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SOLUTION TO THE REFLECTION EQUATION RELATED
TO THE :QUANTUM GROUP OF TYPE AII

HIROTO KUSANO AND MASATO OKADO

ABSTRACT. A solution to the reflection equation associated to a coideal subalgebra of Uq(A(QZ)_l) of
type AIl in the symmetric tensor representations is presented. If parameters of the coideal subalgebra
are suitably chosen, the K matrix does not depend on the quantum parameter ¢ and still agrees with a
solution in [8] at ¢ = 0.

1. INTRODUCTION

Reflection equation assures the integrability in one-dimensional quantum systems or two-dimensional
statistical models with boundaries. In the context of quantum integrability, it is an equation involving
two kinds of linear operators, called quantum R and K matrices, on the twofold tensor product of vector
spaces. The mathematical framework to construct its solution lies in considering a pair of a quantum
group and its coideal subalgebra. They are called a quantum symmetric pair [10] or an :quantum group
[3] and known to be classified by Satake diagrams [10, 7]. In such a situation, R and K matrices contain
the quantum parameter g. Moreover, if the representations have crystal bases in the sense of Kashiwara
[6], one can take the limit where ¢ goes to 0, and we obtain bijections between sets that still satisfy a
combinatorial version of the reflection equation.

In [8], from the motivation of constructing a so-called box-ball system with boundary, we found three
solutions of the combinatorial K matrix where the combinatorial R matrix in the reflection equation
comes from the crystal basis of the symmetric tensor representation of the quantum affine algebra of
type A. See (2.10)-(2.12) of [8]. They were called “Rotateleft”, “Switch;2” and “Switchy,,”. However,
their quantum versions, namely, solutions of quantum K matrices, were not found for a long time. Only
recently, in [9] the solution corresponding to “Rotateleft” were found. The purpose of this note is to find
the origin of the other two solutions “Switchis” and “Switchy,” from the list of :quantum groups. The
correct one was found to be the affine version of type AIL See e.g. [10, 7, 12]. Rather surprisingly, if we
choose parameters in our :quantum group suitably, the K matrices does not depend on ¢, although the
R matrices do.

There are many tquantum groups other than affine type AIIl which we dealt with in this note, and
there also exists a notion of the universal (or quasi) Kmatrix [2, 3, 4, 1] as with the universal (quasi) R
matrix of a quantum group. We hope to report more solutions of the reflection equation that become
combinatorial upon taking the limit ¢ — 0 in near future.

1
2. Uq(Aén)fl) AND RELEVANT R MATRICES

2.1. Uq(Agil)_l) and relevant representations. Let U = Uq(Agln)_l) be the Drinfeld-Jimbo quantum
affine algebra (without the derivation operator). In this note, we assume n > 2. U is generated by
e, fi, k;iﬂ (i € Zsy,) obeying the relations

klk;l = k;lkl = 1, [kz,kj] = 0, kiejkfl = qa”ej, szjk;1 = q_aijfj, [62', f]] = (sijlf;__;jill,
1—a;; 1—a;; (1)
> e el =0, 3 (MRS =0 (4 9),
v=0 v=0
where egy) = e!/[v]!, fl-(y) = f//v]! and [m]! = J[7Z,[j]. The Cartan matrix (aij); jez,, is given by

aij = 26;,5 — 05 j+1 — 0;j—1. It is well known that U is a Hopf algebra. We employ the coproduct A of
the form
AR =kH 0k, Ale)=ei@1+ki®e, A(fi)=fiok ' +1® fi. (2)
1
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We will be concerned with the two irreducible representations of U labeled with a positive integer I:

U—>End(le Vlac— @Q q)Va, (3)
aEB;

: U — End(V}",) = P Qg (4)
a€EB;

where z is a spectral parameter in Q(g) and
Bl:{a:(al,...,agn)ez2z% | || = 1}. (5)

Here |a| = 212”1 o;. The actions of the generators of U on these representations are given by

eV = 270 (it 1]Vate;—es i1 s eivg, = 270l oty (6)
fiva = x_éi’o[ai]vafemLeiH, fivg =~ bu.0 [vig1]vy Vote;—e;i1> (7)
kv = qaquai+1,ua’ k‘ﬂjz — qiera’:"'l’U;. (8)

Here e; is the i-th standard basis vector and the index j of the Chevalley generators or a should be
understood as elements of Zs,,. V; , is the [-th symmetric tensor representation of U. VZ*T is constructed
on the dual space of V; , by using the anti-automorphism * of U defined on the generators as

erzeiv fz*:fla k;k:k;17
and by defining actions on Vj*, as (uv*,v) = (v*,u*v) for u € U,v € Vi ,,v* € V[',. Our basis {v;}
of V%, is changed from the dual basis of {va} by multiplying J[,[a;]!™ 1 on each dual basis vector, so it

turns out that when x = 1 both {v,} and {v}} are upper crystal bases [6]. At g = 0, the former gives
the crystal B; and the latter its dual B in [8].

2.2. R matrices. We consider the following three R matrices R, R*, R** that are defined as intertwiners
between the tensor product representations below.

R(a/y) : Vie ®Viny = Viny ©Vie,  (Timy @ Ta) A(u)R(z/y) = R(z/y)(T1e @ Tmy)Au),  (9)

R¥2/y) : Vig @ Ving = Viny @ Vi, (Tmy @ 10 )A(uw) R (2 /y) = R*(2/y) (7, © Tm.y) A(u),  (10)

R (@/y) : Vig @ Vi = Vi @ Vi, (0 @ M)A R™ (2 /y) = R (2/y) (7], @ 7y ) A(u), (11)
where u € U. They satisfy the Yang-Baxter equations:

(1® R(x))(R(zy) @ 1)(1© R(y)) = (R

(1@ R*(2))(R"(zy) © 1)(1 @ R(y))

(1@ R™(x))(R*(zy) ® 1)(1 © R*(y))

(1@ R™(2))(R™ (zy) ® 1)(1 @ R™(y))

(y) @ D1 @ R(xy))(R(z) © 1),

(R(y) @ D(1 @ R*(zy))(R*(z) © 1),
(R (y) © 1)(1 @ R*(zy))
(B (y) @ )1 @ R™ (zy

— — ~— ~—

3. REFLECTION EQUATION AND ITS SOLUTION

3.1. Coideal subalgebra. We consider two coideal subalgebras UL (¢ = 0,1) of U. Set I = {0,1,...,2n—

1}. An element of I is considered to correspond to a vertex of the Dynkin diagram of A;z)fl' In view of
this, we identify I with Zs,,. For each € = 0,1, set

I, ={g,2+4¢,....2n—-2+¢}, I,=1I\L.

We define two subalgebras U of U for ¢ = 0,1. Each one is generated by e;, fi, k; (i € I.),b; (i € I,)
where

bi = fi +7iTw, (e)k;
Tw,(€:) = €ir1ei-1ei —q ' (eip1ei€i1 + eir€ieiy1) + ¢ Ceiei_1eip1.
Here ; is a constant. Then, we have the following facts which are well known. See [10, 7, 12] for instance.

Proposition 1. Fori € I,, e;41b; = b;e;+1.

Proposition 2. U is a right coideal subalgebra of U. Namely, we have A(U%) C UL & U.

We also use the following result later.



TABLE 1. Satake diagrams of Up and Uj

Lemma 3. Fori € L, the action of b; on Vi, or V[, is given by

—51‘,0[ 0i,0+0i,1+6i,—1

—1
q 7 [ai+2]va+ei—1_ei+27
0i,0=0i1—0i,—1 ,,—1., . *
qa i [az—l]va_ei71+e,i+2~

3.2. K matrix and the reflection equation. For each ¢ = 0,1, consider a linear map K(x) : Vj , —
V7, -1 satisfying

bivg = Qi]Va—eite; 1 — T

¥ 050, * _
blva_'r ‘ [O‘H‘l}va—i-ei—eprl T

K(z)m z(a) = 7] ,-1(a)K(z) for any a € Ug. (16)
To describe the solution, we introduce a particular permutation o(¢) of entries of « for ¢ = 0,1. o(®
switches ;1 and «; whenever i = ¢ (mod 2). For instance, when n = 3 we have
0(0) (Oé) = (0‘2’ a, Qq, 3, O, O‘5)7 U(l) (a) = (046, a3, 2, a5, Oy, 041)'

Proposition 4. For each e = 0,1, the intertwining relation (16) has a solution if and only if

I =am

j€lo
in which case the solution is unique up to scalar multiple and given by

K (2)vq = af(@1702n) H (_Q_I%')_Z” e Myt o) ()"
j=¢,2+€,....2n—2+¢€

Proof. In the proof we assume i € I,,j € I,. Define K? by K(x)v, = PP ng;; Note that K2 also
depends on z. Comparing the coefficients of v in K(z)m,.(a)ve = 7,1 (a) K (z)ve with ki, e;, fi, b; we
obtain

Kg #0 = o — i1 = —Fi + Bit1, (17)
(i + Koo =2 0ai ] K e, e,y (18)
o + KTt = 2208 KD o ey (19)
:I:(Sjy(j [BjJrl + I]KB—Ej+5j+1 _ x—é- 0—08;5,1—0;, “ig” ’Y] [6] 1+ ]K§+ej,1—ej+2

=T 70[ }Kg ejt+eji1 $6-7v0+5.731+5'7’_1q_ Vi [aj+2]K£+ej,1—ej+2' (20)

Since we look for a nontrivial solution, we assume the right hand side of (17). This condition together
with (18),(19) implies

a; = fiv1, Bi=aiq (21)
or equivalently 8 = o(*)(a). Then by taking 3 to o) (a) — e; + €;;1 in (18) or (19), we have
. ) (atei—eiis
Kg( (o) 265, oKoHre(lciLil i+1) (22)

Similarly, assuming (21), (20) reduces to
250 oy o) (Kbt 4 adm gy KT )
— 2 KD e, OO g B ),
If 3=0)(a)+e; — eji1, the right hand side vanishes, whereas if 8 = 0(*)(a — e; + e;41), the left one
does. Under (22), both conditions reduce to

KSR K@) = —abi iy, (23)

Replacing o with o 4 e;_; in this equation and multiplying it for j =€,2 +¢,...,2n — 2 + ¢, we obtain
O]

the condition for K to exist. Set K7 ) = z=(c1=a2:)kC, . Then (22) and (23) reduce to

—1
Ko = ,COH'Ei—EH-l’ Ka—ej_1+€j+1 /ICOL =—q ;-
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Recall i € I,,j € I,. From the first relation, one notices that K, depends only on «; + a;y1 (i € I).
The second one then determines K, uniquely up to scalar multiple. O

Remark 5. The K matrix corresponding to the same Satake diagram to ours but in the vector repre-
sentation V7 was considered in [11, Result 9.9].

In view of this proposition, we set v; = —q for any j € I, later in this note.
Theorem 6. The reflection equation
Ky(z)R*((wy) ) K1 (y)R(ey™") = R (xy™ ) K1 (y) R*((wy) ") K1 (2) (24)
holds as a linear map Vi gz & Viyyy — Vlj‘x,l ® Vnt,yfl' Here Ki(z) = K(x) ® 1.

The proof is completely the same as that in [9, Theorem 1], although a similar reasoning goes back to
[5] at the latest, under the assumption that V; , ® V,,, ,, is irreducible as a U%-module, which is shown in
next section.

4. PROOF OF THE IRREDUCIBILITY OF V. ® V,, ,
To show that the reflection equation holds (Theorem 6), we need to prove
Theorem 7. As a Ul-module, V| z ® Vy, y is irreducible.

Actually, even when the spectral parameters x,y are specialized to 1, it is irreducible as we will see
below. Hence, in this section we set © = y = 1, since it is enough to show the theorem. V;; will be
denoted by V;. We can also restrict our proof to the ¢ = 0 case, since the consideration for the ¢ =1
case is just the repetition by shifting the index 4 of the generators or the entries of «. Finally, in view of
Proposition 4, we specialize ~; for i € I, to be —q.

4.1. Representation theory of U,(sls2). U,(sl2) is the subalgebra of U generated only by e1, fi1, k1. Its
irreducible representations are parametrized by their dimensions which run positive integers. Let U; be
the (I + 1)-dimensional module of U,(sl2). As a basis of Uj, one can take {v,| |a| =1} in (3) with n = 1.
The actions of the generators ey, f1, k1 are given by (6)-(8). It is well known that U; ® U,, decomposes
into min(l, m) + 1 components as
min(l,m)
U ®U, ~ @ Ulym—2;
§=0
where a highest weight vector of U4, —2; is given by

J )
w§l,m) _ Z(q)pqp(zfpﬂ) [ﬂ V(i—p,p) @ V(im—j+pj—p)- (25)
p=0
Here [ﬁ is the g-binomial coefficient defined by %.

Now consider the subalgebra U(I,) of U* generated by e;, fi, ki (i € I). Recall I, = {1,3,...,2n—1}.
U(I,) is isomorphic to U,(slz)®™. We want to construct a basis of V; ® V;, using its U(Z,)-module
structure. To parametrize the highest weight vectors of V; ® V,,,, we introduce n-tuples of nonnegative
integers I = (Iy,...,0,),m = (mq,...,m,) such that |l| = [,|m| = m. Here we use the notation || to
signify the sum of entries of the vector I irrespective of the number of entries. Let

LU, @Um) @@ Uy, @ Un,) — Vi @ Vig
lm

be the linear map sending (v(a,,as) @ V(8,,8,)) ® *** @ (V(agn_1,a2n) @ V(Ban_1,82n)) 10 Vo @ vg. Note that
Ui, @ Uy, is the tensor product of the irreducible highest weight modules Uj,, Uy, of the i-th U,(slz) of
U,(sl2)®™ generated by e9;_1, f2;i—1,k2i—1. Since U,(sl2) in different positions commute with each other,
one obtains the following proposition.

Proposition 8. For any l,m and j = (j1,-..,7n) such that 0 < j; < min(l;,m;) for 1 <i <mn,

wi ™ = WM @ @ )

is a U(Is)-highest weight vector, and we have @, ,,, ; U(I.)wg.l’m) =V, ®V,.



4.2. Necessary formulas. In what follows, we assume ¢ € I, = {0,2,...,2n — 2} and set i = 2s. By
abuse of notation, we denote by es (s = 1,...,n) the s-th standard basis vector of the n-dimensional
space, although we have used it in section 2 for the 2n-dimensional space. ey should be understood as
e,. For the action of U on the tensor product, we abbreviate A.

Proposition 9. On V; ® V,,,, we have

tm) _ 1y (l es +6s+1, m) (l m—es+esi1) (I+es—esy1,m) (tm+tes—esy1)
biw; = Djw + Dhw + Dijw —eort —|—D4wJ ot ,
where
U —Js—Js ls s 1 [
Dy = —q JeTdertletmentt5 1 DY =[],
r s—Jst1Hlsr1+mer1+1 I =255 —2fs41HlsFHlsr1+2msp1+27
D = g len e | D = g e Bt e 2 )

Proof. Using Proposition 1, one finds that biwg.l’m) is a U(7,)-highest weight vector. By the weight
consideration, it should be a linear combination of the following vectors.

(l—es+esp1,m) (Im—es+esy1) (I+es—esp1,m ) (lm+esfes+1)
j—es ’ i—es ) i —est J—est1

The four coefficients can be calculated directly. O

Proposition 10. On V, ® V,,,, we have

(l m) [ls +ms — jS + 1] ;. (l—estesi1,m) 7. (Im—es+esin)
bifirw s+ my =25, 1] 1% + Baw; )
[jerl] 7. (I+es—esi1,m) 1, (Imtes—esy1)
[ls + ms — 2]8 + 1] ( 3 j+es_65:1 + B4wj+es_es+1 )
[ls +ms — 2js] ’ l e +eb+1, lm es+esi1)
D +mgf2js+1](Dﬂ 1 ' Dy fi-rw”
(I+es—est1, (lm+es—es
+Db fiqwi ST L D fy e ey,
Lm [Js] l—eoteott, Lm—e.te,
bifiJrlw; )= (€ ;78654’:54:21 ™ 4 Céwg'je:;sj )

[ls+1 + ms+1 - 2js+1 + 1]

ls s - '9 ]- es—e m m-tes—e
i [ls+1 4+ Mgt Js+1 +1] (O’w(.“” s—eat1, )+Cz’1w(‘l’ +e, s+1))
(lo1 +mMsr1 — 251 + 1] 7 7

l —2j
+ [ s+1 + Mst1 Js+1] (D/ f7,+1w (l—es+est1,m) + D2f1+1w(l m—estesi1)

(ls1 +mMer1 — 251 + 1] e

(l+es—esy1,m) (I, m+es—esy1)
+D3f74+1w_7 —est1 +D4f2+1w] esy1 ))

where
B = js_js+1_ms+m5+1[l _ ] B! = [m _ ]
1 — q S ]S ) 2 JS i
Bé — _qjs_js+1_ls_ms+ls+1+ms+1 [ms _ Js] B4 2Jb—2ja+1 —ls—2ms+tlsp1+2msta [l _ ]s]

Ci = —q_j5+j3+1+ls_l3+l [ms+1 — j5+1]7 02 [ s+1 — jerl]a

’ — s . I —25.42 ls—1 ;
C?; =q JS+JL+1[ls+1 _js+1}7 C4 =4q Jat2atitls 5+1[m5+1 _]erl]a

Proof. Using Proposition 1, we have

ei_lbifi—1w§l7m) =biei—1fi- 1’w§l ™ = bz‘{ki—l}wy’m

Im
€i+1bifi+1w(-

[ls +ms — 2]s]bw(lm),

[ls-i-l + Msy1 — 2]s+1]biw§'l’m)a

=b; ez+1fz+1w§ = bz‘{k‘i+1}’w§-l’m

where {k;} = k . Thus same in Lemma 9, €;4+1b; fi+1 and e;_1b; f; 1 are a linear combination of the
following vectors

(l—es+esy1,m) w(.l,m—e,g+es+1) (.l+es—es+1,m) (, m+eg—eg+1)
Jj—es J—es P Ty —est J—est1

By considering weight, one find that b;f;—1 and b;f;11 are a linear combination like a assertion, and
coefficients can be calculated directly. O
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Corollary 11. On V; ® V,,,, we have
bifi+1’w,(,l’m) = [ls+1]w§,’+“’s*es+1vm> + qlrl”l[m3+1]wg’m+85765+1),

bifi ) = g Ju e ) e e,
Proposition 12. On V; ® V,,,, we have

b¢f¢—1fi+1w§l’m)

_ (I—estesy1,m) (I—estest1,m) (I—est+esy1,m) (I—est+esy1,m)
= Al B f e Ol Dyl

(Im—es+esy1) ) (Im—es+esq1) ] (Im—es+esy1) ] (Im—es+esq1)
+ Aij+es+1 + Bsz+1wj + CZfl_le_es+es+l + DQfl_lfi_'_le_es

(I+es—esy1,m) (I+es—esy1,m) (I+es—esy1,m) (I+es—est1,m)
+ Azw; ), + Bsfiriwjl "o 4+ Csficiw; + Dsfirfiyrw; .7

(Im+es—esy1) (Im+es—esi1) (Im+es—esy1) (Iym+tes—est1)
+ Aswyie, tBafinwjie e+ Caficiw; + DaficrfinwsZe '
(26)

where

[ls — Jsllmst1 — Jsta]lls +ms — js + 1]
(ls +ms = 25 + [ls41 + Ms1 — 2541 + 1]

[lerl - js+1][ms - js][ls +ms —js + 1]
(ls +ms — 245 + [ls41 + Ms1 — 2541 + 1]
A = qjs+js+1—ls—ms—1 [18+1 - js+1][7.ns - jSHZS—H + Msy1 _.js+1 + 1]

[ls +ms — 2js + [ls11 +msp1 — 2541 + 1]

2521 —le—lep1—2ms—2 (s — Jslmst1 — Jor1)lls41 + moy1 — Joy1 +1]

— gJstist1—lsp1—ms—1
Ay = s Tisrimlon

Ay = —

Ay = )
e s + 115 — 255 + llor1 + Mart — 2jost + 1]
B =B [ls +ms —Js + 1] [ls-‘rl + Mmsr1 — 2js+1] (] -1 2)
’ J [ls +ms — 2]5 + 1] [ls—i-l + Msy1 — 2js+l + 1] ’ ’
_ B/ [js—&-l][ls—i-l + Ms41 — 2js+1] ( i—3 4)
] 9. 9. J =9 ’
[ls + ms 2]5 + 1] [lerl + Ms41 2js+1 + 1]
il[ls + ms — 2j] .

C':C/- .[Js][s s s : :1’2 7
! I [ls +ms — 2]5 + 1] [Zs+1 + Ms41 — 2]s+1 + 1] (J )
— [ls +ms — 2j8][ls+l + Mst1 — Jot1 + 1] —3 4)
j[l5+ms72j5+1][l5+1+m5+172j5+1+1] T

D, — D/ [ls‘ +ms — 2].3][13—}-1 + Ms41 — 2js+1} (] —-1.2.3 4)

J j — e .

J [ls + ms — 2]3 + 1][ls+1 + Ms41 — 2js+1 + 1]

Proof. Similar to Proposition9 and 10, bifi_lfi+1w§.l’m) can be expressed with suitable scalars A;, B;, C;, D;

(1 <j<4)as (26). By applying e;_1e;1 on both sides, the first to third terms in each line of the right
hand side vanish. So by Proposition 9, D; (1 < j < 4) is determined. Then, by applying e;+1 on both
sides of (26), B; (1 < j <4) is determined, and by applying e;_1, C; (1 < j < 4) is done by Proposition
10. Finally, A; (1 < j < 4) is determined by a direct calculation. O
Corollary 13. On V; ® V,,,, we have
;T l—es s+1, lm—es s ltes—est1, L s €s
bz‘fi—lfiJrlw;l ) :AlwngeeS:;e +1,m) + A2w;+7:s+ela +esy1) + A3w;:-; esy1,m) + A4w§'+?s+e €st1)

+ (other terms),
where A; (j =1,2,3,4) is given in Proposition 12 and (other terms) stands for the linear combination of
vectors of the form 'wy, ™) possibly applied by f;_1, fix1 with (I';m’) appearing in the right hand side
and ji, < g for 1 <k <n.
4.3. Proof of Theorem 7. We prove Theorem 7 when ¢ = 0. Suppose W is a nonzero U’-invariant
subspace of V; ® V,,. Note that U* contains U(J,). In view of Proposition 8, one can assume that W
contains a vector of the form

Z c(l7m,j)w§l’m) (27)

lmj



where ¢(l, m, j) € Q(¢) and I, m, j run over all possible integer vectors such that I +mgs— 2js is constant
for any s = 1,...,n. By applying b; (i € I,,) in a suitable order, from Proposition 9 one can assume j = o
in (27). Then by Corollary 11, one can eventually assume I = le;, m = me; where | = [l|,m = |m)|.

lei,
Hence, we have 'w,(,e1 me) ¢ .
(lher+lzez,mie;+maes)

Next show w, € W for any l1,ls, m1, mg such that Iy + 1y =1, m; + mgy = m. We
do it by induction on k& = Iy + mgy. The k = 0 case is done. Assume wﬁleﬁlze%ml&ﬁm?@) € W for

lo + my = k. By Corollary 11, we have
b2f1w£)l1e1+l282,m1e1+m262) = gm2Tm [ll]wg(ll*1)€1+(l2+1)ez>m1e1+mzez) + [ml]w(ollel+l2ez’(m171)el+(m2+1)62)’

(bafs) - (ban_afon_1)(bo f1)wlierHizezmieitmaes)

— [ll]ws)(h71)61+(l2+1)ez,m1e1+mze2) + qlz—ll [ml]w(olle1+l2e2,(m1—1)e1+(m2+1)62).

If Iy + mq1 # Iy + mo, these two vectors are linearly independent. Hence the induction proceeds up to
k <ly +my. When Iy +ms > I3 + mq, we first recognize that ws,lez’m@) € W by applying (ba f1)!*™ to

l .
S,el’”“fl). We then do the same exercise as before.

Let us now show W contains wg ™) for any possible I and m. From the previous paragraph, we know

(l,mel)

wf,lleﬁlze%mel) € W. Applying b; f;—1 (i =4,...,2n — 2) suitable times, we know w, € W for any

l. Then by doing similarly including ¢ = 2, we know 'w.(,l ™ ¢ W for any I, m.

By Proposition 8, it is enough to show W contains wg.l’m) for any possible I, m,j. From the consid-
erations so far, it is true when |j| = 0. The following proposition makes the induction on |j| work and

finishes the proof of Theorem 7.

Proposition 14. Consider the following matrix C depending on l,m,j. Its row index runs over all

(i,1,m,g) withi = 0,2,...,2n — 2 and |l| = l,|m| = m,|j| = j, and its column index runs over all

(U',m/,3") with [I'| = 1,|m/| = m,|j’| = j + 1. The entry for the pair ((i,1,m,3), (1, m’, ")) is given by
! ! (l7m)

the coefficient of wy, ™) in bifi,lfiﬂwj in the previous proposition. Then C is of full rank. Note

that the rank does not depend on the orders of the index sets.

Proof. Let A be the subring of Q(q) defined by A = {f(¢) € Q(q)| f(q) is regular at ¢ = 0}. Let
(t =1,2,3,4) be the largest integer such that A; in Corollary 13 belongs to ¢** A. We have

ap —ag =04 — a3 =js+ Jst1 —ls —msy1 — 1 <0,

g — a1 = 2jsq1 — lsp1 — M1 — 1 <0,
since j; < min(ly, my) (t = s,s + 1). Therefore, oy is minimal and the others are strictly larger.
gl, ™) Such that 'l =1,|m/| = m,|j'| =j + 1, choose the minimal s such j. > 0 and consider
bz-fi,1fi+1w§.l,/;zlfes+e"'“) with ¢ = 2s. By Proposition 12 the fourth term of the above is nonzero.
Consider the row of C corresponding to the index (i,I',m' — es + es11,j — es). By multiplying a
suitable scalar to this row, one can make the ((i,l',m’ — e, + es41,5 — es), (I, m',j"))-entry of C be
1, and the other three nonzero entries in the same row belong to gA. Consider the square matrix C’
obtained by varying all possible (I',m/, j') and picking the corresponding renormalized rows. Then from
the construction, det C’ belongs to {£1} + gA. Hence the assertion is confirmed. O

For w
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