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A method to intensify the mixing process of scalar components within shear-thinning fluids was proposed. 

A conical Taylor–Couette flow enabled fluid elements to circulate in the entire fluid column owing to the 

global circulation flow (i.e., meridional flow) for keeping good local mixing within Taylor cells. The global 

convection and mixing characteristics were numerically investigated. The meridional flow was found to 

be enhanced with increasing shear-thinning. In addition, the mixing performance was evaluated using a 

passive tracer. Global mixing with shear-thinning fluids was promoted by the enhanced meridional flow 

compared with that of Newtonian fluids. Therefore, the conical Taylor–Couette apparatus could be used 

for intensifying mixing processes in shear-thinning fluid systems. 
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1 Introduction 

The mixing of complex fluids, such as a non-Newtonian fluid, is one of the most difficult processes in 

the chemical, food, and pharmaceutical industries. These industries frequently involve the use of highly 

viscous shear-thinning fluids. When such fluids are stirred using a traditional stirred vessel, their viscosity 

spatially varies with the shear-rate distribution in the vessel. This viscosity distribution leads to the 

segregation of the fluid flow. In a laminar flow region, a highly viscous shear-thinning fluid shows relatively 

active fluid flow in the low-viscosity (high-shear-rate) region but inactivity in the high-viscosity (low-shear-

rate) region. In other words, the fluid flow is limited to the high-shear-rate region. As a result, in a stirred 

vessel, a cavern often forms around the impeller [1]. Some studies have provided a practical correlation 

equation to predict various characteristics such as the cavern size and power consumption [2, 3]. Further, 

a novel mixer could mitigate the segregation of the fluid flow. For example, in order to destroy the cavern, 

Pakzad et al. [4] reported an energy-efficient coaxial mixer for non-Newtonian fluid mixing. However, 

Ohmura et al. [5] noted that cavern formation in the stirred vessel is unavoidable unless excess energy is 

injected by the impeller to make the fluid circulate through the whole region. Thus, the process design of 

non-Newtonian fluid mixing needs to be revolutionized to be made sustainable. 
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In industries that frequently involve non-Newtonian fluid mixing, the sophisticated control of the 

internal structure of final products, rather than complete homogenization, is desirable. Therefore, a 

gentle mixing process must be developed. A Taylor−Couette flow, that is, the flow between coaxial 

cylinders with the inner one rotating, can be used for realizing gentle and effective mixing. Above a critical 

Reynolds number (Re) in the circumferential direction, pairs of counterrotating toroidal vortices (i.e., 

Taylor cells) spaced regularly along the axis appear. Mixing and heat/mass transfer are enhanced by the 

toroidal motion within Taylor cells. In addition, all cells move in a single line without breakdown if a 

relatively small axial flow is added, that is, all fluid elements undergo the same process 

(Taylor−Couette−Poiseuille flow) [6]. Therefore, a Taylor−Couette flow can be used as a continuous ideal 

plug flow reactor. Accordingly, many studies have tried to intensify various processes using a 

Taylor−Couette flow reactor, including polymerization [7], enzymatic reaction [8, 9], heat sterilization [10] 

and gas−liquid contactor [11]. 

A Taylor−Couette flow is suitable for not only a continuous reactor but also a batch-type mixing device. 

Unlike in a traditional stirred vessel, a locally high shear force is not imposed, making a Taylor−Couette 

flow beneficial for bioprocesses such as the cultivation of animal cells [12]. Masuda et al. [13] noted that 

the shear-rate distribution in a Taylor−Couette flow apparatus is much narrower than that in a stirred 

vessel. As a result, in a non-Newtonian fluid system, a viscosity distribution that reduces the mixing 

efficiency is suppressed. Thus, a Taylor−Couette flow could serve as an excellent batch-type mixing device 

for non-Newtonian fluid processes with shear-sensitive materials. Unfortunately, a Taylor−Couette flow 

prevents global mixing within the reactor because of a mass transfer barrier by each inflow boundary 

when it is used as a batch-type mixing device [14]. This disadvantage can be overcome by using a conical 

Taylor−Couette flow. In such a flow, the centrifugal force changes axially and increases with the conical 

radius. This axially distributed centrifugal force results in a three-dimensional basic flow circulating within 

the apparatus, also called a meridional flow. Wimmer [15] reported that the fluid is discharged at the 

largest radius, moves down in spirals to the smallest radius near the stationary shell, and returns to the 

largest radius near the rotating cone. The large circulation enhances global mixing at even a low Re, thus 

maintaining good local mixing performance within Taylor cells when used as a batch reactor for 

polymerization or biochemical processes [16]. Furthermore, in a non-Newtonian fluid system, the large 

circulation is expected to prevent the localization of the mixing or unmixing region. Therefore, the mixing 

performance of a conical Taylor−Couette flow with non-Newtonian fluids must be investigated further. 

The present study aims to numerically investigate the characteristics of a conical Taylor−Couette flow 

with shear-thinning and the mixing performance based on passive scalar transport. A numerical 

simulation is quite useful for understanding detailed information of fluid flow and mixing. Furthermore, 

to develop a mixing device using a conical Taylor−Couette flow, the geometry, including the apex angle, 

should be optimized. However, it is difficult to experimentally realize systems with various apex angles 

and parameters owing to experimental costs. Thus, as preliminary study, a numerical simulation is 

performed. 

 

2. Numerical Simulation 

2. 1. Computational Domain and Governing Equations 

Figure 1 shows the computational domain. The minimum radii of the inner and outer conical cylinders 

were fixed as Ril = 0.024 m and Rol = 0.032 m, respectively, at the bottom of the domain. The height of the 

conical cylinder, H, was 0.125 m. The gap width between conical cylinders, d, was kept constant at 0.008 

m. The apex angle, , was varied from 0° to 12. As a result, the maximum radii of the inner and outer 

conical cylinders at the top of the domain varied as Rih = 0.024–0.0506 m and Roh = 0.032–0.0586 m, 



   

3 

respectively. Here,  = 0 corresponds to the coaxial cylinder configuration. The radius ratio, , was varied 

from 0.75 at the top to 0.84 at the bottom along the axis.  

 

 

 

 

 

 

 

 

 

 

Figure 1 Computational domain. 

 

To clarify the characteristics of global convection in a conical Taylor−Couette flow, the governing 

equations, namely, the mass and momentum conservation equations given below, were solved 

numerically. 

∇ ∙ u = 0 (1) 

𝜕𝐮

𝜕𝑡
+ (𝐮 ∙ ∇)𝐮 = −

𝛻𝑝

𝜌
+

1

𝜌
∇ ∙ (2𝜂𝐃) + 𝐠 (2) 

where u is the velocity; t, the time; p, the pressure; , the density; , the viscosity; D (=(u + uT)/2), the 

deformation rate tensor; and g, the gravitational acceleration. In addition, the global convection 

characteristics of a conical Taylor−Couette flow were investigated by solving a tracing passive scalar 

transport, as shown in Eq. (3): 

𝜕𝐶

𝜕𝑡
+ 𝐮∇𝐶 = ∇(𝐷𝑠∇𝐶) (3) 

where C is the scalar concentration and Ds, the diffusion coefficient of the species s. After the developed 

flow field was obtained by solving Eqs (1) and (2), Eq. (3) was solved including Eqs. (1) and (2). Notably, a 

completely developed flow field was used as the initial flow field for investigating the scalar transport. 

For shear-thinning fluids, the viscosity depends on the shear rate, 𝛾̇, that is defined as 𝛾̇ = √2𝐃: 𝐃, 

which is the second invariant of the rate-of-strain tensor. Here, the sign must be selected such that 𝛾̇ is 

positive. As a rheological model, the Carreau model was selected to characterize the apparent viscosity 

as a function of the shear-rate as follows [17]: 

𝜂 = 𝜂0[1 + (𝛽 ∙ 𝛾̇)2](𝑛−1)/2 (4) 

where 0 is the zero shear-rate viscosity; , the characteristic time; and n, the power-law exponent. Figure 

2 shows the rheological property of the fluids used in this study. 0 and  were set as 0.05 Pa·s and 1 s, 

respectively. The n value indicates the slope of decreasing viscosity with the shear rate and is important 

for characterizing the shear-thinning behavior. Thus, n was varied from 1 to 0.3. Here, n = 1 corresponds 

to a Newtonian fluid. 

w
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In addition, Noui-Mehidi [18] noted that the flow pattern of a conical Taylor−Couette flow is 

significantly affected by the acceleration speed of the inner cone. Although the effect of the acceleration 

speed should be taken into consideration, the rotating speed of the inner cone reached a set speed 

immediately in the simulation. Therefore, the acceleration rate, c, was assumed to be infinite in this 

study. 

 

 

 

 

 

 

 

 

 

Figure 2 Rheological properties of fluids used in this study. 

 

 

2. 2. Numerical Method and Validation 

To solve the governing equations, OpenFOAM4.1 code was utilized. The governing equations were 

discretized based on a finite volume method. The Crank−Nicolson scheme was used for time advancement. 

The second-order central difference was applied to the viscous and convective terms. Srinivasan et al. [19] 

noted that the use of the total variation diminishing (TVD) property to eliminate numerical oscillations 

with high-order differencing schemes is preferable for discretizing the convective term in Eq. (3). 

Therefore, the TVD scheme with van Leer’s limiter was applied to the convective term in Eq. (3). The semi-

implicit method for pressure-linked equations (SIMPLE) method was used for pressure-velocity coupling. 

The simulation code based on the above procedure has already been validated for a cylinder 

Taylor−Couette flow by authors [13]. Additionally, the flow pattern 30 s after the start of the rotation of 

the inner cone was compared between the experiment and the simulation at  = 8°, as shown in Fig. 3. 

Figure 3(a) and (b) show the flow visualization using a 40 wt% glycerol aqueous solution (Newtonian fluid) 

with Al flakes and the velocity vector in the (x-z) plane obtained through numerical simulation, 

respectively. In the simulation, the physical properties of 40 wt% glycerol aqueous solution were used. In 

both cases, Re at the top surface, Re|top, was set at 160. Here, Re|top was defined as follows: 

𝑅𝑒|top =
𝜌𝜔𝑅ih𝑑

𝜂
(5) 

where  is the rotational speed of the inner cone. In this flow system, Re actually varies axially. In this 

study, the flow condition was considered based on Re|top because the centrifugal force at the top seems 

most dominant in this flow system. Actually, the instability occurs from the top [14]. In addition, the 

definition of Re in a shear-thinning fluid system is more complicated because of the local distribution of 

viscosity caused by the shear-thinning property. From a practical viewpoint, the effective Re, Reeff, based 

on the effective viscosity, eff, should be defined. To estimate eff, the effective shear-rate, 𝛾̇eff, in the 

flow system must be estimated accurately. In this study, 𝛾̇eff at the top, 𝛾̇eff|top was simply defined as 

n = 1 (Newtonian fluid)

n = 0.5

n = 0.3

∙
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𝛾̇eff|top =
𝜔𝑅ih

𝑑
(6) 

eff is calculated by substituting 𝛾̇eff into 𝛾̇ in Eq. (4). It is noted that the estimation of effective viscosity 

from the detailed viscosity distribution will be necessary for the optimum design of conical Taylor-Couette 

flow process in the future. 

Figure 3 confirmed that there were seven pairs of Taylor vortices in both cases. Thus, the simulation 

code used in this study was quantitatively validated even for a conical Taylor–Couette flow. The 

acceleration rate (c) was also assumed to be infinite in the experiment as well as the simulation. 

Figure 4 shows the dependence of the mesh number on the velocity distribution at the middle of the 

gap along the axis. The velocity distribution 30 s after the start of the rotation of the inner cone for Re|top 

= 200 and  = 8° was used for verification. Each peak corresponds to the outflow from the inner cone 

toward the outer one. The dependence was checked using 20 × 80 × 88 (system-1), 28 × 112 × 124 (system-

2), and 32 × 120 × 140 (system-3) meshes in the radial, circumferential and axial directions, respectively, 

with a Newtonian fluid for Re|top = 140. System-2 and -3 did not show a significant difference. Thus, 

system-2 was selected owing to the reduced calculation time. 

                                      (a)                                                                    (b) 

 

 

 

 

 

 

 

 

 

Figure 3 Comparison of (a) experimental and (b) numerical results at Re|top = 160: (a) flow pattern 

visualized with aluminum flakes and (b) velocity vectors in the (x-z) plane. In both cases, seven pairs of 

Taylor vortices were observed. 

 

 

 

 

 

 

 

 

 

Figure 4 Dependence of mesh number on velocity distribution 30 s after the start of the rotation of the 

inner cone at the middle of the gap along the axis: Re|top = 200 and  = 8°. 
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3. Results and Discussion 

The apex angle significantly affects the flow dynamics of a conical Taylor–Couette flow. Figure 5 shows 

the effect of the apex angle ( = 0°, 8°, 12°) on the velocity distribution at Re|top (Reeff|top) = 140 for a 

Newtonian and shear-thinning fluid (n = 0.5). Figure 5 mainly suggests two practically important points. 

First, the velocity distributions in both fluids resemble each other for each apex angle. Therefore, the flow 

pattern can be maintained even for a shear-thinning fluid considering Reeff|top. Thus, selecting Rih/d as 

the representative shear rate is considered rational. Second, the increase in the apex angle was found to 

retard the development of Taylor vortices in the entire apparatus. In particular, retardation was observed 

at the lower part where the centrifugal force is smaller. This implies that a higher centrifugal force (i.e., 

rotational speed of inner cone), which is not preferable for energy-saving and shear-sensitive materials, 

is required for the full development of Taylor vortices. Thus, a moderate angle ( = 8°) was selected for 

further investigating the flow and mixing characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Effect of apex angle on velocity distribution 30 s after the start of the rotation of the inner cone 

in Newtonian and shear-thinning fluids at Re|top (Reeff|top) = 140. In each figure, the left and right sides 

correspond to the inner and outer cone (cylinder) surfaces, respectively. 

 

As mentioned in the introduction, the characteristics of global convection induced by a meridional 

flow need to be clarified. Figure 6 shows the velocity distribution in the middle of the gap along the axis 

at t = 20 and 30 s for a shear-thinning fluid (n = 0.5) and Reeff|top = 200. Each peak was found to shift from 

the bottom to top during 10 s. Thus, an upward motion of Taylor cells, which is induced by the meridional 

flow, was observed during the start-up of the inner cone (i.e., c = ∞). Although studies have reported on 

the effect of the acceleration on the flow mode [18, 20], the case of c = ∞ is not understood. Only upward 

motion was observed under the simulation conditions in this study. The velocity of upward motion, Vt, 

was calculated as follows: 

𝑉t =
∆𝐻

cos(𝛼/𝜋)

1

∆𝑡
(7) 

where H is the shift distance of each peak in the axial direction during t. Strictly, H slightly differs for 

each peak. Thus, the third peak from the top was selected, because the Taylor cells adjacent to the end 

wRih

a = 0∘ a = 8∘ a = 12∘ a = 0∘ a = 8∘ a = 12∘

Velocity

0

Newtonian fluid (n = 1) Shear-thinning fluid (n = 0.5)
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plate were significantly affected by the Ekman boundary layer [21]. Figure 7 shows the effect of 

rheological properties on the upward velocity at Re|top (Reeff|top) = 140, 200, and 300. Notably, the velocity 

was normalized by the rotating velocity of the inner cone. The normalized velocity decreased with an 

increase in Re|top (Reeff|top) owing to the immobilization of Taylor cells by the higher centrifugal force 

suppressing the meridional flow. For each Re|top (Reeff|top), the upward velocity was clearly enhanced with 

an increase in the shear-thinning property. The driving force of meridional flow is the difference of Re at 

the top and bottom [15]. Re at the bottom, Re|bottom, was defined as follows: 

𝑅𝑒|bottom =
𝜌𝜔𝑅il𝑑

𝜂
(8) 

Besides, the effective shear-rate at the bottom, 𝛾̇eff|bottom, was defined as follows: 

𝛾̇eff|bottom =
𝜔𝑅ih

𝑑
(9) 

For example, when Re (Reeff) = 200 at the top, Re|bottom (Reeff|bottom) was 114 (n = 1), 86 (n = 0.5) and 77 (n 

= 0.3), respectively. In each fluid, Re (Reeff) monotonically increased with the axial position. Clearly, the 

difference between Re|top and Re|bottom increased with increasing the shear-thinning property. Thus, it is 

considered that the meridional flow was enhanced with the increase in the shear-thinning property. 

Although the detailed mechanism of this enhancement is worth investigating, it would be quite useful to 

prevent the formation and localization of an inactive mixing region, which is often observed in a traditional 

stirred vessel, from a practical viewpoint. In other words, global mixing is expected to be improved in the 

shear-thinning fluid system when using the conical Taylor−Couette flow apparatus. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Velocity distribution in the middle of the gap along the axis for Reeff|top = 200 and n = 0.5. The 

velocity peak was confirmed to shift upward between t = 20 and 30 s. 
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Figure 7 Effect of shear-thinning property (n) on the normalized velocity of the upward motion of a 

Taylor cell. 

 

In this study, the global mixing characteristics were numerically investigated using a passive tracer. As 

the initial condition, the tracer was set only at the lower half of the apparatus. Further, the velocity field 

30 s after the start of the rotation of the inner cylinder or cone was used as the initial velocity to eliminate 

the effect of flow development on the global mixing. For example, Figure 8 shows a comparison of the 

tracer diffusion process with time between (a) cylindrical (a = 0°) and (b) conical (a = 8°) systems in the 

scalar concentration field for Reeff|top = 200 at n = 0.3. The concentration field is shown in the (x-z) plane. 

The time was made dimensionless with d/Rih as a reference of the time scale as follows: 

𝑡 ∗=
𝑡

𝑑 𝜔𝑅ih⁄
(10) 

where t* is the non-dimensional time. The diffusion coefficient, Ds, was set at 1.3 × 10-8 m2 s-1 (this is a 

virtual value). Strictly, the diffusion coefficient of mass should be much smaller. According to Hubacz et 

al. [22], the value of Ds in the liquid state is on the order of 10-10 – 10-13 m2 s-1 depending on the liquid 

viscosity. However, the smaller the diffusion coefficient, the finer is the required mesh size. To reduce the 

calculation load, the diffusion coefficient was set as on the order of 10-7 - 10-8 m2 s-1. It is noted that the 

oscillation of scalar field by numerical diffusion was no observed. Figure 8 confirms that the tracer 

diffusion in the axial direction was prevented by the inflow boundary in the cylindrical case. This tendency 

corresponds to the experimental results [14]. In the conical case, the tracer was axially transported by the 

meridional flow and local mixing occurred favorably. Thus, the conical Taylor−Couette flow apparatus 

exhibits excellent performance for both global and local mixing. Fig. 9 shows the transport process of the 

tracer in each fluid for t* = (a) 2,340 and (b) 6,200 at Re|top (Reeff|top) = 200 in the (x-z) plane. To unify the 

effect of convective transport on diffusive transport in each fluid, the Peclet number (Pe) was set at 

1.9×104. Pe is defined as follows: 

𝑃𝑒 = 𝑅𝑒 ∙ 𝑆𝑐 (11) 

where Sc (=/·Ds) is the Schmidt number. In shear-thinning fluids, an effective Pe, Peeff, was defined 

based on Reeff|top and an effective Sc, Sceff. Figure 9 (a) confirms that at t* = 2,340, a lump of tracer is axially 

transported for shear-thinning fluids (n = 0.5 and 0.3). This promotion of transport is explained by the 

enhanced global circulation with shear-thinning fluids, as shown in Fig. 7. In addition, the scalar 

concentration of the lump for n = 0.3 seemed slightly higher than that for n = 0.5. Figure 9 (b) suggests 
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that the distribution of the tracer concentration for shear-thinning fluids was more uniform than that for 

Newtonian fluids.  

To quantitatively investigate the mixing performance, a distributive mixing efficiency, M, is evaluated 

based on the standard deviation of the concentration distribution as follows [23, 24]. 

𝑀 = 1 −
1

𝐶̅
(

1

𝑉
∫ (𝐶 − 𝐶̅)2𝑑𝑉

𝑉

)

1/2

(12)  

where 𝐶̅ is the mean concentration when mixing is perfect and V is the volume of the apparatus. The value 

of M varies from 0 for no mixing to 1 for perfect mixing. Figure 10 shows the mixing efficiency at Re|top 

(Reeff|top) = 200 as a function of the non-dimensional time (t*). As clearly shown in Fig. 10, the mixing 

efficiency was enhanced in shear-thinning systems. For example, at t* = 6,200, the mixing efficiency 

increased by 15% at n = 0.5 compared with that of Newtonian fluid. Therefore, the conical Taylor−Couette 

flow apparatus can be considered suitable for enhancing the mixing of scalar components within shear-

thinning fluids. 

 

(a)                                                                                   (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Passive scalar transport with time at Reeff|top = 200 and n = 0.3: (a) cylindrical (a = 0°) and (b) 

conical (a = 8°) systems. In each figure, the left and right sides correspond to the inner and outer cone 

(cylinder) surfaces, respectively. 
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(a)                                                                                             (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Effect of shear-thinning property (n) on passive scalar transport at Re|top (Reeff|top) = 200 in a 

conical system (a = 8°): t* = (a) 2,340 and (b) 6,200. In each figure, the left and right sides correspond to 

the inner and outer cone (cylinder) surfaces, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Distributive mixing efficiency as a function of the non-dimensional time (t*) in each fluid 

system at Re|top (Reeff|top) = 200. 
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4. Conclusions 

The global convection and mixing characteristics in a conical Taylor–Couette flow with shear-thinning 

fluids were numerically investigated in this study. An increase in the apex angle reduced the development 

of Taylor vortices, and consequently, a higher energy input and centrifugal force were required for filling 

Taylor cells in the entire fluid column region. In other words, a moderate apex angle was preferable in a 

mixing device. Thus, a system with an apex angle of 8° was selected for further investigation. 

The upward motion of Taylor cells induced by a meridional flow, a basic conical Taylor–Couette flow, 

was observed in a condition that is considered the sudden start of the inner cone. In addition, the 

travelling velocity increased with increasing the shear-thinning property. As a result, the global mixing 

caused by the upward motion is enhanced was shear-thinning fluid systems. To clarify the effect of 

upward motion on global mixing, passive scalar transport was investigated. The results showed that, in 

shear-thinning fluids, the scalar was axially transported more quickly with good local mixing compared to 

the case of a Newtonian fluid. This tendency was quantitatively confirmed using a distributive mixing 

efficiency. Therefore, the conical Taylor–Couette flow could intensify mixing processes in shear-thinning 

fluid systems. 
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Symbols used 

C [g m-3] scalar concentration 

C0 [g m-3] initial scalar concentration 

𝐶̅ [g m-3] mean concentration  

D [s-1] rate of deformation tensor 

d [m] gap width 

Ds [m2 s-1] diffusion coefficient 

g [m s2] gravitational acceleration 

H [m] height 

H [m] shift difference of velocity peak 

n [–] model parameter 

p [Pa] pressure 

Pe [–] Peclet number 

Peeff [–] effective Peclet number 

Re [–] Reynolds number 

Reeff [–] effective Reynolds number 
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Rih [m] inner cylinder or cone at top 

Ril [m] inner cylinder or cone at bottom 

Roh [m] outer cylinder or cone at top 

Rol [m] outer cylinder or cone at bottom 

s [–] species 

Sc [–] Schmidt number 

Sceff [–] effective Schmidt number 

t [s] time 

t* [–] non-dimensional time 

u [m s-1] velocity 

V [m3] volume 

Vt [m s-1] travelling velocity of Taylor cells 

x [–] coordinate 

z [–] coordinate 

Greek letters 

 [°] apex angle 

c [rad s-2] angular acceleration of inner cone 

 [-] model parameter 

 [-] radius ratio 

𝛾̇ [s-1] shear-rate 

 [Pa s] apparent viscosity 

0 [Pa s] zero shear-rate viscosity 

 [kg m-1] density 

 [rad s-1] angular velocity of inner cone 

Subscripts 

bottom bottom plate 

top top plate 
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Figure captions 

Figure 1. Computational domain. 

Figure 2. Rheological properties of fluids used in this study. 

Figure 3. Comparison of (a) experimental and (b) numerical results at Re|top = 160: (a) flow pattern 

visualized with aluminum flakes and (b) velocity vectors in the (x-z) plane. In both cases, seven pairs of 

Taylor vortices were observed. 

Figure 4. Dependence of mesh number on velocity distribution 30 s after the start of the rotation of the 

inner cone at the middle of the gap along the axis: Re|top = 200 and  = 8°. 

Figure 5. Effect of apex angle on velocity distribution 30 s after the start of the rotation of the inner cone 

in Newtonian and shear-thinning fluids. In each figure, the left and right sides correspond to the inner 

and outer cone (cylinder) surfaces, respectively. 

Figure 6. Velocity distribution in the middle of the gap along the axis for Reeff|top = 200 and n = 0.5. The 

velocity peak was confirmed to shift upward between t = 20 and 30 s. 

Figure 7. Effect of shear-thinning property (n) on the normalized velocity of the upward motion of a 

Taylor cell. 

Figure 8. Passive scalar transport with time at Reeff|top = 200 and n = 0.3: (a) cylindrical (a = 0°) and (b) 

conical (a = 8°) systems. In each figure, the left and right sides correspond to the inner and outer cone 

(cylinder) surfaces, respectively. 

Figure 9. Effect of shear-thinning property (n) on passive scalar transport at Re|top (Reeff|top) = 200 in a 

conical system (a = 8°): t* = (a) 2,340 and (b) 6,200. In each figure, the left and right sides correspond to 

the inner and outer cone (cylinder) surfaces, respectively. 

Figure 10. Distributive mixing efficiency as a function of the non-dimensional time (t*) in each fluid 

system at Re|top (Reeff|top) = 200. 
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