )\/ e,
Q o9
Combining these, we obtain

2/ ety — t/ ure2dr > A2 — t)/ e gg
Q Q

o0

Since (0, +00) 3 s — (2 — ts)e?* is bounded from above for ¢ > 0, the left
hand side is bounded when A\ T A*. Thus for any 0 < t < 2, we have e
is uniformly bounded in L**1(9€), and the elliptic estimate implies that
||UAHW1,%(%+1> o < C uniformly in A. Sobolev embedding assures that

llurl| o) < C uniformly in A if 2¢ +1 > N — 1. Since ¢ can be chosen
arbitrary near to 2, this shows that u* € L>(Q) if N < 6. U

Proof of Proposition 13. Again, minimal solution u) satisfies the stability
inequality

/Q (Ve + ¢*)de > A /a (1w s, e C'@)

18



and the weak form of the equation

/(Vw - Vuy + upyh)dr = )\/ (14 up)Pds,, Vi € CHQ).
Q

o0

In this case, choosing ¢ = (14 u,)™*2 and ¢ = (1 +uy)*? for ¢ > 0, we have
1
/ {(tp + 5)2(1 +u))*P V2 + (1 + u,\)ztp“} dx > )\p/ (14uy)P s,
Q o0

and

/ {2tp(1 + uy) P [ Vur|* 4+ ua (1 + w))*™} do = )\/ (14 ) )P+ s,
Q 00

Combining these, we have

[ {4 g w = - praswn b

1
= {W — (tp+ §>2} / (1 +up )P Vs,
o0

Since (0,4+00) 3 s = A(1 + 5)*" — B(1 + 5)***! is bounded from above
for A, B > 0, the left hand side is bounded when A 1 A\*. Therefore, we
have a uniform bound (1 + u\)?|| 2+190) < C when 2tp* — (tp + 3)* >
0. This quadratic inequality with respect to t is equivalent to that ¢t &

2p—1—-24/p(p—1) 2p—1424/p(p—1) .
( o , o ), that is,

3p—1—2y/p(p—1)
p

<2t+1<

3p —1+2/p(p—1)
p

Now, we use a bootstrap argument. If (1 4 uy)? € L1(0f2), elliptic estimate
(N—1)q

and trace Sobolev embedding imply that uy € Wl’lelq(Q) — L¥-1=4(0Q).

Define {qx}ren as

{ QI:2t+17
1 _ 1 _ 1 —
Qk+1 _p(ﬁ N71>7 (k — 1,27 )

19



: : 1 k-1 (1 ~
We easily obtain that - = p (q_1 — (N_ll)?(p_l)) + (N_f)”(p_l), hence if

1 p

@ (N-1(p-1)
then there exists some k& € N such that ﬁ < 0, which implies ¢, > N — 1
and uy € WH¥1%(Q) < L=(Q), which ends the proof. Since q; = 2t + 1
can be chosen arbitrary close to the number M, (3.10) is satisfied

when
(V- 1)(1 - 1) _3- 14+ 2/p(p —1)
p p ’

(3.10)

which is equivalent to N < N, where N, is defined in (3.9). Since N, is
decreasing with respect to p and N, — 6 as p — oo, we have N, > 6 for
any p > 1. Also we can check that the inequality N < N, is equivalent to
13< p < py(N) =X 2‘5{,{2‘;3@_@;\’ =3 when N > 7. This proves Propositiortll

4 Uniqueness of weak extremal solutions

In this section, following the argument of Martel [13], see also [10], we show
the uniqueness of extremal solution even in the weak sense, as described
below.

Theorem 14 Assume f € C*([0,+00)) satisfies (1.2), (1.8). Let \* be
defined in (1.5). Assume (1.1)x« has a weak supersolution w = (wy,ws) €

LY () x LY(09), in the sense that f(wq) € L'(0N) and

. dp
/Q(—Acp + p)widr > /69 {)\ flwa)p — gwg} ds,

for any ¢ € C*(Q), ¢ >0 on Q. Then (wy,ws) = ((u*)1, (u*)2), where u* is
defined by (1.10). As a consequence, the extremal solution u* is the unique
weak solution to (1.1)x.

Proof. By assumption and Lemma 8, there exists a weak solution u to
(1.1)x«. We argue by contradiction and assume that u #Z v*, u > u* in €.
We divide the proof into several steps.
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Step 1. There exists a strict supersolution v to (1.1)yx.

Indeed, the convexity of f implies that u; = tu*+(1—t)u is a supersolution
of (1.1),- for any ¢ € (0,1). Suppose on the contrary that u, is a solution to
(1.1)s+ for all £ € (0,1). This implies that there is a set N' C 9Q with (N —1)-
dimensional measure 0 such that f(u(z)) = tf(u*(x))+(1—1) f(u(z)) for any
x € ON\N and for all t € (0,1). Thus f is linear on the interval [u*(z), u(z)]
for such z. By the same argument of [10] p.148, which uses the regularity of
the extremal solution u* as described in Theorem 11, we obtain that u*(02)
is dense in the interval [essinfso u*, esssupyq u*] and Uzepo\n[u* (), u(x)] is
also an interval. This implies u* is a solution to

—Au+u=0 in €,

%u — X(au +b) on 052
for some a,b € R. Assumption f(0) > 0 implies b > 0. In this linear case, we
easily see that \* = Aa—l, where A is the first eigenvalue of the problem (1.11).
Regularity theory assures that u* is a classical solution. Thus if we multiply

the equation by ¢; the first eigenfunction of (1.11) with the normalization
faQ p1ds; = 1, we have

/ A (au + b)p1ds, :/ AMup1ds,.
oN o0

Thus we obtain b = 0, a contradiction.

Step 2. There is an € > 0 such that

—Au+u=0 in €,
u— XN f(u)+e  ondQ

has a weak supersolution w.
Indeed, by Step 1, we have a strict supersolution v to (1.1),+. Let V be
the solution to the linear problem

{—AV+V:O in Q,

9 = X f(v) on 012,

and 1 is a solution of

{—A¢+¢:o in Q, 1)

g—le on 0f).
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Then the maximum principle implies v — V' > e1) on  for sufficiently small
€ > 0. Define w =V + e1. Then we see w < v and

ow
— =XNfv)+e>Nf(w)+e¢
v
by the monotonicity of f. Thus w is a weak supersolution.

Step 3. Let g € (0,¢), where € > 0 is a constant in Step 2. Then there
exists a bounded (classical) solution to

;uAu —l—*u =0 in €2, (4.2)
S =N f(u) + e on 0f.

The proof of this fact is quite similar to that of Proposition 10. Indeed,
let us define .
ds
mi= [
0= )y ¥+

®(t) = H.,'(H(t))

€1

and

for t > 0. Put v = ®(w) where w is a weak supersolution in Step 2. It

. . o0 .
is enough to consider the case when fo % = +00, because otherwise, we

find as before that v = ®(w) is a bounded weak supersolution to (4.2) and
Lemma 8 yields the result. We see v < w and since H. is concave,
H.(w) — H.(v) 1

w—o  SHO =T

Also since H.(w) = H_, (v), we have

Hlw) = H0) = Ha(0) = 10 = [ (e = s )
1

> =) [ G

From these, we obtain A* f(v)4e < %) ¢ 11(90). This and the bootstrap

e—€1

argument as in Proposition 10 yield the proof of Step 3.
Let u be the bounded solution obtained in Step 3 and let A’ > \*. Define
)\/

U:FU—EHZJ
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where ¢ is a solution to (4.1). Then we see 9% = X' f(u) + )’}—;51 —e1 > Nf(u)

on 0f2. Choose i—' > 1 sufficiently close to 1 in order to assure U < u on §2
(note that u is bounded), then we see U is a bounded supersolution to (1.1)
for A = X'. By Lemma 8, we have a classical solution to (1.1), for X > \*,
contradicting to the definition of \*. U

As an application of Theorem 14, we show a characterization of the un-
bounded extremal solutions in the energy class H*(Q).

Theorem 15 Let u € HY(Q), u & L>®(99Q), be a singular weak solution to
(1.1)\ where f is as in Theorem 14. Then the followings are equivalent:

(i) f'(u) € L'(O) and
[avet+@ae=a [ pgs,
0 o9
holds for every ¢ € C*(Q), ¢ Z 0.

(1)) A= X\* and u = u*.

Proof. The implication (ii) = (i) follows easily by the stability property
of the minimal solutions u, and Fatou’s lemma.

Let us prove (i) = (i4). Since no solution exists for A > A* by Theorem
9, we have A < A\*. Assume the contrary that A < A*. By the density
argument, we can take the test function p = u—uy € H'(Q). Note that here
we have used the assumption v € H'(2). Also the assumption u & L>(09Q)
implies that u — u) # 0. Combining the equation satisfied by u — u, with
(1), we get

Aéﬁﬁ@%aﬂWDW—UO%mZKﬂVW—UQF+W—UOWM
> )\/m f'(u)(u — uy)*ds,,

which implies

A/(u—mMﬂw—fwv—fﬁmu—wD%xZG
o
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Since the integrand is non positive by the convexity of f, we conclude that
fu) = fluy) + f'(u)(u — uy) a.e. on 9. This implies that f is linear on
intervals of the form [u)(z), u(x)] for a.e. € 9Q. Now, since u is unbounded
on 012, the union of these intervals is an interval of the form [A, +oo] and
f is linear on this interval. But this contradicts to the superlinearity at oo
of fin (1.3). Thus we have A = A\*. Finally, by the uniqueness of extremal
solution u* in Theorem 14, we conclude u = u*. [l

5 Weak eigenfunctions for the extremal lin-
earized problem

In this section, we prove the following theorem, which is a natural extension
of the result by Cabré and Martel [8] to our case.

Theorem 16 Let f be as in Theorem 14. Then there exists a function p > 0,
¢ #0, such that o € WH(Q) for any 1 < q < &5, f'(u*)p € L(0Q) and

i * 8C }
/Q< CHOe /BQ{ fut)et aVSO ’

for all ¢ € C*(Q). That is, there exists a weak solution to the linearized
eigenvalue problem around the extremal solution u*:

{ Ap+p=0 in §2, (5.1)

L —Nf(u)p+pp  ondQ
for p=0.
First, we need a lemma.

Lemma 17 Let {u,} C C?(Q) be a sequence of functions such that

—Au, +u, =0 m 2,
%LV" >0 on 0f).
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Assume [[uy |1 00) < C for some C' > 0 independent of n. Then there exists
a subsequence (denoted again by u,) and u € W4(Q) such that

u, —u  weakly in WH(Q), 1 < ¢ <

N -1
: N -1
u, — u  strongly in LP(052), 1§p<N 5

N-1
Moreover, for any 1 < p < 3=,

only on p such that

there exists a constant C, > 0 depending

|tn|zra0) < CplltnlLr(00) (5.2)
holds true for any n € N.

Proof. First we prove the a priori estimate (5.2) by a duality argument. For
n € C*°(09Q) be given, let ¢ € C*(Q2) be a solution to

—AC+(¢=0 in €2,
%:n on Of).

Let p € (1,4=3). Then the Hélder conjugate exponent p' = p%l > N — 1.

Elliptic estimate ([1, 2]) implies that_||§||W1,w(Q) < Clnll Ly 9oy where v =

2 > N. Since WH(Q) — C¥Q) for « = 1 — & € (0,1), we have
_ v

ICI(@) < Clinllpy @ooypi(x), v € Q, where ¢ denotes the first eigenfunction

of the problem (1.11). By Green’s identity, we have

a¢
/BQ unndsx - /aQ Unadsx
ou,,
[ (G ) e = [ =0 vy

ou,, ou,,
< e < / "
= /aQ ( o ) [Cldsz < Clinll L (69) /zm ( o ) Prdsg

= Cllnll L ooy /BQ unprdsy < Clnll oyl eoo llunl 1 o0)-

Since n € C*(01) is arbitrary, we obtain (5.2) by duality.
Now, let 1 > 0 be the solution of (4.1). Then we have

/ (8un> wdsx:/ (0_¢> undsm:/ UpdSy,
a0 \ OV o0 \ OV o0
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hence || || 11 (50) < WZJ&% < C, where C is independent of n by the as-

sumption. Thus, by Brezis-Strauss estimate [5], we confirm that ||u,|[w1.aq) <
C’||88“—:||L1(3Q) <Cforany 1 <¢g< % and there exists a subsequence such
that u, — u in Wh(Q) for 1 < ¢ < &5 for some u € W'4(Q). Since the
trace Sobolev embedding W14(Q) — LP(09) is compact if 1 < p < %,
we conclude that [|u, — ul|rea0) — 0 for 1 < p < F=1. o

Now, we prove Theorem 16.
Proof. As in [8], we divide the proof into several steps.

Step 1. For n € N, define a sequence of functions which are asymptotically
linear approximations of f as

) = f(s) if s <n,
Fuls) {f(n)+f’(n>(s—n) ifs > n,

and consider the approximated problem

{—Au +u=0 in €2, (5.3)

Gu = X\ f(u) on 0f).
Denote
AN =sup{A > 0: (5.3), admits a minimal classical solution € C*(Q)},

and let u,  be a classical minimal solution to (5.3) for A < A%. Note that
f(0) > 0, increasing and convex, the above extremal parameter \* is finite
and the existence of minimal solution is assured by the standard method.
Note also that f, < fu,y1 < f, hence \* < Ay | < Ay for any n € N.
Though f,, does not satisfy the superlinear condition at oo, we claim that
the pointwise limit
) = i ()

is a classical solution of (5.3),: for n large. Indeed, take A € (A*/2,\};) and let
up,» be the minimal solution to (5.3),. Multiplying the equation satisfied by
un by @1, where ¢y is the first eigenfunction of (1.11), which is normalized
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as [, p1ds, = 1, we obtain that

A1 / Prupdsy = A [ fo(upa)prds,
o0 o0

A*
Z /\fn (/ @lun,)\dsac) > _fn (/ Splun)\dsac) .
o0 2 o0

Here we have used Jensen’s inequality for convex functions f,,. Thus we have

\*
>
an,\ = <2/\1> fn(a/n,)\)

where we put a,\ = faﬂ ©1Up 2ds;. On the other hand, (1.3) implies that
f(n) > (2)n and f'(n) > (&) for n sufficiently large. Assume the con-
trary that f,(a,x) = f'(n)(an—n)+ f(n) for some n € N sufficiently large.

Then we have, since a, » > n,

)\* )\*
a2 (g ) o) = (55 ) (/) ans =) + 70}
> Apx — N+ N = ap),

which is a contradiction. Thus we conclude there exists ng € N such that

fn(an)\) = f(an,)\)a and an 2> <2/\>\*1> f(an,)\) for n > Ng. NOW, by the as-

sumption f, we have C' > 0 such that f(s) > 4;15 — C holds for any s > 0.

From this and the former estimate, we have a,, < (Q/\Tl> C for n > ng. This
implies that

ltnallL1(00) < C for any n > ng and any A € (A"/2, ). (5.4)

At this stage, we can invoke Lemma 17 to confirm that

N -1
N =2

N
[nallwra@) < C (1 <q< ) and |lunallzeee < C (1 <p< )
for any n > ng and A € (A\*/2, \}). Now, since f,(s) is linear for s large, we
have f,(upx) € LP(0) and || fn(un) | ro0) < C(n) for 1 < p < X=L. Thus

the elliptic L? estimate: ||[u,|[wio(@) < Ol fa(unn)||zra0) where v = 2 <

2, and the trace Sobolev embedding: W17(Q) —» L (092), imply that

27



‘2

[unallroe) < C(n) for any 1 < p <
procedure. Finally, we have |[unz[|c2@ < C(n) uniformly in A € (A*/2, A7).
Thus, letting A 1 \*, we see that u, , — v’ in C1*(Q) for some a € (0,1)
and u’ € C?(Q) is a classical solution of

_3 We can continue this bootstrap

"2

—Aur +uy =0 in €,
%L; =\ fu(ul) on O0f2.

This proves the claim.
Now, the facts that u) is classical and there is no classical solution of
(5.3)x for A > A, the linearized problem around u} must have zero eigen-
value. Thus, there exists ¢, > 0 with f 50 Pnds, = 1 such that
{ Ap, + ¢, =0 in €, (5.5)

e = \rfr(ul)pn  on OS).

Step 2. By letting A T A% in (5.4), we have |lu)|[1190) < C. Also recall our
normalization ||¢y,|[z1@a0) = 1. Thus by Lemma 17, we see that there exist

w, € LY(), ¢ > 0 a.e. such that

ut —w, @, ¢ weaklyin WhH(Q),
up = w, @, = ¢ strongly in LP(0f2) and a.e. on 0f2 (5.6)

forany 1 <¢< gz and1<p < ~—. In particular, we have fm pds, =1,
which implies ¢ 7—é O on 0f).

We prove that A7 | A\* as n — oo and w = u*. First, we show that
the weak limit w € W'9(Q) is a weak supersolution when considered as
w = (wy,wy) € L'(Q) x L' (0Q), where w; = wl|g, and wy = w|sgq is the usual
trace of a Sobolev function w on 9. Indeed, put A = inf,>,, Ar. Since
AP > \* for any n > no, we have A > \*. For all ¢ € C%(Q), ¢ > 0, we
observe that

/( AC+ Qurdr = X, fo(uwr)Cds, — —u rdsy
Q 09 8(2

>\ fo(ur)Cds, — —u rds,.
a0 a0 0
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Using v} — w in L'(Q) on the left side hand and Fatou’s lemma on the right
hand side, we have

_ X _ [ 9%
/Q( AC + () wdx > )\/m f(w){ds, /aﬂ adesz
>\ f(w){ds, — %wdsx, V¢ € C*(Q),¢ > 0.
o0 o0 OV

This implies also f(w) € L'(99Q) if we take ¢ = 1. Thus, we conclude that
w is a weak supersolution to (1.1)x« Then by Theorem 14, we conclude that
A=A and w = u".

Step 3. Let ¢, be as in (5.5). We claim that X! f/ (u})pn, — X f'(u*)p
strongly in L'(992) as n — oo.

If this claim is proved, then we pass to the limit n — oo in the weak
formulation of (5.5):

0 _
[ 8¢+ Qs = [ Npiw)ens - Grodse W @),
Q a0 v
and conclude that ¢ is a weak solution of

{—Ago—i-go:O in Q,

g—f =N f'(u")p on OS2

in the sense of Definition 3. Recall p € W4(Q) for any 1 < ¢ < <. Thus
the proof of Theorem 16 is finished.

To prove the strong convergence \* f/ (u) )@, — \*f'(u*)p in L (99Q), we
invoke Vitali’s Convergence Theorem. First, by (5.6), we see

Ao (@) pn(x) = A f'(u"(2))p(x)  ae. x € 09

for a subsequence. To prove the uniformly absolute continuous property of
the sequence {A!f!(u!)ntnen, let A C 0Q and € > 0 be given arbitrary.
Convexity of f, implies

() 2 st + ot (M o))

9 3

a.e. x € 0f), here x4 is the characteristic function of A. Also from the
equations satisfied by ¢,, and v},

fN(uZ)‘pndsx = fé(u;)u;gandsx
o0 o0
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holds. Thus
=
< /m fn (%) Pndsy
An () —s0}euts+ [ sOps,
/ (1) puxads, + 1(0)

o0N

< (1) A allimo + F0)
<cr(2) 1P + 1o

for any 1 < p < &=1, here |A| denotes the (N — 1) dimensional measure of
A C 09. Note that

{fn (X“T@) - f(O)} o) < f G) on(x)xax) ae. ondQ

and ||,/ zran) < C for some C' > 0 independent of n by (5.6). Define

- ()

Then above calculation shows that for any ¢ > 0, if A C 0N satisfies that
|A| < 6(e), we obtain [, f(uf)nds, < 2f(0)e. Thus the uniform absolutely
continuity of the sequence {\* f!(u*)p,tnen is confirmed. Also if we take
E C 09 such that |02\ E| < 6 where 0 is as above, we obtain the uniform
integrability of {\! f! (u})¢n }nen: for any e > 0, there exists £ C 0f2 such
that f(‘m\E s (ul)pnds, < Ce. Therefore, Vitali’s Convergence Theorem
assures the claim. U

Phenomena of continuum spectrum for the extremal eigenvalue problem
(5.1) has been studied also, see [20].
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