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Dual function photocatalysis of cyano-bridged heteronuclear 
metal complexes for water oxidation and two-electron reduction 
of dioxygen to produce hydrogen peroxide as a solar fuel 

Yusuke Aratani,a Tomoyoshi Suenobu,a Kei Ohkubo,a Yusuke Yamada*b and Shunichi Fukuzumi*cd 

Photocatalytic production of hydrogen peroxide from water 

and dioxygen under visible light irradiation was made possible 

by using polymeric cyano-bridged heteronuclear metal 

complexes (MII[RuII(CN)4(bpy)]; MII = NiII, FeII and MnII), where 

the photocatalytic two-electron reduction of O2 and water 

oxidation were catalysed by the Ru and MII moieties, 

respectively. 

The production of solar fuel through artificial photosynthesis 

has attracted considerable attention because of the global 

energy shortage and growing environmental concerns.1-3 

Artificial photosynthesis is composed of several processes such 

as light-harvesting, charge-separation, water oxidation and 

proton or CO2 reduction, which require hybrid catalytic 

systems possessing multi-catalytic functions.4-7 Metal 

complexes often used as homogeneous catalysts are 

advantageous for designing and synthesising heteronuclear 

metal complexes to exhibit the multifunctional catalysis. 

However, the synthesis of such multifunctional catalysts has 

been very difficult and the low stability of homogeneous 

catalysts often causes a problem about truly active species.8 

On the other hand, heterogeneous metal and metal oxide 

nanoparticles have been extensively studied as robust 

photocatalysts as well as catalysts for water reduction and 

oxidation.8 However, the difficulty to clarify the mechanism of 

the heterogeneous catalysis has precluded rational design for 

heterogeneous multifunctional catalysts.9,10 Recently, 

coordination polymers including metal organic frameworks 

have emerged as a class of heterogeneous catalysts possessing 

the advantage of homogeneous catalysts.11 The highly 

designable nature of the coordination polymers allow to 

design dual function catalysts used for solar fuel production 

with energy input from sunlight.12  

 We report herein that polymeric cyano (CN)-bridged 

heteronuclear metal complexes (MII[RuII(CN)4(bpy)]; MII = NiII, 

FeII and MnII) act as dual function catalysts. The catalysts 

incorporate both a visible-light responsible photosensitiser and 

catalysis units for photocatalytic reduction of O2 to H2O2 and 

for H2O oxidation. H2O2 has merited increasing attention as an 

ideal solar fuel alternative to gaseous hydrogen, because an 

aqueous solution of H2O2 can be used as a fuel in a one-

compartment fuel cell to generate electricity.13-15 In this 

context, photocatalytic production of H2O2 by reduction of O2 

with water, both of which are earth abundant, has been 

studied.16-18 Reported photocatalytic H2O2 production systems 

usually employed a water oxidation catalyst together with a 

soluble photosensitiser, which also acts as an O2 reduction 

catalyst, to utilise visible light efficiently.18  Incorporation of 

such a photosensitiser acting as an O2 reduction catalyst to a 

water oxidation catalyst can construct efficient photocatalysts 

by facilitating electron transfer. 

 K2[RuII(CN)4(bpy)] (bpy = 2,2’-bipyridine) was synthesised 

and characterised as reported in the literature.19 The K+ ion 

was replaced by Fe2+ ion to produce FeII[RuII(CN)4(bpy)].20 

Similarly NiII[RuII(CN)4(bpy)], MnII[RuII(CN)4(bpy)], CoII[RuII(CN)4-

(bpy)], CuII[RuII(CN)4(bpy)], FeII[RuII(CN)4(Me2phen)] and 

FeII[RuII(CN)4{(MeO)2bpy}] were synthesised and characterised 

by powder X-ray diffraction patterns, IR and diffused 

reflectance UV-vis spectra (see Figs. S1-S3†). Powder XRD 

patterns show that the structure of the complexes is 4,2-

ribbon like chain (Fig. 1).21 IR spectra shifting to higher 

wavenumber indicate the incorporation of divalent metal ions 

into the frameworks. FeII[RuII(CN)4(bpy)] acts as an effective 

photocatalyst for production of H2O2 from H2O and O2 in the 

presence of Sc(NO3)3, which is expected to enhance H2O2 yield 

by stabilising a reactive intermediate, O2
•– and thus, by  
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Fig. 1. Schematic drawing of 4,2-ribbon like chain structure. 

 

Fig. 2 Time profiles of production of H2O2 from H2O and O2 with FeII[RuII(CN)4(bpy)] (1.2 

mM, ●), FeII[RuII(CN)4(Me2phen)] (1.1 mM, ■), FeII[RuII(CN)4{(MeO)2bpy}] (1.0 mM, ▲) 

and FeII
2[RuII(CN)6] (1.4 mM, ◆), in the presence of Sc(NO3)3 (0.10 M) in O2-saturated 

H2O (2.0 mL) under visible light irradiation with a Xenon lamp using a UV cut-off filter ( 

> 390 nm) at 298 K. 

prohibiting back electron transfer,18a in H2O under irradiation 

of visible light ( > 390 nm) as shown in Fig. 2 [Eq. (1)]. The  

 

2H2O + O2  2H2O2      (1) 

 

 

origin of oxygen in the produced H2O2 was confirmed by 

labelling experiments using gaseous 18O2 (Fig. S4†). It was 

confirmed that no H2O2 was produced when 

FeII[RuII(CN)4(bpy)] was replaced by FeII
2[RuII(CN)6], which does 

not absorb visible light (Fig. 2).22  

 Among various metal-substituted MII[RuII(CN)4(bpy)], 

NiII[RuII(CN)4(bpy)] exhibited the highest catalytic reactivity for 

the production of H2O2 from H2O and O2 as shown in Fig. 3. No 

H2O2 formation was observed when K2[RuII(CN)4(bpy)] was 

used as a homogeneous catalyst (Fig. S5†). The catalytic 

activity highly influenced by N-bound MII species suggests that 

MII ions offer the active sites for the photocatalytic water 

oxidation as reported for conventional Prussian blue analogues 

used as water oxidation catalysts.23 Thus, a Ni ion in the 4,2-

ribbon like structure may have a coordination structure or 

bonds with aqua ligands suitable for water oxidation. 

 When H2O was replaced by a mixed solvent of CH3OH/H2O 

(5:1, v/v), the amount of H2O2 produced in the photocatalytic  

 

Fig. 3 Time profiles of production of H2O2 from H2O and O2 with MII[RuII(CN)4(bpy)] 

(0.12 mM; M = Ni (▼), Mn (■), Fe (●), Co (▲) and Cu (◆)) in the presence of Sc(NO3)3 

(0.10 M) in O2-saturated H2O (2.0 mL) under visible light irradiation with a Xenon lamp 

using a UV cut-off filter ( > 390 nm) at 298 K. 

oxidation of H2O by O2 with NiII[RuII(CN)4(bpy)] increased 

significantly as compared with those in only H2O to afford the 

apparent turnover number (TON) of 247 based on the number 

of the monomer unit after 70 h (Fig. 4). The particle sizes of 

NiII[RuII(CN)4(bpy)] have not been significantly changed during 

the reaction (Fig. S6†). The better photocatalytic performance 

in the mixed solvent than that in pure water can be explained 

by the lower dielectric constant of the mixed solvent. The 

lower dielectric constant is beneficial to elongate the lifetime 

of O2
•– by enhancing electrostatic interaction between Sc3+ and 

O2
•–, resulting in increasing H2O2 yields. No H2O2 production in 

pure CH3OH as shown in Fig. 4 manifested that water is the 

electron source of O2 reduction. 

 Nanosecond laser-induced transient absorption spectra of 

K2[RuII(CN)4(bpy)] in CH3OH/H2O (5:1, v/v) were measured for 

[RuII(CN)4(bpy)]2– moiety. The lifetime of the excited state of 

[RuII(CN)4(bpy)]2– was determined to be 0.23 µs in CH3OH/H2O 

(5:1, v/v) (Fig. 5a). The lifetime of the excited state of 

[RuII(CN)4(bpy)]2– was shortened by increasing concentration of  

 
Fig. 4 Time profile of production of H2O2 from H2O and O2 with NiII[RuII(CN)4(bpy)] (9.6 

mM) in the presence of Sc(NO3)3 (67 mM) in O2-saturated CH3OH/H2O (3.0 mL; 5:1, v/v) 

under visible light irradiation with a Xenon lamp using a UV cut-off filter (> 390 nm) at 

298 K (●). Time profile in CH3OH without H2O under otherwise the same experimental 

conditions is also shown for comparison (■). 
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Fig. 5 (a) Decay time profiles of absorbance at 660 nm observed in CH3OH/H2O (5:1, 

v/v) containing K2[RuII(CN)4(bpy)] (0.29 mM) and various concentrations of O2 ([O2]: 0 

(black), 1.5 (red) and 7.6 (blue) mM). (b) Plot of the decay rate constant vs. 

concentration of O2. 

O2 (Fig. 5b). This suggests that electron transfer from the 

excited state of [RuII(CN)4(bpy)]2– to O2 occurs to produce 

[RuIII(CN)4(bpy)]– and O2
•–. In the presence of Sc3+ ions, O2

•– 

is bound to a Sc3+ ion to afford the O2
•––Sc3+ complex, which  

was detected by EPR after photoirradiation of an O2-saturated 

CH3OH/H2O (5:1, v/v) solution of NiII[RuII(CN)4(bpy)] as shown 

in Fig. 6 and Fig. S7†, where the superhyperfine due to Sc 

nucleus (8 lines, I = 7/2) is observed.24 The rate constant of 

electron transfer from the excited state of [RuII(CN)4(bpy)]2– to 

O2 was determined from the linear plot of the decay rate 

constant vs. concentration of O2 to be 2.3(±0.2) × 109 M–1 s–1, 

which is diffusion-limited and consists the rate constant of 

electron transfer determined from a slope of Stern–Volmer 

plot and the lifetime of [RuII(CN)4(bpy)]* (Fig. S8†). 

 The capability of H2O oxidation of NiII[RuIII(CN)4(bpy)]+ was 

confirmed in the photocatalytic oxidation of H2O by 

persulphate with NiII[RuII(CN)4(bpy)] in the presence of 

Sc(NO3)3 in CH3OH/H2O (5:1, v/v), where O2 evolution was 

observed under visible light irradiation ( > 390 nm). Water 

oxidation using H2
18O instead of H2

16O was also conducted to 

confirm whether evolved oxygen comes from water. After the 

reaction, the evolved oxygen was analysed by GC-MS (Fig. S9†). 

The observed O2 was 18O18O (>99%), indicating that 

NiII[RuII(CN)4(bpy)] oxidises water even in the presence of  

 
Fig. 6 EPR spectrum observed under photoirradiation of an O2-saturated CH3OH/H2O 

(5:1, v/v) solution (2.0 mL) containing NiII[RuII(CN)4(bpy)] (0.50 mM) and Sc(NO3)3 (0.10 

M) with an Hg lamp ( > 310 nm) at 298 K. 

 
 

Scheme 1 Catalytic cycle of visible-light driven water oxidation by persulphate with 

NiII[RuII(CN)4(bpy)] 

methanol. The photocatalytic cycle is given in Scheme 1, where 

the excited state of NiII[RuII(CN)4(bpy)] was oxidatively 

quenched by Na2S2O8 to produce NiII[RuIII(CN)4(bpy)]+ and, 

then, {NiIII[RuII(CN)4(bpy)]}+ that oxidises water to evolve O2. 

 The mechanism of photocatalytic production of H2O2 from 

H2O and O2 with NiII[RuII(CN)4(bpy)] in the presence of Sc3+ is 

shown in Scheme 2. Photoexcitation of NiII[RuII(CN)4(bpy)] 

resulted in electron transfer from the excited state of 

NiII[RuII(CN)4(bpy)] to O2 in the presence of Sc3+ to produce 

NiII[RuIII(CN)4(bpy)]+ and O2
•––Sc3+. The O2

•––Sc3+ complex 

disproportionates in the presence of H+ to produce H2O2.12 On 

the other hand, four equivalents of NiII[RuIII(CN)4(bpy)]+ 

oxidises water to produce O2 and four equivalents of H+. 

 In conclusion, polymeric cyano-bridged heteronuclear 

metal complexes (MII[RuII(CN)4(bpy)]; MII = NiII, FeII and MnII) 

exhibited dual function photocatalysis for H2O oxidation and 

O2 reduction to H2O2 in photocatalytic production of H2O2 from 

H2O and O2. The highest apparent TON of 247 based on the 

number of monomer unit was obtained with 

NiII[RuII(CN)4(bpy)] for production of H2O2 from H2O and O2 in  

 

 
Scheme 2 Catalytic cycle of visible-light driven water oxidation by O2 with 

NiII[RuII(CN)4(bpy)] 
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the presence of Sc(NO3)3 in CH3OH/H2O (5:1, v/v) under visible 

light irradiation ( > 390 nm). The dual function photocatalysis 

of MII[RuII(CN)4(bpy)] in a single catalyst provides a very 

efficient integrated process for the photocatalytic production 

of H2O2 as a promising solar fuel from H2O and O2 using solar 

energy. 
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