Hydrogen Peroxide used as a Solar Fuel in One-Compartment Fuel Cells

メタデータ	言語: English
	出版者: Wiley
	公開日: 2018-01-04
	キーワード (Ja): 燃料電池, 過酸化水素, 光触媒,
	太陽光燃料
	キーワード (En): energy conversion, fuel cells, hydrogen
	peroxides, photocatalysis, solar fuels
	作成者: 福住, 俊一, 山田, 裕介
	メールアドレス:
	所属: Ewha Womans University, Meijo University,
	Science and Technology Agency, Osaka City University
URL	https://ocu-omu.repo.nii.ac.jp/records/2019710

Hydrogen Peroxide used as a Solar Fuel in One-Compartment Fuel Cells

Shunichi Fukuzumi and Yusuke Yamada

Citation	ChemElectroChem,3(12): 1978-1989			
Issue Date	2016-12-13			
Туре	Journal Article			
Textversion	author			
	This is the peer reviewed version of the following article: FUKUZUMI, S., &			
	YAMADA, Y. (2016). Hydrogen Peroxide used as a Solar Fuel in One-Compartment			
	Fuel Cells. ChemElectroChem. 3, 1978-1989. , which has been published in final			
Rights	form at $https://doi.org/10.1002/celc.201600317$. This article may be used for			
	non-commercial purposes in accordance with Wiley Terms and Conditions for			
	Self-Archiving.			
DOI	10.1002/celc.201600317			

Self-Archiving by Author(s) Placed on: Osaka City University Repository

6

Hydrogen Peroxide used as a Solar Fuel in One-**Compartment Fuel Cells**

Shunichi Fukuzumi*^[a, b] and Yusuke Yamada*^[c]

Dedicated to Prof. Cristian Amatore on the occasion of his 65th birthday

ChemElectroChem 2016, 3, 2 - 15

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

FF These are not the final page numbers!

7

14

17

19

23

24 25 26

27 28

29

34

37

40

41

42

43

45

47

49

54

57

2 3

4

5

6 7

9

17

19

23

24

34

40

41

42

43

44

45

46

47

Clean and highly efficient production of solar fuels as well as effective methods to store solar fuels have long been sought to solve global energy and environmental issues. Among solar fuels such as gaseous hydrogen and carbon monoxide, aqueous hydrogen peroxide (H₂O₂) is an ideal chemical for energy storage, because endothermic H₂O₂ decomposition produces only water and oxygen. In addition, H₂O₂ can be transported in plastic containers with a high energy density. H₂O₂ can be converted into electricity by using H₂O₂ fuel cells without a mem-

1. Introduction

Global warming caused by the production of greenhouse gases from the combustion of fossil fuels has prompted the development of alternative, renewable energy sources by using solar energy and effective storage.^[1-4] Hydrogen can produce electricity by using hydrogen fuel cells, and electricity can produce hydrogen by electrolysis; hydrogen is renewable and harmless to the environment, because hydrogen produces energy by oxidation with dioxygen to yield only water.^[5-8] However, high-pressure tanks (35.0–70.0 MPa∎ ■converted into SI unit) are necessary to store gaseous hydrogen, whereas cryogenic temperatures are demanded to store hydrogen in liquid form because the boiling point of hydrogen is as low as -252.8 °C at atmospheric pressure.^[5-8] Current industrial production processes of hydrogen are expensive and energy consuming, and they often involve the use of fossil fuels. In addition, an effective infrastructure for supplying hydrogen has yet to be established. ■ ■ paragraph ok? ■ ■

In contrast to hydrogen, hydrogen peroxide (H₂O₂), a liquid with high energy density, is a promising energy carrier for portable devices in the next generation, because safety of H₂O₂ is guaranteed not only in aqueous solution but also in solid form through the formation of adducts with urea or carbonate, for which the H₂O₂ concentration can reach higher than about 30 wt%.^[9-15] Concentrated hydrogen peroxide is a compound regulated by the Environmental Protection Agency (EPA), because it is hazardous at > 52 wt%, which may be an upper concentration limit for practical applications.^[9] Nevertheless, this limitation should not prevent its use as a fuel, because concentrated H_2O_2 is a stable liquid as long as

[a]	Prof. Dr. S. Fukuzumi
	Department of Chemistry and Nano Science
	Ewha Womans University
	Seoul 120-750 (Korea)
[b]	Prof. Dr. S. Fukuzumi
	Faculty of Science and Engineering, Meijo University
	ALCA and SENTAN (Japan) Science and Technology Agency (JST)
1	Nagoya, Aichi 468-8502 (Japan)
	E-mail: fukuzumi@chem.eng.osaka-u.ac.jp
[c]	Prof. Dr. Y. Yamada
	Department of Applied Chemistry and Bioengineering
	Graduate, School of Engineering, Osaka City University
	3-3-138 Sugimoto, Sumiyoshi, Osaka 558–8585 (Japan)
	E-mail: ymd@a-chem.eng.osaka-cu.ac.jp
Special	This is an invited contribution for the Christian Amatore Festschrift

brane and composed of an anode and a cathode, and they can selectively catalyze H₂O₂ oxidation or reduction. The onecompartment structure without a membrane is more promising to develop low-costing fuel cells than a two-compartment structure with expensive membranes. This article provides a focused review of recent developments and future perspectives of H_2O_2 fuel cells without membranes, combined with H_2O_2 production from seawater and dioxygen in the air by utilizing solar energy.

it is not exposed to metals that catalyze its decomposition into water and oxygen or organic compounds that pose a combustion threat. H₂O₂ is fairly nontoxic but corrosive even at high concentrations ($\approx 20 \text{ M}$). Thus, H₂O₂ in a plastic container can provide high portability with a high energy density per volume.^[9-15] Because the disproportionation of two H_2O_2 molecules to H₂O and O₂ releases a large amount of energy (Figure 1), $^{[15-18]}$ H₂O₂ has been used as an effective fuel and oxidant in rocket propulsion^[19-24] and micromotors.^[25-30] In industry, H₂O₂ is produced by the anthraquinone catalytic process, in which O_2 is reduced by H_2 .^[31,32]

Figure 1. Frost diagrams for O₂ activation.

3

To utilize H_2O_2 as a solar fuel, H_2O_2 should be produced by oxidation of H₂O with O₂ by using solar energy and used as a fuel for H_2O_2 fuel cells.^[12-15] H_2O_2 is indeed produced by using solar energy in photosynthesis, for which 5-10% of the total photosynthetic electron flow in C3 plants is consumed to reduce O₂ to H₂O₂ under normal functional conditions, and this can increase to more than 30% under stress conditions.^[15, 33-35] From a thermodynamic point of view, the overall efficiency

of the $H_2O_2-O_2$ system potentially exceeds that of the H_2-H_2O system. For production of H_2O_2 and H_2 , the Gibbs energy change for the production of H₂O₂ by O₂ reduction with water is 117 kJ mol^{-1,^[36] which is almost half that for H₂O reduction to} H_2 (237 kJ mol⁻¹).^[36] Also, the thermodynamic efficiency of the fuel cell is given by the ratio of the Gibbs energy change (ΔG°) to the enthalpy change (ΔH°) in the overall cell reaction. The ΔG° and ΔH° values measure the electrical work and the internal energy of the fuel, respectively. Therefore, the efficiency of

2

4

5

6

7

14

17

21 22

23

34

37

40

41

42

43

44

45

46

47

48

49

51

57

the ideal H₂ fuel cell is 83% [= $\Delta G^{\circ}/\Delta H^{\circ}$ (-237 kJ mol⁻¹)/ (-286 kJ mol⁻¹)].^[36] On the other hand, the efficiency of the ideal H₂O₂ fuel cell is higher than 100% (- $\Delta G^{\circ} > -\Delta H^{\circ}$).^[36]

At present, the power density of conventional H₂ fuel cells exceeds more than $1 \text{ W cm}^{-2[37]}$ on the other hand, and that of H_2O_2 fuel cells remains lower than 10 mW cm⁻² on the other hand (Tables 1 and 2).^[38–53] Thus, H_2O_2 fuel cells are not yet suitable for large-scale electric devices such as automobiles, but they are used for personal-based small electric items such as cell phones. Although the gravimetric energy density of H_2O_2 is as low as 0.85 kWh kg⁻¹, which is about 40 times lower than that (33 kWh kg^{-1}) of H₂, the volumetric energy density of pure H_2O_2 (1230 WhL⁻¹) is more than 400 times larger than that of H₂ (2.9 WL⁻¹) under standard ambient temperature and pressure. Thus, the volumetric energy density of an aqueous 30 wt % H₂O₂ solution is equal to that of H₂ compressed under a high pressure of 10 MPa. Whereas a gas tank with high strength is necessary for H₂ transportation, a lightweight plastic bottle is sufficient to store and transport H₂O₂. Thus, at present, H₂O₂ can be regarded as a solar fuel for small personal-based devices.

This minireview focuses on recent developments of onecompartment H_2O_2 fuel cells, which are combined with the production of H_2O_2 from H_2O and O_2 by using solar energy. H_2O_2 fuel cells can generate a theoretical output voltage of

Shunichi Fukuzumi earned his bachelor's and Ph.D. degrees in applied chemistry at the Tokyo Institute of Technology in 1973 and 1978, respectively. After working as a postdoctoral fellow (1978–1981) at Indiana University in the USA, he joined the Department of Applied Chemistry, Osaka University, as an Assistant Professor in 1981 and was promoted to a Full Professor in 1994. His research interests include artificial photosynthesis and

electron-transfer chemistry. He was the leader of an ALCA (Advanced Low Carbon Technology Research and Development) project that started in 2011. He is now a Distinguished Professor of Ewha Womans University, a Designated Professor of Meijo University, and a Professor Emeritus of Osaka University.

Yusuke Yamada earned his Ph.D. degree in macromolecular science from Osaka University in 1998. He worked as a researcher and senior researcher at Osaka National Research Institute (currently AIST) from 1998 to 2009. From 2007 to 2008, he was a visiting scholar at UC Berkeley. He was an Associate Professor of Osaka University from 2009. In 2015, he moved to Osaka City University as a Full Professor.

1.09 V by utilizing H_2O_2 as both a fuel at the cathode and an oxidant at the anode with the emission of H_2O and O_2 after power generation (Figure 1). In particular, H_2O_2 is produced from seawater, which is the most earth-abundant resource, and O_2 in the air by using solar energy, and the H_2O_2 thus produced is directly consumed as a fuel in seawater for H_2O_2 fuel cells to generate electrical power on demand.

2. Development of One-Compartment Hydrogen Peroxide Fuel Cells without a Membrane

Proton-exchange membrane (PEM) fuel cells normally require oxygen as the oxidant, and the reductant is separated by the membrane. Aqueous H₂O₂ has been utilized as an alternative oxidant in various types of fuel cells by using borohydride, [54-58] metals, $^{[59-63]}$ methanol, $^{[64-66]}$ ethanol, $^{[67,68]}$ hydrazine, $^{[69]}$ H₂S, $^{[70,71]}$ and biofuels^[54, 55] as reductants. The fabrication of one-compartment fuel cells without expensive membranes by employing only one chemical as both the fuel and the oxidant seems to be a valuable approach to develop low-costing fuel cells. H₂O₂ can be used not only as an oxidant but also as a reductant, and thereby, one-compartment H₂O₂ fuel cells have recently been developed.^[38-45] One-compartment H₂O₂ fuel cells have various advantages over other fuel cells including hydrogen fuel cells. First of all, H₂O₂ is liquid and freely miscible with water and is thereby easy to store and carry in an appropriate container in comparison with hydrogen, which needs a highpressure tank. Indeed, an aqueous solution of H₂O₂ supplied by a chemical company is kept in a plastic container. Most importantly, no expensive membranes are required for one-compartment H₂O₂ fuel cells, because H₂O₂ can act as both the oxidant and the reductant depending on the catalytic activities of the electrodes using the same H_2O_2 solution. H_2O_2 provides more energy than O_2 for the fuel cell and increases the cell performance, because H_2O_2 has a higher standard reduction potential ($E^\circ = 1.77$ V vs. NHE) than O₂ ($E^\circ = 1.23$ vs. NHE).^[15] Furthermore, H₂O₂ does not cause the environmental problems associated with most other chemical reductants and oxidants.

The anodic and cathodic reactions at the electrodes of H_2O_2 fuel cells are given by Equations (1) and (2), respectively.^[13–15] The overall reaction [Eq. (3)] indicates that H_2O_2 fuel cells emit only O_2 and H_2O after electrical power generation. The theoretically expected output potential of the H_2O_2 fuel cell is 1.09 V, which is slightly lower but similar to those of a hydrogen fuel cell and a direct methanol fuel cell (1.23 and 1.21 V, respective-ly). ^[13–15]

 $\label{eq:2.1} Anode: \ H_2O_2 \to O_2 + 2 \, H^+ + 2 \, e^- \quad 0.68 \, V \, vs. \, NHE \eqno(1)$

 $\label{eq:Cathode: H2O2 + 2 H^+ + 2 e^- \to 2 H_2 O \quad 1.77 \, V \, vs. \, NHE \qquad (2)$

 $Total: 2 H_2 O_2 \to O_2 + 2 H_2 O \quad 1.09 V \tag{3}$

The first one-compartment H_2O_2 fuel cell employed an Au plate and an Ag plate as the anode and cathode, respectively, in an aqueous solution containing 1 M NaOH and 300 mM H_2O_2 (Figure 2), because these metal plates act as selective oxidation

CHEMELECTROCHEM Minireviews

Anode	Cathode	рН	OCP [V]	MPD [mW cm ⁻²]	Ref.
Au	Ag	14	0.095	0.07	[38]
Au	Ag–Pb	14	0.15	0.07	[39]
Ni	Fe ^{III} (Pc)Cl	3	0.5	0.01	[40]
Ni	Prussian blue	1	0.60	1.55	[41]
Ag	Prussian blue	1	0.52	0.7	[41]
Ni	Fe ^{II} [Co ^{III} (CN) ₆]	1	0.80	1.0	[42]
Ni	$Fe^{II}[Co^{III}(CN)_{6}]$ (heat treated)	1 (Sc ³⁺)	0.81	9.9	[43]
Ni	Fe ^{II} [Pt(CN) ₄](pyz)	1	0.7	4	[44]
	Fe ^{ll} [Pd(CN) ₄](pyz) ^[a]	1	0.78	4	[44]
Ni	Fe ^{III} (9-hydroxyphenalenone) ₃	1	0.74	1.43	[45]

Table 2. Open-circuit potentials (OCPs) and maximum power densities (MPDs) of two-compartment H₂O₂ fuel cells in literature.

Cathode	Catholite	Anode	Anolite	OCP [V]	MPD $[mW cm^{-2}]$	Ref.
Pt	1.5 м H ₂ SO ₄	Ni	6 м КОН	0.90	3.9	[46]
				0.90	58.4 (60 °C)	[47]
Au@Pd	2 м H ₂ SO ₄	Au@Pd	4 м КОН 🔺	0.90	20.7	[48]
Pt	1.5 м H ₂ SO ₄	PbSO ₄	3 м КОН	≈1	10	[49]
Au	2 м H ₂ SO ₄	Au	4 м КОН	0.8	14	[50]
Pd	2 м H ₂ SO ₄	Ni	4 м KOH	0.9	21.6 (20 °C)	[51]
					53.8 (50 °C)	[51]
Pd	2 м H ₂ SO ₄	Ni	4 м КОН	0.9	48.7 (20 °C)	[52]

Figure 2. One-compartment H₂O₂ fuel cell under basic conditions (pH 14).^[38]

and reduction electrocatalysts toward H₂O₂, respectively.^[38] However, the open-circuit potential (OCP) was as low as 0.095 V (Figure 3), which is much lower than the theoretically expected output voltage of 1.09 V.^[38] The low OCP value results from a large overpotential at the Ag cathode.^[38]

Figure 3. *I–V* curve of a one-compartment H_2O_2 fuel cell with a Au anode and a Ag cathode. Performance tests were conducted in aqueous solution containing 1 m NaOH and 300 mm H_2O_2 . The electrode surface areas were fixed at 2.4 cm².^[38]

The performance of the H_2O_2 fuel cell in Figure 2 was improved by using Ag–Pb alloy nanoparticles as the cathode, because Ag nanoparticles possess a higher specific surface area than the Ag plate and also the catalytic activity of the Ag nanoparticles cathode was enhanced by the addition of a foreign element to Ag metal.^[39] The higher power density, open-

ChemPubSoc Europe

Figure 4. *I–V* and *I–P* curves of a one-compartment H_2O_2 fuel cell with a Ag or Ag–Pb alloy cathode. Au anode: 1 mu NaOH, 300 mM H_2O_2 . Black: Ag, green: Ag/Pb=6:4, red: Ag/Pb=7:3, blue: Ag/Pb=9:1.^[39]

circuit potential (0.16 V), and short-circuit current were obtained by employing Ag–Pb alloys as cathodes (Ag/Pb=9:1, 7:3, 6:4 in Figure 4).^[39] Such highly active cathode materials for H₂O₂ reduction would be beneficial not only for other types of fuel cells using H₂O₂ as the oxidant but also those using O₂, because the four-electron reduction of O₂ is sometimes accompanied by two-electron reduction of O₂ to produce peroxide species.

A two-compartment H_2O_2 fuel cell composed of a Pt/C cathode and a carbon paper (CP) anode deposited with nanonickel metal (Ni/CP), separated by a Nafion-117 membrane, was reported by using an acidic H_2O_2 solution ($1.5 \text{ M} H_2SO_4 + 2.0 \text{ M} H_2O_2$) as the catholite and a basic H_2O_2 solution ($6.0 \text{ M} \text{ NaOH} + 1.0 \text{ M} H_2O_2$) as the anolite; this cell afforded an OCP of 0.90 V and a power density of 3.9 mW cm^{-2} .^[46] The peak power density was as high as 58.4 mW cm^{-2} at 60 °C upon using $4.0 \text{ M} \text{ KOH} + 1.0 \text{ M} H_2O_2$ as the fuel and $2.0 \text{ M} H_2SO_4 + 2.0 \text{ M} H_2O_2$ as the oxidant.^[46] However, it is highly desired to develop a one-compartment H_2O_2 cell by using the same H_2O_2 solution under acidic conditions to combine the production of H_2O_2 through the two-electron reduction of O_2 , which is more efficient under acidic conditions. The key issue is the enhancement in the catalytic reactivity for H_2O_2 reduction.

The low output potentials of H_2O_2 fuel cells result from a large overpotential for H_2O_2 reduction at the cathode.^[38] Basic solutions impose thermodynamically unfavorable conditions for H_2O_2 reduction, for which a large overpotential is necessary. Thus, neutral to acidic solutions should be employed to improve the open-circuit potentials of H_2O_2 fuel cells.

In natural systems, iron porphyrin complexes are used as active sites of hydroperoxidases, which can efficiently catalyze the reduction of H_2O_2 under neutral pH conditions.^[72-75] Thus, the iron porphyrin and iron phthalocyanine complexes shown in Figure 5, which mimic the active sites of hydroperoxidases, were have been employed as cathode catalysts to improve the H_2O_2 reduction activity under acidic conditions.^[40]

The OCP was improved to 0.55 V by using iron(III) phthalocyanine (Pc) \blacksquare \blacksquare ok? \blacksquare chloride supported on a glassy carbon as the cathode of a H₂O₂ fuel cell working at pH 3

Figure 5. Chemical structures of porphyrin and phthalocyanine iron(III) complexes similar to the active-site structures of hydroperoxidases as candidates of cathodes of a H_2O_2 fuel cell. a) [Fe^{III}(OEP)CI], b) [Fe^{III}(TPP)CI], and c) [Fe^{III}(PC)CI].^[40]

Figure 6. *I–V* and *I–P* curves of a one-compartment H_2O_2 fuel cell with a Ni anode and a [Fe^{III}(Pc)CI] cathode. Performance tests were conducted in an acetate buffer containing 300 mm H_2O_2 at pH 3.0^[40]

(Figure 6).^[40] The catalytic activities of the iron complexes for H_2O_2 reduction were evaluated by cyclic voltammetry (CV) measurements of H_2O_2 . The iron complexes were mounted on glassy carbon electrodes to be used as the working electrodes in aqueous acetate buffer containing H_2O_2 (pH 4, 3 mM).^[40] In the presence of H_2O_2 , catalytic currents with the Fe complexes in cathodic sweeps were observed, which indicated that they could act as catalysts for H_2O_2 reduction in acidic media.^[40] The onset potential for H_2O_2 reduction on electrodes with [Fe^{III}(Pc)CI] was 0.5 V, which is more positive than that observed with either [Fe^{IIII}(OEP)CI] ($\blacksquare \blacksquare OEP = \text{please define} \blacksquare \blacksquare$) or [Fe^{III}(TPP)CI] (0.2 V) ($\blacksquare \blacksquare TPP = \text{please define} \blacksquare \blacksquare$), which suggests that [Fe^{IIII}(Pc)CI] is the most promising cathode material for a H_2O_2 fuel cell operating under acidic solutions.^[40]

Prussian blue [ferric ferrocyanide: $(Fe_4^{III}[Fe^{II}(CN)_6]_3)$] has been used for the cathode in a one-compartment H_2O_2 fuel cell under acidic conditions by using 0.10 μ HCl and 0.50 μ H₂O₂.^[41]

6

2 3

5

6

9

16

17

19

21

24

34

37

39

40

41

43

44

45

47

17

34

37

40

41

42

43

44

45

46

47

48

49

51

53

54

57

Figure 7. *I–V* and *I–P* curves of a one-compartment H_2O_2 fuel cell with nickel and silver anodes and unsupported Prussian blue coated on carbon paper as the cathode. Performance tests were performed under acidic conditions by using 0.10 m HCl and 0.50 m H_2O_2 .⁽⁴¹⁾

An OCP of 0.60 V and a maximum power density of 1.55 mW cm^{-2} were obtained to maintain stable long-term operation in acidic media (Figure 7).^[41]

A higher OCP of 0.8 V for a H₂O₂ fuel cell with the one-compartment structure was obtained by using the polynuclear cyanide complex $Fe^{II}_{3}[Co^{II}(CN)_{6}]_{2}$ and Ni mesh as the cathode and anode, respectively, under acidic conditions at pH 1 (Figure 8).^[42] The maximum power density of the fuel cell was 1.0 mW cm^{-2[42]} The presence of nitrogen-bound Fe²⁺ ions in the cathode was found to be important for the higher performance of the one-compartment H₂O₂ fuel cell.^[66] The stability of the H₂O₂ fuel cell was improved by replacing the carbon cloth electrode with a carbon-paste electrode containing 25 wt% $Fe^{II}_{3}[Co^{II}(CN)_{6}]_{2}$. Severe deactivation of the cell performance resulting from detachment of Fe^{III}₃[Co^{III}(CN)₆]₂ from the carbon cloth was suppressed.^[42] After 50 cycles, only a subtle change was observed in the OCP, and more than 80% of the initial maximum power density was maintained ■ (Figure 8 b).^[42]

The maximum power density of a H_2O_2 fuel cell was improved by employing a pyrazine-bridged $Fe[M^C(CN)_4]$ complex $(M^C = Pt^{2+} \text{ and } Pd^{2+})$ with a 3D porous structure as the as the cathode and a nickel mesh as the anode operating in 0.30 M H_2O_2 at pH 1.0 (Figure 9).^[44] The power density of the H_2O_2 fuel cell with pyrazine-bridged $Fe[Pt(CN)_4]$ exceeded 4 mW cm⁻².^[44] In contrast, H_2O_2 fuel cells with pyrazine-bridged $M^N[Pt(CN)_4]$ ($M^N = Co^{2+}$ and Mn^{2+}) as the cathodes showed power densities lower than 0.01 mW cm⁻², which suggests that Fe^{2+} ions play a crucial role and that the Pt^{2+} ions are not important for achieving a high power density.^[44]

The OCP and power density of the H_2O_2 fuel cell with heattreated [Fe^{II}(H_2O)₂]₃[Co^{III}(CN)₆]₂ at 60 °C were much improved by adding Sc³⁺ ions into the aqueous H_2O_2 fuel at concentrations of 50 mm or higher. The OCP value increased in proportion to the concentration of Sc³⁺ to reach a constant value of (0.81 ± 0.01) V (Figure 10).^[43] Additionally, the maximum power density

CHEMELECTROCHEM Minireviews

Figure 8. a) *I–V* and *I–P* curves of a one-compartment H_2O_2 fuel cell with a Ni anode and a carbon-paste electrode that was modified with $Fe_3[Co^{III}(CN)_6]_2$ after the 1st (**a**), 5th (**•**), 25th (**•**), and 50th cycles (**•**). Performance tests were performed in an aqueous solution of HCIO₄ (pH 1) that contained H_2O_2 (0.30 M) and NaCl (1.0 M). Currents and powers were normalized by the geometric surface area of the electrode. b) Changes in the opencircuit potential (**a**) and power density (**•**) after repeated measurements of the H_2O_2 fuel cell,^[42]

exceeded $(9.9 \pm 0.13) \text{ mW cm}^{-2}$ by increasing the concentration of Sc³⁺ ions to 120 mm (Figure 10). This value is larger than the value [(7.5 ± 0.05) mW cm⁻²] obtained with nitric acid (pH 1.0).^[43]

The effect of other Lewis acids upon the performance of H₂O₂ fuel cells was also examined. The performance was improved by the addition of trivalent Yb^{3+} and Y^{3+} ions (100 mm); however, the obtained OCPs and power densities remained at low levels, < 0.5 V and $< 1.1 \text{ mW cm}^{-2}$.^[43] The most effective divalent ion was Ca²⁺; however, the OCP and power density for the H_2O_2 fuel cell with the use of an aqueous H_2O_2 fuel containing Ca $^{2+}$ ions were as low as (0.47 \pm 0.02) V and (0.47 \pm 0.05) mW cm $^{-2}$, respectively. Thus, the strongest Lewis acid among the metal ions, that is, Sc3+ ions, [76-78] acted as the most effective additive for improving the performance of the H₂O₂ fuel cell in terms of both OCP and power density.^[43] In addition, H₂O₂ decomposition in the reaction solution was efficiently avoided by the addition of Sc³⁺ ions, which led to high power densities and durability,^[43] because Sc³⁺ ions have been reported to bind with H₂O₂ to stabilize it.^[79] Only a small decrease in the output potential (40 mV) was observed under operation for 90 min by using aqueous H₂O₂ containing 100 mм Sc³⁺ ions as the fuel, whereas the output potential decreased to 0 V within 5 min without the Sc³⁺ ions.^[43]

ChemPubSoc Europe

Figure 9. a) I-V (**•**) and I-P (**•**) curves of a one-compartment H_2O_2 fuel cell with a nickel anode and a carbon-cloth electrode modified with a pyrazinebridged Fe[M^C(CN)₄] complex [M^C = Pt²⁺ (a) and Pd²⁺ (b)]. Performance tests were conducted in an aqueous solution of HClO₄ (pH 1) that contained H_2O_2 (0.30 M) and NaCl (1.0 M). Currents and powers were normalized by the geometric surface area of the electrode.^[44]

Figure 10. Plots of the open-circuit potentials and maximum power densities versus concentrations of $Sc(NO_3)_3$ for a one-compartment H_2O_2 fuel cell with a Ni anode and a carbon cloth electrode modified with $[Fe^{II}(H_2O)_2]_3[Co^{III}(CN)_6]_2$ in an aqueous solution containing 0.30 M H_2O_2 and $Sc(NO_3)_3$.^[43]

3. Production of Hydrogen Peroxide from Water and Oxygen as a Solar Fuel

The generation of H_2O_2 by the photoreduction of O_2 is an interesting approach, because photoreduction of O_2 requires less

CHEMELECTROCHEM Minireviews

energy than H₂ generation. On the one hand, the redox potential of $2H^+ + 2e^- = H_2$ is 0 V versus NHE; on the other hand, that of $O_2 + 2H^+ + 2e^- = H_2O_2$ is 0.68 V versus NHE, which suggests that a wide variety of materials can be used as an electron source. For example, oxalate is used as an electron source for efficient photocatalytic H₂O₂ production. However, utilization of water as an electron source is still a challenge.

 H_2O_2 was produced by electrocatalytic O_2 reduction by employing a two-compartment cell connected to an agar salt bridge.^[39] Glassy carbon electrodes modified with the cobalt porphyrins shown in Figure 11 were used as electrocatalysts,

because cobalt porphyrins are well known to act as selective catalysts for the two-electron reduction of O_2 to produce H_2O_2 .^[79-89] Among the Co porphyrins evaluated, [Co(TCPP)] (\blacksquare \blacksquare TCPP = please define \blacksquare) showed the highest onset potential of 0.3 V for catalytic O_2 reduction. On the basis of these results, [Co(TCPP)] and Pt wire electrodes were connected to a conventional Si photovoltaic solar cell that generated electrical power of 0.5 V at 2.5 mA.^[39] After running for 11 h, the amount of H_2O_2 produced reached 1.46×10^{-5} mol.^[39] H_2O_2 generation was observed by the reduction of O_2 by using a conventional photovoltaic solar cell,^[39] although it is still necessary to improve the electrocatalytic behavior and the structures of the cell and electrode for better performance.

It has been shown that H_2O_2 can be produced by combining photoinduced electron transfer from Ru^{II} complexes $([Ru^{II}L]^{2+})$ to O_2 and catalytic water oxidation by $[Ru^{III}L]^{3+}$ with a water oxidation catalyst (WOC), as shown in Scheme 1.^[90]

Photoinduced electron transfer from the excited state of $[Ru^{II}L]^{2+}$ to O_2 produces $[Ru^{II}L]^{3+}$ and O_2^{--} , the latter of which is protonated in the presence of acids to produce HO₂, and

Scheme 1.

the disproportionation of HO₂· yields H₂O₂ and O₂.^[90,91] Various metal complexes and metal nanoparticles are known to catalyze water oxidation by [Ru^{III}L]³⁺ to produce O₂.^[92-103] Thus, the overall reaction is the photocatalytic oxidation of H₂O by O₂ to produce H₂O₂, in which photocatalytic two-electron reduction of O₂ and the catalytic four-electron oxidation of H₂O proceed.^[83] Upon using $[Ru^{II}(Me_2phen)_3]^{2+}$ $(Me_2phen = 4,7-dimeth$ yl-1,10-phenanthroline) and $[Co^{III}(Cp^*)(bpy)(H_2O)]^{2+}$ $(Cp^* = \eta^5 - \eta^5)$ pentamethylcyclopentadienyl; bpy = 2,2'-bipyridine) as the photocatalyst and WOC, respectively, in the presence of Sc(NO₃)₃ in water, the optimized quantum yield of the photocatalytic production of H_2O_2 at $\lambda = 450$ nm was determined to be 37%.^[90] The conversion efficiency from solar energy to chemical energy was determined to be 0.25%.^[90] Photocatalytic H₂O₂ production proceeded through electron transfer from photoexcited $[Ru^{\parallel}(Me_2phen)_3]^{2+}$ to O_2 to produce $[Ru^{III}(Me_2phen)_3]^{3+}$ and O_2^{-} binding to Sc^{3+} .^[90] The disproportionation of $O_2^{-}-Sc^{3+}$ in water yielded H_2O_2 , whereas 4 equivalents of $[Ru^{III}(Me_2phen)_3]^{3+}$ oxidized H_2O to O_2 in the presence of the WOC.^[90]

Graphitic carbon nitride with electron-deficient aromatic diimide units (g-C₃N₄/PDI; PDI = pyromellitic diimide) was reported to work as a photocatalyst for H₂O₂ production from H₂O and O₂.^[104] However, the amount of H₂O₂ formed by photoirradiation for 48 h was only 30 μ mol.^[104]

The production of H₂O₂ from H₂O and O₂ as a solar fuel was also performed by using NiFe2O4 nanoparticles composed of earth-abundant metals as a WOC^[105] in the presence of [Ru^{II}(Me₂phen)₃]²⁺ and Sc(NO₃)₃ under visible-light irradiation $(\lambda > 420 \text{ nm})$.^[106] The NiFe₂O₄ catalyst was reused after H₂O₂ production ceased due to the decomposition of the photocatalyst by repeated addition of an aqueous solution of [Ru^{II}(Me₂phen)₃]²⁺ to the reaction suspension. The concentration of H₂O₂ after repeated reactions reached as high as 3.3 mm, which is indicative of the high stability of the nanoparticles as a WOC (Figure 12b).^[106] The initial rates of H₂O₂ production were increased 22- and 33-fold by employing smaller NiFe₂O₄ nanoparticles with diameters of 120 and 91 nm, respectively, relative to the initial rate of H_2O_2 production by using large NiFe₂O₄, with a diameter of 1300 nm (Figure 12a).^[106] This enhanced reactivity resulted from the high specific surface area of the smaller catalyst.^[106]

Various heteropolynuclear cyanide metal complexes containing different metal ions, $Co_3[Fe(CN)_6]_2$, $Co_3[Co(CN)_6]_2$, $Cu_3[Co(CN)_6]_2$, $Co[Ni(CN)_4]$, $Fe_3[Cr(CN)_6]_2$, $Mn_3[Fe(CN)_6]_2$, $Co_3[Mn(CN)_6]_2$, $Co_3[Fe(CN)_6]_2$, $Co[Pd(CN)_4]$, and $Co[Pt(CN)_4]$, were also used for water oxidation in the photocatalytic pro-

CHEMELECTROCHEM Minireviews

2 3

4

5 6 7

9

16

17

24

27

34

37

40

41

42

43

44

45

46

Figure 12. a) Time course of H_2O_2 production under visible-light irradiation $(\lambda > 420 \text{ nm})$ of $[\text{Ru}^{II}(\text{Me}_2\text{phen})_3]^{2+}$ (200 μ M) in the presence of Sc(NO₃)₃ (100 mM) and NiFe₂O₄ (0.17 g L⁻¹) with diameters of 1300 nm (\bullet), 120 nm (\bullet), and 91 nm (\bullet) in O₂-saturated H₂O (3.0 mL, $[O_2] = 1.2 \text{ mM}$). b) Time course of H₂O₂ production in the presence of NiFe₂O₄ (0.17 g L⁻¹) and Sc(NO₃)₃ (100 mM) under visible-light irradiation ($\lambda > 420 \text{ nm}$) of $[\text{Ru}^{II}(\text{Me}_2\text{phen})_3]^{2+}$ (200 μ M) in O₂-saturated H₂O (3.0 mL, $[O_2] = 1.2 \text{ mM}$). [Ru^{II}(Me₂phen)₃]²⁺ was added twice to the reaction suspension after 50 and 100 h of photoirradiation. The amount of $[\text{Ru}^{II}(\text{Me}_2\text{phen})_3]^{2+}$ added each time at 50 and 100 h to the reaction suspension was calculated in terms of the concentration increase of 200 μ M.^[106]

duction of H₂O₂ from H₂O and O₂ in an aqueous solution containing {[Ru^{II}(Me₂phen)]₃}²⁺ and Sc(NO₃)₃ under visible-light irradiation with a xenon lamp by using a UV light cut filter ($\lambda > 420$ nm).^[107] Among the various heteropolynuclear cyanide complexes, the highest catalytic reactivity was obtained with Fe₃[Co(CN)₆]₂.^[107] The catalytic reactivity was further enhanced by using the heteropolynuclear cyanide complexes (Fe_xCo_{1-x})₃[Co(CN)₆]₂ (x=0, 0.10, 0.50, 0.75, 0.90, and 1) shown in Figure 13.

The catalytic activity was maximized if the Fe/Co ratio in the (Fe_xCo_{1-x}) moiety of $(Fe_xCo_{1-x})_3[Co(CN)_6]_2$ was 0.75.^[107] WOCs with a larger Fe ratio would have more active sites for water oxidation, whereas a complex with a smaller Fe ratio would stabilize the high-valent metal ions generated during the photocatalytic reaction.^[107] The optimized ratio of Fe in $(Fe_xCo_{1-x})_3[Co(CN)_6]_2$ (x=0.75) was obtained by the balance of the two opposite effects of Fe on the water oxidation reaction.^[107]

If water oxidation and O_2 reduction were performed in a one-compartment cell as described above, the oxidation of H_2O_2 inevitably competed with water oxidation in the presence

Figure 13. A schematic drawing of $(Fe_xCo_{1-x})_3[Co(CN)_6]_2$, for which x=0, 0.10, 0.50, 0.75, 0.90, and 1. lons are color coded: N-bound Co^{II} and Fe^{II} (orange), C-bound Co^{III} (pink), C (gray), N (blue), and O (red).^{[107}

of a WOC to prevent the production of H₂O₂ at higher concentrations. Thus, the photocatalytic production of H₂O₂ from H₂O and O2 was performed by using a two-compartment cell by employing a semiconductor photocatalyst anode in one cell and a carbon mesh cathode in an O2-saturated aqueous solution containing Ru complexes and Sc(NO₃)₃ in the other cell to achieve higher concentrations of H₂O₂ than that obtained with a one-compartment cell.^[108] A schematic drawing of the twocompartment cell is depicted in Figure 14, for which WO₃ or

Figure 14. Schematic drawing of a two-compartment cell for the photocatalytic production of H₂O₂ from H₂O and O₂ under visible-light irradiation.^[108]

BiVO₄ was used as the anode^[109, 110] for the photooxidation of water and a carbon mesh cathode was employed for photoreduction of O₂ by Ru complexes.^[108] The two compartments were separated by a Nafion membrane.[108] Upon using $[Ru^{II}{(MeO)_{2}bpy}_{3}]^{2+}$ $[(MeO)_2bpy = 4,4'-dimethoxy-2,2'-bipyri$ dine] as the catalyst for the two-electron photoreduction of O₂ in the presence of $Sc(NO_3)_3$ (100 mm) in an O_2 -saturated aqueous solution at the carbon mesh cathode and the BiVO₄ photoanode, the best performance was obtained in terms of the H₂O₂ yield and reaction rate, as shown in Figure 15.^[108]

The photocatalytic production of H₂O₂ from H₂O and O₂ in a two-compartment cell is shown in Scheme 2.^[108] Electron transfer from photogenerated $[Ru^{II}{(MeO)_2bpy}_3]^{2+*}$ to O_2

CHEMELECTROCHEM nireviews

2 3

5 6

16

17

19

24

34

40

41

43

44

45

46

47

49

Figure 15. Production of H₂O₂ under photoirradiation of a two-compartment cell composed of a semiconductor photocatalyst anode [BiVO₄ (green and blue lines) or WO₃ (red line)] in one cell and a carbon cloth cathode in the presence of $[Ru^{II}((MeO)_2bpy)_3]^{2+}$ (160 μ M, black line) or $[Ru^{II}(Me_2phen)_3]^{2-}$ (160 µm, blue and green lines) in the other cell. Both cells were filled with aqueous solution of Sc(NO₃)₃ (100 mm, 8.0 mL for each cell). A Xe lamp $(\lambda > 420 \text{ nm})$ and a solar simulator were used to irradiate the Ru complex and semiconductor photocatalyst, respectively.^[108]

occurs to produce $[Ru^{III}{(MeO)_2bpy}_3]^{3+}$ and O_2^{-} . Strong binding of Sc^{3+} to O_2 .⁻ to give a O_2 .⁻- Sc^{3+} complex prohibits back transfer from the O₂.⁻–Sc³⁺ electron complex to $[Ru^{III}{(MeO)_2bpy}_3]^{3+}$. Disproportionation of the $O_2^{-}-Sc^{3+}$ complex provides H_2O_2 in the presence of H^+ . On the other hand, $BiVO_4$ catalyzes the photooxidation of water to O_2 by using the strong oxidation ability of the photogenerated holes. $[Ru^{III}{(MeO)_2bpy}_3]^{3+}$ of to Reduction regenerate [Ru^{II}((MeO)₂bpy)₃]²⁺ proceeds by using the photoexcited electrons in the conduction band of BiVO₄.

4. Production and use of Hydrogen Peroxide as a Solar Fuel in Seawater

Pure water is a limited resource; thus, utilization of earth-abundant seawater instead of pure water is desirable for any practical applications of H₂O₂ as a solar fuel. Efficient photocatalytic production of H₂O₂ from seawater and O₂ in the air was performed in a two-compartment photoelectrochemical cell. The cell used mesoporous WO3 supported on a fluorine-doped tin oxide glass substrate (m-WO₃/FTO) as a photocatalyst for water oxidation and a cobalt chlorin complex supported on a carbon paper [Co^{II}(Ch)/CP] for the selective two-electron reduction of O2, as shown in Figure 16.[112] Photoirradiation of m-WO3/FTO with a solar simulator (1 sun, AM1.5G) in the anode cell result-

4

5

6 7

9

14

16

17

21 22

23

24 25 26

27

29

34

41

42

43

44

45

47

49

51

57

Figure 16. Photocatalytic production of H₂O₂ from water and O₂ by using a m-WO₃/FTO photoanode and a Co^{II}(Ch)/CP cathode in water or seawater under simulated 1 sun (AM1.5G) illumination.[112]

ed in efficient generation of H₂O₂ in the cathode cell of the two-compartment photoelectrochemical configuration without any external bias potential. The time course of the concentration of H₂O₂ produced by the photocatalytic reaction is shown in Figure 17.^[112] A negligible amount of H₂O₂ was formed in the absence of Co^{II}(Ch) on the carbon paper electrode, which suggested that Co^{II}(Ch) efficiently catalyzed the selective twoelectron reduction of O_2 to yield $H_2O_2^{[83, 112]}$ before charge recombination of the photoexcited electrons in the conduction band and the holes∎∎ok?∎∎ generated in the valence band of WO₃. After illumination for 24 h, the amount of H_2O_2 produced in seawater reached about 48 mm, which was high enough to operate a H₂O₂ fuel cell (see below).^[112] However, an extreme deceleration in the production of H₂O₂ was observed if pure water was used instead of seawater for the photocatalytic H₂O₂ production system.

Figure 17. Time course of H₂O₂ production with a m-WO₃/FTO photoanode and Co^{II}(Ch)/CP cathode in pH 1.3 water (•), in pH 1.3 seawater (•), and in an NaCl aqueous solution (pH 1.3) (■) under simulated 1 sun (AM1.5G) illumination. Time course of H₂O₂ production in the absence of Co^{II}(Ch) from carbon paper under simulated 1 sun (AM1.5G) illumination in pH 1.3 water is also shown (•).[112

An enhancement in the photocatalytic activity was observed in an NaCl solution for the reaction system in which seawater was used, and the concentration of NaCl was the same as that in seawater ck? for water oxidation in the presence of NaCl was elucidated by the following CI⁻-mediated mechanism.^[113-117] Upon photoexcitation of WO₃, Cl⁻ oxidation by photogenerated holes resulted in the formation of chlorine (Cl₂), which occurred prior to the oxidation of water [Eq. (4)].^[114] Cl₂ thus formed reacted with water to form HCIO depending on the pH of the reaction solution [Eq. (5)].^[115] Decomposition of HCIO provided O₂ and Cl⁻ under photoirradiation [Eq. (6)].[115] Thus, the water oxidation efficiently proceeded by using Cl^- as a mediator [Eq. (7)]. The formation of HCIO/Cl₂ was confirmed during the photocatalytic water oxidation in the presence of Cl⁻.^[112]

$$2 \operatorname{Cl}^{-} + 2 \operatorname{h}^{+} \xrightarrow{h\nu} \operatorname{Cl}_{2}$$

$$\tag{4}$$

 $CI_2 + H_2O \rightleftharpoons HCIO + H^+$

$$2 \operatorname{HCIO}^{h\nu} \operatorname{O}_2 + 2 \operatorname{H}^+ + 2 \operatorname{CI}^-$$
(6)

$$2 H_2 O + 4 h^+ \xrightarrow{h\nu} O_2 + 4 H^+$$
(7)

The amount of O₂ evolved after photoirradiation for 1 h (12.7 µmol) in the anode cell containing seawater was more than three times larger than that in pure water (3.7 μ mol). Thus, the enhancement in the photocatalytic production of H₂O₂ in seawater (Figure 17) resulted from the Cl⁻-catalyzed photooxidation of water.[112]

A high solar energy conversion efficiency of 0.55% was achieved in the photocatalytic production of H₂O₂ in seawater under photoirradiation with a solar simulator (1 sun, 1.5AM).^[112] A higher solar energy conversion efficiency of 0.94% was achieved if the illumination intensity was reduced to 0.1 sun. This efficiency exceeds that of swichgrass (0.2%), which is regarded as a promising biomass crop for the production of biofuel,^[117] and also exceeds the value for photocatalytic H₂O₂ production in a one-compartment cell (0.25%).^[90]

The chemical energy of H₂O₂ produced by the photocatalytic oxidation of seawater by the O₂ in the air was converted into electricity by using a one-compartment H₂O₂ fuel cell by employing a $Fe^{II}_{3}[Co^{III}(CN)_{6}]_{2}$ -modified carbon cloth and a nickel mesh as the cathode and anode, respectively.^[112] The reaction solution (seawater, pH 1.3) containing about 48 mm of H_2O_2 produced by the photocatalytic reaction was transferred into the H_2O_2 fuel cell. The cell exhibited an OCP of 0.78 V and a maximum power density of 1.6 $mW\,cm^{-2}$ (Figure 18). $^{[112]}$ The energy conversion efficiency of the H₂O₂ fuel cell was determined to be around 50% by measuring the output energy as electrical energy versus consumed chemical energy of H₂O₂; this value is comparable to the efficiency of a H_2 fuel cell. $^{[112]}$

5. Conclusions

The most serious problem accompanied with the use of H₂ as an energy carrier has been solved by using a high-pressure tank with an extremely high strength, which was developed only recently. However, the tank cannot be incorporated into personal-based small electric devices such as cell phones. For this purpose, liquid or solid energy carriers storable in lightweight containers are necessary. These days, the capacity and

(5)

Figure 18. *I–V* (**•**) and *I–P* (**•**) curves of the one-compartment H_2O_2 fuel cell with a Ni mesh anode and $Fe^{II}_{3}[Co^{III}(CN)_{6}]_{2}/carbon cloth cathode in the reac$ tion solution containing H_2O_2 (47.9 mm) produced by photocatalytic reaction in seawater as shown in Figure 17 (•).[112]

durability of lithium-ion batteries have been much improved; however, high costs and limited resources remain critical issues. H₂O₂ can be an alternative sustainable and green fuel for personal-based electric items, because abundant oxygen, water, and sunlight are resources, and power generation is possible with a fuel cell with a simple one-compartment structure.∎∎paragraph ok?∎∎

As described above, the proof of concept has been demonstrated for the production of H₂O₂ from sweater and the O₂ in the air by using solar energy and its direct use on demand as a fuel in one-compartment H₂O₂ fuel cells. There are still many things left to improve the performance of one-compartment H_2O_2 fuel cells, including the development of better cathode and anode materials. One-compartment cells without any membranes and the use of seawater containing H₂O₂ are more advantageous than the production of gaseous H₂ and its use in H₂ fuel cells, because seawater is the most earth-abundant resource. The production of fuels by utilizing solar energy and the generation of electricity with the fuels in seawater are beneficial for practical applications. Further improvement in the photocatalytic activity for the production of H₂O₂ from seawater and O₂ together with more efficient one-compartment H₂O₂ fuel cells without membranes for use in personal-based sustainable energy-conversion systems are targets for the future.∎∎ok?∎∎

Acknowledgements

The authors gratefully acknowledge the contributions of their collaborators and co-workers mentioned in the cited references and financial support from the ALCA and SENTAN projects from the Japan Science and Technology Agency (JST) and Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant numbers 16H02268 to S.F. and 15K14223 to Y.Y.) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. ok?

CHEMELECTROCHEM Minireviews

2

4

5

6

7

9

16

17

19

24

25

27

34

37

40

41

43

44

45

46

47

49

57

Keywords: energy conversion • fuel cells hydrogen peroxides · photocatalysis · solar fuels

- [1] T. A. Faunce, W. Lubitz, A. W. Rutherford, D. MacFarlane, G. F. Moore, P. Yang, D. G. Nocera, T. A. Moore, D. H. Gregory, S. Fukuzumi, K. B. Yoon, F. A. Armstrong, M. R. Wasielewski, S. Styring, Energy Environ. Sci. 2013, 6.695-698.
- [2] N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729-15735.
- [3] D. Kim, K. K. Sakimoto, D. Hong, P. Yang, Angew. Chem. Int. Ed. 2015, 54, 3259-3266; Angew. Chem. 2015, 127, 3309-3316.
- [4] E. W. McFarland, Energy Environ. Sci. 2014, 7, 846-854.
- [5] G. Gahleitner, Int. J. Hydrogen Energy 2013, 38, 2039-2061. [6] S. Fukuzumi, Y. Yamada, T. Suenobu, K. Ohkubo, H. Kotani, Energy Envi-
- ron. Sci. 2011, 4, 2754-2766.
- [7] M. Momirlan, T. N. Veziroglub, Int. J. Hydrogen Energy 2005, 30, 795-802.
- [8] S. Fukuzumi, Eur. J. Inorg. Chem. 2008, 1351-1362.
- [9] R. S. Disselkamp, Energy Fuels 2008, 22, 2771-2774.
- [10] R. S. Disselkamp, Int. J. Hydrogen Energy 2010, 35, 1049-1053.
- [11] R. S. Disselkamp, Appl. Energy 2011, 88, 4214-4217.
- [12] L. An, T. Zhao, X. Yan, X. Zhou, P. Tan, Sci. Bull. 2015, 60, 55-64.
- [13] S. Fukuzumi, Y. Yamada, K. D. Karlin, Electrochim. Acta 2012, 82, 493-511.
- [14] S. Fukuzumi, Y. Yamada, Aust. J. Chem. 2014, 67, 354-364.
- [15] S. Fukuzumi, Biochim. Biophys. Acta Bioenerg. 2016, 1857, 604-611.
- [16] W. Scholz, F. Galván, F. F. de la Rosa, Solar Energy Mater. Solar Cells 1995, 39, 61-69.
- [17] F. F. de la Rosa, O. Montes, F. Galván, Biotechnol. Bioeng. 2001, 74, 539-543.
- [18] M. Mubarakshina, S. Khorobrykh, B. Ivanov, Biochim. Biophys. Acta Bioenerg. 2006, 1757, 1496-1503.
- [19] R. Simard, Eng. J. 1948, 31, 219-225. ■ please check this reference ■
- [20] E. Burgess, J. Am. Rocket Soc. 1946, 00, 18-19.
- [21] S. Bonifacio, G. Festa, A. R. Sorge, J. Propul. Power 2013, 29, 1130-1137.
- [22] B. Li, M. Jonsson, M. Algotsson, J. Bood, Z. S. Li, O. Johansson, M. Aldén, M. Tunér, B. Johansson, Proc. Combust. Inst. 2013, 34, 3573-3581.
- [23] N. Kurimoto, B. Brumfield, X. Yang, T. Wada, P. Diévart, G. Wysocki, Y. Ju, Proc. Combust. Inst. 2015, 35, 457-464.
- [24] O. V. Romantsova, V. B. Ulybin, Acta Astronaut. 2015, 109, 231-234.
- [25] Z. Zhang, A. Zhao, F. Wang, J. Rena, X. Qu, Chem. Commun. 2016, 52, 5550-5553.
- [26] W. Z. Teo, H. Wang, M. Pumera, Chem. Commun. 2016, 52, 4333-4336.
- [27] A. A. Solovev, E. J. Smith, C. C. Bof'Bufon, S. Sanchez, O. G. Schmidt, Angew. Chem. Int. Ed. 2011, 50, 10875-10878; Angew. Chem. 2011, 123, 11067 - 11070.
- [28] H. Wang, G. Zhao, M. Pumera, J. Am. Chem. Soc. 2014, 136, 2719-2722.
- [29] A. Martín, B. Jurado-Sánchez, A. Escarpa, J. Wang, Small 2015, 11, 499-506.
- [30] H. Wang, Z. Sofer, A.Y.S. Eng, M. Pumera, Chem. Eur. J. 2014, 20, 14946-14950.
- [31] E. Santacesaria, M. D. Serio, R. Velotti, U. Leone, Ind. Eng. Chem. Res. 1994, 33, 277-284.
- [32] J. M. Campos-Martin, G. Blanco-Brieva, J. L. G. Fierro, Angew. Chem. Int. Ed. 2006, 45, 6962-6984; Anaew. Chem. 2006, 118, 7116-7139.
- [33] M. M. Borisova, M. A. Kozuleva, N. N. Rudenko, I. A. Naydov, I. B. Klenina, B. N. Ivanov, Biochim. Biophys. Acta Bioenerg. 2012, 1817, 1314-1321.
- [34] M. R. Badger, S. von Caemmerer, S. Ruuska, H. Nakano, Philos. Trans. R. Soc. London Ser. B 2000, 355, 1433-1446.
- [35] I. V. Kuvykin, A. V. Vershubskii, V. V. Ptushenko, A. N. Tikhonov, Biochem. Mosc. 2008, 73, 1063-1075.
- [36] D. D. Wagman, J. Phys. Chem. Ref. Data 1982, 11, Supplement No. 2. [37] M. Kutz, Mechanical Engineers' Handbook 4: Energy and Power, Wiley, New York, 2015.

7

17

ChemElectroChem 2016, 3, 2-15

www.chemelectrochem.org

4

5

6

7

9

14

17

22

23

24

25

26

27

34

37

40

41

42

43

44

45

46

47

49

57

- [38] S. Yamazaki, Z. Siroma, H. Senoh, T. Ioroi, N. Fujiwara, K. Yasuda, J. Power Sources 2008, 178, 20-25.
- [39] Y. Yamada, Y. Fukunishi, S. Yamazaki, S. Fukuzumi, Chem. Commun. 2010, 46, 7334-7336.
- [40] Y. Yamada, S. Yoshida, T. Honda, S. Fukuzumi, Energy Environ. Sci. 2011, 4, 2822 - 2825.
- [41] S. A. M. Shaegh, N. T. Nguyen, S. M. M. Ehteshami, S. H. A. Chan, Energy Environ. Sci. 2012, 5, 8225-8228.
- [42] Y. Yamada, M. Yoneda, S. Fukuzumi, Chem. Eur. J. 2013, 19, 11733-11741.
- [43] Y. Yamada, M. Yoneda, S. Fukuzumi, Energy Environ. Sci. 2015, 8, 1698-1701.
- [44] Y. Yamada, M. Yoneda, S. Fukuzumi, Inorg. Chem. 2014, 53, 1272-1274.
- [45] A. Pariyar, G. Vijaykumar, M. Bhunia, S. K. Dey, S. K. Singh, S. Kurungot, S. K. Mandal, J. Am. Chem. Soc. 2015, 137, 5955-5960.
- [46] A. E. Sanlı, A. Aytac, Int. J. Hydrogen Energy 2011, 36, 869-875. please check this reference
- [47] F. Yang, K. Cheng, X. Liu, S. Chang, J. Yin, C. Du, L. Du, G. Wang, D. Cao, J. Power Sources 2012, 217, 569-573.
- [48] F. Yang, K. Cheng, T. Wu, Y. Zhang, J. Yin, G. Wang, D. Cao, Electrochim. Acta 2013, 99, 54-61.
- [49] A. E. Sanli, Int. J. Energy Res. 2013, 37, 1488-1497.
- [50] F. Yang, K. Cheng, T. Wu, Y. Zhang, J. Yin, G. Wang, D. Cao, RSC Adv. 2013, 3, 5483-5490.
- [51] F. Yang, K. Cheng, X. Xiao, J. Yin, G. Wang, D. Cao, J. Power Sources 2014, 245, 89-94.
- [52] K. Ye, F. Guo, Y. Gao, D. Zhang, K. Cheng, W. Zhang, G. Wang, D. Cao, J. Power Sources 2015, 300, 147-156.
- [53] F. Yang, K. Cheng, X. Liu, S. Chang, J. Yin, C. Du, L. Du, G. Wang, D. Cao, J. Power Sources 2012, 217, 562-568.
- [54] D. Duan, X. You, J. Liang, S. Liu, Y. Wang, Electrochim. Acta 2015, 176, 1126-1135.
- [55] L. Yi, W. Wei, C. Zhao, L. Tian, J. Liu, X. Wang, J. Power Sources 2015, 285, 325-333.
- [56] L. Yi, Y. Song, X. Liu, X. Wang, G. Zou, P. He, W. Yi, Int. J. Hydrogen Energy 2011, 36, 15775 – 15782.
- [57] D. Cao, Y. Gao, G. Wang, R. Miao, Y. Liu, Int. J. Hydrogen Energy 2010, 35, 807-813.
- [58] H. Wu, C. Wang, Z. Liu, Z. Mao, Int. J. Hydrogen Energy 2010, 35, 2648 -2651. please check this reference
- [59] J. P. Charles, R. B. Russell, K. K. Yong, R. S. Christian, J. Electrochem. Soc. 2008, 155, B558-B562.
- [60] K. Naga Mahesh, R. Balaji, K. S. Dhathathreyan, Ionics 2015, 21, 2603 -2607.
- [61] K. Liu, C.-A. Wang, J.-T. Ma, RSC Adv. 2014, 4, 18894-18898.
- [62] L. An, T. S. Zhao, X. L. Zhou, X. H. Yan, C. Y. Jung, J. Power Sources 2015, 275, 831-834.
- [63] W. Yang, S. Yang, W. Sun, G. Sun, Q. Xin, Electrochim. Acta 2006, 52, 9-14
- [64] T. Bewer, T. Beckmann, H. Dohle, J. Mergel, D. Stolten, J. Power Sources 2004, 125, 1-9.
- [65] X. H. Yan, T. S. Zhao, L. An, G. Zhao, L. Shi, Int. J. Hydrogen Energy 2016, 41, 5130 - 5140.
- [66] D. N. Prater, J. J. Rusek, Appl. Energy 2003, 74, 135-140.
- [67] L. An, T. S. Zhao, X. L. Zhou, L. Wei, X. H. Yan, RSC Adv. 2014, 4, 65031-65034.
- [68] S. P. S. Badwal, S. Giddey, A. Kulkarni, J. Goel, S. Basu, Appl. Energy **2015**, *145*, 80–103.
- [69] S. J. Lao, H. Y. Oin, L. O. Ye, B. H. Liu, Z. P. Li, J. Power Sources 2010, 195, 4135-4138.
- [70] A. E. Sanlı, M. D. Mat, Int. J. Hydrogen Energy 2015, 40, 6440-6448. please check this reference
- [71] A. Sanlı, O. Yilmaz, A. Aytac, Int. J. Energy Res. 2013, 37, 1205-1212. please check this reference
- [72] P. Vidossich, M. Alfonso-Prieto, X. Carpena, I. Fita, P. C. Loewen, C. Rovira, Arch. Biochem. Biophys. 2010, 500, 37-44.
- [73] R. Palangsuntikul, M. Somasundrum, W. Surareungchai, Electrochim. Acta 2010, 56, 470-475.
- [74] T. Ruzgas, L. Gorton, J. Emnéus, G. Marko-Varga, J. Electroanal. Chem. **1995**, 391, 41-49.

13

- [75] D. Sović, A. Gajović, D. Iveković, Electrochim. Acta 2011, 56, 9953-9960.
- [76] S. Fukuzumi, K. Ohkubo, Chem. Eur. J. 2000, 6, 4532-4535.
- [77] S. Fukuzumi, K. Ohkubo, J. Am. Chem. Soc. 2002, 124, 10270-10271. [78] S. Fukuzumi, Prog. Inorg. Chem. 2009, 56, 49-153.
- [79] S. Kakuda, C. Rolle, K. Ohkubo, K. D. Karlin, S. Fukuzumi, J. Am. Chem.
- Soc. 2015, 137, 3330-3337.
- [80] S. Fukuzumi, S. Mochizuki, T. Tanaka, Inorg. Chem. 1989, 28, 2459-2465.
- [81] I. Hatay, B. Su, F. Li, M. A. Mendez, T. Khoury, C. P. Gros, J.-M. Barbe, M. Ersoz, Z. Samec, H. H. Girault, J. Am. Chem. Soc. 2009, 131, 13453-13459.
- [82] K. Mase, K. Ohkubo, S. Fukuzumi, Inorg. Chem. 2015, 54, 1808-1815.
- [83] K. Mase, K. Ohkubo, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135, 2800-2808
- [84] T. Honda, T. Kojima, S. Fukuzumi, J. Am. Chem. Soc. 2012, 134, 4196-4206.
- [85] B. Su, I. Hatay, A. Trojanek, Z. Samec, T. Khoury, C. P. Gros, J.-M. Barbe, A. Daina, P.-A. Carrupt, H. H. Girault, J. Am. Chem. Soc. 2010, 132, 2655-2662.
- [86] K. M. Kadish, J. Shen, L. Fremond, P. Chen, M. El Ojaimi, M. Chkounda, C. P. Gros, J.-M. Barbe, K. Ohkubo, S. Fukuzumi, R. Guilard, Inorg. Chem. 2008, 47, 6726-6737.
- [87] S. Fukuzumi, K. Okamoto, C. P. Gros, R. Guilard, J. Am. Chem. Soc. 2004, 126, 10441 - 10449.
- [88] J. Qu, Y. Shen, X. Qu, S. Dong, Electroanalysis 2004, 16, 1444-1450.
- [89] M. S. El-Deab, S. H. Othman, T. Okajima, T. Ohsaka, J. Appl. Electrochem. 2008, 38, 1445-1451.
- [90] S. Kato, J. Jung, T. Suenobu, S. Fukuzumi, Energy Environ. Sci. 2013, 6, 3756-3764.
- [91] A. Das, V. Joshi, D. Kotkar, V. S. Pathak, V. Swayambunathan, P. V. Kamat, P. K. Ghosh, J. Phys. Chem. A 2001, 105, 6945-6954.
- [92] X. Wu, F. Li, B. Zhang, L. Sun, J. Photochem. Photobiol. C 2015, 25, 71-89.
- [93] S. Fukuzumi, J. Jung, Y. Yamada, T. Kojima, W. Nam, Chem. Asian J. **2016**, 11, 1138.
- [94] M. Okamura, S. Masaoka, Chem. Asian J. 2015, 10, 306-315.
- [95] S. Fukuzumi, D. Hong, Eur. J. Inorg. Chem. 2014, 645-659.
- [96] Q. Yin, J. M. Tan, C. Besson, Y. V. Geletii, D. G. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle, C. L. Hill, Science 2010, 328, 342-345.
- [97] H. Lv, J. Song, Y. V. Geletii, J. W. Vickers, J. M. Sumliner, D. G. Musaev, P. Kögerler, P. F. Zhuk, J. Bacsa, G. Zhu, C. L. Hill, J. Am. Chem. Soc. 2014, 136, 9268-9271.
- [98] S. Fukuzumi, D. Hong, Y. Yamada, J. Phys. Chem. Lett. 2013, 4, 3458– 3467.
- [99] A. R. Parent, K. Sakai, ChemSusChem 2014, 7, 2070-2080.
- [100] S. Berardi, S. Drouet, L. Francas, C. Gimbert-Surinach, M. Guttentag, C. Richmond, T. Stoll, A. Llobet, Chem. Soc. Rev. 2014, 43, 7501-7519.
- [101] J. D. Blakemore, R. H. Crabtree, G. W. Brudvig, Chem. Rev. 2015, 115, 12974-13005.
- [102] D. Hong, M. Murakami, Y. Yamada, S. Fukuzumi, Energy Environ. Sci. **2012**, 5, 5708-5716.
- [103] Y. Yamada, K. Oyama, R. Gates, S. Fukuzumi, Angew. Chem. Int. Ed. 2015, 54, 5613-5617; Anaew. Chem. 2015, 127, 5705-5709.
- [104] Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, Angew. Chem. Int. Ed. 2014, 53, 13454-13459; Angew. Chem. 2014, 126, 13672-13677.
- [105] D. Hong, Y. Yamada, T. Nagatomi, Y. Takai, S. Fukuzumi, J. Am. Chem. Soc. 2012, 134, 19572-19575.
- [106] Y. Isaka, S. Kato, D. Hong, T. Suenobu, Y. Yamada, S. Fukuzumi, J. Mater. Chem. A 2015, 3, 12404-12412.
- [107] Y. Isaka, Y. Yamada, T. Suenobu, S. Fukuzumi, Catal. Sci. Technol. 2016, 6.681-684.
- [108] Y. Isaka, Y. Yamada, K. Ohkubo, T. Suenobu, S. Fukuzumi, RSC Adv. 2016, 6, 42041-42044.
- [109] P. Xu, J. Feng, T. Fang, X. Zhao, Z. Li, Z. Zou, RSC Adv. 2016, 6, 9905-9910.
- [110] Y. Park, K. J. McDonald, K.-S. Choi, Chem. Soc. Rev. 2013, 42, 2321-2337
- [111] S. Fukuzumi, M. Patz, T. Suenobu, Y. Kuwahara, S. Itoh, J. Am. Chem. Soc. 1999, 121, 1605-1606.

- [112] K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Nat. Commun. 2016, 7, 11470.
- [113] Z. Chen, J. J. Concepcion, N. Song, T. J. Meyer, Chem. Commun. 2014, 50, 8053-8056.
- [114] S. Nakagawara, T. Goto, M. Nara, Y. Ozawa, K. Hotta, Y. Arata, Anal. Sci. 1998, 14, 691–698.
- [115] L. Huang, R. Li, R. Chong, G. Liu, J. Han, C. Li, Catal. Sci. Technol. 2014, 4, 2913–2918.
- [116] Y. Miseki, K. Sayama, *RSC Adv.* 2014, *4*, 8308–8316.
 [117] A. Melis, *Plant Sci.* 2009, *177*, 272–280.

Manuscript received: June 14, 2016 Accepted Article published: September 23, 2016 Final Article published:

MINIREVIEWS

So much to sea: Hydrogen peroxide can be produced from seawater and dioxygen by using solar energy. This article provides a focused review of recent developments and future perspectives of H_2O_2 fuel cells without membranes, combined with H_2O_2 production from seawater and dioxygen in the air by utilizing solar energy.

S. Fukuzumi,* Y. Yamada*

Hydrogen Peroxide used as a Solar Fuel in One-Compartment Fuel Cells

Review on hydrogen peroxide as a #SolarFuel in one-compartment #FuelCells @EwhaWomansUniv SPACE RESERVED FOR IMAGE AND LINK

Share your work on social media! *ChemElectroChem* has added Twitter as a means to promote your article. Twitter is an online microblogging service that enables its users to send and read text-based messages of up to 140 characters, known as "tweets". Please check the pre-written tweet in the galley proofs for accuracy. Should you or your institute have a Twitter account, please let us know the appropriate username (i.e., @accountname), and we will do our best to include this information in the tweet. This tweet will be posted to the journal's Twitter account @ChemElectroChem (follow us!) upon online publication of your article, and we recommended you to repost ("retweet") it to alert other researchers about your publication.

Please check that the ORCID identifiers listed below are correct. We encourage all authors to provide an ORCID identifier for each coauthor. ORCID is a registry that provides researchers with a unique digital identifier. Some funding agencies recommend or even require the inclusion of ORCID IDs in all published articles, and authors should consult their funding agency guidelines for details. Registration is easy and free; for further information, see http://orcid.org/.

Prof. Dr. Shunichi Fukuzumi Prof. Dr. Yusuke Yamada

 $\Lambda\Lambda$