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Visual food stimulus changes resting 
oscillatory brain activities related to appetitive 
motive
Takahiro Yoshikawa1*, Masaaki Tanaka2, Akira Ishii2, Yoko Yamano1 and Yasuyoshi Watanabe2,3

Abstract 

Background: Changes of resting brain activities after visual food stimulation might affect the feeling of pleasure in 
eating food in daily life and spontaneous appetitive motives. We used magnetoencephalography (MEG) to identify 
brain areas related to the activity changes.

Methods: Fifteen healthy, right-handed males [age, 25.4 ± 5.5 years; body mass index, 22.5 ± 2.7 kg/m2 
(mean ± SD)] were enrolled. They were asked to watch food or mosaic pictures for 5 min and to close their eyes for 
3 min before and after the picture presentation without thinking of anything. Resting brain activities were recorded 
during two eye-closed sessions. The feeling of pleasure in eating food in daily life and appetitive motives in the study 
setting were assessed by visual analogue scale (VAS) scores.

Results: The γ-band power of resting oscillatory brain activities was decreased after the food picture presentation in 
the right insula [Brodmann’s area (BA) 13], the left orbitofrontal cortex (OFC) (BA11), and the left frontal pole (BA10). 
Significant reductions of the α-band power were observed in the dorsolateral prefrontal cortex (DLPFC) (BA46). 
Particularly, the feeling of pleasure in eating food was positively correlated with the power decrease in the insula and 
negatively with that in the DLPFC. The changes in appetitive motives were associated with the power decrease in the 
frontal pole.

Conclusions: These findings suggest automatic brain mechanics whereby changes of the resting brain activity 
might be associated with positive feeling in dietary life and have an impact on the irresistible appetitive motives 
through emotional and cognitive brain functions.

Keywords: Resting brain activity, Magnetoencephalography (MEG), Insula, Dorsolateral prefrontal cortex (DLPFC), 
Orbitofrontal cortex (OFC), Frontal pole
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Background
Today’s lifestyle provides ample opportunities for pleas-
urable but excessive food intake [1], which often leads to 
obesity and becomes a considerable health threat in sus-
ceptible individuals by raising the risk of chronic diseases 
such as diabetes mellitus, hypertension, heart disease, 
fatty liver, sleep apnea, and certain forms of cancer [2, 
3]. Another health issue associated with modern dietary 
lifestyles is related to the physiological and psychological 

reductions in food intake that can be important con-
tributors to sarcopenia in older individuals [4] as well as 
malnutrition in adolescents and young adult women [5]. 
Accordingly, from a public health perspective, it is imper-
ative to clarify the control mechanisms involved in eating 
behaviors and to develop new strategies to encourage the 
consumption of proper nutrition. In particular, it is cru-
cial to understand the neurobiological mechanisms by 
which the decision to start or stop eating comes about [6].

Eating behavior is affected by various physiological 
determinants including homeostatic requirements such 
as nutritional deficits, and is regulated by metabolic and 
neuroendocrine networks integrating central nervous 

Open Access

Behavioral and
Brain Functions

*Correspondence:  tkhr6719@med.osaka-cu.ac.jp 
1 Department of Sports Medicine, Osaka City University Graduate School 
of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Osaka 545-8585, Japan
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12993-016-0110-3&domain=pdf


Page 2 of 11Yoshikawa et al. Behav Brain Funct  (2016) 12:26 

pathways with signals from the periphery [7]. However, 
it is also known that human eating behaviors largely 
depend on cognitive (attention, learning, memory, and 
decision-making), sensory (visual, olfactory, taste, and 
somatosensory), and behavioral (motivational) processes 
[8, 9]. Additionally, fluctuations in mood and emotion 
can affect food choices and quantities [10]. Human eat-
ing behavior is thus extraordinarily complex, and distur-
bances in eating behaviors are difficult to treat.

Neuroimaging techniques have classically been employed 
to elucidate the neurological bases of eating behaviors. 
Positron emission tomography (PET) and functional mag-
netic resonance imaging (fMRI) have been utilized most 
frequently in research concerning eating behaviors. Hemo-
dynamic changes are assessed as indicators of the changes 
of neural activation relating to cognition, emotion, and 
behaviors in various experimental conditions, including 
the fed state and stimuli (visual, olfactory, gustatory, and 
food intakes) [11]. In contrast, magnetoencephalography 
(MEG) monitors electrophysiological activities inside the 
brain by measuring electromagnetic fields using electric or 
magnetic sensors over the scalp surface [12–14]; it allows a 
quantitative assessment of oscillatory components in meas-
ured data, and synchronization of oscillatory neuronal fir-
ing represents a physiological coding mechanism to bind 
together spatially separated populations of neurons [15, 
16]. Thus, brain activities are characterized by the presence 
of more and less regular oscillations in various frequency 
bands [16]. For example, a decrease of the α-band power 
suggests deactivated interaction between local negative 
feedback circuits in the thalamus and the cortex, while a 
decrease of the γ-band power indicates deactivated infor-
mation processing reflecting reduced rapid synchroniza-
tion among local brain areas [17, 18].

Recently, we applied the MEG analyses to research per-
taining to the time course of neural processes for appe-
titive motives and self-control immediately after visual 
exposure to food pictures [19–21]. While most previous 
studies investigated ongoing neural networks during a 
sensory presentation relating to food, it is also valuable 
to focus on differences in resting brain activities before 
and after a series of visual stimuli using food images, by 
assessing changes in synchronization of oscillatory neu-
ronal firing between these two conditions. Such differ-
ences, which could not be assessed by using fMRI or PET, 
might characterize involuntary residual effects in the 
resting brain activities that may persist after a cessation 
of visual food stimulation, and the lasting effects might 
transiently modify dietary emotion and cognition such 
as the appetitive motives or decisions to eat, and further 
impact the feelings of pleasure in a real dietary life in 
individuals who cannot help consuming too much or in 
those who cannot consume a sufficient amount of food.

In the present study, we measured resting brain activi-
ties by using MEG in fasting individuals who closed their 
eyes for 3  min before and after watching various food 
pictures presented every 2  s for 5  min. Throughout the 
experiment, the contents of the pictures were not dis-
closed to the study participants in advance, and they were 
instructed not to think of anything, including the pic-
tures on the screen. We tried to identify the brain areas 
related to the residual effect on the resting brain activi-
ties by examining the differences in the oscillatory power 
between 2 eye-closed conditions, before and after the 
presentation of food pictures, using the time–frequency 
analyses of MEG. Next, we tried to determine whether 
the oscillatory power changes are associated with a tran-
sient change in appetitive motives spontaneously elicited 
by the visual presentation of food items. Additionally, in 
order to confirm the validity of our results in a real-life 
situation, we assessed the impact of the oscillatory power 
differences on practical factors related to appetitive 
motives and eating habits such as the feeling of pleasure 
in eating food in daily life. We hypothesized that, based 
on the previous literature when viewing food [11, 19–21], 
a short duration of visual food stimuli has a considerable 
impact on resting oscillatory brain activities which mani-
fest as changes of powers across various time–frequency 
bands in emotional and cognitive brain areas.

Methods
Participants
In total, fifteen healthy male volunteers with normal body 
habitus [age, 25.4 ±  5.5  years; height, 171.3 ±  6.9  cm; 
body weight, 66.3  ±  11.7  kg; body mass index (BMI), 
22.5 ±  2.7  kg/m2 (mean ±  SD)] were enrolled. Partici-
pants with a history of mental or neurological disorders, 
and those taking chronic medications that affect the cen-
tral nervous system were excluded. All of the participants 
had normal or corrected-to-normal visual acuity and 
were right-handed. The study protocol was approved by 
the Ethics Committee of Osaka City University (license 
number 2811), and all participants provided written 
informed consent to participate in the study and were 
monetarily compensated. All procedures were done 
according to the research ethics of the Helsinki Declara-
tion of 1975, and the applicable revisions at the time of 
the investigation [22].

Experimental design
The participants were enrolled in a randomized study 
consisting of two crossover experiments (food-picture 
and control experiments) (Fig. 1a). For 1 day before the 
visit, they were instructed to finish dinner by 9:00 p.m. 
and to fast overnight (they were only allowed to drink 
water), to avoid intensive physical and mental activities, 
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and to maintain normal sleeping hours. After they 
arrived at the laboratory in the morning, they were asked 
to report their physical condition including hunger. They 
rated their subjective level of hunger on a 5-point Likert-
type scale ranging from 1 (Yes, I am very hungry) to 5 
(No, I am not hungry at all). In addition, they were asked 
to rate their feeling of pleasure in eating food in daily 
life, using a unidimensional visual analogue scale (VAS), 
ranging from none (0 mm) to maximum (100 mm). Then, 
they were instructed to watch a series of pictures for 
5 min (visual stimulation session) and to close their eyes 
for 3 min before and after the picture presentation (eye-
closed sessions) (Fig.  1b). The contents of the pictures 
were not disclosed to the study participants in advance. 
The intersession intervals were set at approximately 30 s. 
Brain activities were recorded using MEG during these 
two eye-closed sessions. The pictures of food items were 
presented as visual stimuli during the food-picture exper-
iment. In addition, the mosaic pictures created from the 
same pictures of food items were used as visual stimuli 
during the control experiment. During the visual stimula-
tion sessions, while in the supine position on a bed, the 
participants were requested to keep both eyes open and 

to fixate on a central point and to view the screen. Dur-
ing eye-closed sessions, they were instructed to close 
their eyes while in the same position as the visual stim-
ulation session. Throughout the experiment, they were 
instructed not to think of anything, including the pic-
tures on the screen. They were asked to rate their appeti-
tive motives, using a VAS, ranging from none (0 mm) to 
maximum (100 mm) for each of the eye-closed and visual 
stimulation sessions in both experiments. This study was 
conducted in a quiet, temperature-controlled magneti-
cally shielded room at Osaka City University Hospital.

Stimulus presentation
Visual stimulus presentation was performed similarly 
as described in our previous study [20]. Briefly, each 
visual stimulation session consisted of 75-picture sets 
of a 2-sec stimulation period followed by a 2-sec inter-
stimulus interval (Fig. 2a, b). Fifteen pictures of typical 
modern Japanese food items were used, including steak, 
hamburger, fritter, chicken nugget, French fry, pizza, 
spaghetti, ice cream, and noodles [23]. After the experi-
ment, each participant was asked to rate each picture 
for food preference in order to confirm that disliked 

Rest (30 sec)Rest (30 sec)

Visual stimulation session
(75 mosaic pictures)

(5 min)

Eye closed session
(3 min)

Eye closed session
(3 min)

Control experiment
(mosaic pictures)

a

Food-picture experiment

Time

b

Rest (20 min)

Rest (30 sec)Rest (30 sec)

Visual stimulation session
(75 food pictures)

(5 min)
Eye closed session

(3 min)
Eye closed session

(3 min)

Control experiment
(mosaic pictures)Food-picture experiment

Fig. 1 Experimental design (a) and the procedure of experimental sessions (b). Participants were enrolled in a randomized study consisting of 2 
crossover experiments (food-picture and control experiments), and asked to watch a series of pictures for 5 min (visual stimulation session) and to 
close their eyes for 3 min before and after the picture presentation (eye-closed sessions). Pictures of food items were presented as visual stimuli dur-
ing the food-picture experiment, and mosaic pictures of food items were presented as visual stimuli during the control experiment. The contents of 
pictures were not disclosed to the study participants in advance
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food items were not included. Each picture was used 
five times to construct the 75-picture set. The mosaic 
images of the original photographs (15 food items) were 
also used to control for luminance, color, and local fea-
tures [24, 25]. Mosaic pictures were made using com-
mercial software (Adobe® Photoshop Elements 6.0, 
Adobe Systems Inc., San Jose, CA). All of the food pic-
tures were divided into a 30 ×  30 grid and randomly 
reordered by a constant algorithm. This rearrangement 
made each picture unrecognizable as food. The origi-
nal images used to generate the mosaic pictures were 
not disclosed to the study participants. The sequences 
of pictures for presentation were randomly assigned for 
each participant, but the same sequences were used for 
both food-picture and control experiments. These pic-
tures were projected on a screen placed in front of the 
participants’ eyes using a video projector (PG-B10S; 
SHARP, Osaka, Japan). The viewing angle of each pic-
ture was 18.4 × 14.0°.

MEG data acquisition
MEG data acquisition was performed using a whole-head 
type MEG system (MEG vision; Yokogawa Electric Cor-
poration, Tokyo, Japan) with 160 channels. The signals 
were continuously recorded at a sampling rate of 1000 Hz 
in gradiometers 15.5 mm in diameter and 50 mm in base-
line with a 0.3 Hz high-pass filter.

Structural MR images were obtained using a Philips 
Achieva 3.0TX (Royal Philips Electronics, Eindhoven, 
The Netherlands). Before MRI scanning, 5 adhesive 
markers (Medtronic Surgical Navigation Technologies 
Inc., Broomfield, CO) were attached to the skin of each 
participant’s head (the first and second ones were located 
10  mm in front of the left tragus and right tragus, the 
third at 35 mm above the nasion, and the fourth and fifth 
at 40  mm right and left of the third one), which were 
the former positions of MEG localization coils. MEG 
data were coregistered on MRI scans using information 
obtained from these markers and MEG localization coils.

+

Time

Mosaic pictures
Fixation cross

2.0 s 2.0 s 2.0 s 2.0 s

+

b

Time

Food pictures
Fixation cross

+

2.0 s 2.0 s 2.0 s 2.0 s

+

a

Fig. 2 The time course of stimulus presentations. A series of 75 color food pictures, consisting of 15 food items (a), and a series of 75 mosaic 
pictures, consisting of 15 mosaic pictures of food (b), were used. The order of the picture presentation was randomized for each series, and the 
sequences of pictures for presentation were randomly assigned for each participant. The mosaic pictures created from the same pictures of food 
items were used as visual stimuli in the same sequences as the food pictures during the control sessions. The original images used to generate the 
mosaic pictures were not disclosed to the study participants. Each picture was presented for 2.0 s followed by a fixation cross for 2.0 s
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MEG data analyses
MEG data analyses were performed similarly as 
described in our previous study [20]. Briefly, MEG signal 
data were analyzed offline after analogue-to-digital con-
version. Magnetic noise originating outside the shield 
room was eliminated by subtracting the data obtained 
from reference coils using MEG 160 (Yokogawa Electric 
Corporation, Tokyo, Japan). Artifact rejection of MEG 
data was performed through careful visual artifact detec-
tion before band pass filtering and averaging. The MEG 
data were band-pass filtered by a fast Fourier transform 
using frequency trend (Yokogawa Electric Corporation) 
to obtain time–frequency band signals using a software, 
brain rhythmic analysis for MEG (BRAM; Yokogawa 
Electric Corporation) [26]. After the band pass filtering, 
the MEG data were split into segments of 1000  ms in 
length, and the segments were averaged.

Localization and intensity of the time–frequency 
power changes were assessed by BRAM software, which 
used narrow-band adaptive spatial filtering methods 
as an algorithm [26]. We used statistical parametric 
mapping (SPM8, Welcome Department of Cognitive 
Neurology, London, UK) in Matlab (Mathworks, Sher-
bon, MA) to analyze the MEG data. We initially per-
formed normalization to the Montreal Neurological 
Institute (MNI) template of T1-weighed images [27] 
and smoothing (the normalized MEG data were fil-
tered with a Gaussian kernel of 20  mm [full-width at 
half-maximum] in the x, y, and z axes [voxel dimension 
was 5.0 × 5.0 × 5.0 mm]). The whole brain oscillatory 
powers for δ-band (1–4  Hz), θ-band (4–8  Hz), α-band 
(8–13 Hz), β-band (13–25 Hz), and γ-band (25–50 Hz) 
during the eye-closed session were measured on a 
region-of-interest basis. To investigate the alterations 
of the brain activities during the resting eye-closed con-
dition after the visual stimulation session, we analyzed 
two contrast images: image after the visual stimulation 
of food pictures > image before the visual stimulation of 
food pictures; and image after the visual stimulation of 
mosaic pictures > image before the visual stimulation of 
mosaic pictures. The two contrast images were submit-
ted to one sample t test on a voxel-by-voxel basis [28]. 
The threshold of individual analyses was set at P < 0.05 
(corrected for multiple comparisons). Individual data 
were incorporated into a random-effect model so that 
inferences could be made at a population level [28]. The 
threshold of group analyses was set at P  <  0.05 (cor-
rected for multiple comparisons). Anatomical localiza-
tions of significant voxels within clusters were expressed 
in the form of MNI stereotactic spatial coordinates (x, y, 
z). In addition, these coordinates were converted to cor-
responding Brodmann’s area (BA) by using the Talairach 
Daemon software [29].

Statistical analyses
Data are expressed as mean ± SD. Two-way analyses of 
variance followed by paired t test with Bonferroni correc-
tion were performed to examine the differences in VAS 
scores for appetitive motives among different sessions 
and experiments. Pearson’s correlation analyses were 
used to examine whether the changes in the power of 
resting oscillatory brain activities by visual food presen-
tation might be associated with subjective variables. All 
P values were two-tailed, and values less than 0.05 were 
considered statistically significant. Statistical analyses 
were performed using the SPSS 18.0 software package 
(SPSS, Inc., Chicago, IL).

Results
Decrease of resting oscillatory brain activities after visual 
food stimulation
Table 1 summarizes the results of spatial filtering analy-
ses that show brain regions with a greater decrease of 
resting oscillatory band power during the eye-closed ses-
sion after a cessation of visual food stimulation relative to 
that before the stimulation. These include the following 4 
regions: (1) the right insula (BA13); (2) the right middle 
frontal gyrus (BA9 and 46) corresponding to the dorso-
lateral prefrontal cortex (DLPFC); (3) the left subcallosal 
gyrus (BA11) corresponding to the orbitofrontal cortex 
(OFC); and (4) the left superior frontal gyrus (BA10) cor-
responding to the frontal pole.

Rating scores of hunger before recordings of MEG, 
those of feeling of pleasure in eating food in daily life, 
and those of appetitive motives elicited spontaneously 
by presentation of food pictures—association with the 
decrease of resting oscillatory brain activities
Before the MEG recordings, all of the participants rated 
their subjective level of hunger as almost excessive 
[1.7 ± 0.6 (mean ± SD) on a 5-point Likert-type scale]. 
The mean VAS score of pleasure in eating food in daily 
life assessed was 78  ±  12  mm. They had considerable 
motives to eat during the visual stimulation in the food-
picture experiment (Table 2). The subjective VAS scores 
for appetitive motives in the food-picture experiment 
were significantly higher than those in the control experi-
ment (P  <  0.001, main effect of experiment assessed by 
two-way analysis of variance), and the scores were sig-
nificantly increased by the visual stimulation of food 
items (P < 0.001, main effect of session assessed by two-
way analysis of variance; P < 0.001, assessed by post hoc 
paired t-test with Bonferroni correction). Correlation 
analyses revealed that the VAS scores for pleasure in eat-
ing food in daily life were positively associated with the 
decrease of the γ-band power of resting oscillatory brain 
activities in the right insula (BA13) (r = 0.536, P = 0.040) 
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(Fig. 3), and were inversely associated with that of α-band 
of resting oscillatory brain activities in the right DLPFC 
(BA46) (r = −0.627, P = 0.012) (Fig. 4), respectively. Sig-
nificant correlations were found between the difference 
in the scores for appetitive motives during and after the 
food picture stimulation and the decrease of the γ-band 
power of resting oscillatory brain activities in the left 
frontal pole (BA10) (r  =  0.570, P  =  0.027) (Fig.  5). In 
addition, the decrease of the γ-band power of resting 
oscillatory brain activities in the left OFC (BA11) was 
negatively correlated with BMI (r = −0.562, P = 0.029) 
(Fig. 6).

Discussion
The present study demonstrates that a short duration of 
visual food stimuli has a considerable impact on resting 
oscillatory brain activities during eye closure in various 
emotional and cognitive brain areas such as the right 
insula (BA13), the right DLPFC (BA46), the left fron-
tal pole (BA10) and the left OFC (BA11). Interestingly, 
the feelings of pleasure in eating food in daily life were 
positively associated with oscillatory power decreases in 

the insula, and negatively with those in DLPFC. Further-
more, in spite of the instruction not to think of anything 
including the pictures on the screen, the participants had 
appetitive motives spontaneously elicited by food picture 
stimulation, and the changes in appetitive motives were 
significantly related to the power decrease of the resting 
oscillatory brain activities in the left frontal pole.

One of the major findings is a significant decrease of the 
γ-band power of resting oscillatory brain activities in the 
right insula (BA13). Previous studies have suggested that 
this brain region performs a diversity of functions, some 
of which are linked to dietary lifestyle. For example, in 
our previous studies, equivalent current dipoles (ECDs) 
assessed by MEG were detected in the insula immediately 
(approximately 300  ms) after the onset of food picture 
presentation in response to viewing these pictures under 
the instruction to have appetitive motives in the fasting 
[19] or postprandial conditions [21]. These findings sug-
gest the possible involvement of insula in the neural pro-
cesses of the motivations to eat. Although the present 
study did not focus on the time course of the immediate 
neural responses after visual food stimuli nor on the neural 

Table 1 Brain regions that show a greater decrease of resting oscillatory band power during the eye-closed session (after 
a cessation of visual food stimulation) relative to that before the stimulation

x, y, z: stereotaxic coordinates of peak of activated clusters

BA Brodmann’s area, MNI Montreal Neurological Institute, DLPFC dorsolateral prefrontal cortex, OFC orbitofrontal cortex, L left, R right

Random-effect analyses of 15 participants (P < 0.05, corrected for multiple comparisons at the voxel level)

Location Frequency band (Hz) Side BA MNI coordinate (mm) Z value

x y z

DLPFC 4–8 R 9 52 28 40 3.78

OFC 8–13 L 11 −38 38 −15 3.94

DLPFC 8–13 R 46 42 48 20 3.57

Insula 25-50 R 13 42 −7 5 3.36

Insula 25–50 R 13 42 8 0 3.35

Frontal pole 25–50 L 10 −23 53 −5 2.93

OFC 25–50 L 11 −13 28 −10 2.76

DLPFC 25–50 R 9 27 53 40 2.71

Table 2 Subjective levels of appetitive motive

Data are expressed as mean ± SD (n = 15)

Participants were asked to rate their appetitive motive by using a visual analogue scale, ranging from none (0 mm) to maximum (100 mm)

Two-way analyses of variance followed by paired t test with Bonferroni correction were performed. Main effect of experiment, P < 0.001; main effect of session, 
P < 0.001; experiment × session interaction effect, P < 0.001

* P < 0.001 [visual stimulation session vs. eye-closed session (before stimulation)]
†  P = 0.007 [visual stimulation session vs. eye-closed session (after stimulation)]
‡  P = 0.001 [eye-closed session (before stimulation) vs. eye-closed session (after stimulation)]

Eye-closed session (before stimulation) Visual stimulation session Eye-closed session (after stimulation)

Food-picture experiment 34 ± 25 79 ± 17* 62 ± 26†,‡

Control experiment 37 ± 25 33 ± 28 32 ± 23
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Fig. 3 Localization and intensity of the decrease of γ-band power during the eye-closed session after the cessation of the visual stimulation ses-
sion, relative to the band power before the start of the visual stimulation session in the insula (BA13) (a) (random effect analyses of 15 participants, 
P < 0.05, corrected for multiple comparisons at voxel level) and association of the power decrease with the feeling of pleasure in eating food in 
daily life (b). a The results are superimposed on high-resolution MRIs averaged across all the participants. Sagittal (upper left), coronal (upper right), 
and axial (lower left) sections are shown. The color bar indicates T values. b Linear regression line, Pearson’s correlation coefficient (r), and P value are 
shown. BA Brodmann’s area, R right, L left
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Fig. 4 Localization and intensity of the decrease of α-band power during the eye-closed session after the cessation of the visual stimulation ses-
sion, relative to the band power before the start of the visual stimulation session in the DLPFC (BA46) (a) (random effect analyses of 15 participants, 
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responses with having motivation to eat volitionally, a new 
evidence has surfaced that would support the involve-
ment of insular activity even during the absence of visual 
food stimuli. Furthermore, the present study demonstrates 
the positive association of the resting brain activity in the 
insula with the feelings of pleasure in eating food in daily 
life. In line with this, functions of insula include the rep-
resentation of pleasantness of flavor [30] and the control 
of habituation in food-related stimulation [31]. Consider-
ing these previous evidences, it is possible that the present 
residual insular activity as observed even after a cessation 
of stimulation might play a role in the formation of the 
positive emotional aspect (feeling of pleasure) in eating 
food and subsequently modify the habituation process of 
eating behaviors in daily dietary life.

Another finding in the present study was a significant 
decrease of the α-band power of resting oscillatory brain 
activities in the right DLPFC (BA46). In addition, the pre-
sent study showed the inverse association of the resting 
brain activities in this brain region with the feelings of 
pleasure in eating food in daily life. In other words, the 
changes in the resting brain activity in the DLPFC tends 
to be more pronounced in individuals with less pleasure 
associated with eating food. Most of the previous studies 
demonstrated that the DLPFC plays a major role in the 
self-control in eating food as indicated by an association 
of the brain activities with the measure of ordinary eat-
ing behaviors such as cognitive restraints assessed using 
questionnaires [32, 33]. The present finding might imply 
that cognitive self-control of the desire for food might 
affect the expression of positive emotion to eat such as 
pleasure in eating food via this brain mechanism. Com-
bined with the results in insular activity, the transient 
visual food stimuli could disturb the emotional and cog-
nitive domains of the resting brain activities even in the 
absence of concurrent visual stimuli.

In the present study, it is important to note that the 
participants were asked not to think of anything about 
pictures in the stimulus presentation. Nevertheless, 
their appetitive motives were spontaneously elicited as 
assessed using the VAS, and interestingly, the changes 
in appetitive motives were positively associated with the 
power decrease of the resting oscillatory brain activi-
ties in the left frontal pole. The frontal poles have been 
reported to play roles in memory retrieval [34–36] as well 
as in memory encoding and recognition [36–38]. In addi-
tion to the functions of retrospective memory, the frontal 
poles are more involved with thinking about the future 
than about the past [39]. Based on the observed asso-
ciation with temporal fluctuations in appetitive scores of 
VAS, the frontal pole plays a role in subsequent planning, 
such as thinking about what to eat after a cessation of vis-
ual exposure of food items.

Previous neuroimaging studies have been inconsistent 
regarding structural and functional alterations in obe-
sity. In particular, the OFC is one of major components 
of reward circuitry related to overeating palatable food 
and development of obesity [11, 40, 41]. In contrast, the 
OFC is reported to be an important structure in the ter-
mination of food intake, and disturbance in this function 
could contribute to overconsumption of food in obesity 
[42]. The present study demonstrated that the resting 
brain activity observed in the OFC is negatively corre-
lated with the BMI. The range of the BMI in the present 
participants was less than 30 kg/m2. Its physiological and 
clinical implications warrant further studies, particularly 
in more obese individuals.

Accumulating evidence suggests that visual afferent 
signals provide information to the central nervous sys-
tem for appetite regulation even before food is ingested, 
and the limbic, paralimbic, and frontal brain circuits play 
important roles in neural processing during the visual 
stimuli in obese, healthy weight, and weight-loss popula-
tions [11, 43]. These brain regions are known to partici-
pate in emotional, salience, memory, reward, cognitive, 
and visual processing. In contrast, only a limited num-
ber of neuroimaging studies have addressed the residual 
effect of neural responses after the cessation of visual 
food stimulation like aftertaste [44]. Such a residual effect 
might be one of the important determinants of pleas-
ure after a meal, possibly leading to a dietary learning 
process, irrespective of the type of sensation, and affect 
the decision to start or to stop eating subsequently [45]. 
Compared with traditional research, the present obser-
vation is unique because the essence of the study design 
was to examine the residual effect of neural responses 
to visual food stimuli by assessing the differences of the 
resting oscillatory brain activities before and after a series 
of visual presentations of food items. Collectively, the 
observed characteristics of the changes of resting brain 
activity before and after visual food stimulation might 
contribute to the formation of the feeling of pleasure 
in eating food and irresistible appetitive motives, and 
it might affect subsequent eating behaviors, possibly 
through emotional and cognitive functions including 
memory retrieval and future planning.

The present study has some potential limitations. First, 
we examined the brain activity in normal-weight young 
adults without apparent eating disorders during a fasted 
state. In order to clarify the impact of the changes of rest-
ing brain activities in general, further studies using similar 
MEG analytic methods in individuals with distorted eating 
habits and eating disorders in either the fasting state and/
or during satiety will be needed. Second, the design of the 
present study is to assess brain activity caused by visual 
food cues. Since eating behavior can be evoked through 
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multiple sensory systems, in order to generalize the results 
of our data, future studies using other sensory modali-
ties are essential. Third, a small number of subjects were 
recruited in the present study. A large population study 
will be necessary to confirm the present results. Fourth, the 
present instruction not to think of anything, including the 
pictures on the screen, might force the study participants to 
attempt to suppress their thoughts and feelings more than 
required. The observed brain areas related to self-control 
systems like DLPFC might not be in accordance with the 
original study purpose to identify brain areas of the rest-
ing brain activities simply when one closes his eyes with-
out thinking anything. Fifth, it is more likely that, after the 
visual stimulation session, the hungry participants were 
‘replaying’ in their heads the pictures of food that they saw a 
couple of minutes earlier. It is well known that experiencing 
an actual sensory stimulus or imagining the sensory stim-
ulus activates the same brain areas. Sixth, in the present 
study, we did not measure brain activity during the 5-min 
visual food stimulation. Since the brain areas activated and 
the power changes obtained during stimulation might cor-
relate with the power changes and activation locations after 
stimulation, it will be needed to compare the brain activi-
ties among before, during and after the visual food stimu-
lation. Seventh, the analyses included a one-sample test on 
two contrasts involving time following food and mosaic 
pictures. A 2 (time) × 2 (stimuli) interaction effect should 
be tested to determine the specificity of the effect. Lastly, 
we cannot draw conclusions about cause-and-effect rela-
tionships because of the cross-sectional nature of our data.

Conclusions
The present findings raised the intriguing possibility that 
a series of visual food stimuli have a significant impact on 
resting oscillatory brain activities in the insula, DLPFC, 
OFC, and frontal pole. Since the changes of the rest-
ing brain activity are positively associated with positive 
emotion such as pleasure in eating food in daily life and 
appetitive motives, these changes are likely to determine 
subsequent eating behaviors. Although firm intention 
and conscious efforts are necessary for improvements 
in abnormal eating behavior and habits in a person’s 
dietary lifestyle, it is also important to devote consider-
able attention to the characteristics of the automatic or 
unconscious brain mechanics after food-related stimula-
tion in order to develop efficient strategies for optimiz-
ing dietary lifestyle in people who fall into overeating and 
anorexia against their will.

Abbreviations
BA: Brodmann’s area; BMI: body mass index; BRAM: brain rhythmic analysis for 
MEG; DLPFC: dorsolateral prefrontal cortex; fMRI: functional magnetic reso-
nance imaging; MEG: magnetoencephalography; MNI: Montreal Neurological 

Institute; MRI: magnetic resonance imaging; OFC: orbitofrontal cortex; PET: 
positron emission tomography; VAS: visual analogue scale.

Authors’ contributions
TY and MT took part in planning and designing the experiment, collected the 
data, performed the data analyses and drafted the manuscript. AI took part in 
planning and designing the experiment, collected the data, and performed 
the data analyses. YY took part in performing data analyses and literature 
survey. YW took part in planning and designing the experiment and helped 
drafting the manuscript. All authors read and approved the final manuscript.

Author details
1 Department of Sports Medicine, Osaka City University Graduate School 
of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Osaka 545-8585, Japan. 
2 Department of Physiology, Osaka City University Graduate School of Medi-
cine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Osaka 545-8585, Japan. 3 RIKEN 
Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, 
Chuo-ku, Hyogo 650-0047, Japan. 

Acknowledgements
The authors would like to thank Manryoukai Imaging Clinic for MRI scans 
and Forte Science Communications for native English editorial help with the 
manuscript.

Competing interests
The authors declare that they have no competing interests.

Data availability
We do not have any platforms allowing outside scientists to access our data, 
and do not have permission to release the MEG analysis software for free of 
charge. In addition, we do not have approval from institutional ethical com-
mittee to make our data public access. Thus, the raw datasets of the present 
article are not included.

Ethics and consent
All procedures followed were in accordance with the ethical standards of the 
responsible committee on human experimentation (institutional and national) 
and with the Helsinki Declaration of 1975, and the applicable revisions at the 
time of the investigation. Informed consent was obtained from all individuals 
for participation in the study.

Funding
This work was supported in part by the Grant-in-Aid for Scientific Research C 
(KAKENHI: 26350899) from Ministry of Education, Culture, Sports, Science and 
Technology (MEXT) of Japan. The funders had no roles in study design, data 
collection and analysis, decision to publish, or preparation of the manuscript.

Received: 23 February 2016   Accepted: 21 September 2016

References
 1. Hill JO, Wyatt HR, Reed GW, Peters JC. Obesity and the environment: 

where do we go from here? Science. 2003;299(5608):853–5.
 2. Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The 

disease burden associated with overweight and obesity. JAMA. 
1999;282(16):1523–9.

 3. van der Klaauw AA, Farooqi IS. The hunger genes: pathways to obesity. 
Cell. 2015;161(1):119–32.

 4. Roberts SB. Effects of aging on energy requirements and the control of 
food intake in men. J Gerontol A Biol Sci Med Sci. 1995;50:101–6.

 5. Hoek HW. Incidence, prevalence and mortality of anorexia nervosa and 
other eating disorders. Curr Opin Psychiatry. 2006;19(4):389–94.

 6. Smeets PA, Charbonnier L, van Meer F, van der Laan LN, Spetter MS. 
Food-induced brain responses and eating behaviour. Proc Nutr Soc. 
2012;71(4):511–20.

 7. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central 
nervous system control of food intake and body weight. Nature. 
2006;443(7109):289–95.



Page 11 of 11Yoshikawa et al. Behav Brain Funct  (2016) 12:26 

 8. Rolls ET. Understanding the mechanisms of food intake and obesity. 
Obes Rev. 2007;8(Suppl 1):67–72.

 9. Berthoud HR. Metabolic and hedonic drives in the neural control of 
appetite: who is the boss? Curr Opin Neurobiol. 2011;21(6):888–96.

 10. Singh M. Mood, food, and obesity. Front Psychol. 2014;5:925.
 11. Carnell S, Gibson C, Benson L, Ochner CN, Geliebter A. Neuroimag-

ing and obesity: current knowledge and future directions. Obes Rev. 
2012;13(1):43–56.

 12. Nunez PL, Srinivasan R. Electric fields of the brain. 2nd ed. Oxford: Oxford 
University Press; 2005.

 13. Sekihara K, Nagarajan SS. Neuromagnetic source reconstruction and 
inverse modeling. In: He B, editor. Modeling and imaging of bioelectrical 
activity. New York: Kluwer Academic/Plenum Publishers; 2005. p. 213–50.

 14. Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV. Mag-
netoencephalography—theory, instrumentation, and applications 
to noninvasive studies of the working human brain. Rev Mod Phys. 
1993;65(2):413–97.

 15. Schnitzler A, Gross J, Timmermann L. Synchronised oscillations 
of the human sensorimotor cortex. Acta Neurobiol Exp (Wars). 
2000;60(2):271–87.

 16. Stam CJ. Use of magnetoencephalography (MEG) to study func-
tional brain networks in neurodegenerative disorders. J Neurol Sci. 
2010;289(1–2):128–34.

 17. Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchro-
nization and desynchronization: basic principles. Clin Neurophysiol. 
1999;110(11):1842–57.

 18. Singer W. Synchronization of cortical activity and its putative role in 
information processing and learning. Annu Rev Physiol. 1993;55:349–74.

 19. Yoshikawa T, Tanaka M, Ishii A, Watanabe Y. Immediate neural responses 
of appetitive motives and its relationship with hedonic appetite and 
body weight as revealed by magnetoencephalography. Med Sci Monit. 
2013;19:631–40.

 20. Yoshikawa T, Tanaka M, Ishii A, Fujimoto S, Watanabe Y. Neural regulatory 
mechanism of desire for food: revealed by magnetoencephalography. 
Brain Res. 2014;1543:120–7.

 21. Yoshikawa T, Tanaka M, Ishii A, Watanabe Y. Suppressive responses by 
visual food cues in postprandial activities of insular cortex as revealed by 
magnetoencephalography. Brain Res. 2014;1568:31–41.

 22. World Medical Association. World Medical Association Declaration of 
Helsinki: ethical principles for medical research involving human subjects. 
J Am Coll Dent. 2014;81(3):14–8.

 23. Science and Technology Agency in Japan. Standard tables of food 
composition in Japan. 5th ed. Tokyo: Printing Bureau of the Ministry of 
Finance; 2005.

 24. Allison T, McCarthy G, Nobre A, Puce A, Belger A. Human extrastriate 
visual cortex and the perception of faces, words, numbers, and colors. 
Cereb Cortex. 1994;4(5):544–54.

 25. Nakamura K, Kawashima R, Sato N, Nakamura A, Sugiura M, Kato T, 
Hatano K, Ito K, Fukuda H, Schormann T, et al. Functional delineation of 
the human occipito-temporal areas related to face and scene processing. 
A PET study. Brain. 2000;123(Pt 9):1903–12.

 26. Dalal SS, Guggisberg AG, Edwards E, Sekihara K, Findlay AM, Canolty 
RT, Berger MS, Knight RT, Barbaro NM, Kirsch HE, et al. Five-dimensional 
neuroimaging: localization of the time-frequency dynamics of cortical 
activity. Neuroimage. 2008;40(4):1686–700.

 27. Evans AC, Kamber M, Collins DL, MacDonald D. An MRI-based probabil-
istic atlas of neuroanatomy. In: Shorvon SD, editor. Magnetic resonance 
scanning and epilepsy. New York: Plenum Press; 1994.

 28. Friston KJ, Holmes AP, Worsley KJ. How many subjects constitute a study? 
Neuroimage. 1999;10(1):1–5.

 29. Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, 
Kochunov PV, Nickerson D, Mikiten SA, Fox PT. Automated Talairach atlas 
labels for functional brain mapping. Hum Brain Mapp. 2000;10(3):120–31.

 30. de Araujo IE, Rolls ET, Kringelbach ML, McGlone F, Phillips N. Taste-olfac-
tory convergence, and the representation of the pleasantness of flavour, 
in the human brain. Eur J Neurosci. 2003;18(7):2059–68.

 31. Poellinger A, Thomas R, Lio P, Lee A, Makris N, Rosen BR, Kwong KK. 
Activation and habituation in olfaction—an fMRI study. Neuroimage. 
2001;13(4):547–60.

 32. Burger KS, Stice E. Relation of dietary restraint scores to activation of 
reward-related brain regions in response to food intake, anticipated 
intake, and food pictures. Neuroimage. 2011;55(1):233–9.

 33. Hollmann M, Hellrung L, Pleger B, Schlögl H, Kabisch S, Stumvoll M, 
Villringer A, Horstmann A. Neural correlates of the volitional regulation of 
the desire for food. Int J Obes (Lond). 2012;36(5):648–55.

 34. Tulving E, Kapur S, Markowitsch HJ, Craik FI, Habib R, Houle S. Neuroana-
tomical correlates of retrieval in episodic memory: auditory sentence 
recognition. Proc Natl Acad Sci USA. 1994;91(6):2012–5.

 35. Düzel E, Picton TW, Cabeza R, Yonelinas AP, Scheich H, Heinze HJ, Tulv-
ing E. Comparative electrophysiological and hemodynamic meas-
ures of neural activation during memory-retrieval. Hum Brain Mapp. 
2001;13(2):104–23.

 36. Rugg MD, Fletcher PC, Frith CD, Frackowiak RS, Dolan RJ. Differential acti-
vation of the prefrontal cortex in successful and unsuccessful memory 
retrieval. Brain. 1996;119(Pt 6):2073–83.

 37. Ranganath C, Johnson MK, D’Esposito M. Prefrontal activity associated 
with working memory and episodic long-term memory. Neuropsycholo-
gia. 2003;41(3):378–89.

 38. Tulving E, Habib R, Nyberg L, Lepage M, McIntosh AR. Positron emission 
tomography correlations in and beyond medial temporal lobes. Hip-
pocampus. 1999;9(1):71–82.

 39. Okuda J, Fujii T, Ohtake H, Tsukiura T, Tanji K, Suzuki K, Kawashima R, 
Fukuda H, Itoh M, Yamadori A. Thinking of the future and past: the 
roles of the frontal pole and the medial temporal lobes. Neuroimage. 
2003;19(4):1369–80.

 40. Berridge KC, Ho CY, Richard JM, DiFeliceantonio AG. The tempted brain 
eats: pleasure and desire circuits in obesity and eating disorders. Brain 
Res. 2010;1350:43–64.

 41. Small DM, Zatorre RJ, Dagher A, Evans AC, Jones-Gotman M. Changes in 
brain activity related to eating chocolate: from pleasure to aversion. Brain. 
2001;124(Pt 9):1720–33.

 42. Shott ME, Cornier MA, Mittal VA, Pryor TL, Orr JM, Brown MS, Frank GK. 
Orbitofrontal cortex volume and brain reward response in obesity. Int J 
Obes (Lond). 2015;39(2):214–21.

 43. Pursey KM, Stanwell P, Callister RJ, Brain K, Collins CE, Burrows TL. Neural 
responses to visual food cues according to weight status: a systematic 
review of functional magnetic resonance imaging studies. Front Nutr. 
2014;1:7.

 44. James GA, Li X, DuBois GE, Zhou L, Hu XP. Prolonged insula activation 
during perception of aftertaste. Neuroreport. 2009;20(3):245–50.

 45. Brunstrom JM. Dietary learning in humans: directions for future research. 
Physiol Behav. 2005;85(1):57–65.


