
Adiabatic state preparation of correlated wave
functions with nonlinear scheduling functions
and broken-symmetry wave functions

言語: English

出版者: Nature

公開日: 2022-07-26

キーワード (Ja): 量子位相推定, 波動関数, 断熱状態生成法,

ASP法

キーワード (En): Adiabatic state preparation

作成者: 杉崎, 研司, 豊田, 和男, 佐藤, 和信, 塩見, 大輔,

工位, 武治

メールアドレス: 

所属: Osaka City University, JST PRESTO, TCG Centres

for Research and Education in Science and

Technology, Osaka City University, Osaka City

University, Osaka City University, Osaka City University

メタデータ

https://ocu-omu.repo.nii.ac.jp/records/2019780URL



In April 2022, Osaka City University and Osaka Prefecture University marge to Osaka Metropolitan University 

Kenji Sugisaki, Kazuo Toyota, Kazunobu Sato, Daisuke Shiomi, Takeji Takui. Adiabatic state 
preparation of correlated wave functions with nonlinear scheduling functions and broken-symmetry 
wave functions. Communications Chemistry, 5, 84 (2022). 
https://doi.org/10.1038/s42004-022-00701-8 

Adiabatic state preparation of correlated 
wave functions with nonlinear scheduling 
functions and broken-symmetry wave 
functions 

Kenji Sugisaki, Kazuo Toyota, Kazunobu Sato, Daisuke Shiomi, 

and Takeji Takui 

Citation Communications Chemistry. volume 5, Article number: 84 
Published 2022-07-25 

Type Journal Article 
Textversion Publisher 

Supplementary 
information 

Supplementary information is available at 
https://doi.org/10.1038/s42004-022-00701-8. 

Rights 

This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated 
otherwise in a credit line to the material. If material is not included in the 
article’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this license, visit 
https://creativecommons.org/licenses/by/4.0/.  

DOI 10.1038/s42004-022-00701-8 

Self-Archiving by Author(s) 
Placed on: Osaka City University 

https://doi.org/10.1038/s42004-022-00701-8
https://creativecommons.org/licenses/by/4.0/


 

Highlights 

◇量子位相推定アルゴリズムによる量子化学計算では、求めたい電子状態の真の波動関数

にできるだけ近い近似波動関数を事前に準備することが計算効率を上げる鍵となる。 
◇断熱量子計算アルゴリズムの一種である断熱状態生成法（ASP 法）を用い、求めたい電

子状態の真の波動関数を効率的に生成するための実用的な計算条件を明らかにした。 
◇今後、量子化学の分野において ASP 法と量子位相推定を組み合わせる研究が広く展開さ

れることが期待される。 

Description 

【概要】 
研究チームは、量子コンピュータ上で原子・分子の波動関数の精度を向上させること

ができる断熱状態生成法（adiabatic state preparation, ASP 法）の実用的な計算条件

を、初めて明らかにしました。 
ASP 法は、複雑な電子構造を持つ分子の量子化学計算を量子コンピュータ上で効率

的に行うための有力手法の 1 つであると考えられていましたが、具体的な計算条件が

ほとんど調べられておらず、実用的な手段とは言えない状況でした。ASP 法の実用的

計算条件を初めて明らかにした本研究成果は、量子コンピュータによる量子化学計算

を実際の化学研究に役立てるための大きな一歩と言えます。 
 
＜研究の背景＞ 
近年、暗号に利用する大きな桁数の素因数分解など、スパコンなどの古典コンピュ

ータでは「問題サイズ」に対して指数関数的に計算時間が増えてしまう特定の課題に

対して、多項式時間内での計算を可能にする量子コンピュータの研究が活発に行われ

ています。これらの課題のなかでも、原子・分子のシュレーディンガー方程式※3 を

近似的に解き、電子状態を明らかにする精密な量子化学計算は、量子コンピュータの

近い将来の計算ターゲットとして注目されています。 
量子化学計算の主な手法として、全配置間相互作用法（full configuration 

interaction; full-CI 法）と呼ばれる計算法があります。古典コンピュータで full-CI 法
を採用した場合、分子サイズに対して計算コストが指数関数的に増大します。一方、

量子コンピュータでは量子位相推定という量子アルゴリズムを用いることにより、計

算コストが分子サイズに対して多項式時間内の増大で収まるようになることが理論的

に示されています。量子位相推定を用いた full-CI 計算では「射影測定」と呼ばれる測

定を行い、インプットとして用いた近似波動関数を真の波動関数に射影する方法によ

って求めたい電子状態の波動関数とエネルギーを計算します。量子位相推定でどの電

子状態の波動関数が得られるかは近似波動関数と真の波動関数がどれだけ似ているか

に依存します。もしも事前に準備した近似波動関数が真の波動関数から大きく異なっ

ていれば、求めたい電子状態のエネルギーを得るまで同じ計算を何回も実行する必要

があり、量子コンピュータによる計算高速化の利点が損なわれてしまいます。そのた

め、近似波動関数の精度を上げる手法開発は、量子位相推定に基づく量子化学計算の

実用化に必須な研究課題と言えます。 
これまで、量子コンピュータ上に生成した近似波動関数の精度を上げる手法はさまざ



 

まなものが研究されていますが、本研究グループは ASP 法に注目しました。ASP 法

は固有関数が簡単に準備できるシンプルなハミルトニアンから真のハミルトニアンへ

と徐々に変化させていくことにより真の波動関数を得る手法です。ASP 法はハミルト

ニアンを変化させるスピードを十分に遅くすることにより良い近似波動関数が得られ

る、求めたい電子状態に関する詳細な事前知識を必要としないなどの大きな利点があ

ります。しかし、どれくらいの時間をかけてハミルトニアンを変化させればよいか、

ハミルトニアンの時間変化をどのような関数形で表現すればよいか、ASP 法のスター

ト時の波動関数としてどのようなものを用いればよいかなど、これまで ASP 法の具体

的な計算条件がほとんど調べられておらず、実用的な手段とは言えない状況でした。 
 

＜研究の内容＞ 
同研究グループは ASP 法の実用的な計算条件を探るために、①ハミルトニアンの時

間変化を表現する関数として、従来用いられてきた一次関数だけでなく、三角関数な

どの非線形関数を試す、②ハミルトニアンを変化させる時間の長さを、分子軌道エネ

ルギーから推定する、③ASP 法の初期波動関数として、従来用いられてきた Hartree–
Fock（HF）波動関数だけでなく、broken-symmetry（BS）波動関数と呼ばれる波動

関数を用いる、など、ASP 法に汎用性を持たせるために、計算条件をさまざまに変え

て数値シミュレーションを行いました。 
その結果、以下の 4 点が明らかになりました。 

さらに、初期波動関数として HF 波動関数と BS 波動関数のどちらを用いればよい

かを簡単に判定する手法も提案しました（図）。これらの研究成果により、ASP 法の

実用的計算条件が初めて明らかになりました。 

(I) HF 波動関数からスタートしたとき、ハミルトニアンの時間変化はサイン関数

を用いて表現することで最も良い近似波動関数が得られる。 
(II) HF 波動関数からスタートしたときはハミルトニアンを変化させる時間の長

さは HOMO–LUMO エネルギー差に反比例するように設定すればよい。 
(III) 共有結合が切れた構造では BS 波動関数を用いることでより少ないステッ

プ数で良い波動関数を生成できる。 
(IV) BS 波動関数を用いた場合、ハミルトニアンを変化させる時間の長さは分子

構造によらず一定でよい。 



 

 
＜期待される効果・今後の展開＞ 
精密な量子化学計算は創薬や材料開発など、さまざまな関連分野でも非常に重要な

役割を担っています。これまで報告されてきた量子位相推定による full-CI 計算に関す

る理論的研究のほとんどは、良い近似波動関数が簡単に得られることを前提条件とし

ていましたが、この前提条件をいかにして満足させるかは自明ではありません。本研

究により、ASP 法を用いて良い近似波動関数を生成するための実用的な道筋が初めて

示されました。今後、精密な量子化学の分野において ASP 法と量子位相推定を組み合

わせる研究が広く展開され、量子コンピュータを用いた理論計算に基づく新たな材料

設計などへ応用されることが期待されます。 
 

‘量子コンピュータ上での量子化学計算の効率向上へ！分子の波動関数を生成する ASP 法

の実用化に大きな一歩’ 大阪公立大学. 
https://www.omu.ac.jp/info/research_news/entry-01553.html. (参照 2022-07-25) 

資金情報 
本研究は、JST さきがけ「量子化学計算の高効率量子アルゴリズムの開発」

(JPMJPR1914)、JSPS 科研費基盤研究 C (18K03465, 21K03407)の対象研究です。 
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Adiabatic state preparation of correlated wave
functions with nonlinear scheduling functions
and broken-symmetry wave functions
Kenji Sugisaki 1,2,3✉, Kazuo Toyota1, Kazunobu Sato 1✉, Daisuke Shiomi 1 & Takeji Takui 1,4✉

Adiabatic state preparation (ASP) can generate the correlated wave function by simulating

the time evolution of wave function under the time-dependent Hamiltonian that interpolates

the Fock operator and the full electronic Hamiltonian. However, ASP is inherently unsuitable

for studying strongly correlated systems, and furthermore practical computational conditions

for ASP are unknown. In quest for the suitable computational conditions for practical

applications of ASP, we performed numerical simulations of ASP in the potential energy

curves of N2, BeH2, and in the C2v quasi-reaction pathway of the Be atom insertion to the H2

molecule, examining the effect of nonlinear scheduling functions and the ASP with broken-

symmetry wave functions with the S2 operator as the penalty term, contributing to practical

applications of quantum computing to quantum chemistry. Eventually, computational

guidelines to generate the correlated wave functions having the square overlap with the

complete-active space self-consistent field wave function close to unity are discussed.
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Quantum computing and quantum information processing
(QC/QIP) is one of the most innovative research fields in
the current central science1 and it has a potential to bring

a paradigm shift in chemistry research. Among the diverse topics
in the field of QC/QIP, sophisticated quantum chemical calcu-
lations have attracted attention as the near-future applications of
quantum computers. Quantum chemical calculations are based
on the Schrödinger equation that is a fundamental equation in
quantum mechanics, and methods for accurate quantum che-
mical calculations potentially pave the way toward predictive
quantum chemistry. Variationally best possible wave functions
within the Hilbert space spanned by the basis set being used can
be obtained by employing the full-configuration interaction (full-
CI) calculations. However, the computational cost of full-CI
methods scales exponentially against the number of basis func-
tions relevant to the system size under study, and it easily reaches
astronomical figures even for small molecules2,3.

To date, two major approaches for the quantum chemical
calculations on quantum computers have been widely investi-
gated, namely quantum phase estimation (QPE)-based full-CI
calculations and a variational quantum eigensolver (VQE). The
QPE-based approach was proposed in 20054. It is based on the
quantum simulations of the time evolution of an approximated
wave function and projective measurement to the eigenstate of a
given Hamiltonian. The quantum circuit for the QPE-based full-
CI is too deep to be executed on noisy intermediate-scale quan-
tum (NISQ) devices currently available. The QPE-based
approach, however, is expected to be a powerful tool when
fault-tolerant quantum computing (FTQC) becomes available,
because the computational cost of the QPE-based full-CI scales
polynomially against the system size, and therefore exponential
improvement of the computational cost scaling from the classical
counterpart is guaranteed theoretically. In the QPE-based meth-
ods the time evolution of wave functions should be simulated
conditionally on the ancillary qubit, but this requirement is
recently removed by the appearance of the approach based on the
Bayesian phase difference estimation (BPDE) algorithm5. VQE is
a quantum–classical hybrid algorithm, and it utilizes para-
metrized quantum circuits to prepare correlated wave functions
and computes energy expectation values by statistical sampling of
the measurement outcome6. Classical computers are used to
perform the variational optimizations of parameters relevant to
the quantum circuits. VQE has been extensively studied from
both the experimental and theoretical sides, because the para-
metrized quantum circuit used for wave function preparation is
usually very shallow enough to be executed on NISQ devices. It
should be noted that, however, the computational cost scaling of
the VQE-based approaches has not been sorely elucidated yet,
and it is unclear whether quantum chemical calculations can be
accelerated by using VQE. For example, VQE calculations with
the unitary coupled cluster with singles and doubles (UCCSD)
ansatz scale polynomial. The approximate UCCSD calculations,
however, can also be done with the polynomial cost on a classical
computer, by solving the amplitude equation of the similarity
transformed Hamiltonian. Thus, the computational cost scaling
becomes polynomial vs. polynomial for the UCCSD calculations
on quantum and classical computers. Also, because the full-CI
wave function contains an exponentially large number of vari-
ables, solving the full-CI using VQE with naïve implementation
scales exponential. Recent reviews on quantum chemical calcu-
lations on quantum computers including QPE and VQE can be
found elsewhere7–13.

In the QPE-based full-CI calculations, the preparation of a
“good” approximated wave function having sufficiently large
overlap with the exact wave function of the target electronic state
is crucial. This is because the probability of which eigenenergy of

the electronic state can be obtained in the QPE is proportional to
the square overlap between the approximated and the exact wave
functions. If the approximated wave function has exponentially
small overlap with the eigenfunction of the target electronic state,
an exponentially large number of QPE experiments are required
to acquire the correct results, which spoils the advantages of a
quantum speedup. In the equilibrium geometry of typical closed-
shell singlet molecules and open-shell high-spin molecules car-
rying no unpaired electrons of spin-β, the Hartree–Fock (HF)
wave function |ΨHF〉 dominantly contributes to the full-CI wave
function of the electronic ground state, and the use of |ΨHF〉 is
generally a good choice. In the low-spin states of open-shell
molecules, by contrast, the wave function is approximated by the
linear combination of several Slater determinants so as to be an
eigenfunction of the S2 operator, and the overlap between |ΨHF〉
and |Ψfull-CI〉 becomes small. We demonstrated that the
symmetry-adapted configuration state function (CSF) can have a
large overlap with the full-CI wave function of open-shell low-
spin systems, and proposed quantum circuits to prepare the
|ΨCSF〉 on a quantum computer14,15. We also reported an
approach to generate multi-configurational wave functions on
quantum computers without performing any post-HF
calculations16, which is suitable for the study of the systems
with intermediate open-shell characters like molecules under
covalent bond dissociations. These approaches can effectively
consider static (nondynamical) electron correlation effects.
Although these approaches are useful to treat electronic states

of open-shell molecules, the overlap with the full-CI wave func-
tion becomes small when dynamical electron correlation effects
are also significant. Molecules having electronic structures too
complicated to deal with facile approaches like density functional
theory (DFT) are naturally one of the main targets of sophisti-
cated quantum chemical calculations, and the development of
theoretical methods to generate correlated wave functions con-
sidering both static and dynamical electron correlation effects on
quantum computers is an important task. Note that one of the
anticipated usage of VQE is the preparation of approximate wave
functions used as the input for QPE17, but recent numerical
simulations of VQE of the C2v quasi-reaction pathway of Be +
H2 → BeH2 reaction revealed that the variational parameter
optimization converges very slowly for strongly correlated
systems18.

Noticeably, recent years have witnessed that these promising
approaches are relevant to innovative development in simulating
quantum systems, such as Hamiltonian simulation. Adiabatic
state preparation (ASP)4 is an approach to generate correlated
wave functions based on an adiabatic theorem19. ASP belongs to
an adiabatic quantum algorithm20,21, in which the wave function
of the ground state of a problem Hamiltonian HP is generated
adiabatically, by starting from the ground state wave function of
an initial Hamiltonian HI and slowly varying the Hamiltonian by
using a scheduling function s(t) in Eq. 1 from 0 to 1.

H tð Þ ¼ 1� s tð Þð ÞHI þ s tð ÞHP ð1Þ
The scheduling function is often set as s(t)= t/T, where T is a

total evolution time length. By using |ΨHF〉 and a Fock operator as
the initial wave function and Hamiltonian, respectively, and the
full Hamiltonian as HP, we can obtain |Ψfull-CI〉 if the evolution
time T is long enough4. Note that an approach using the max-
imum commuting Hamiltonian as the initial Hamiltonian HI was
proposed recently22. ASP was adopted for the QPE-based full-CI
of H2 molecule using an NMR quantum computer23. ASP
numerical simulations of the 1 1A1 state of methylene (CH2)
molecule was reported in 201424, and the optimization of the
scheduling procedure by using VQE was discussed in 202125.
Application of the complete active space configuration interaction

ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-022-00701-8

2 COMMUNICATIONS CHEMISTRY | (2022)5:84 | https://doi.org/10.1038/s42004-022-00701-8 | www.nature.com/commschem

www.nature.com/commschem


(CASCI) wave function as the initial wave function and the
nonlinear scheduling functions s(t)= (t/T)c (0 < c < 1) was also
reported in 202126.
Although ASP is a long-term (or FCTC) algorithm because the

quantum circuit for ASP is usually too deep to execute on NISQ
devices, it is promising because it does not require detailed a
priori knowledge of the electronic structure of the system being
studied. However, ASP is potentially unsuitable for strongly
correlated systems, because the evolution time length T should be
set longer when it is applied to the systems with smaller energy
gaps between the ground and excited states. We also emphasize
that the number of ASP studies so far documented are very few,
and there has been little knowledge on the optimal computational
conditions of ASP, such as the setting of the evolution time length
and the selection of scheduling functions. Then, it is essential to
explore suitable computational conditions which help make ASP
as a practical tool for the preparation of correlated wave func-
tions, which is the main subject of this work. Note that variational
quantum imaginary time evolution (QITE) is also available for
the preparation of correlated wave functions27–30. However, the
total length of imaginary time propagation is determined by
the spectrum of the Hamiltonian and the initial overlap with the
exact wave function, and the application of QITE to strongly
correlated systems is also an important issue.
In this work, we have carried out numerical simulations of ASP

for the generation of correlated wave functions in the triple bond
dissociation of N2 molecule, the symmetric bond dissociation of
BeH2 molecule, and the C2v quasi-reaction pathway of beryllium
atom insertion to H2 molecule. We have explored the effects of
nonlinear scheduling functions and the ASP starting with a
broken-symmetry (BS) wave function |ΨBS〉 by using the electron
spin S2 operator as the penalty term in the time-dependent
Hamiltonian. As the scheduling function s(t) in Eq. 1, we
examined five different functions listed in Table 1 and plotted in
Fig. 1; all of them were studied as the scheduling function in
adiabatic algorithms by Hu and Wu31. An anticipated application
of ASP is the wave function preparation for QPE, and thus in this
study the quality of the wave functions obtained from ASP is
evaluated by means of the square overlap with the CASCI wave
function, |〈ΨASP|ΨCASCI〉|2. Note that to use ASP for the wave
function preparation in QPE, the evolution time required for ASP
must be significantly shorter than that needed in QPE (T ~ 2000
atomic unit to achieve 1 kcal mol−1 of energy precision16).
Eventually, we attempt to propose guidelines for the evolution
time length and the selection for starting wave functions toward
the practical use of ASP.

Results and discussion
Scheduling function and evolution time length dependences of
ASP in the potential energy curve of N2. First, we explored the
scheduling function and the evolution time length dependences of
ASP in N2 molecule with R(N–N)= 1.0, 2.0, and 3.0 Å. These
geometries are selected as the representatives of the structures
close to the equilibrium geometry where |〈ΨHF|ΨCASCI〉|2 is large,
in the intermediate bond dissociation region where neither the

|ΨHF〉 nor the |ΨCSF〉 are good approximation of the ground state,
and in the bond dissociated region where the |ΨCASCI〉 can be
approximate to a |ΨCSF〉. The numerical quantum circuit simu-
lation results with T= 10–100 are summarized in Fig. 2. The
number of quantum gates required for a single Trotter step is
about 6900. At the geometry R(N–N)= 1.0 Å, ASP gives the wave
function close to the |ΨCASCI〉 even for the shortest evolution
time length being tested (T= 10) regardless of the choice of the
scheduling functions. The scheduling function and evolution time
length dependences become significant for the longer N–N dis-
tances. Among the five scheduling functions being tested, the
sinusoidal function exhibits the fastest convergence to the CASCI
wave function against the evolution time length T. By employing
the sinusoidal function as the scheduling function, we need
T= 50 and 70 for R(N–N)= 2.0 and 3.0 Å, respectively, to
achieve |〈ΨASP|ΨCASCI〉|2 > 0.9. Longer evolution time is required
to achieve the same magnitude of the square overlap for the
elongation of the N–N bond, because the HOMO–LUMO gap
and the energy gap between the ground and excited states become
smaller for the elongated N–N distances. Plots of the S1−S0
energy gap of the instantaneous Hamiltonian (Fig. 3) indicate that
the s(x) value giving the minimum ΔE(S1−S0) value becomes
larger for the shorter R(N−N) values.
The trajectories of ASP of N2 in the geometry R(N–N)= 3.0 Å

with the evolution time length T= 100 are plotted in Fig. 4.
Among the five scheduling functions, the sinusoidal function
gives the smallest ΔEASP−CASCI value and the largest square
overlap at each time step. Note that the trajectories of the square
overlap calculated by using the linear and sinusoidal functions
oscillate in the beginning of ASP. This originates from the fact
that the gradient ∂E(t)/∂s(t) ≠ 0 at t= 031. The same trends were
also observed in the other geometries and molecules under study.
The reason why the sinusoidal function gave the best results

among the five scheduling functions can be explained by the
structure of the HF wave function and the energy landscape of
the instantaneous Hamiltonian. One has to set the evolution time
length prior to computation to apply ASP. The evolution time
length T is usually set to satisfy the condition in Eq. 232.

max
s2 0;1½ �

Ψg sð Þj∂sH sð ÞjΨe sð Þ
D E��� ���

εe sð Þ � εg sð Þ
��� ���2 � T ð2Þ

Here, |Ψg(s)〉 and |Ψe(s)〉 are the wave functions of the electronic
ground and excited states, respectively, of the instantaneous
Hamiltonian H(s), and εg(s) and εe(s) are the corresponding
energy eigenvalues. From Eq. 2, we can sweep the time-dependent
Hamiltonian faster if the energy gaps between the ground and the
excited states are large and if the numerator of Eq. (2) is small.

Table 1 Scheduling functions s(x) (x=m/M) tested in Eq. 1.

Name and abbreviation Function

Linear (Lin) s xð Þ ¼ x
Square (Squ) s xð Þ ¼ 3x2 � 2x3

Sinusoidal (Sin) s xð Þ ¼ sin πx=2
� �

Sinusoidal cubic (SinCub) s xð Þ ¼ sin3 πx=2
� �

Cubic (Cub) s xð Þ ¼ 6x5 � 15x4 þ 10x3

Fig. 1 Plots of the scheduling functions tested in Eq. 1. Mathematical
definitions of the scheduling functions are provided in Table 1.
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The |ΨHF〉 can be rewritten as |ΨHF〉= Σj cj|Ψj〉, where |Ψj〉 is the
jth eigenfunction and cj is the corresponding coefficient. Because
the |ΨHF〉 is spin and spatial symmetry-adapted, only the excited
states belonging to the same spin and spatial symmetry can have
non-negligible contribution to the numerator of Eq. 2 in the
absence of Trotter decomposition errors and noises. The
excitation energies of the corresponding excited states in the
weakly correlated regime are generally larger in the earlier stage of
ASP. This is because the Fock operator used as the initial
Hamiltonian contains the terms with occupied orbitals only, and
the excited states cannot be sufficiently stabilized under the Fock
operator. Thus, we can sweep the Hamiltonian faster in the earlier
stage of ASP, and the sweep speed must be attenuated by the time
evolution. The sinusoidal function has such a structure.
Note that Eq. 2 is insufficient, and it does not guarantee the

validity of the adiabatic approximation33,34. In fact, Marzlin and
Sanders claimed that the application of the adiabatic theorem may
lead to an inconsistency no matter how slowly the Hamiltonian is

Fig. 2 Results of the numerical quantum circuit simulation of N2 molecule. a,c,e The energy deviations from the CASCI values in (a) R(N–N)= 1.0 Å, (c)
R(N–N)= 2.0 Å, and (e) R(N–N)= 3.0 Å. b, d, f The square overlaps with the CASCI wave function in (b) R(N–N)= 1.0 Å, (d) R(N–N)= 2.0 Å, and (f)
R(N–N)= 3.0 Å.

Fig. 3 The S1−S0 energy gap of the instantaneous Hamiltonian H(s(x)) of
N2 molecule with the bond lengths R(N−N) = 1.0, 2.0, and 3.0 Å. The
ΔE(S1 − S0) values at s(x)= 0.0 and 1.0 corresponds to the energy gap of
the Fock operator and the full electronic Hamiltonian, respectively.
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varied33. They also pointed out that the inconsistency becomes a
potential problem whenever |Ψ(T)〉 deviates greatly from the
initial state |Ψ(0)〉. Strongly correlated systems can be the case of
such a small overlap |〈Ψ(0)|Ψ(T)〉| if the |ΨHF〉 is employed as
|Ψ(0)〉, and therefore the application of ASP to strongly correlated
systems is a challenging problem. The necessary and sufficient
condition for adiabatic evolution was discussed by Wang and
Plenio, by decomposing the diabatic propagator into the geometric
functions determined by the eigenstates and the modulation
functions determined by the energy gaps and the speed of
sweeping35. By utilizing these necessary and sufficient conditions
for adiabatic condition, Xu and coworkers demonstrated the
adiabatic evolution in the presence of vanishing energy gaps, using
a nitrogen-vacancy center in diamond36. It should be also noted
that approaches based on the shortcuts to adiabaticity (STA) have
been eagerly studied to manipulate the quantum system on
timescales shorter than decoherence time37, but it requires some
non-physical Hamiltonian in order to make it work, and it is still
an open and challenging problem.
Although Eq. 2 may lead to an inconsistency of the adiabatic

evolution33,34, it can be used as the guideline of the evolution time
length. Indeed, the variation of the wave function under the time-
dependent Hamiltonian, which is responsible for the inconsis-
tency, may be difficult to estimate in advance of the ASP
simulation, but the energy gap between the ground and the first
excited states can be roughly evaluated from the HOMO–LUMO
gap Δε= ε(LUMO)− ε(HOMO), where ε(HOMO) and ε(LUMO)
are the orbital energies of HOMO and LUMO, respectively. We
note that the HOMO–LUMO gap estimation is only a practical
approach. The exact energy landscape is required to fully adjust
the scheduling function s(x), which corresponds to solving the
problem altogether. However, the HOMO–LUMO gap can be
used for crude estimation of the excitation energy. These orbital
energies can be obtained from the HF calculations, and therefore
using the HOMO–LUMO gap for the determination of the
evolution time length does not need additional computation.
Excitation energy estimations based on the single excitation CI or
time-dependent DFT may be more reliable, but such computa-
tions inherently raise the computational cost. Based on this
strategy, we examined the following evolution time determination
methods: T= 5/Δε2 and T= 10/Δε2. In addition to them, we also
tested the evolution time length T= 20/Δε. The results of the
quantum circuit simulations with different evolution time length
determination strategies with the sinusoidal scheduling function
are summarized in Fig. 5. If we adopt the strategy T= 10/Δε2, we
can obtain the correlated wave function with the square overlap
|〈ΨASP|ΨCASCI〉|2 > 0.99 at all bond lengths under study, but the
evolution time for the longer N–N distance is quite long. The

strategy T= 5/Δε2 gives fairly good results except for intermediate
bond dissociation region. Considering the evolution time lengths
and the square overlap, the strategy T= 20/Δε seems to be most
suitable for ASP of the triple bond dissociation in N2. The same
trend was observed for the other scheduling functions, although
the deviations from the CASCI result are larger for the other
functions than the sinusoidal one (see Supplementary Fig. S2).

Fig. 4 Trajectories of ASP with T = 100 in N2 molecule with R(N–N) = 3.0 Å. a The energy deviations from the CASCI value. b The square overlaps with
the CASCI wave function.

Fig. 5 Results of the numerical simulation of ASP with different evolution
time length determination strategies in N2. Sinusoidal function is used for
the scheduling function. a Evolution time length being tested. b The energy
deviations from the CASCI values. c The square overlaps with the CASCI
wave functions.
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ASP with broken-symmetry wave functions and the S2 penalty
term in the potential energy curve of N2. It is naturally expected
that the use of multiconfigurational wave functions gives a
plausible choice for the starting wave function in strongly cor-
related systems. In fact, Kremenetski and coworkers reported that
substantial speedup of ASP can be achieved by using the CASCI
wave function as the starting wave function26. However, encoding
the CASCI wave function on a quantum register becomes non-
trivial when the active space of CASCI is large. Here, we examine
an alternative and facile approach of ASP for strongly correlated
systems by adopting the BS wave function |ΨBS〉 as the starting
wave function with the S2 operator as the penalty term in the
time-dependent Hamiltonian. The BS methods have been widely
used in the DFT calculations of open-shell low-spin states such as
spin-singlet states of biradicals38–40. The |ΨBS〉 is a single Slater
determinant with spin-β unpaired electrons in the localized singly
occupied molecular orbitals (SOMOs). The |ΨBS〉 is an eigen-
function of the Sz operator but is not an eigenfunction of the S2

operator, and thus the |ΨBS〉 is expressed by a linear combination
of wave functions having different spin quantum numbers S, as in
Eqs. 3 and 4 for four- and six-spin MS= 0 BS wave functions,
respectively, for example.

jααββi ¼ 1ffiffiffi
6

p jΨS¼2;MS¼0i þ
1ffiffiffi
2

p jΨS¼1;MS¼0i þ
1ffiffiffi
3

p jΨS¼0;MS¼0i

ð3Þ

jαααβββi ¼ 1ffiffiffiffiffi
20

p jΨS¼3;MS¼0i þ
1
2
jΨS¼2;MS¼0i þ

3ffiffiffiffiffi
20

p jΨS¼1;MS¼0i

þ 1
2
jΨS¼0;MS¼0i

ð4Þ
The coefficients in the right-hand side of Eqs. 3 and 4 can be

derived from the structure of spin eigenfunctions41. The
eigenvalue of the S2 operator is S(S + 1), and the expectation
values of the S2 operator of the wave functions given in Eqs. 3 and
4 are calculated to be 2.0 and 3.0, respectively.

Because the quantum state corresponding to the |ΨBS〉 can be
prepared on a quantum computer with the same cost as the
preparation of |ΨHF〉 regardless of the number of singly occupied
orbitals, it is possible to use the |ΨBS〉 as the starting wave
function in ASP. The wave function components having the spin
quantum number different from the target electronic state can be
eliminated by introducing the S2 operator as the penalty term in
the time-dependent Hamiltonian H(t), as in Eq. 5.

H tð Þ ¼ 1� s tð Þð ÞHI þ s tð ÞHP þ s tð ÞcS2 ð5Þ
Here, c is a coefficient that controls the strength of the penalty
term. The S2 operator as the penalty term works to raise the
energy of the wave function with the spin quantum number S by
cS(S + 1), and therefore spin contaminants can be readily
eliminated during ASP. We expect that ASP starting from |ΨBS〉
can generate multiconfigurational wave functions efficiently, just
as the spin-projected extended Hartree–Fock (EHF) method42 in
classical computation that applies the spin projection operator to
the spin contaminated UHF wave function. In Eq. 3, larger c
values can shift the energies of the spin contaminants greatly, but
too large c values will result in departure from the adiabatic
pathway. Note that we have already proposed a method to
construct a quantum circuit for the time evolution operator
exp(−is(t)cS2t) by utilizing a generalized spin coordinate
mapping43, which can be directly used for the present ASP study.

The results of the ASP starting from the six-spin |ΨBS〉 (the
wave function in Eq. 4) with c= 0.5, the square scheduling
function, and the evolution time length T= 10–100 of N2

molecule at R(N–N)= 3.0 Å are summarized in Fig. 6, and the
results obtained by using the other scheduling functions are given
in Supplementary Fig. S3–S6. Interestingly, ASP starting with the
|ΨBS〉 gave the square overlap |〈ΨASP|ΨCASCI〉|2 larger than 0.995
even for T= 20. The scheduling function dependence on ASP
with the |ΨBS〉 with the total evolution time T= 50 were plotted
in Fig. 7. The |〈ΨASP|ΨCASCI〉|2 values calculated by using the
square, sinusoidal cubic, and cubic scheduling functions asymp-
totically approach unity for longer N–N distances. These three
scheduling functions exhibit the best square overlap values in
the bond dissociation region. No significant differences were
observed among these scheduling functions, but the square
function gave larger square overlap than the sinusoidal cubic and
cubic functions for shorter N–N bond lengths. Importantly, the
square, sinusoidal cubic, and cubic scheduling functions gave
almost spin-pure wave functions with 〈S2〉ASP ≈ 0, although spin
contaminations were not eliminated completely in the |ΨASP〉
generated by employing the sinusoidal and linear scheduling
functions. In the following discussions we used the square
scheduling function for ASP with the |ΨBS〉 wave functions.

Again, the reason why the square, sinusoidal cubic, and cubic
scheduling functions gave good results can be explained by the
structure of wave functions and the energy landscape of the

Fig. 6 Results of the numerical simulation of ASP with |ΨBS〉 as the
starting wave function and square function as the scheduling function in
N2 molecule at R(N–N) = 3.0 Å. a The energy deviations from the CASCI
values. b The square overlaps with the CASCI wave functions. c The 〈S2〉
values.
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adiabatic evolution pathway. As given in Eqs. 3 and 4, the |ΨBS〉 is
expressed by the linear combination of electronic states belonging
to different spin multiplicities. These electronic states have similar
energies in the beginning of ASP, but the quasi-degeneracy is
gradually lifted as the ASP proceeds, owing to the S2 operator
introduced as the penalty term in the Hamiltonian. Therefore,
variation of the Hamiltonian must slow in the earlier stage of
ASP, if the |ΨBS〉 is used as the starting Hamiltonian. All the
square, sinusoidal cubic, and cubic functions have zero gradient
ds(x)/dx= 0 at x= 0, which is very important to acquire good
wave functions in the ASP with the |ΨBS〉.

Note that ASP with the |ΨBS〉 has not only advantages
described above but also disadvantages. The BS method generally
breaks the spatial symmetry as well as the spin symmetry, because
the localized orbitals are prepared by taking a linear combination
of HOMO – i and LUMO + i orbitals. In the ASP starting from
|ΨHF〉, we can utilize the point group symmetry to reduce the
number of the nonzero Hamiltonian terms, but such reduction is
not applicable for the |ΨBS〉 with localized MOs. In addition, the
computational cost of the time evolution operator under the S2

operator, exp(−iS2t) also pushes the computational cost of ASP.
The scaling of the computational cost of simulating exp(−iS2t) is

O(nMO
2M), where nMO is the number of molecular orbitals in the

active space and M refers to the number of ASP steps. As a result,
the computational cost of each ASP step is larger by using the
|ΨBS〉 than that for using the |ΨHF〉, especially for the molecular
systems with high point group symmetry. However, for large
molecular systems, it is possible to take advantage of the locality
of MOs to reduce the computational cost, by ignoring the
Hamiltonian terms having the norms smaller than the
threshold44. It should be also noted that our numerical
simulations suggest QITE can be also accelerated by using the
|ΨBS〉 as the starting wave function in conjunction with the S2

penalty term in the Hamiltonian.

A criterion for the switching of the starting wave function. In
the previous section, we demonstrated that ASP using the |ΨBS〉
converges quickly in the region of the bond dissociation. How-
ever, we can expect that the |ΨHF〉 is more suitable for the starting
wave function of ASP around the equilibrium geometry. It should
be also noted that the BS-UHF calculation converges to the RHF
solution for shorter bond lengths. Constructing a guideline for the
switching of the starting wave function is important toward
practical application of ASP to other molecular systems.
Here, we have examined a criterion for selecting the starting

wave function based on diradical characters y45,46. Diradical
characters are used as the measure of open shell electronic
configurations. At the spin-projected UHF level, they can be
calculated from the occupation number of the unoccupied natural
orbitals nLUNO+i, using Eq. 646.

yi ¼ 1� 2 1� nLUNOþi

� �
1þ 1� nLUNOþi

� �2 ð6Þ

In the triple bond dissociation of N2 molecule, two types of
diradical characters can have significant values: y(π)= y0= y1
and y(σ)= y2, those reflect open shell electronic configurations in
the valence π and σ bonds, respectively. Thus, there are two
possible choices of the |ΨBS〉 in the ASP study of the potential
energy curve of N2 molecule, |ΨBS2〉 and |ΨBS3〉. The |ΨBS2〉 is the
four-spin BS wave function where two π orbitals are treated by
means of the BS approach. The |ΨBS3〉 is a six-spin BS wave
function and both the σ and π orbitals are dealt with the BS
framework.
We assume that the BS treatment is more feasible if the

corresponding diradical character is larger. Following this
assumption, we explored the threshold value of the diradical
characters for the switching of the starting wave function. By
setting the evolution time length T= 20/Δε for the ASP with the
|ΨHF〉 and T= 50 for that with the |ΨBS〉, we found that setting
the threshold value for the diradical characters to be 0.6 gives
fairly good results, from the viewpoints of both the evolution time
length and quality of the |ΨASP〉, in the potential energy curve of
N2 molecule (Fig. 8). This is the result of particular ASP
conditions, N2 molecule with (6e,6o) active space and STO-3G
basis set with the sinusoidal and square scheduling functions for
the |ΨHF〉 and the |ΨBS〉, respectively, and it is natural that
different molecular systems and different computational condi-
tions will give different optimal threshold values for the switching
of the starting wave function. We also carried out the ASP
simulations of N2 molecule using the 6-31G* and 6-311G* basis
sets with (6e,6o), (10e,8o), (6e,8o), and (10e,10o) active spaces,
obtaining qualitatively the same results (see Supplementary
Note 4). Nevertheless, the exploration of other molecular systems
is necessary to get further insight of ASP. In the following
sections, we describe the results of ASP in the potential energy
curve under the symmetric Be–H bond dissociation in the linear

Fig. 7 Numerical simulation results of the scheduling function
dependence on ASP with the |ΨBS〉 as the starting wave function and
T= 50 in N2 molecule. a The energy deviations from the CASCI values.
b The square overlaps with the CASCI wave functions. c The 〈S2〉 values.
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BeH2 molecule, and the C2v quasi-reaction pathway of the Be +
H2 → BeH2 reaction.

Potential energy curve of the symmetric bond dissociation in
the linear BeH2. BeH2 is a linear molecule with R(Be–H)= 1.326 Å
in the equilibrium geometry47. Symmetric elongation of two Be–H
bonds generates a Be atom in the (1s)2(2s)2 closed-shell singlet
electron configuration and two H atoms. In this work, we have
explored the potential energy curve in the range of R(Be–H) from
0.7 to 4.0 Å. The BS-UHF/STO-3G calculations converged to the
RHF solution at the bond length R(Be–H)= 1.9 Å and shorter.
The calculated diradical character y is plotted in Fig. 9a. By adopting
the criterion for selecting the starting wave function discussed in the
previous section, we expect that the |ΨBS〉 is suitable for the starting
wave function of ASP at the bond length R(Be–H)= 2.5 Å and
longer. The quantum circuit simulation results are summarized in
Fig. 9. By switching the starting wave function from the |ΨHF〉 to the
|ΨBS〉 at the bond length R(Be–H)= 2.5 Å, we obtained the |ΨASP〉
with the square overlap |〈ΨASP|ΨCASCI〉|2 > 0.98 for all the bond
lengths being studied. These results exemplify the usefulness of the
diradical character as the indicator of the starting wave function
switching. However, the |〈ΨASP|ΨCASCI〉|2 values are slightly larger
in the geometries with intermediate diradical characters (R(Be–H) ~
2.4 Å). The ASP simulations with the longer evolution time revealed
that we can achieve |〈ΨASP|ΨCASCI〉|2 > 0.998 for T= 200 and 100

with |ΨHF〉 and |ΨBS〉, respectively, as the starting wave function (see
Supplementary Figs. S16 and S17). We also examined the numerical
simulations by using the other scheduling functions for ASP with
the |ΨHF〉 and the evolution time length T= 20/Δε. The results are
summarized in Supplementary Fig. S18, insisting that the sinusoidal
function is suitable for the scheduling function.

The C2v quasi-reaction pathway of Be atom insertion to H2.
Finally, we have examined ASP in the C2v quasi-reaction pathway
of the Be atom insertion to H2 molecule. This system has been
widely studied as the model of strongly correlated electronic
structures48–52. Cartesian coordinates of H atoms are summar-
ized in Table 2. The reaction pathway contains the S0–S1 avoided
crossing at the transition structure (point E in Table 2), and the
energy gap between the S0 and S1 states becomes small around the
transition structure.
Results of the numerical quantum circuit simulations are

summarized in Fig. 10. By using the |ΨHF〉 as the starting wave
function and setting the evolution time length as T= 20/Δε and
using the sinusoidal scheduling function, we obtained the
correlated wave function with the square overlap close to unity,
except for point E. To disclose the convergence behavior of ASP
at point E, we examined the ASP simulations with longer
evolution time lengths T= 200, 300, 400, and 500. The square
overlaps were calculated to be |〈ΨASP|ΨCASCI〉|2= 0.9308, 0.9720,

Fig. 8 Results of the numerical simulation of ASP of the potential energy curve for N2 molecule, using the diradical characters as the indicator for
selecting the initial wave function. Background colors specify the regions of the initial wave function recommended from the criterion based on the
diradical character y > 0.6. Sinusoidal and square functions were adopted as the scheduling functions with the |ΨHF〉 and |ΨBS〉, respectively, as the starting
wave function. a Diradical characters calculated using Eq. 6. b Evolution time lengths. c The energy differences from the CASCI values. (d) The square
overlaps with the CASCI wave functions.
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0.9894, and 0.9962, respectively, and thus the convergence of the
square overlap against the evolution time length T is very slow.
The simulations around point E with finer geometrical changes
revealed that the square overlap is smaller for the geometry closer
to the transition structure (see Supplementary Note 7). We also
computed the energy landscape of the instantaneous Hamiltonian
at point E, finding that the S1 and S0 states become almost gapless

around s(x)= 0.9 (see Supplementary Fig. S19). The 16, 14, and
12 qubit ASP simulations by removing the highest virtual orbitals
one by one gave the square overlaps |〈ΨASP|ΨCASCI〉|2= 0.8464,
0.8538, and 0.9751, respectively. These results exemplify that
selecting appropriate active orbitals is essential to obtain
sophisticated wave functions from ASP. In fact, 16 qubit ASP
simulations using the natural orbitals constructed from CISD/6-
31G* calculations gave the square overlap larger than 0.98 for all
points being studied (see Supplementary Fig. S21).
The BS-UHF calculations revealed that points D, E, and F have

non-negligible diradical characters. The diradical characters were
calculated to be y= 0.2991, 0.7851, and 0.6125 for points D, E,
and F, respectively. The diradical character indicates that the
|ΨBS〉 is suitable for the starting wave function of ASP in points E
and F. Our numerical simulations revealed that ASP with the
|ΨBS〉 gave larger square overlap values with the CASCI wave
functions not only at points E and F but also at point D, with
shorter evolution time length than ASP with the |ΨHF〉. More
extended studies are necessary to thoroughly understand the
performance of ASP, which is left as future work.

Conclusions
In this work, we have examined the numerical quantum circuit
simulations of ASP in N2 and BeH2 molecules, seeking practical
computational conditions for the generation of correlated wave

Fig. 9 Results of the numerical simulation of ASP of the potential energy curve of the symmetric bond dissociation in BeH2 molecule, using the
diradical character as the indicator for selecting the initial wave function selection. Background colors specify the regions of the initial wave function
recommended from the criterion based on the diradical character y > 0.6. Sinusoidal and square functions were adopted as the scheduling functions with
the |ΨHF〉 and |ΨBS〉, respectively, as the starting wave function. a Diradical characters calculated using Eq. 6. b Evolution time lengths. c The energy
differences from the CASCI values. d The square overlaps with the CASCI wave functions.

Table 2 Cartesian coordinates of H atoms for the points
being studied in the Be + H2 → BeH2 reaction, in units of
Bohr[a].

Point X Y Z

A 0.000 ±2.540 0.000
B 0.000 ±2.080 1.000
C 0.000 ±1.620 2.000
D 0.000 ±1.390 2.500
E 0.000 ±1.275 2.750
F 0.000 ±1.160 3.000
G 0.000 ±0.930 3.500
H 0.000 ±0.700 4.000
I 0.000 ±0.700 6.000

[a]Be atom is located at the origin of coordinates.
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functions having the square overlap with the CASCI wave func-
tion close to unity. The numerical quantum circuit simulations
revealed that if the |ΨHF〉 is employed as the starting wave
function, the sinusoidal function s(x)= sin(πx/2), where x= t/T,
gives the wave function having large square overlaps for shorter
evolution time lengths among the five scheduling functions being
tested. By using the |ΨHF〉 as the starting wave function, the
evolution time length required to achieve sufficiently large square
overlap with the CASCI wave function increases with increasing
the open-shell character and decreasing the HOMO−LUMO gap.
By setting the evolution time length T= 20/Δε, where Δε denotes
the HOMO−LUMO gap, we can obtain the correlated wave
function with the square overlap larger than 0.95, except for point
E as given in the Be + H2 → BeH2 reaction pathway. By contrast,
by using the |ΨBS〉 as the starting wave function and introducing
the S2 operator as the penalty term in the time-dependent
Hamiltonian, the ASP simulations with the square function
s(x)= 3x2 − 2x3, sinusoidal cubic function s(x)= sin3(πx/2), and
cubic function s(x)= 6x5 − 15x4 + 10x3 gave the correlated wave
function with the square overlap close to unity with substantially
shorter evolution time length than ASP with the |ΨHF〉 when the
diradical character y is large. The results of the present numerical
quantum circuit simulations indicate that ASP is capable of
generating the correlated wave functions with sufficiently large
square overlap with the CASCI wave function by switching the

starting wave function from the |ΨHF〉 to the |ΨBS〉 and simul-
taneously changing the scheduling function from the sinusoidal
to the square functions, when the diradical character exceeds 0.6.
ASP numerical simulations with larger basis sets revealed the
importance of the appropriate active space selections based on the
occupation number of natural orbitals to acquire sophisticated
wave functions from ASP.
It should be emphasized that the computational conditions

described in this paper do not have to be optimal for any
molecular systems. The number of theoretical and experimental
studies of ASP is not many and more elaborated investigations
are necessary to shed light on the performance of ASP. Another
important direction of the study of ASP is to connect to the
QPE algorithms including the Bayesian phase difference estima-
tion algorithm, which is a controlled-time evolution-free
algorithm5,53. The relevant studies are underway and will be
published in the forthcoming paper.

Methods
Adiabatic state preparation. Assume that the quantum system is in the ground
state of an initial Hamiltonian HI at t= 0, and the Hamiltonian of the system
changes slowly. If the variation of the Hamiltonian is sufficiently slow, the system
remains in the ground state of the instantaneous Hamiltonian at t > 0, which is
known as an adiabatic theorem19. ASP utilizes the adiabatic theorem to obtain the
full-CI wave function, by using the Fock operator F defined in Eq. 7 as HI and the

Fig. 10 Results of the numerical simulation of ASP of the C2v quasi-reaction pathway of Be + H2 → BeH2, using the diradical character as the indicator
for selecting the initial wave function. Background colors specify the regions of the initial wave function recommended from the criterion based on the
diradical character y > 0.6. Sinusoidal and square functions were adopted as the scheduling functions with the |ΨHF〉 and |ΨBS〉, respectively, as the starting
wave function. a Diradical characters calculated using Eq. 6. b Evolution time lengths. c The energy differences from the CASCI values. d The square
overlaps with the CASCI wave functions.
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electronic Hamiltonian H in Eq. 8 as HP.

F ¼ ∑
i
hiia

y
i ai þ

1
2
∑
ij

hijjia
y
i a

y
j ajai þ hijija

y
i a

y
j aiaj

� �
ð7Þ

H ¼ ∑
pq
hpqa

y
paq þ

1
2
∑
pqrs

hpqrsa
y
pa

y
qaras ð8Þ

Throughout this paper, we used indices i and j for the occupied spin orbitals in
the starting wave function, a and b for the unoccupied spin orbitals, and p, q, r, and
s for general spin orbitals. hpq and hpqrs are one- and two-electron molecular orbital
(MO) integrals defined in Eqs. 9 and 10, respectively. ap† and ap are creation and
annihilation operators, respectively, acting on the pth spin orbital.

hpq ¼
Z

ϕ�p rð Þ � 1
2
∇2 �∑

A

ZA

r � RA

�� ��
 !

ϕq rð Þdr ð9Þ

hpqrs ¼
Z Z

ϕ�p rð Þϕ�q r0ð Þ 1
r0 � rj j ϕr r

0ð Þϕs rð Þdrdr0 ð10Þ
In Eq. 9, A runs over atoms, and ZA and RA are the atomic number and spatial

coordinates, respectively, of atom A. ϕp is the spatial part of the spin orbital of p.
In order to implement ASP on a gate model quantum computer, the adiabatic

evolution is usually discretized: the evolution time length T is divided into M steps,
and the time evolution under the time-independent Hamiltonian Hm in Eqs. 11
and 12 is simulated.

jΨðTÞi ¼ e�iHMt=M � � � e�iH2 t=M � e�iH1 t=M jΨIi ð11Þ

Hm ¼ 1� s m=M
� �� �

HI þ s m=M
� �

HP ð12Þ
There are several error sources in ASP. For example, if the evolution time length

T is too short to follow the adiabatic path or if the step number M is too small and
the Hamiltonian of the (m + 1)th step is too different from that of the mth step, the
probability to cause nonadiabatic transitions to other electronic states becomes
large and the wave function obtained from ASP is expected to have smaller overlap
with the exact wave function. Error sources inherent in quantum computing such
as decoherence and errors arising from Trotter decomposition, as discussed in the
next section, also affect the quality of the wave function. Note that the
computational cost of ASP increases linearly to the step number M, although the
finer time steps generally give the wave function with the larger overlap with the
exact wave function.

Quantum chemical calculations on a quantum computer. To execute ASP on a
gate model quantum computer, wave functions are mapped onto qubits by using a
fermion–qubit transformation technique, and the quantum circuit corresponding
to the time evolution operator is constructed by using basic quantum gate sets54.
Several fermion–qubit transformation techniques have been proposed55–58, and in
this work we adopted a Jordan–Wigner transformation (JWT)4,55. In the JWT, the
wave function of the N spin-orbital systems is mapped onto N qubits, and each
qubit stores an occupation number of a particular spin orbital: the qubit is in the
|1〉 state if the corresponding spin orbital is occupied by an electron, otherwise in
the |0〉 state. The creation and annihilation operators appearing in the second
quantized Hamiltonian (Eqs. 7 and 8) are transformed onto the direct products of
Pauli operators (Pauli strings) using Eqs. 13 and 14, respectively.

ayp ¼
1
2

Xp � iYp

� �
�
Yp�1

r¼1
Zr ð13Þ

ap ¼
1
2

Xp þ iYp

� �
�
Yp�1

r¼1
Zr ð14Þ

Here, Xp, Yp, and Zp are Pauli operators defined in Eqs. 15–17, acting on the pth
qubit.

X ¼ 0 1

1 0

� 	
ð15Þ

Y ¼ 0 �i

i 0

� 	
ð16Þ

Z ¼ 1 0

0 �1

� 	
ð17Þ

By applying the JWT, the second quantized Hamiltonians in Eqs. 7 and 8 are
transformed onto qubit Hamiltonians consisting of a linear combination of Pauli
strings, as in Eqs. 18 and 19.

H ¼ ∑
K

k¼1
ωkPk ð18Þ

Pk ¼ σN � σN�1 � � � � � σ1; σ 2 I; X; Y; Zf g ð19Þ
The time evolution operator U is defined as in Eq. 20. Trotter–Suzuki

decomposition59,60 is usually used to decompose the time evolution operator and
to construct the corresponding quantum circuits. The time evolution operators

obtained by applying the first- and second-order Trotter–Suzuki decompositions
are given in Eqs. 21 and 22, respectively61.

U ¼ exp �iHtð Þ ¼ exp �i∑K
k¼1ωkPkt

� � ð20Þ

U �
YK

k¼1
exp �iωkPkt=L
� �h iL ð21Þ

U �
YK

k¼1
exp �iωkPkt=2L
� �Y1

k¼K
exp �iωkPkt=2L
� �h iL ð22Þ

Note that magnitude of the Trotter decomposition error depends on the
ordering of terms. It is known that the magnitude ordering in which Hamiltonian
terms are applied in the descending order of the absolute value of the coefficient
|ωk| often gives smaller Trotter decomposition errors than the lexicographical
ordering that is an ordering scheme, which maximizes the similarity of the Pauli
strings of adjacent terms62,63. Once the Trotter decomposition is applied, the
quantum circuit corresponding to the operator exp(−iωkPkt/L) is constructed by
following the literature54. Supplementary Fig. S1 illustrates the quantum circuit
corresponding to the operator exp(−iωX0Z1Z2X3t) as an example. Definitions of
the quantum gates are also given in the Supplementary Note 1.

Implementation of ASP. ASP can be implemented by the following procedures. (1)
Perform the RHF or BS-UHF calculations using conventional quantum chemistry
program packages and compute the molecular integrals defined in Eqs. 9 and 10. (2)
Divide the electronic Hamiltonian (Eq. 8) into the Fock operator (Eq. 7) and the rest
terms, and apply fermion–qubit transformation to them to obtain corresponding
qubit Hamiltonians. (3) Set the computational conditions for ASP. Select the initial
wave function, scheduling function for adiabatic evolution, total evolution time, time
for the single Trotter step, strategy for Trotter term ordering, and so on. (4) Compute
the instantaneous Hamiltonian at each discretized time step, and construct the
quantum circuit corresponding to the time evolution operator. (5) Encode the
starting wave function on the Norb of qubits, where Norb is the number of spin orbitals
in the active space, and execute the quantum circuit constructed in the step 4.

The steps 1–4 above are performed on a classical computer, and the step 5 is the
main part of the ASP computation. If we adopted |ΨHF〉 as the starting wave
function and the JWT for fermion–qubit transformation, the wave function
encoding described in the step 5 can be done by applying the Pauli-X (NOT) gates
to the qubits storing the occupation number of occupied orbitals in the |ΨHF〉 to
the quantum states initialized to the |00…0〉 state.

Note that in most of adiabatic quantum computing problems the initial
Hamiltonian contains the terms those are not included in the final Hamiltonian.
On the contrary, all the terms in the Fock operator in Eq. 7 are included in the
electronic Hamiltonian in Eq. 8. Therefore, the instantaneous Hamiltonian H(m)
defined in Eq. 12 can be rewritten as in Eq. 23, where Fock specifies the qubit
Hamiltonian corresponding to the Fock operator.

H mð Þ ¼ ∑
Pk2Fock

ωkPk þ ∑
Pl=2Fock

s m=M
� �

ωlPl ð23Þ

In the quantum circuit level, the quantum circuit at each time step has exactly
the same structure with different rotational angles θ of the Rz gate (see
Supplementary Fig. S1).

Computational conditions. In this work, we have focused on three molecular sys-
tems: the potential energy curve of the triple bond dissociation of N2 molecule, the
symmetric Be–H bond dissociations in linear BeH2 molecule, and the C2v quasi-
reaction pathway of a Be atom insertion to a H2 molecule, at the CASCI level of
theory. For the study of the potential energy curve of N2 molecule under the triple
bond dissociation, we used the STO-3G basis set in conjunction with the six electrons
in the six orbital (6e, 6o) active space consisting of valence σ/σ* and π/π* orbitals. The
potential energy curve of BeH2 molecule under the symmetric Be–H bond cleavage
was studied by using the STO-3G basis set and the full-valence (4e, 6o) active space.
The quasi-reaction pathway of Be + H2 → BeH2 was investigated by using the basis
set comprised of (10s 3p)/[3s 1p] for Be and (4s)/[2s] for H, which was used by Purvis
and coworkers44 for the study of the same system. Frozen core orbital approximation
was adopted for the CASCI calculations and thus the active space is (4e, 9o).

For the numerical quantum circuit simulations of ASP executable on classical
computers, we developed a python program by utilizing Cirq64 and
OpenFermion65 libraries. The step number M in Eqs. 11 and 12 was set to be
M ¼ d2Te using a ceil function, and the quantum circuit for the time evolution
operator of each step was constructed by adopting the second-order Trotter–Suzuki
decomposition with L= 1 in Eq. 22. We used the magnitude ordering for the
Trotterized time evolution operators, and the ordering of the terms were optimized
for every time step.

For the preparation of the starting wave functions of ASP, we performed the
RHF and the BS-UHF calculations using GAMESS-US program package66. One-
and two-electron atomic orbital integrals were also computed using GAMESS-US
software, and MO integrals hpq and hpqrs in Eqs. 9 and 10 were generated by using
our own AO → MO integral transformation program.
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Data availability
The data that support the findings on this study are available from the corresponding
authors on reasonable request.

Code availability
The python source code for the numerical quantum circuit simulations of ASP and
integral files are available via github repository: https://github.com/Kenji-Sugisaki/ASP.
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