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Abstract 1 

Shewanella oneidensis is a Gram-negative facultative anaerobe that can use a wide 2 

variety of terminal electron acceptors for anaerobic respiration. In this study, S. 3 

oneidensis degQ gene, encoding a putative periplasmic serine protease was cloned and 4 

expressed. The activity of purified DegQ was inhibited by diisopropyl fluorophosphate, 5 

a typical serine protease-specific inhibitor, indicating that DegQ is a serine protease. 6 

In-frame deletion and subsequent complementation of the degQ was carried out to 7 

examine the effect of envelope stress on the production of outer membrane vesicles 8 

(OMVs). Analysis of periplasmic proteins from the resulting S. oneidensis strain 9 

showed that deletion of degQ induced protein accumulation, and resulted in a 10 

significant decrease in protease activity within the periplasmic space. OMVs from the 11 

wild-type and mutant strains were purified and observed by transmission electron 12 

microscopy. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the 13 

OMVs showed a prominent band at ~37 kDa. Nano liquid chromatography-tandem 14 

mass spectrometry analysis identified three outer membrane porins (SO3896, SO1821 15 

and SO3545) as dominant components of the band, suggesting that these proteins could 16 

be used as indices for comparing OMV production by S. oneidensis strains. Quantitative 17 

evaluation showed that degQ-deficient cells had a five-fold increase in OMV production 18 

compared with wild-type cells. Thus, the increased OMV production following the 19 

deletion of DegQ in S. oneidensis may be responsible for the increase in envelope stress. 20 
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Introduction 1 

Many Gram-negative bacteria form outer membrane vesicles (OMVs) as part of 2 

their natural growth cycle (Rothfield and Pearlman-Kothencz 1969; Wensink and 3 

Witholt 1981; Nowotny et al. 1982; Beveridge 1999). OMVs are spherical bilayered 4 

proteolipids with a diameter of 20–250 nm, and are compositionally similar to the outer 5 

membranes of bacteria, which contain outer membrane proteins, lipids, periplasmic 6 

proteins, lipopolysaccharides, RNA, and DNA (Knox et al. 1966; Kadurugamuwa and 7 

Beveridge 1996). Gram-negative bacteria living in fresh water environments and as 8 

pathogens in animal hosts produce OMVs (Schwechheimer et al. 2013). Although OMV 9 

production appears to be a ubiquitous physiological process, the factors triggering OMV 10 

formation have not been conclusively identified. Previous research suggested that 11 

disturbances in growth, exposure to antibiotics, or simply turnover in cell wall 12 

components initiates vesicle formation (Knox et al. 1966; Kadurugamuwa and 13 

Beveridge 1995; Zhou et al. 1998). 14 

Recent work has also suggested that OMV production is closely related to envelope 15 

stress (McBroom and Kuehn 2007; Schwechheimer and Kuehn 2015). The hypothesis 16 

that vesiculation plays an important role in disposing envelope ‘‘garbage’’ was first 17 

proposed with respect to proteinaceous waste accumulation in an Escherichia coli 18 

degP-deficient strain. DegP is a periplasmic chaperone and protease in E. coli that 19 

manages envelope stress caused by unfolded and misfolded periplasmic proteins 20 

(Lipinska et al. 1990; Schwechheimer and Kuehn 2013). Random mutagenesis of E. coli 21 

determined that a transposon insertion immediately following the start codon of degP 22 

resulted in hypervesiculation (McBroom et al. 2006). Misfolded proteins were not 23 

digested in the degP-deficient strain, and such undigested substrates can cause lethality 24 
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under conditions of relatively high temperature, at which protein misfolding is more 1 

likely to occur (Strauch et al. 1989). Notably, the lumen of OMVs produced by the 2 

degP-deficient strain contained misfolded outer-membrane proteins, which can be 3 

substrates for DegP (Schwechheimer and Kuehn 2013). Thus, E. coli strains lacking 4 

DegP likely increase OMV production as a survival strategy to eliminate these 5 

undesired proteins from the cell envelope. 6 

 Shewanella oneidensis is a Gram-negative facultative anaerobe that can use a wide 7 

variety of terminal electron acceptors for anaerobic respiration (Myers and Nealson 8 

1988; Myers and Nealson 1990; Myers and Myers 1994; Myers and Myers 2000). It 9 

plays an important role in many environmental and biotechnological processes, 10 

including removing toxic metal contaminants, such as uranium and chromium, by 11 

reductive reactions (Fredrickson et al. 2008; Belchik et al. 2011). The genome sequence 12 

of S. oneidensis suggested the presence of a putative periplasmic serine protease, DegQ 13 

(Dai et al. 2015). Furthermore, deletion of degQ resulted in severe growth defects at 14 

higher temperatures, indicating that DegQ might act as a major protease for protein 15 

quality control in the periplasm (Dai et al. 2015). It is therefore important to clarify the 16 

relationship between OMV production and periplasmic protease DegQ in S. oneidensis.  17 

In this study, we investigated the relationship between DegQ and OMV production 18 

in S. oneidensis from the perspective of envelope stress. DegQ was confirmed as a 19 

functional serine protease by using purified DegQ. In addition, the degQ-deficient S. 20 

oneidensis mutant was compared with the wild type to identify differences in amount 21 

and level of protease activity in the periplasmic proteins. OMV production was 22 

examined, and the proteins associated with the isolated OMVs from S. oneidensis were 23 
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identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 1 

and nano liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses. 2 

  3 

Materials and methods 4 

Bacterial strains and culture conditions 5 

The strains and plasmids used in this study are listed in Table 1. For genetic 6 

manipulations, E. coli and S. oneidensis strains were cultured in lysogeny broth (LB) 7 

medium (10 g L-1 Hipolypepton (Wako Pure Chemical Industries), 5 g L-1 Bacto-yeast 8 

extract, and 10 g L-1 NaCl) at 37 and 30°C, respectively. The culture media of strains 9 

harboring the plasmid were supplemented with 25 mg L-1 chloramphenicol and 1 mM 10 

isopropyl thiogalactoside (IPTG) when necessary.  11 

All S. oneidensis strains were precultured in LB medium for 18 h at 30°C, and then 12 

inoculated into 80 mL of fresh LB medium in a flask to give an optical density at 660 13 

nm (OD660) = 0.01. The cultures were placed on a rotary shaker (NR-20, Taitec) with 14 

shaking at 120 strokes per minute. Cell growth was recorded on a basis of dry cell 15 

weight (DCW) by measuring changes in OD660. 16 

 17 

In-frame deletion mutagenesis 18 

The degQ (SO3942) gene was deleted in-frame from the S. oneidensis genome as 19 

described previously (Fennessey et al. 2010; Gao et al. 2010; Sundararajan et al. 2011). 20 

Briefly, a 592-bp fragment of the region upstream of the open reading frame (ORF), a 21 

364-bp fragment of degQ (from 989 - 1353 bp), and a 292 bp fragment of the region 22 

downstream of the ORF were amplified by PCR, generating fragments F1 and F2, 23 

which were fused by overlap extension PCR to generate fragment F3 (see 24 
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Supplementary Fig. S1). The primers used for construction are listed in Supplementary 1 

Table S1. Fragment F3 was cloned into suicide plasmid pRE112 (Edwards et al. 1998) 2 

using SacI and XbaI restriction endonucleases, and then transformed into JM109λpir 3 

(Penfold and Pemberton 1992) by the calcium chloride method. The resulting plasmid, 4 

pRE112-F3, was transferred into recipient S. oneidensis MR-1 cells by conjugation from 5 

E. coli SM10λpir (Miller and Mekalanos 1988). Integration of the mutagenesis 6 

construct into the chromosome was induced to generate the final deletion strain. Gene 7 

deletion was verified by PCR using the F1-F and F2-R primers. The resulting mutation 8 

was confirmed as an in-frame deletion that removed approximately 1000 bp of the degQ 9 

gene. The mutant strain was named ΔdegQ. 10 

 11 

Knock-in complementation analysis 12 

The degQ region (SO3942) was amplified from S. oneidensis MR-1 genomic DNA 13 

using primer pair degQ-F and R (see Supplementary Table S1). The amplicon was 14 

ligated into pHSG399 at the XhoI and BamHI restriction sites to generate recombinant 15 

plasmid pHSG399-degQ. The purified pHSG399-degQ (approximately 2 μg) was 16 

transformed into ΔdegQ cells by electroporation using 0.2-cm Gene Pulser/MicroPulser 17 

cuvettes (Bio-Rad) and a Bio-Rad XPulser. Immediately after transformation, 0.5 mL of 18 

super optimal broth with catabolite repression (SOC) medium devoid of antibiotics was 19 

added to the cell suspension. Cells were transferred into a sterile culture tube and 20 

incubated at 30°C for 1 h with continuous shaking. Following incubation, the cells were 21 

spread onto LB agar plates supplemented with 25 μg/mL chloramphenicol and 22 

incubated at 30°C for 2–3 days. The complementation strain was named ΔdegQ+degQ. 23 

 24 
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Characterization of DegQ 1 

 Plasmid pHSG399-degQ-His was also constructed to express DegQ with a His6-tag 2 

sequence at the C-terminus. The plasmid was transformed into wild-type S. oneidensis 3 

MR-1 cells by electroporation, and the resulting strain was named WT+degQ-His. The 4 

cells were pre-cultured and then inoculated into 80 mL of LB medium containing 25 5 

μg/mL chloramphenicol and incubated with shaking at 30°C. When OD660 = 0.5, IPTG 6 

was added to the cultures at a final concentration of 1 mM, and the cultures were further 7 

incubated for 20 h. The cells were harvested by centrifugation at 4,000 ×g for 10 min at 8 

4 °C. The cell pellets were resuspended in phosphate-buffered saline (PBS; pH7.4) and 9 

disrupted by ultrasonication. The supernatant was recovered by centrifugation at 2,800 10 

×g for 10 min at 4 °C, followed by additional centrifugation at 10,000 ×g for 10 min at 11 

4 °C. The supernatant was purified by using a Bio-Scale Mini Profinity IMAC cartridge 12 

as well as a Profinia protein purification system (Bio-Rad Laboratories Inc.) based on 13 

the affinity of the His6-tag, according to the manufacturer’s protocol. The concentration 14 

of purified DegQ was determined by a Pierce BCA Protein Assay kit (Thermo Fisher 15 

Scientific Inc.) using bovine serum albumin as a standard. A 5-μL aliquot of purified 16 

protein was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis 17 

(SDS-PAGE) and visualized by Coomassie Blue staining. For western bloting, protein 18 

was transferred from the gel to a membrane sheet of Hybond P (GE Healthcare Ltd.) 19 

using the semi dry transfer method. Hybridization was conducted using an anti-His6 20 

primary antibody and an ECL Western Blotting Starter kit (GE Healthcare Ltd.) 21 

according to the manufacturer’s protocol. Hybridization signals were detected using a 22 

ChemiDoc imaging system (Bio-Rad Laboratories Inc.).  23 

Protease activity was determined as described previously (Secades and Guijarro 24 
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1999) using azocasein as a substrate, with slight modifications. A 120-µL solution of 1 

purified DegQ containing 0.12 mg protein was mixed with 480 µL of 0.1% (w/v) 2 

azocasein in 25 mM Tris-HCl buffer (pH 7.6) with 5 mM MgCl2, and the mixture was 3 

incubated for 30 min at 30°C. When necessary, diisopropyl fluorophosphate (DFP) was 4 

added as a serine protease-specific inhibitor. A 600-µL volume of 10% (v/w) 5 

trichloroacetic acid was added to terminate the reaction, and samples were incubated for 6 

30 min on ice, followed by centrifugation at 15,000 ×g for 10 min at 4°C. An aliquot of 7 

supernatant (800 µL) was mixed with 200 µL of 1.8 M NaOH, and the absorbance at 8 

440 nm (A440) was measured using an ultraviolet-visible (UV-Vis) spectrometer 9 

(UV-2600 PC, Shimadzu Corp.). One unit of enzyme activity was defined as the 10 

amount of enzyme that yielded an increase in A440 of 0.01 per minute at 30°C. 11 

  12 

Gene expression analysis 13 

To examine gene expression, each strain was cultured in 80 mL of LB medium at 14 

30°C and then harvested at 4 h post-inoculation by centrifugation at 4°C for 10 min at 5 15 

000 ×g. Total RNA was extracted from the collected cells as described elsewhere 16 

(Nguyen et al. 2014), and then reverse-transcribed into cDNA using a PrimeScript RT 17 

reagent kit (Takara Bio Inc.) with random hexamer primers. Gene expression was 18 

analyzed by real-time PCR, as described in our previous study (Nguyen et al. 2014). 19 

The gene expression level was normalized against that of rrsA (16S rRNA). The 20 

specific primer pairs are listed in Table S1. 21 

 22 

Isolation of periplasmic proteins and assay for proteolytic activity 23 

Periplasmic proteins from S. oneidensis were extracted according to the previously 24 
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reported method (Quan et al. 2013) with some modifications. S. oneidensis cells were 1 

harvested from 80 ml of culture broth at 6 h post-inoculation by centrifugation at 3,000 2 

×g for 20 min at 4°C. Precipitant was gently resuspended in 2 mL of Tris-sucrose-EDTA 3 

(TSE) buffer (200 mM Tris-HCl buffer containing 500 mM sucrose and 1 mM EDTA, 4 

pH 8.0) using a wire loop. The cells were then incubated on ice for 30 min, and the 5 

supernatant containing envelope extract was collected by centrifugation at 16,000 ×g for 6 

30 min at 4°C. Finally, the periplasmic fraction was isolated as a supernatant by 7 

ultracentrifugation at 100,000 ×g (CS100FNX, Hitachi) for 1 h at 4°C. Protein 8 

concentrations were determined by the Bradford assay, with bovine serum albumin as a 9 

standard. 10 

Protease activity of periplasmic proteins was also determined using azocasein, as 11 

described above. The periplasmic fraction from the sample (120 µL) was mixed with 12 

480 µL of 0.1% (w/v) azocasein in 25 mM Tris-HCl buffer (pH 7.6) containing 5 mM 13 

MgCl2.  14 

 15 

Isolation and transmission electron microscope (TEM) observation of OMVs  16 

OMVs were isolated as previously described (Gujrati et al. 2014) with some 17 

modifications. Following incubation for 24 h, S. oneidensis culture broth (80 mL) was 18 

centrifuged at 3,970 ×g for 10 min at 4°C. The supernatant was then passed through a 19 

0.45 μm pore–size filter. The contents were precipitated using ammonium sulfate (final 20 

concentration, 400 g L-1) at room temperature for 1 h. The crude OMVs obtained by 21 

centrifugation at 12,450 ×g for 30 min at 4°C were dissolved in 500 µL of 15% (v/v) 22 

glycerol, and then concentrated by ultracentrifugation (CS100FNX, Hitachi) at 109,000 23 

×g for 1 h. The OMV pellets were resuspended in 100 μL of 15% (v/v) glycerol solution. 24 
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As a result, the OMV samples were concentrated 800–fold as compared with the 1 

original culture broth. For observation of flocs using a TEM (H6000, Hitachi), the OMV 2 

samples were dropped onto a mesh copper grid and negatively stained with 4% uranyl 3 

acetate. 4 

 5 

SDS-PAGE and nano LC-MS/MS analyses of OMVs 6 

A 5-μL sample of isolated OMVs from each strain was analyzed by SDS-PAGE 7 

with Coomassie Blue staining. OMV production was quantified according to the 8 

previously described method (Schwechheimer and Kuehn 2013) with some 9 

modifications. The SDS-PAGE band at ~ 37 kDa was analyzed by densitometry (NIH 10 

Image J software) as an index of OMV concentration. The OMV density value was 11 

divided by dry cell weight (DCW) in each culture to calculate cell-based OMV 12 

production, which was then normalized against OMV production of the wild-type strain. 13 

The 37-kDa band was cut from the gel and subjected to in-gel digestion with trypsin. 14 

The proteins were analyzed using nano-flow liquid chromatography with online tandem 15 

mass spectrometry (nanoLC/ESI MS/MS system) composed of an LTQ Orbitrap Velos 16 

(Thermo Fisher Scientific Inc.) coupled with a nanoLC (Advance, Michrom 17 

BioResources) and an HTC–PAL autosampler (CTC Analytics), at the Core 18 

Instrumentation Facility of the Research Institute for Microbial Diseases, Osaka 19 

University (Osaka, Japan). Tandem mass spectra were acquired automatically, and then 20 

searched against an S. oneidensis database from the National Center for Biotechnology 21 

Information using the Mascot Server (Matrix Science). 22 

    23 

Results and Discussion 24 
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Characterization of DegQ 1 

  The His6-tagged DegQ protein expressed in the S. oneidensis WT+degQ-His strain 2 

was purified and then analyzed by SDS-PAGE. DegQ was detected as a major band at a 3 

molecular weight of 45 kDa (Fig. 1A), corresponding to the expected size of DegQ 4 

protein. This indicated that the His6-tagged DegQ was successfully expressed in the 5 

form of soluble molecules in the WT+degQ-His cells. In addition, western blot analysis 6 

using anti-His primary antibody was conducted to further confirm the presence of DegQ. 7 

A clear signal at ~ 45 kDa was observed (Fig. 1B), confirming that the purified protein 8 

is DegQ. 9 

The protease activity of purified DegQ was confirmed by the azocasein hydrolysis 10 

assay. As shown in Fig. 1C, the activity of DegQ was 5.4 U mg-protein-1. As DegQ is 11 

thought to be a putative periplasmic serine protease, the effect of DFP, a serine 12 

protease-specific inhibitor (Swamy et al. 1983), on the activity of DegQ was examined. 13 

As expected, 20 mM DFP inhibited protease activity of DegQ by 85%, suggesting that 14 

the purified protein was a serine protease. Thus, these results confirmed that the S. 15 

oneidensis degQ gene product is a serine protease. 16 

 17 

Deletion and complementation of degQ in S. oneidensis 18 

To confirm the in-frame deletion of degQ, genomic DNA was extracted from wild 19 

type S. oneidensis and the ΔdegQ mutant. The degQ gene (1353 bp) plus 592 bp and 20 

292 bp of the upstream and downstream regions, respectively, were amplified by PCR. 21 

Electrophoresis results are shown in Supplementary Fig. S1. An approximately 2.2–kbp 22 

fragment was amplified from the wild type cells, corresponding to the combined size of 23 

degQ plus the surrounding regions. In contrast, an ~ 900 bp band was amplified from 24 
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the putative ΔdegQ mutant. Furthermore, real–time PCR analysis did not detect degQ 1 

mRNA expression from the mutant cells (Table 2). These results indicate the successful 2 

deletion of degQ from the chromosome of S. oneidensis.  3 

The complete degQ gene was expressed and re-introduced into the ΔdegQ mutant 4 

using the pHSG399–degQ plasmid. The relative expression of degQ (normalized 5 

against that of rrsA) in the resultant ΔdegQ+degQ cells at 4 h post-inoculation was 6 

1.5×10-2, which was much higher than the expression in wild type cells (6.3×10-5) 7 

(Table 2). This increased expression compared with the wild type can be attributed to 8 

the high copy number of pHSG399 plasmid (Takeshita et al. 1987). 9 

 10 

Periplasmic protease activity 11 

     Figure 2 shows representative growth curves of the wild type S. oneidensis, 12 

deletion mutant ΔdegQ, and complemented mutant ΔdegQ+degQ strains. The wild type 13 

and ΔdegQ strains showed similar growth profiles (average growth rate of about 0.6 g– 14 

DCW h-1 during 6-12 h). The cell densities of the wild type and ΔdegQ cultures at 24 h 15 

post-inoculation reached DCW = 6.9 and 7.8 g L-1, respectively. It can be mentioned 16 

that the deletion of degQ did not repress cell growth at 30°C. Meanwhile, the growth of 17 

ΔdegQ+degQ cells appeared to be slightly slower at 12 h than the other two strains, 18 

probably owing to the load of the high-copy number plasmid. The cell density of 19 

ΔdegQ+degQ reached DCW = 6.7 g L-1 at 24 h. On the whole, these results suggest that 20 

the deletion and complementation of degQ did not drastically influence the growth of S. 21 

oneidensis. 22 

Next, cells of each strain were harvested at exponential growth phase (culture 23 

time of 6 h post-inoculation) for isolation of periplasmic proteins and analysis of 24 
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protease activity. Table 2 shows protease activity on a DCW basis, as well as the 1 

concentration of periplasmic proteins obtained from each strain. The specific protease 2 

activity of the periplasmic proteins from the wild type was 19.4 U g–DCW-1, while the 3 

activity of the ΔdegQ cells was 7.0 U g–DCW-1, corresponding to only 30% of that of 4 

the wild type. Thus, the periplasmic protease activity was significantly lowered by 5 

deletion of degQ. In contrast, the complemented mutant, ΔdegQ+degQ, had the highest 6 

protease activity of 61.3 U g–DCW-1. This corresponded with the increased degQ 7 

mRNA expression observed in ΔdegQ+degQ cells compared with the wild type. 8 

Interestingly, the concentration of periplasmic proteins from the ΔdegQ cells 9 

was 2.56 mg g–DCW-1, which was approximately 2.5 times greater than that from the 10 

wild type cells (1.03 mg g–DCW-1). This result strongly suggests that deletion of degQ 11 

induced protein accumulation in the periplasmic space of S. oneidensis cells. In contrast, 12 

the complemented mutant ΔdegQ+degQ cells produced the lowest concentration of 13 

periplasmic proteins (0.44 mg g–DCW-1), which corresponds with the increased 14 

protease activity of this strain. Thus, our results strongly suggest that DegQ is a 15 

dominant periplasmic protease of S. oneidensis, and that lack of DegQ induces protein 16 

accumulation in the periplasmic space.  17 

 18 

Comparison of OMV production among strains 19 

As in the case of E. coli (McBroom and Kuehn 2007; Schwechheimer and Kuehn 20 

2013), it is likely that accumulation of periplasmic proteins in S. oneidensis cells would 21 

induce OMV production, owing to envelope stress. Therefore, the insoluble fraction of 22 

the supernatant containing OMVs was obtained from wild type, ΔdegQ, and 23 

ΔdegQ+degQ culture broths at a culture time of 24 h by ultracentrifugation. The 24 
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extracted OMVs from each strain were observed by TEM with negative staining (Fig. 3). 1 

All strains produced OMVs, and while OMVs from the wild type culture tended to 2 

aggregate, there was no significant difference in the size of OMVs between the wild 3 

type and ΔdegQ strains. On the other hand, fewer OMVs were obtained from the 4 

ΔdegQ+degQ cells compared with the other strains, indicating reduced OMV 5 

production. In addition, co-precipitating appendages such as fimbriae and flagella were 6 

confirmed in the sample from the ΔdegQ+degQ cells. 7 

To compare OMV production, the fractions containing OMVs from each S. 8 

oneidensis strain were analyzed by SDS-PAGE and qualitatively compared with the 9 

wild type. The protein bands in the sedimented fractions from the ΔdegQ cells were 10 

much more intense (Fig. 4A), while the bands from the ΔdegQ+degQ cells were much 11 

weaker. These results suggested that deletion of degQ enhanced OMV production, as 12 

was observed in E. coli (McBroom et al. 2006). However, it has been reported that a 13 

portion of the periplasmic proteins is included inside the OMV structure when OMVs 14 

are generated (Lee et al. 2007). Therefore, we cannot exclude the possibility that the 15 

more intense bands from the ΔdegQ sample is a consequence of increased amounts of 16 

periplasmic proteins inside the OMVs, rather than being indicative of enhanced OMV 17 

production.  18 

From this perspective, in the case of E. coli, the bands observed in the sample at 19 

~37 kDa (OmpF, OmpC, and OmpA) could be used as an index of OMV concentration, 20 

as these membrane proteins are expressed specifically and abundantly within the outer 21 

membrane of cells, and thus, are also found in abundance in OMVs (Schwechheimer 22 

and Kuehn 2013). Therefore, the same type of index could be used for evaluation of 23 

OMV production by S. oneidensis. As shown in Fig. 4A, a prominent band with a 24 
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molecular mass of ~37 kDa was confirmed from all strains by SDS-PAGE analysis. The 1 

proteins contained within this band were then examined by nano LC-MS/MS analysis. 2 

Table 3 summarizes the properties of 10 proteins in descending order according to 3 

matching score from the first analysis. Among these proteins, OmpS38 (SO3896) had 4 

the highest score. Omp35 is a putative porin on the outer membrane of S. oneidensis 5 

cells that was confirmed by subcellular fraction analysis (Maier and Myers 2004). 6 

OmpS38 is upregulated under anaerobic conditions and is involved in respiration of 7 

non-oxygen electron acceptors (Gao et al. 2015). The protein with the next highest score 8 

was also identified as a putative outer membrane porin (SO1821) (Heidelberg et al. 9 

2002). These two outer membrane porins were confirmed to have the highest scores 10 

during the second analysis run (Table 3). MotA, a flagellar motor transmembrane 11 

channel protein, had the third highest score, while, the fourth protein (SO3545) was 12 

OmpA, which is also outer membrane porin (Gao et al. 2015). Thus, outer membrane 13 

proteins dominated the OMV samples, indicating that the bands at ~37 kDa can be used 14 

as an index of OMV production in S. oneidensis. Taking these findings into account, the 15 

OMV production was quantitatively analyzed based on the densitometry of the band at 16 

~37 kDa from each strain. As a result, we determined that OMV production by the 17 

ΔdegQ strain was about five times greater than that of the wild type strain (Fig. 4B). In 18 

contrast, the complemented ΔdegQ+degQ strain showed about a 60% reduction in 19 

OMV production compared with the wild type strain. Together with the data from 20 

periplasmic protease activity analysis and periplasmic protein concentration, our results 21 

suggest that OMV production was promoted by the deletion of degQ in S. oneidensis 22 

cells as a result of the accumulation of excessive amounts of periplasmic proteins. 23 
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In conclusion, our results show that degQ encodes a serine protease in S. 1 

oneidensis. Deletion of degQ resulted in the accumulation of periplasmic proteins, and 2 

led to a significant decrease in protease activity within the periplasmic space. 3 

SDS-PAGE analysis of isolated OMVs showed the band corresponding to outer 4 

membrane porins was more intense in the ΔdegQ cells. Thus, OMV production by S. 5 

oneidensis was promoted by the lack of DegQ, most likely as a result of an increase in 6 

envelope stress. 7 

  8 
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FIGURE LEGENDS 1 

Fig. 1 Purification and characterization of DegQ protein. (A) SDS-PAGE analysis of 2 

purified DegQ protein. DegQ was expressed in the S. oneidensis WT+degQ-His 3 

strain. (B) Western blot analysis of purified DegQ protein. Hybridization was 4 

conducted using anti-His6 primary antibody. (C) Protease activity of purified 5 

DegQ protein with or without serine protease inhibitor, diisopropyl 6 

fluorophosphates (DFP). Data was determined from three independent 7 

experiments. Vertical bars indicate standard deviation. An asterisk indicates 8 

statistical significance as determined by a Student’s t-test (p<0.05).  9 

 10 
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Fig. 2 Growth profiles of S. oneidensis wild type, ΔdegQ, and ΔdegQ+degQ strains in 1 

LB medium at 30°C. Data were determined from three independent experiments. 2 

Vertical bars indicate standard deviation. DCW was calculated by DCW = α× 3 

OD660 when α = 0.87 (wild type), 0.96 (ΔdegQ), and 0.93 (ΔdegQ+degQ) g L-1, 4 

respectively. 5 

 6 

  7 



24 
 

Fig. 3 TEM images of OMVs isolated from S. oneidensis wild type, ΔdegQ, and 1 

ΔdegQ+degQ strains. The OMVs were stained with uranyl acetate. The scale 2 

bars indicate 200 nm. 3 

 4 
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Fig. 4 Correlation between degQ and OMV production. (A) SDS-PAGE analysis of 1 

OMVs isolated from the S. oneidensis wild type, ΔdegQ, and ΔdegQ+degQ 2 

strains. The closed arrow indicates the protein bands of interest that were 3 

analyzed by nano LC-MS/MS. (B) Comparison of OMV production among S. 4 

oneidensis wild type, ΔdegQ, and ΔdegQ+degQ strains. OMV production was 5 

determined as relative values by normalizing against the value of the wild type 6 

strain. Data was determined from three independent experiments. Vertical bars 7 

indicate standard deviation. An asterisk indicates the statistical significance as 8 

determined by ANOVA with Tukey’s test (p<0.05). 9 
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SUPPORTING INFORMATION  1 

Table S1 Primers used in this study. 2 

Fig. S1  Electrophoresis of the degQ fragment amplified from genomic DNA isolated 3 

from S. oneidensis wild type (lane 1) and ΔdegQ (lane 2) strains. Lane M; 4 

HindIII-digested λ DNA marker. 5 

 6 
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Table 1 

Table 1 Strains and vectors used in this study. 

Strain and vector Description Reference 

Strains   
S. oneidensis MR-1 Wild type strain (Myers and Nealson 1988) 

WT+degQ-His Wild type strain with pHSG399-degQ-His This study 
degQ In-flame deletion of degQ This study 

degQ+degQ Cmr, complemented strain with pHSG399-degQ This study 
Escherichia coli   
  SM10 pir Mating strain (Miller and Mekalanos 1988) 

JM109 pir Cloning strain (Penfold and Pemberton 1992) 
Plasmids   
   pRE112 Cmr, pir-dependent suicide vector (Edwards et al. 1998) 

pRE112-F3 Cmr, pRE112 caring F3 fragment This study 
pHSG399 Cmr, expression vector (Takeshita et al. 1987) 
pHSG399-degQ Cmr, expression vector carrying degQ This study 

pHSG399-degQ-His 
Cmr, expression vector carrying degQ with the His6-Tag 

sequence at C-terminus 
This study 
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Table 2 

Table 2 mRNA expressions of degQ gene, protease activities of DegQ protein, and amounts of periplasmic proteins from S. 

oneidensis wild type, ΔdegQ, and degQ+degQ strains.  

Strain 
mRNA expression 

[-] 
Protease activity 
 [U g–DCW-1] 

Periplasmic proteins 
[mg g–DCW-1] 

Wild type (6.3 ± 4.2)×10–5 19.4 ± 2.9 1.03 ± 0.12 

ΔdegQ N.D. 7.0 ± 2.3 2.56 ± 0.37 

ΔdegQ+degQ (1.5 ± 1.2)×10–2 61.3 ± 14.6 0.44 ± 0.03 

The data were determined using the cells harvested at culture times of 4 h for mRNA expression analysis and 6 h for 
protease activity assay. The data were determined from three independent experiments. 
N.D.: Not detected 
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Table 3 Proteins identified in OMVs from S. oneidensis wild type strain. 

Protein Gene Mass Score Peptide no. Accession Note 
First analysis       
Outer membrane porin  ompS38 39874 34463 1166 gi|499386175 SO3896 
Outer membrane porin  - 39654 6912 327 gi|499385907 SO1821 
Flagellar motor protein MotA motA 48740 1097 36 gi|499384378 SO4287 
Outer membrane porin  ompA 43970 1033 28 gi|499384375 SO3545 
iron ABC transporter substrate-binding protein  fbpA 37394 953 30 gi|499383481 SO0744     
TonB-dependent ferric putrebactin siderophore receptor PutA putA 81373 877 20 gi|499385445 SO3033 
ATP synthase subunit beta  atpD 49856 784 21 gi|499386863 SO4747     
alcohol dehydrogenase  adhB 40387 783 23 gi|499384108 SO1490 
cytochrome C  omcA 79992 725 27 gi|499384335 SO1779 
5'-nucleotidase  ushA 61353 671 29 gi|499384520 SO2001 
Second analysis       
Outer membrane porin ompS38 39874 11280 488 gi|499386175 SO3896 
Outer membrane porin - 39654 1960 109 gi|499385907 SO1821 
alcohol dehydrogenase  adhB 40387 709 28 gi|499384108 SO1490 
TonB-dependent receptor hmuA 81373 527 22 gi|499385445 SO3669 
Outer membrane porin ompA 43970 384 22 gi|499384375 SO3545 
Isocitrate dehydrogenase  - 36173 370 13 gi|499384148 SO1538 
ABC transporter substrate-binding protein  potF 40834 368 16 gi|499383922 SO1270 
Phage capsid protein  - 43497 319 18 gi|499385376 SO2963 
Cytochrome C omcA 79992 316 12 gi|499384335 SO1779 
Iron ABC transporter substrate-binding protein  fbpA 37394 299 16 gi|499383481 SO0744 
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Supplementary Table S1 

 

Supplementary Table S1 Primers used in this study 

Primers  Sequence 
Mutagenesis  

F1-F 5’- ATCGGAGCTCCA AAGAGTTAGGCTCTTCGGCT -3’ 
F1-R 5’- GACTGGCTTAGGTCGTCTCTATTTCGTTTTCATCTATTCATA -3’ 
F2-F 5’- AGAGACGACCTAAGCCAGTCCCAAGAGCTGCGTGCTAAAGTC -3’ 
F2-R 5’- ATCGTCTAGAGCCTTGGCAAAGGAGAGTTCA -3’ 

Complementation  
degQ-F 5’- ATCGAAGCTTGAAAACGAAATTATCT -3’ 
degQ-R 5’- ATCGGAATTCTTAACGAAGCACTAA -3’ 

Purification  
degQ-His-R 5’- ATCGGAATTCTCAGTGGTGGTGGTGGTGGTGACGAAGCACTAAGTAAAG -3’ 

Realtime PCR  
rrsA(house keeping)-RT-F  5’- GCAACGCGAAGAACCTTACC -3’ 
rrsA (house keeping)-RT-R  5’- CAGCACCTGTCTCACGGTTC-3’ 

degQ(SO3942)-RT-F 5’- AACAAGTGCAAGAGCGTCCA -3’ 
degQ(SO3942)-RT-R 5’- CTTCACGGCCATCGTGTAAA -3’ 


