Novel Xanthine Oxidase (XO) inhibitory phenylindanes produced by thermal reaction of caffeic acid

メタデータ	言語: English			
	出版者: Taylor & Francis			
	公開日: 2019-07-31			
	キーワード (Ja): コーヒー酸, 焙煎コーヒー			
キーワード (En): Phenylindane, xanthine oxidase				
inhibition, caffeic acid, roasted coffee				
作成者: 福山, 侑弥, 飛高, 佳代, 増田, 晃子, 増田, 俊君				
	メールアドレス:			
所属: Osaka City University, Osaka City University				
	Shikoku University, Osaka City University			
URL	https://ocu-omu.repo.nii.ac.jp/records/2019685			

Novel Xanthine Oxidase (XO) inhibitory phenylindanes produced by thermal reaction of caffeic acid

Yuya Fukuyama, Kayo Hidaka, Akiko Masuda, Toshiya Masuda

Citation Bioscience, Biotechnology, and Biochemistry, 82(10); 1825-1828			
Issue Date 2018-07-02			
Type Journal Article			
Textversion	author		
	This is an Accepted Manuscript of an article published by Taylor & Francis in		
Rights	Bioscience, Biotechnology, and Biochemistry on 02/07/2018, available online:		
	https://doi.org/10.1080/09168451.2018.1491287.		
DOI	10.1080/09168451.2018.1491287		

Self-Archiving by Author(s) Placed on: Osaka City University

NOTE

Novel Xanthine Oxidase (XO) Inhibitory Phenylindanes Produced by Thermal Reaction of Caffeic Acid.

Yuya FUKUYAMA,¹ Kayo HIDAKA,¹ Akiko MASUDA,² and Toshiya MASUDA¹[†]

¹ Graduate School of Human Life Science, Osaka 558-8585, Japan ² Faculty of Human Life Science, Shikoku University, Tokushima 771-1192, Japan

> †Corresponding author, Tel/Fax: +81-6-605-2813; E-mail: masuda_t@life.osaka-cu ac.jp

Funding: JSPS Kakenhi [Grant Number JP15H02892], and a collaborative research fund between Ajinomoto-AGF and Osaka City University

1 ABSTRACT

- $\mathbf{2}$
- 3 The products from the thermal reaction of chlorogenic and caffeic acids, which is a
- 4 model process of roasting coffee beans, exhibited xanthine oxidase (XO) inhibitory
- 5 activity. From caffeic acid, six inhibitory phenylindanes were identified, and a new
- 6 phenylindane displayed the highest inhibitory activity among them. The activity of these
- 7 phenylindanes may contribute to XO inhibition-related functions of roasted coffee
- 8 beverages.
- 9
- 10 Key words
- 11 Phenylindane; xanthine oxidase inhibition; caffeic acid; roasted coffee
- 12

13	Coffee beans are known to contain large amounts of chlorogenic acid and its
14	isomers (3~8% of green beans) as polyphenol constituents, which exert various
15	biological activities including antioxidant, hepatoprotective, and hypoglycemic
16	activities, ¹⁾ and might be responsible for health promoting effects of coffee beverages. ²⁾
17	It should be noted that coffee beverages consumed by humans are made from roasted
18	coffee beans and not from raw beans (green beans), which are dry seeds of the tropical
19	Rubiaceae plant. The roasting of coffee beans consists of a high-temperature thermal
20	treatment at around 200 °C. During roasting, the characteristic color, aroma, and taste of
21	coffee are developed. This suggests that the constituents of green coffee beans are
22	converted to other compounds under the thermal process. We previously found xanthine
23	oxidase (XO) inhibitory activity, which may relate to the prevention of gout in coffee
24	consumers by reducing uric acid in their plasma, ³⁾ only in roasted coffee beans ⁴⁾ where
25	several XO inhibitors were identified. ^{5,6)} However, other non-polar inhibitors, which
26	were suggested to exist in roasted coffee beans, ⁵⁾ have not yet been identified because of
27	the high complexity of the non-polar constituents of roasted coffee beans. Stadler and
28	coworkers ⁷ identified two phenylindanes from the thermal treatment of caffeic acid.
29	Later, Frank and coworkers ⁸⁾ found that such phenylindanes existed in roasted coffee
30	beans. These phenylindanes should be characteristic non-polar compounds of roasted

31	coffee beans. Therefore, we attempted to isolate such phenylindane derivatives from the
32	thermal reaction of coffee bean constituents and examine their XO inhibitory activity.
33	In a screw-capped test tube (i.d. 8 mm, L. 100 mm) were placed 10 mg of
34	chlorogenic acid (Carbosynth, Compton, UK), caffeic acid (Kanto Chemicals, Tokyo,
35	Japan), or quinic acid (MilliporeSigma, St. Louis, USA) with methanol (200 μ L) and
36	400 μ L of phosphate buffer (500 mmol/L, pH 6.0, from Na ₂ HPO ₄ and KH ₂ PO ₄). After
37	removing the solvent <i>in vacuo</i> , the tube was heated in a metal block bath. After cooling
38	the tube, methanol (1 mL) was added and the mixture was centrifuged at 2000 rpm for 5
39	min at 25 \square to give a supernatant. After evaporation of the solvent from the supernatant,
40	the XO inhibitory activity was measured using a previously reported method. ⁴⁾ Figure
41	1A shows the XO inhibitory activity of the products from the thermal reaction at 200 $^{\circ}$ C
42	of chlorogenic acid, caffeic acid, and quinic acid. The product mixture obtained from
43	heating chlorogenic acid expressed XO inhibitory activity at the concentration of 0.3
44	mg/mL, whereas that obtained from quinic acid, whose structure is contained in
45	chlorogenic acid, did not show significant XO inhibitory activity for 1 h of reaction time
46	(X-axis of Fig. 1A) under employed conditions. Although caffeic acid, which is also a
47	structure contained in chlorogenic acid, displayed weak XO inhibitory activity, the
48	product mixture obtained from its thermal treatment exhibited enhanced inhibitory

4

49	activity and the activity was stronger than that of the product mixture of chlorogenic
50	acid (Fig. 1A). These results indicate that the thermal reaction of caffeic acid (140 \square ~)
51	produces efficient XO inhibitors, which are expected to contain phenylindanes
52	according to Stadler. ⁷⁾ Figure 1B shows the XO inhibitory activity of the products
53	obtained from thermal reaction of caffeic acid at three different temperatures (reaction
54	time is expressed in X-axis) . The 170 $^{\circ}$ C reaction showed maximal XO inhibition
55	efficiency at short time within 30 min, and then the activity gradually decreased. In
56	contrast, the 140 °C reaction increased XO inhibition continuously for 1 h until almost
57	the same maximal activity. Therefore, the temperature of 140 °C was chosen for the
58	large-scale reaction because it was easy to monitor the reaction progress by HPLC
59	analysis.
60	Thus, a large-scale caffeic acid-phosphate buffer salt mixture was prepared as
61	described [caffeic acid (10 g) was dissolved in 100 mL of methanol and 400 mL of 500
62	mmol/L Na ₂ HPO ₄ -KH ₂ PO ₄ (pH 6.0) and then evaporated to dryness]. The solid mixture
63	was heated in a stainless reactor (i.d. 14 cm; h. 15 cm) under a N_2 atmosphere at 140 $^\circ C$
64	for 90 min. After cooling, the reaction mixture was extracted twice with 1L of methanol.
65	This procedure was repeated ten times (in total 100 g of caffeic acid were treated). After
66	removal of the methanol from the extract, the residue was used for the isolation of the

67	products. Part of the residue (84 g) was subjected to Amberlite XAD-7 column
68	chromatography eluted with increasing percent of methanol (50% to 100%) in water,
69	which produced 8 separate fractions. Fraction 3 (208 mg out of 6.5 g), which was eluted
70	with 60% methanol in water, was purified by preparative HPLC under the following
71	conditions [column, Cosmosil 5C18-AR-II (250x20 mm i.d.); solvent, 1% acetic acid in
72	$H_2O-CH_3CN = 85:15$; flow rate, 9.6 mL/min; detection, 280 nm]. Products 1 (3 mg), 2
73	(3 mg), 3 (62 mg), and 4 (6 mg) were isolated from the peaks at retention times: 34 min,
74	39 min, 24 min, and 28 min, respectively. Products 5 (87 mg) and 6 (134 mg) were
75	isolated from fraction 6 (an eluted fraction with 75% methanol in water) using
76	Sephadex LH-20 column chromatography and subsequent HPLC purification [column,
77	Cosmosil 5C18-AR-II (250x20 mm i.d.); solvent, 1% acetic acid in $H_2O-CH_3CN =$
78	75:25; flow rate, 9.6 mL/min; detection, 280 nm; collected peaks, retention time 43min
79	(product 5) and 47 min (product 6)].
80	Product 5 showed a molecular-related ion peak at m/z 295 in the ESI-MS. The ¹ H
81	NMR of 5 showed two sets of aromatic protons, one at 6.48 (dd, $J=7.8$ and 1.8 Hz),
82	6.53 (d, J=1.8 Hz), and 6.69 (d, J=7.8 Hz) ppm, and another one at 6.68 (brs) and 6.42
83	(brs) ppm, indicating the presence of a tri-substituted and a tetra-substituted benzene
84	rings. Geminal coupled protons were observed at 2.09 and 2.19 ppm, which were both

85	coupled with the protons at 4.16 and 3.22 ppm. The proton at 3.22 ppm was also
86	coupled with the methyl protons at 1.23 ppm. These data indicated that 5 is a
87	phenyl-substituted indane derivative. From the comparison of the ¹ H NMR analytical
88	data (chemical shifts and coupling constants), we concluded that 5 is the 1,3-trans
89	isomers of Stadler's phenylindanes. ⁷⁾ Product 6 showed the same molecular-related ion
90	at m/z 295 and very similar ¹ H NMR data to those of 5 . Typical differences were
91	observed in the chemical shifts and coupling constants of the protons at 1-, 2-, and
92	3-positions of the indane structure, which indicate that 6 is the <i>cis</i> isomer of 5 ^{7} as
93	shown in Fig. 2.
94	Products 3 and 4 showed similar ¹ H NMR data to those of 5 and 6 . The comparison
94 95	Products 3 and 4 showed similar ¹ H NMR data to those of 5 and 6 . The comparison of the ¹ H NMR spectra of 3 and 4 revealed that one proton signal at corresponding to
94 95 96	Products 3 and 4 showed similar ¹ H NMR data to those of 5 and 6 . The comparison of the ¹ H NMR spectra of 3 and 4 revealed that one proton signal at corresponding to the 2-methylene was lacking and another proton signal was shifted to higher frequency
94 95 96 97	Products 3 and 4 showed similar ¹ H NMR data to those of 5 and 6 . The comparison of the ¹ H NMR spectra of 3 and 4 revealed that one proton signal at corresponding to the 2-methylene was lacking and another proton signal was shifted to higher frequency (3.29 ppm) in the spectrum of 3 . The negative ESI-MS showed a molecular-related ion
94 95 96 97 98	Products 3 and 4 showed similar ¹ H NMR data to those of 5 and 6 . The comparison of the ¹ H NMR spectra of 3 and 4 revealed that one proton signal at corresponding to the 2-methylene was lacking and another proton signal was shifted to higher frequency (3.29 ppm) in the spectrum of 3 . The negative ESI-MS showed a molecular-related ion at <i>m/z</i> 271.0986, which indicated that 3 had the molecular formula $C_{17}H_{16}O_6$. These data
94 95 96 97 98 99	Products 3 and 4 showed similar ¹ H NMR data to those of 5 and 6 . The comparison of the ¹ H NMR spectra of 3 and 4 revealed that one proton signal at corresponding to the 2-methylene was lacking and another proton signal was shifted to higher frequency (3.29 ppm) in the spectrum of 3 . The negative ESI-MS showed a molecular-related ion at <i>m/z</i> 271.0986, which indicated that 3 had the molecular formula $C_{17}H_{16}O_6$. These data suggested the presence of a carboxylic acid group at the 2-positon. The <i>m/z</i> value of
94 95 96 97 98 99 100	Products 3 and 4 showed similar ¹ H NMR data to those of 5 and 6 . The comparison of the ¹ H NMR spectra of 3 and 4 revealed that one proton signal at corresponding to the 2-methylene was lacking and another proton signal was shifted to higher frequency (3.29 ppm) in the spectrum of 3 . The negative ESI-MS showed a molecular-related ion at <i>m/z</i> 271.0986, which indicated that 3 had the molecular formula $C_{17}H_{16}O_6$. These data suggested the presence of a carboxylic acid group at the 2-positon. The <i>m/z</i> value of 653.1634 observed in the ESI-MS was assigned to a characteristic carboxylic acid
 94 95 96 97 98 99 100 101 	Products 3 and 4 showed similar ¹ H NMR data to those of 5 and 6 . The comparison of the ¹ H NMR spectra of 3 and 4 revealed that one proton signal at corresponding to the 2-methylene was lacking and another proton signal was shifted to higher frequency (3.29 ppm) in the spectrum of 3 . The negative ESI-MS showed a molecular-related ion at <i>m/z</i> 271.0986, which indicated that 3 had the molecular formula C ₁₇ H ₁₆ O ₆ . These data suggested the presence of a carboxylic acid group at the 2-positon. The <i>m/z</i> value of 653.1634 observed in the ESI-MS was assigned to a characteristic carboxylic acid cluster ion [2M–2H+Na] ⁻ . The relative stereochemistry of the three substituted

103	to an NOE observed from 1-methyl protons to the proton at the 3-proton and a very
104	strong NOE observed from 2-H to the proton at the 2-position of 3-phenyl group in the
105	NOE differential spectra of 3 . Although product 4 shows a similar ¹ H NMR spectrum of
106	3, some differences are observed in the chemical shifts and coupling constants of
107	protons at 1-, 2-, and 3-positons. Moreover, the observed NOEs from 1-methyl protons
108	to the protons at 2- and 2'-positions suggested that relative stereochemistry is 1S, 2S, 3R.
109	The structures of 3 and 4 are shown in Fig.2. The planar structure of 3 and 4 was
110	already reported as a forming aid obtained from coffee in a US patent by Martine and
111	coworkers. ⁹⁾
112	The ESI-MS data showed peaks at m/z 315.0897 (C ₁₇ H ₁₅ O ₆ [M–H] ⁻) and 653.1628
113	$(C_{34}H_{30}O_{12}Na [2M-2H+Na]^{-})$ for product 1, and 315.0902 $(C_{17}H_{15}O_{6} [M-H]^{-})$ and
114	653.1629 ($C_{34}H_{30}O_{12}Na$ [2M-2H+Na] ⁻) for product 2 . Moreover, similar ¹ H NMR data
115	for both compounds indicated that they were stereoisomers of each other. The ¹ H NMR
116	of 2 revealed the presence of a 1,3,4-tri-substituted benzene and a
117	1,3,4,6-tetra-substituted benzene similar to other isolated products. A proton network
118	(CH-CH ₂ -CH-CH ₂), which was identified from the COSY, suggested a two-substituted
119	indane structure similar to that of 5 and 6 . The chemical shift of a terminal proton at
120	4.03 ppm was assigned to a methine proton signal between two benzene rings, while the

121	signals at 2.37 and 2.83 ppm, with coupling constants characteristic germinal protons,
122	were assigned to protons adjacent to a carboxylic acid. The assignments were confirmed
123	by the HMBC correlation between the methylene protons and a carbonyl carbon at 179
124	ppm (this carbon chemical shift was obtained from the F1-projection of the HMBC
125	spectrum). Taking into consideration the above data, structure 2 was assigned as a newly
126	identified compound:
127	1-hydroxycarbonylmethyl-3-(3,4-dihydroxy)phenyl-5,6-dihydroxyindane. The relative
128	stereochemistry of the acetic acid group at the 1-position and the dihydroxylphenyl
129	group at the 3-position was determined to be <i>cis</i> (structure 2 in Fig. 2) from the NOESY
130	of 2 (one NOE correlation between 1-CH ₂ and 2'-H, and other between 1-H and 3-H).
131	The ¹ H NMR spectral data of 1 indicated that 1 is a stereoisomer of 2 concerning the 1-
132	and 3-positions of the indane scaffold, which was deduced from a clear NOE correlation
133	observed between the 1-methylene protons and the proton at 3-position. Thus, 1 was
134	identified as a new compound with trans stereochemistry of the
135	1-hydroxycarbonylmethyl and 3-dihydroxyphenyl groups as shown in Fig. 2.
136	The XO inhibitory activity of the isolated phenylindanes (concentration: 200
137	μ mol/L) was measured by a previously reported procedure, ⁴⁾ which is based on the
138	quantitative HPLC analysis of produced uric acid, the data are summarized in Table 1.

139	While caffeic acid showed almost no activity at the measured concentration, isolated
140	phenylindanes exerted stronger activity than caffeic acid. Especially newly identified
141	phenylindane 1 had the most potent activity (62 % inhibition at 200 $\mu mol/L)$ among
142	them. Pyrogallol (IC ₅₀ 0.73 μ mol/L) and chlorogenic acid 1,5-lactones (IC ₅₀ 210~360
143	μ mol/L) isolated from roasted coffee beans have been identified as XO inhibitors.
144	Although the phenylindanes identified in this work have moderate XO inhibitory
145	activity comparing with potently active pyrogallol, they are non-polar inhibitors
146	produced from caffeic acid, which may play a role in the XO inhibitory activity exerted
147	by roasted coffee.
148	

149 **References**

- 150 1) Farah A, and Donangelo CM, Braz. J. Plant Physiol., 18, 23-36 (2006).
- 151 2) Higdon JV, Frei B, Crit. Rev. Food Sci. Nutr., 46, 101–123 (2006).
- 152 3) Choi HK, Willt W, and Curhan G, Arthritis Rheum., 56, 2049–2055 (2007).
- 153 4) Honda S, Miura Y, Masuda A, and Masuda T, Biosci. Biotechnol. Biochem. 78,
- 154 2110—2116 (2014).
- 155 5) Honda S and Masuda T, J. Agric. Food Chem., 64, 7743–7749 (2016).
- 156 6) Honda S, Fukuyama Y, Nishiwaki H, Masuda A, and Masuda T, Free Radic. Biol.
- 157 *Med*, **106**, 228–235 (2017).
- 158 7) Stadler RH, Welti DH, Stämpli AA, and Fay LB, J. Agric. Food Chem., 44, 898-905
- 159 (1996).
- 160 8) Frank O, Blumberg S, Kunet C, Zehentbauer G, and Hofmann T, J. Agric. Food
- 161 *Chem.*, **55**, 1945—1954 (2007).
- 162 9) Martine V, Leloup J, More F, Dossin E, and Montavon P, US 20150320071 A1
- 163 (2015).
- 164

Table 1 XO inhibitory activity of identified phenylindanes (200 µmol/L) from

compound	% inhibition (mean±SD, n=3)
1	$61.9~\pm~0.6$
2	$47.0~\pm~0.6$
3	$18.8~\pm~3.5$
4	$20.4~\pm~2.6$
5	$25.5~\pm~2.3$
6	$35.5~\pm~2.6$
Caffeic acid	$4.0~\pm~2.2$
Allopurinol (0.5 µmol/mL)ª	$51.9~\pm~1.8$

thermal reaction product of caffeic acid

^a 0.5 µmol/mL of allopurinol was employed as positive control.

165

e perez

Figure Legends

Figure 1. Panel A, XO inhibitory activity of thermal reaction products (0.3 mg/mL) from chlorogenic acid, caffeic acid and quinic acid at 200 °C. Scale of X-axis expresses reaction time. Data are expressed at the mean \pm SD (n=3)

Panel B, XO inhibitory activity of thermal reaction product (0.3 mg/mL) from caffeic acid at the different temperatures. Scale of X-axis expresses reaction time. Data are expressed at the mean \pm SD (n=3)

Figure 2. Structures of identified phenylindanes from the thermal reaction of caffeic

acid

Figure 2. Structures of identified phenylindanes from the thermal reaction of caffeic acid $85 \times 149 \text{mm}$ (300 x 300 DPI)

Supplemental (Fukuyama et al.)

Table S1. H-INMR Data of Products I—6 (400 MHz for H in CD ₃ OD)						
	Product					
position	1	2	3	4	5	6
1	3.58 (dt, 6.4, 8.6)	3.43 ^f (dt, 5.9, 8.6)	3.48 (quin, 7.4)	3.27 (dq, 7.2, 9.7)	3.22 (dquin, 6.0, 6.9)	3.05 (dquin, 7.1,10.0)
2	2.23 (m)	1.61 (dt, 10.0, 12.4)	3.29 ^a (dd, 7.4, 9.8)	2.64 (t, 9.7)	2.09 (ddd, 6.0, 7.8,	1.47 (m)
					12.8)	
		2.71 (dt, 7.4, 12.4)				2.62 (dt, 7.1, 12.4)
3	4.18 ^d (t, 7.4)	4.03 ^f (dd, 7.4, 10.0)	4.51 (d, 9.8)	4.33 (d, 9.7)	4.16 (dd, 6.0, 7.8)	3.97 (dd, 7.1, 10.6)
4	6.35 (s)	6.32 (s)	6.30 (s)	6.30 (s)	6.42 (s)	6.31 (s)
7	6.75 (s)	6.72 (s)	6.68 (s)	6.66 (s)	6.68 (s)	6.67 (s)
2'	6.56 (d, 2.0)	6.64e (d, 1.8)	6.67 (d, 2.2)	6.66 (s)	6.53 (d, 1.8)	6.63 (d, 2.2)
5'	6.70 (d, 7.8)	6.73 (d, 8.0)	6.73 (d, 8.2)	6.74 (d, 7.8)	6.69 (d, 7.8)	6.73 (d, 8.0)
6'	6.51 (dd, 2.0, 7.8)	6.58 (dd, 1.8, 8.0)	6.60 (dd, 2.2, 8.2)	6.59 (dd, 2.0, 7.8)	6.48 (dd, 1.8, 7.8)	6.58 (dd, 2.2, 8.0)
1-CH ₂	2.37 ^d (dd, 8.6, 14.8)	$2.37^{e,g}$ (dd, 8.6, 14.8) ^b	—	_		
	2.56 ^d (dd, 6.4, 14.8)	2.83 ^{e,g} (dd, 5.9, 14.8) ^b				
1-CH ₃	_	_	1.16^{b} (d, 7.4)	1.42 ^c (d, 7.2)	1.23 (d, 6.9)	1.32 (d, 7.1)

Table S1. ¹H-NMR Data of Products 1—6 (400 MHz for ¹H in CD₃OD)

Coupling pattern and constants (J in Hz) are described in parenthesis.

^a NOE-observed proton with 2'-H of the same compound; ^b NOE-observed proton with 3-H of the same compound; ^c NOE-observed proton with 2-H and 2'-H of the same compound; ^{d,e,f} The same character shows the correlated proton group in the NOESY of each compound; ^g Proton correlated with the carbonyl carbon of carboxylic acid group (δ 179) in the HMBC of the same compound