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GLOBAL WELL-POSEDNESS OF THE TWO-DIMENSIONAL EXTERIOR
NAVIER-STOKES EQUATIONS FOR NON-DECAYING DATA

KEN ABE

Abstract. We prove global well-posedness of the two-dimensional exterior Navier-Stokes
equations for bounded initial data with a finite Dirichlet integral, subject to the non-slip
boundary condition. As an application, we construct global solutions for asymptotically
constant initial data and arbitrary large Reynolds numbers.

1. Introduction

We consider the two-dimensional Navier-Stokes equations in an exterior domainΩ ⊂ R2:

(1.1)

∂tu − ∆u + u · ∇u + ∇p = 0 in Ω × (0,∞),
div u = 0 in Ω × (0,∞),

u = 0 on ∂Ω × (0,∞),
u = u0 on Ω × {t = 0}.

It is well known that the two-dimensional exterior Navier-Stokes equations are globally
well-posed for initial data with finite energy [40], [41], [37]. However, global solvability
is unknown in general for initial data with infinite energy. An example of infinite energy
solutions is a stationary solution with a finite Dirichlet integral, called D-solution [40]. It
is known that D-solutions are bounded in Ω and asymptotically constant as |x| → ∞; see
Remark 1.2. In other words, D-solutions are elements of L∞ ∩ Ḣ1

0 , where Ḣ1 denotes the
homogeneous L2-Sobolev space and Ḣ1

0 denotes the space of all functions in Ḣ1, vanishing
on ∂Ω.

The purpose of this paper is to establish the global solvability of (1.1) for non-decaying
initial data u0 ∈ L∞σ ∩ Ḣ1

0 . We set the solenoidal L∞-space,

L∞σ (Ω) =
{

u ∈ L∞(Ω)

∣∣∣∣∣∣
∫
Ω

u · ∇φdx = 0 for φ ∈ Ŵ1,1(Ω)
}
,

by the homogeneous Sobolev space Ŵ1,1(Ω) = {φ ∈ L1
loc(Ω) | ∇φ ∈ L1(Ω) }. For exterior

domains, the space L∞σ agrees with the space of all bounded divergence-free vector fields,
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whose normal trace is vanishing on ∂Ω [5]. When Ω is the whole space, the global solvabil-
ity of (1.1) is established in [28] for merely bounded initial data u0 ∈ L∞σ . Since the vortex
stretching is absent for the two-dimensional vorticity equation,

∂tω + u · ∇ω − ∆ω = 0 in R2 × (0,∞),

ω = ω0 on R2 × {t = 0},

the global a priori estimate

||ω||L∞(R2) ≤ ||ω0||L∞(R2) t > 0,

holds for ω = ∂1u2 − ∂2u1 by the maximum principle. (One may assume that the initial
vorticity is bounded by the regularizing effect on L∞ [27].) The vorticity estimate plays a
crucial role in order to construct global mild solutions on L∞σ .

When Ω is a domain with boundaries, vorticity propagation is more involved. The global
vorticity estimate may not hold and it is unknown whether the problem (1.1) is globally
well-posed on L∞σ . For exterior domains, local solvability on L∞σ is recently established in
[3] (see also [1]).

For initial data with finite energy, there is a global bound for vorticity. Since local solu-
tions exist in (0,T ] for some T > 0 and satisfies

sup
0<t≤T

t
1
2
{
||u||L∞(t) + ||∇u||L2(t)

}
≤ C||u0||L2 ,

by the energy equality,

∫
Ω

|u|2dx + 2
∫ t

0

∫
Ω

|∇u|2dxds =
∫
Ω

|u0|2dx t > 0,

local solutions are continued for all t ≥ T (see, e.g., [36]). In other words, global solutions
exist, provided that initial data is decaying sufficiently fast as |x| → ∞. Since local solutions
are bounded and with a finite Dirichlet integral for each t > 0, one may assume the regularity
condition u0 ∈ L∞∩Ḣ1

0 for initial data with finite energy. On the other hand, a finite Dirichlet
integral does not imply decay at space infinity. Thus the condition u0 ∈ L∞ ∩ Ḣ1

0 can be
viewed as an extension of finite energy.

Our goal is to construct a global mild solution for u0 ∈ L∞σ ∩ Ḣ1
0 . As explained later in the

introduction, the space L∞σ ∩ Ḣ1
0 includes asymptotically constant vector fields. We prove

global solvability of (1.1) for non-decaying initial data u0 ∈ L∞σ ∩ Ḣ1
0 , and deduce existence

of asymptotically constant solutions for arbitrary large Reynolds numbers. To state a result,
let S (t) denote the Stokes semigroup. Let P denote the Helmholtz projection. We construct
global mild solutions of the form

(1.2) u(t) = S (t)u0 −
∫ t

0
S (t − s)P(u · ∇u)(s)ds.
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Let C([0,T ]; X) (resp. Cw([0,T ]; X)) denote the space of all continuous (resp. weakly con-
tinuous) functions from [0,T ] to a Banach space X. When X = L∞, the space Cw([0,T ]; L∞)
denotes the space of all weakly-star continuous functions. Since the Stokes semigroup is
an analytic semigroup on L∞σ [5], the first term is defined for non-decaying initial data
u0 ∈ L∞σ ∩ Ḣ1

0 . The second term is defined by the Helmholtz projection on L2 for u ∈
Cw([0,∞); L∞) satisfying ∇u ∈ Cw([0,∞); L2). The mild solutions constructed in this paper
are sufficiently smooth and satisfy (1.1) in a suitable sense (see Remarks 5.1). The main
result of this paper is the following:

Theorem 1.1. Let Ω be an exterior domain with C3-boundary in R2. Assume that u0 ∈
L∞σ ∩ Ḣ1

0 . Then, there exists a unique mild solution u ∈ Cw([0,∞); L∞) of (1.1) satisfying
∇u ∈ Cw([0,∞); L2).

Remark 1.2. (D-solutions) We constructed global solutions of (1.1) in L∞ ∩ Ḣ1. The space
L∞ ∩ Ḣ1 is a natural space for studying non-decaying solutions. So far, various station-
ary solutions have been constructed in L∞ ∩ Ḣ1, while the existence of global solutions
was unknown for the non-stationary problem (1.1). Stationary solutions of (1.1) were first
constructed by Leray [40] based on an approximation as R→ ∞ of the problem

−∆uR + uR · ∇uR + ∇pR = 0 in ΩR,

div uR = 0 in ΩR,

uR = 0 on ∂Ω,
uR = u∞ on {|x| = R},

for ΩR = Ω ∩ {|x| < R} and the constant u∞ ∈ R2 (see also [38, Chapter 5, Theorem 5]).
The solutions constructed by the Leray’s method are with a finite Dirichlet integral and
called Leray’s solution. Later on, stationary solutions with a finite Dirichlet integral are
constructed also by the Galerkin method in [16, Theorem 3.2] ([18, Theorem X.4.1]). We
refer to any stationary solutions of (1.1) with a finite Dirichlet integral as D-solution. Note
that a finite Dirichlet integral does not imply a global bound as |x| → ∞ (e.g., u = (log |x|)α,
0 < α < 1/2). It is proved by Gilbarg and Weinberger [30] ([31]) that Leray’s solutions are
bounded in Ω and converge to some constant u∞ in the sense that

∫ 2π
0 |u(rer) − u∞|2dθ → 0

as r → ∞, where (r, θ) is the polar coordinate and er = (cos θ, sin θ). Moreover, every
D-solutions are bounded and asymptotically constant in the above sense [6, Theorem 12].
Thus, D-solutions are elements of L∞σ ∩ Ḣ1

0 .
When the constant u∞ is sufficiently small (u∞ , 0), Finn and Smith [15, Corollary 4.2]

constructed unique stationary solutions of (1.1) satisfying u − u∞ = O(|x|−ε−1/4) as |x| → ∞
for some ε > 0. The solutions with this decay rate are called PR-solution [51, Section 4].
It is known that PR-solutions have the faster decay u − u∞ = O(|x|−1/2) as |x| → ∞ [51].
Since the PR-solutions are with a finite Dirichlet integral [15, Lemma 5.2], they are element
of L∞σ ∩ Ḣ1

0 . See [17], [35] for more information about stationary solutions. Note that for
large Reynolds numbers, existence of stationary solutions is a long standing open question.
Here, we regard the constant |u∞| as the Reynolds number. As stated below in Theorem
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1.3, Theorem 1.1 implies existence of global solutions of (1.1) for arbitrary large Reynolds
numbers.

From a physical point of view, when the Reynolds number is large, a viscous fluid
can vary behind the obstacle periodically or irregularly. It is natural to consider the non-
stationary problem (1.1) for studying non-decaying flows of large Reynolds numbers. So
far, existence of global solutions of (1.1) was unknown for asymptotically constant initial
data. One may construct global solutions of (1.1) for small Reynolds numbers by subtracting
a PR-solution from u and reducing the problem to decaying initial data with finite energy.
We deduce existence of global solutions from Theorem 1.1 without constructing stationary
solutions, and obtain asymptotically constant solutions for arbitrary large Reynolds num-
bers.

To state a result, let BUC denote the space of all bounded uniformly continuous functions
in Ω. Let BUCσ denote the space of all solenoidal vector fields in BUC, vanishing on ∂Ω.
We consider asymptotically constant initial data u0 ∈ BUCσ ∩ Ḣ1

0 such that

lim
R→∞

sup
|x|≥R
|u0(x) − u∞| = 0.

For simplicity of the notation, we shall denote by u0 → u∞ as |x| → ∞. Since the Stokes
semigroup S (t)u0 is asymptotically constant as |x| → ∞ for such the initial data, sending
|x| → ∞ to (1.2) implies that mild solutions are also asymptotically constant. From Theorem
1.1, we deduce the following:

Theorem 1.3. Assume that u∞ ∈ R2 and u0 ∈ BUCσ ∩ Ḣ1
0 satisfy u0 → u∞ as |x| → ∞.

Then, the mild solution u ∈ C([0,∞); BUC) satisfies u→ u∞ as |x| → ∞ for each t ≥ 0.

For the two-dimensional Euler equations, global solvability of the exterior problem is
proved in [34] for asymptotically constant initial data. In the paper, global solutions are
constructed by Schauder’s fixed point theorem for sufficiently smooth and asymptotically
constant initial data, satisfying the decay condition of vorticity∫

Ω

(1 + |x|θ)|ω0(x)|dx < ∞, for some θ > 0.

For the two-dimensional ideal flows, vorticity moves along a stream line and does not in-
crease. Hence by using a stream line, the vorticity can be regarded as a fixed point of some
map between a space of bounded functions (see also [33]).

On the other hand, for viscous flows we expect increase of vorticity since there exist
boundary layers. As we have seen in the introduction, for decaying initial data sufficiently
fast as |x| → ∞, vorticity is globally bounded in L2 by the energy inequality, and solutions
are sufficiently smooth for all t > 0 even if new vortices are produced from the bound-
aries. For slowly decaying or non-decaying initial data, we expect that stronger vorticity is
produced from the boundaries. Indeed, for viscous flows of large Reynolds numbers, sep-
arations of boundary layers can produce turbulence behind the obstacle Ωc (depending on
shapes of the body Ωc). See [39] for example. So far, a global vorticity bound was unknown
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for such non-decaying flows. We proved that vorticity of non-decaying flows in L∞ ∩ Ḣ1

are globally bounded in L2 for each t > 0 and solutions are sufficiently smooth for all t > 0
for arbitrary large Reynolds numbers. Note that Theorem 1.3 holds for exterior domains of
class C3, independently of shapes of the body Ωc.

Theorem 1.3 implies existence of global solutions for general viscosities ν > 0 and arbi-
trary Reynolds numbers R > 0. Here, we set the Reynolds number by

R =
|u∞|
ν

diam Ωc.

In fact, for solutions (u, p) constructed in Theorem 1.3, we consider the scaling

uν(x, t) =
1
να

u
( x
ν1+α
,

t
ν1+2α

)
, pν(x, t) =

1
ν2α

p
( x
ν1+α
,

t
ν1+2α

)
with some constant α ∈ R and obtain the global solution (uν, pν) for ν > 0 in the exterior
domain Ων = ν1+αΩ satisfying uν → ν−αu∞ as |x| → ∞. The Reynolds number is a
dimensionless parameter, used as an important index for characterizing status of viscous
flows. One may observe that for fluid flows of large Reynolds numbers, the viscosities ν > 0
are relatively small. However, such flows may not be simply understood like ideal flows.
Indeed, it is known that small viscosities ν > 0 have a significant effect in boundary layers
[39]. Theorem 1.3 implies existence of global solutions for small viscosities ν > 0 and large
Reynolds numbers R > 0.

It is an interesting question whether mild solutions approach stationary solutions as time
goes to infinity. When Ω is the whole space, mild solutions for u0 ∈ L∞σ ∩ Ḣ1 approach
constants as t → ∞. Since the vorticity satisfies the global estimate

||ω||Lp(R2) ≤
C

t
1
2−

1
p

||ω0||L2(R2) t > 0,

for 2 ≤ p ≤ ∞ (e.g., [23, Chapter 2]), the Biot-Savart law implies that

||∇u||Lp(R2) ≤ Cp||ω||Lp(R2) → 0 as t → ∞ for 2 < p < ∞.

Since stationary solutions of (1.1) with a finite Dirichlet integral in R2 must be constants by
the Liouville-type theorem [30, Theorem 2], one can rephrase that the limit as t → ∞ is a
trivial stationary solution.

When Ω is a half space, global solvability of (1.1) is unknown for non-decaying initial
data; see [54], [43], [7], [3] for local solvability results. The statement of Theorem 1.1 is
valid also for a half space and global mild solutions exist for u0 ∈ L∞σ ∩ Ḣ1

0(R2
+). (For a

half space, the condition u ∈ Ḣ1
0 implies a decay as |x| → ∞. See Remarks 6.4 (ii).) It

is unknown whether the corresponding Liouville-type theorem holds for a half space since
vorticity does not vanish on the boundary. We refer to [49], [26] for Liouville-type theorems
in a half space. Note that for exterior domains, Leray’s solutions are indeed non-trivial
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[6, Theorem 29].

Let us sketch the proof of Theorem 1.1. We construct global mild solutions based on the
Stokes semigroup on L∞ ∩ Ḣ1. We set

| f |Ḣ1 = ||∇ f ||L2 ,

|| f ||L∞∩Ḣ1 = || f ||L∞ + | f |Ḣ1 .

The space L∞∩ Ḣ1 is a Banach space equipped with the norm || · ||L∞∩Ḣ1 . Note that the norm
is homogeneous by the scaling, i.e., || fλ||L∞∩Ḣ1 = λ|| f ||L∞∩Ḣ1 for fλ(x) = λ f (λx), λ > 0. We
first prove the a priori estimate of the Stokes flow

sup
0<t≤T0

{
∥S (t)u0∥L∞∩Ḣ1 + t||AS (t)u0||L∞∩Ḣ1

}
≤ C||u0||L∞∩Ḣ1(1.3)

for u0 ∈ L∞σ ∩ Ḣ1
0 and T0 > 0. Here, A denotes the Stokes operator. The estimate (1.3)

implies that the Stokes semigroup is an analytic semigroup on L∞σ ∩ Ḣ1
0 . When Ω = R2, the

Stokes semigroup agrees with the heat semigroup and the estimate (1.3) holds; see Remarks
2.6 (i). We prove (1.3) for two-dimensional exterior domains by using fractional powers
of the Stokes operator on L2 and an approximation for u0 ∈ L∞σ ∩ Ḣ1

0 . The estimate (1.3)
implies the regularity properties

v, t
1
2∇v ∈ Cw([0,T0]; L∞), ∇v ∈ Cw([0,T0]; L2),(1.4)

for the Stokes flow v = S (t)u0 and u0 ∈ L∞σ ∩ Ḣ1
0 .

The second step of the proof is to construct local-in-time solutions of (1.1). In this paper,
we study local solvability of the Navier-Stokes system in a general form

(1.5)

∂tw − ∆w + w · ∇w + v · ∇w + ∇π = −w · ∇v − v · ∇v in Ω × (0,T0),
div w = 0 in Ω × (0,T0),

w = 0 on ∂Ω × (0,T0),
w = w0 on Ω × {t = 0}.

Observe that the system (1.5) agrees with the original system (1.1) for v ≡ 0. Moreover, for
the Stokes flow v = S (t)u0 and the solution u of (1.1), the difference w = u − v satisfies the
system (1.5) for w0 ≡ 0. We establish a local solvability of (1.5) on L∞∩ Ḣ1 for a solenoidal
vector field v satisfying (1.4) and deduce the existence of the local solution u of (1.1).

A crucial step is to extend the local solution u of (1.1) by a global energy estimate. We
apply a global energy estimate of the perturbed system (1.5) for w0 ≡ 0 of the form
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∫
Ω

|w|2dx +
∫ t

0

∫
Ω

|∇w|2dxds ≤ 1
2

(e2N2t − 1) 0 ≤ t ≤ T0,

N = sup
0<t≤T0

{||v||L∞∩Ḣ1 + t
1
2 ||∇v||L∞}.

Since the global energy is bounded for the two-dimensional system (1.5), local solutions of
(1.5) for w0 ≡ 0 are globally bounded on L∞ ∩ H1. We prove a global bound on L∞ ∩ H1

by using an Lp-blow-up estimate of the system (1.5). Since w = u − v solves the perturbed
system (1.5) for w0 ≡ 0 and v = S (t)u0, we deduce that u−v is globally bounded on L∞∩H1

and the local solution u is continued for all t > 0.
This paper is organized as follows. In Section 2, we prove that the Stokes semigroup

is an analytic semigroup on L∞σ ∩ Ḣ1
0 . In Section 3, we establish local solvability of the

system (1.5) on L∞σ ∩ Ḣ1
0 . In Section 4, we prove that mild solutions of (1.5) for w0 ≡ 0 are

globally bounded on L∞ ∩ H1. In Section 5, we prove Theorem 1.1. In Section 6, we study
asymptotic behavior of the Stokes flow as |x| → ∞ and prove Theorem 1.3. In Appendix A,
we prove local solvability of (1.5) on Lp for p > 2 and deduce a blow-up estimate used in
Section 4. In Appendix B, we note Lp-estimates of a fractional power of the Stokes operator
in a half space, related to Remarks 2.6 (ii).

After the first draft of this paper is written, the author learned the papers [48], [55] on large
time L∞-estimates of bounded solutions in R2. Although vorticity of the Cauchy problem
is uniformly bounded for all t > 0, a uniform L∞-estimate for velocity is unknown. In
[28], Giga et al. gave a double exponential bound for the sup-norm of velocity by using
a logarithmic Gronwall’s inequality. Their estimate is later improved by Sawada-Taniuchi
[48] to a single exponential bound by some approximation argument. More recently, the
result is further improved by Zelik [55] to a linear growth estimate by using a uniform local
energy. We refer to a lecture note of Gallay [19] for this uniform local energy estimate.
For periodic initial data in one space direction, a uniform L∞-estimate is proved by Gallay-
Slijepčević [21] (see also [20]).

The author learned a recent result of Maremonti-Shimizu [44]. In the paper, global
solutions in an exterior domain are constructed for merely bounded initial data by a per-
turbation from R2. See [3] for the local solvability result on L∞σ . For exterior domains
solutions near the boundary may be understood as finite energy because of the compact
boundary. On the other hand, for a half space global existence of non-decaying solutions
is unknown. Theorem 1.1 implies existence of global solutions at least for slowly decaying
data u0 ∈ L∞σ ∩ Ḣ1

0(R2
+). We refer to a recent paper [32] on stationary solutions in a half

space.

2. The Stokes semigroup on L∞ ∩ Ḣ1

In this section, we prove that the Stokes semigroup is an analytic semigroup on L∞σ ∩ Ḣ1
0 .

We first prove the a priori estimate of the Stokes flow (1.3) for compactly supported initial
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data by using fractional powers of the Stokes operator on L2, and then extend initial data
by an approximation by using the Bogovskiı̆ operator. After the proof of Theorem 2.1, we
remark on higher dimensional cases (Remarks 2.6).

Theorem 2.1. Let Ω be an exterior domain with C3-boundary in R2. For T0 > 0, there
exists a constant C such that the estimate

sup
0<t≤T0

{
∥S (t)v0∥L∞∩Ḣ1 + t||AS (t)v0||L∞∩Ḣ1

}
≤ C||v0||L∞∩Ḣ1(2.1)

holds for v0 ∈ L∞σ ∩Ḣ1
0 . In particular, the Stokes semigroup forms a (not strongly continuous)

analytic semigroup on L∞σ ∩ Ḣ1
0 .

In the sequel, we use the following regularity properties of the Stokes flow deduced from
Theorem 2.1.

Corollary 2.2. For v0 ∈ L∞σ ∩ Ḣ1
0 , the Stokes flow v = S (t)v0 satisfies

sup
0<t≤T0

{
∥S (t)v0∥L∞∩Ḣ1 + t

1
2 ||∇S (t)v0||L∞

}
≤ C||v0||L∞∩Ḣ1 ,(2.2)

v, t
1
2∇v ∈ Cw([0,T0]; L∞), ∇v ∈ Cw([0,T0]; L2).(2.3)

Proof. The estimate (2.2) follows from (2.1) and the L∞-estimate of the Stokes semigroup
[5]. Since v = S (t)v0 converges to v0 weakly-star on L∞ as t → 0, the function t1/2∇v
converges to zero weakly-star on L∞. Moreover, ∇v converges to ∇v weakly on L2 by
(2.2). □

Let H1
0,σ denote the H1-closure of C∞c,σ, the space of all smooth solenoidal vector fields

with compact support in Ω. In oder to prove Theorem 2.1, we prepare a characterization of
the space H1

0,σ and an approximation for v0 ∈ L∞σ ∩ Ḣ1
0 by compactly supported functions.

Proposition 2.3. Let Ω be an exterior domain with Lipschitz boundary in Rn, n ≥ 2. Then,
the space H1

0,σ agrees with the space of all solenoidal vector fields in H1
0 , where H1

0 denotes
the space of all functions in H1, vanishing on ∂Ω.

Lemma 2.4 (Approximation). Let Ω be an exterior domain in R2. There exists a constant
C such that for v0 ∈ L∞σ ∩ Ḣ1

0 there exists a sequence {v0,m}∞m=1 ⊂ L∞σ ∩ H1
0 with compact

support in Ω such that

(2.4)
||v0,m||L∞∩Ḣ1 ≤ C||v0||L∞∩Ḣ1 ,

v0,m → v0 a.e. in Ω as m→ ∞.



9

We shall give proofs for Proposition 2.3 and Lemma 2.4 later and first complete:

Proof of Theorem 2.1. Since the estimate

sup
0<t≤T0

{
∥S (t)v0∥L∞ + t||AS (t)v0||L∞

}
≤ C||v0||L∞(2.5)

holds for v0 ∈ L∞σ ∩ Ḣ1
0 [5], it suffices to show

sup
t>0

{
|S (t)v0|Ḣ1 + t|AS (t)v0|Ḣ1

}
≤ C||v0||L∞∩Ḣ1 .(2.6)

We begin with v0 ∈ L∞σ ∩ H1
0 with compact support in Ω. Since the Stokes operator A is a

positive self-adjoint operator on L2, we are able to define the fractional power A1/2 by the
spectral representation and we have

|u|Ḣ1 = ||A
1
2 u||L2 for u ∈ D(A

1
2 ),

and D(A1/2) = H1
0,σ [52, Lemma 2.2.1]. Since v0 is supported in Ω and vanishing on ∂Ω,

the initial data v0 is an element of H1
0,σ by Proposition 2.3. It follows that

|S (t)v0|Ḣ1 = ||A
1
2 S (t)v0||L2 = ||S (t)A

1
2 v0||L2

≤ ||A 1
2 v0||L2 = |v0|Ḣ1 .

Similarly, by the analyticity of the Stokes semigroup on L2 [52, IV 1.5], we estimate

|AS (t)v0|Ḣ1 = ||A
3
2 S (t)v0||L2 = ||AS (t)A

1
2 v0||L2

≤ 1
t
||A 1

2 v0||L2 =
1
t
|v0|Ḣ1 .

Thus (2.6) holds.
For general v0 ∈ L∞σ ∩ Ḣ1

0 , we apply Lemma 2.4 and take a sequence {v0,m} with compact
support in Ω satisfying (2.4). By applying (2.6) for vm = S (t)v0,m, we have

sup
t>0

{
|vm|Ḣ1 + t|Avm|Ḣ1

}
≤ C||v0||L∞∩Ḣ1 .

Since v0,m → v0 a.e. in Ω, by choosing a subsequence, vm converges to v = S (t)v0 locally
uniformly in Ω × (0,∞) [5]. Thus the estimate (2.6) holds for v0 ∈ L∞σ ∩ Ḣ1

0 . □

In the sequel, we prove Proposition 2.3 and Lemma 2.4 by using the Bogovskiı̆ operator
[8] ([18, Theorem III 3.1]). Let Lp

av(D) denote the space of all average zero functions in
Lp(D), i.e.,

∫
D f dx = 0. Let W1,p

0 (D) denote the space of all functions in W1,p(D) vanishing
on ∂D for p ∈ [1,∞].
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Proposition 2.5. Let D be a bounded domain with Lipschitz boundary in Rn, n ≥ 2. Let
p ∈ (1,∞). There exists a bounded operator B : Lp

av(D) → W1,p
0 (D) such that u = B[g]

satisfies div u = g in D, u = 0 on ∂D and

||∇u||Lp(D) ≤ C||g||Lp(D).(2.7)

The constant C = CD is independent of dilation of D, i.e., CD = CλD for λ > 0.

Proof of Proposition 2.3. We reduce the problem to the cases of a bounded domain and the
whole space by a cut-off function argument. We may assume 0 ∈ Ωc by translation. Let
θ ∈ C∞c [0,∞) be a cut-off function such that θ ≡ 1 in [0, 1], θ ≡ 0 in [2,∞) and 0 ≤ θ ≤ 1.
We set θR(x) = θ(|x|/R) so that θR ≡ 1 in B0(R) and θR ≡ 0 in B0(2R)

c
. Here, B0(R)

denotes the open ball centered at the origin with radius R. We fix R ≥ 1 sufficiently large
so that Ωc ⊂ B0(R). For v0 ∈ H1

0 satisfying div v0 = 0 in Ω, we shall construct a sequence
{v0,m} ⊂ C∞c,σ such that v0,m → v0 in H1. Let B = BDR be the Bogovskiı̆ operator on
DR = {x ∈ Ω | R < |x| < 2R}. We decompose v0 into two terms by setting

v1 = v0θR − B[gR],
v2 = v0(1 − θR) + B[gR],

for gR = v0 ·∇θR. Since the average of gR is zero in DR by div v0 = 0 in Ω and v0 = 0 on ∂Ω,
v1 and v2 are defined by the Bogovskiı̆ operator on DR. Observe that v1 ∈ H1

0(Ω1) satisfies
div v1 = 0 in Ω1 = Ω ∩ {|x| < 2R}, and v2 ∈ H1(Rn) satisfies div v2 = 0 in Rn, spt v2 ⊂
{|x| ≥ R}. Since the assertion of Proposition 2.3 is valid for bounded domains and the whole
space [52, II. 2.2.3 Lemma and II. 2.5.5 Lemma], there exist sequences {v1,m} ⊂ C∞c,σ(Ω1)
and {v2,m} ⊂ C∞c,σ(Rn) such that

v1,m → v1 in H1
0(Ω1),

v2,m → v2 in H1(Rn).

We identify v1,m as an element of C∞c,σ(Ω) by the zero extension to Rn\Ω1. Since v2 is
supported in {|x| ≥ R}, we may assume that v2,m is supported in Ω. Since v0 = v1 + v2, we
obtain the desired sequence v0,m = v1,m + v2,m in C∞c,σ(Ω). □

It remains to show Lemma 2.4. Since the Ḣ1-semi-norm is invariant under the scaling
fλ(x) = f (λx), λ > 0, for the two-dimensional space, the approximation (2.4) holds with the
L∞ ∩ Ḣ1-norm (see Remarks 2.6 (iv) for n ≥ 3).

Proof of Lemma 2.4. Let θ be a cut-off function used in the proof of Proposition 2.3. We set
θm(x) = θ(|x|/m) so that θm ≡ 1 in B0(m) and θm ≡ 0 in B0(2m)

c
, and take m ≥ 1 sufficiently

large so that Ωc ⊂ B0(m). For v0 ∈ L∞σ ∩ Ḣ1
0 , we set
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v0,m = v0θm − um,

um = BDm[gm] for gm = v0 · ∇θm,

by the Bogovskiı̆ operator BDm on Dm = {x ∈ Ω | m < |x| < 2m}. We identify um and its
zero extension to R2\Dm. We observe that v0,m is with compact support in Ω and satisfies
div v0,m = 0 in Ω, v0,m = 0 on ∂Ω. Since v0,m → v0 a.e. in Ω as m→ ∞, it suffices to show

||v0,m||L∞∩Ḣ1 ≤ C||v0||L∞∩Ḣ1 .

We observe that

||v0θm||L∞ ≤ ||v0||L∞ ,
||∇(v0θm)||L2 ≤ ||∇v0||L2 + ||v0||L∞ ||∇θm||L2 .

Since the Ḣ1-semi-norm is invariant for θm(x) = θ(|x|/m), i.e.,

||∇θm||L2(R2) = ||∇θ||L2(R2),

we have

||v0θm||L∞∩Ḣ1 ≤ C||v0||L∞∩Ḣ1 ,

with some constant C, independent of m ≥ 1. We shall show

||um||L∞(Ω) + ||∇um||L2(Ω) ≤ C||v0||L∞(Ω).(2.8)

The desired estimate for v0,m follows from (2.8). We estimate the cut-off function θm and
observe that

||gm||Lp(Dm) ≤
C1

m1− 2
p

||v0||L∞(Ω)

holds for p ∈ [1,∞]. We apply (2.7) to estimate

||∇um||Lp(Dm) ≤ C2||gm||Lp(Dm).(2.9)

Since the constant in (2.7) is invariant under the dilation, the constant C2 is independent of
m. We take p = 2 and obtain a uniform estimate for ∇um in L2. It remains to show the
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L∞-estimate for um. Since um vanishes on ∂Dm, we apply the Poincaré inequality [14] to
estimate

||um||Lp(Dm) ≤ mC3||∇um||Lp(Dm).

with the constant C3, independent of m. The above estimate is obtained by applying the
inequality in D1 and rescaling. We apply the Sobolev inequality [42, Lemma 3.1.4] for
p > 2 to estimate

||um||L∞(Dm) ≤ C4||um||
1− 2

p

Lp(Dm)||∇um||
2
p

Lp(Dm)

≤ C4(mC3)1− 2
p ||∇um||Lp(Dm)

≤ C4C3
1− 2

p C2C1||v0||L∞(Ω).

Since the constants C1 − C4 are independent of m, we obtain the estimate (2.8). The proof
is now complete. □

Remarks 2.6. (i) When Ω is the whole space, the heat semigroup forms a bounded analytic
semigroup on L∞ ∩ Ẇ1,n, where Ẇ1,n denotes the homogeneous Ln-Sobolev space. We set

| f |Ẇ1,n = ||∇ f ||Ln ,

|| f ||L∞∩Ẇ1,n = || f ||L∞ + | f |Ẇ1,n .

The space L∞ ∩ Ẇ1,n is a Banach space equipped with the norm || · ||L∞∩Ẇ1,n . Since spatial
derivatives commute with the semigroup, we estimate

|et∆v0|Ẇ1,n = ||et∆∇v0||Ln ≤ C||∇v0||Ln ,

|∆et∆v0|Ẇ1,n = ||∆et∆∇v0||Ln ≤ C′

t
||∇v0||Ln , t > 0.

Since the heat semigroup is a C0-semigroup on Ln, it is strongly continuous for v0 ∈ L∞ ∩
Ẇ1,n, i.e., ∇et∆v0 → ∇v0 in Ln as t → 0.
(ii) When Ω is a half space, the Stokes semigroup is a bounded analytic semigroup on
L∞σ ∩Ẇ1,n

0 , where Ẇ1,n
0 denotes the space of all functions in Ẇ1,n, vanishing on the boundary.

We estimate the Ẇ1,n-semi-norm by the estimates of the fractional power

||∇u||Ln ≤ C1||A
1
2 u||Ln ,(2.10)

||A 1
2 u||Ln ≤ C2||∇u||Ln ,(2.11)

for u ∈ D(A1/2) and D(A1/2) = W1,n
0,σ, where W1,n

0,σ denotes the W1,n-closure of C∞c,σ. The
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estimate (2.10) is proved in [9, Theorem 3.6 (ii)] for general Lp-norms. The estimate (2.11)
follows from a duality; see Appendix B. Applying (2.10) and (2.11) together with the ana-
lyticity of S (t) on Ln implies that

|S (t)v0|Ẇ1,n = ||∇S (t)v0||Ln ≤ C1||A
1
2 S (t)v0||Ln

≤ C′1||A
1
2 v0||Ln

≤ C||∇v0||Ln ,

|AS (t)v0|Ẇ1,n ≤
C′

t
||∇v0||Ln , t > 0,

for v0 ∈ D(A1/2). Since we are able to approximate v0 ∈ L∞σ ∩ Ẇ1,n
0 by elements of D(A1/2)

by a pointwise convergence as remarked below in (iv), we have

|S (t)v0|Ẇ1,n + t|AS (t)v0|Ẇ1,n ≤ C||v0||L∞∩Ẇ1,n , t > 0

for v0 ∈ L∞σ ∩ Ẇ1,n
0 . Since the Stokes semigroup is a bounded analytic semigroup on L∞σ

[13], [54], it forms a bounded analytic semigroup on L∞σ ∩ Ẇ1,n
0 for n ≥ 2.

(iii) When Ω is bounded, S (t) is a bounded analytic semigroup on L∞σ [4]. Moreover, the
estimates (2.10) and (2.11) hold (see Remark B.2). Thus S (t) is regarded as a bounded
analytic semigroup on L∞σ ∩ Ẇ1,n

0 . When Ω is an exterior domain, the estimate (2.10) does
not hold for n ≥ 3 [10, Theorem 1.1 (ii)] (see also [29, Theorem B], [11, Theorem 4.4].)
When n = 2, L2-theory is available and we obtained (2.1).
(iv) The assertion of Lemma 2.4 is extendable for higher dimensional cases for n ≥ 3. Since
the Ẇ1,n-semi-norm is invariant under the scaling fλ(x) = f (λx) for λ > 0, x ∈ Rn, by the
same way as we proved Lemma 2.4, for v0 ∈ L∞σ ∩ Ẇ1,n

0 we are able to construct a sequence
{v0,m} ⊂ L∞σ ∩W1,n

0 with compact support in Ω satisfying

(2.12)
||v0,m||L∞∩Ẇ1,n ≤ C||v0||L∞∩Ẇ1,n ,

v0,m → v0 a.e. in Ω,

with some constant C. By a similar cut-off function argument, we are able to construct a
sequence satisfying (2.12) also for a half space Ω = Rn

+, n ≥ 2.

3. Local solvability of the perturbed system

In this section, we prove local solvability of the perturbed system (1.5) for non-decaying
initial data in L∞ ∩ Ḣ1 (Theorem 3.1). The local solvability on L∞ ∩ Ḣ1 is used in the next
section in order to construct global solutions for w0 = 0. We apply regularizing estimates of
the Stokes semigroup proved in the previous section and establish the solvability on L∞∩ Ḣ1

by an iterative argument.

We consider the perturbed system of the form
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(3.1)

∂tw − ∆w + w · ∇w + v · ∇w + ∇π = −w · ∇v − v · ∇v in Ω × (0,T0),
div w = 0 in Ω × (0,T0),

w = 0 on ∂Ω × (0,T0),
w = w0 on Ω × {t = 0}.

We assume that the perturbation v is a solenoidal vector field in Ω, vanishing on the bound-
ary, i.e., div v = 0 in Ω and v = 0 on ∂Ω, and satisfies

v, t1/2∇v ∈ Cw([0,T0]; L∞), ∇v ∈ Cw([0,T0]; L2).(3.2)

Our goal is to prove local existence of mild solutions of the form

w(t) = S (t)w0 −
∫ t

0
S (t − s)P(w̃ · ∇w̃)ds, w̃ = w + v.

Theorem 3.1. Let v be a solenoidal vector field in Ω satisfying (3.2). Set

N = sup
0<t≤T0

{
||v||L∞∩Ḣ1(t) + t1/2||∇v||L∞(t)

}
.

There exists a constant ε such that for w0 ∈ L∞σ ∩ Ḣ1
0 , there exists T ≥ εK−2 for K =

||w0||L∞∩Ḣ1 + N, and a unique mild solution w ∈ Cw([0,T ]; L∞) of (3.1) satisfying t1/2∇w ∈
Cw([0,T ]; L∞) and ∇w ∈ Cw([0,T ]; L2).

In order to prove Theorem 3.1, we recall L∞-estimates of the Stokes semigroup.

Proposition 3.2. Let T0 > 0 and α ∈ (0, 1). There exist constants C1 − C4 such that the
estimates

||S (t)w0||L∞∩Ḣ1 + t
1
2 ||∇S (t)w0||L∞ ≤ C1||w0||L∞∩Ḣ1 ,(3.3)

t
|k|
2 ||∂k

xS (t)P f ||L2 ≤ C2|| f ||L2 ,(3.4)

t
|k|+1−α

2 ||∂k
xS (t)Pdiv F||L∞ ≤ C3||F||1−αL∞ ||F||αW1,∞ ,(3.5)

t
1
2 ||S (t)P f ||L∞∩Ḣ1 ≤ C4|| f ||L2 ,(3.6)

hold for w0 ∈ L∞σ ∩ Ḣ1
0 , f ∈ L2, F ∈ W1,∞

0 satisfying div F ∈ L2, |k| ≤ 2, and 0 < t ≤ T0.

Proof. The estimate (3.3) follows from Corollary 2.2. Since the Stokes semigroup S (t) is an
analytic semigroup on L2

σ, the estimate (3.4) holds [52, IV.1.5]. The estimate (3.5) is proved
in [2, Theorem 1.1] for F ∈ C∞c . It is proved in [3, Theorem 2.2] that the composition
operator S (t)Pdiv is uniquely extendable to a bounded operator S (t)Pdiv from W1,∞

0 to L∞σ
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together with (3.5). Since S (t)PdivF agrees with S (t)PdivF for F ∈ W1,∞
0 satisfying div F ∈

L2, we have (3.5).
It remains to show (3.6). Since t1/2||∇S (t)P f ||2 ≤ C|| f ||2 by (3.4), it suffices to show that

||S (t)P f ||L∞ ≤
C

t
1
2

|| f ||L2 .(3.7)

We estimate v = S (t)P f by interpolation. By the Sobolev inequality [42, Lemma 3.1.4], we
have

||v||L∞ ≤ C||v||
1
2
L4 ||∇v||

1
2
L4 .

We estimate the L4-norm by the H1-norm. We invoke the Sobolev inequality

||φ||L4 ≤ C||φ||
1
2
L2 ||φ||

1
2
H1(3.8)

for φ ∈ H1(Ω). The estimate (3.8) is known for Ω = R2 (e.g., [38, Chapter 1, Lemma 2])
and extendable for the exterior domain Ω ⊂ R2 by a suitable extension of φ ∈ H1(Ω) to
R2\Ω, . We apply (3.8) for φ = v and ∇v. By L2-estimates of the Stokes semigroup (3.4) for
|k| ≤ 2, we obtain (3.7). The proof is complete. □

Proof of Theorem 3.1. We set a sequence {w j} by

(3.9)
w j+1 = S (t)w0 −

∫ t

0
S (t − s)Pw̃ j · ∇w̃ jds, w̃ j = w j + v,

w1 = S (t)w0,

and the constants

K j = sup
0<t≤T

{
||w j||L∞∩Ḣ1(t) + t1/2||∇w j||L∞(t)

}
,

K̃ j = sup
0<t≤T

{
||w̃ j||L∞∩Ḣ1(t) + t1/2||∇w̃ j||L∞(t)

}
.

We may assume that T ≤ 1. We first show that

K j ≤ CK for j = 1, 2, · · · ,(3.10)

for T ≤ ε0K−2 with some constant ε0 > 0 and K = ||w0||L∞∩Ḣ1 + N. We apply (3.3) to
estimate

||w j+1||L∞∩Ḣ1 ≤ C1||w0||L∞∩Ḣ1 +

∫ t

0
||S (t − s)Pw̃ j · ∇w̃ j||L∞∩Ḣ1ds.
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We set F̃ j = w̃ jw̃ j. Since div F̃ j = w̃ j · ∇w̃ j, it follows that

||F̃ j||∞ ≤ K̃2
j ,

||∇F̃ j||∞ ≤
2

s1/2 K̃2
j ,

||div F̃ j||2 ≤ K̃2
j .

Since s ≤ 1 for t ≤ T , we observe that

||F̃ j||1−α∞ ||F̃ j||α1,∞ ≤ K̃2(1−α)
j

(
K̃2

j +
2

s
1
2

K̃2
j

)α
=

(
1 +

2

s
1
2

)α
K̃2

j

≤ 3α

s
α
2

K̃2
j ,

where ||F̃ j||1,∞ = ||F̃ j||W1,∞ . We apply (3.5) and estimate∫ t

0
||S (t − s)Pdiv F̃ j||∞ds ≤

∫ t

0

C3

(t − s)
1−α

2

||F̃ j||1−α∞ ||F̃ j||α1,∞ds

≤ 3αC3K̃2
j

∫ t

0

ds

(t − s)
1−α

2 s
α
2

= 3αC3M1K̃2
j t

1
2 ,

where

Ml =

∫ 1

0

dη

(1 − η) l−α
2 η

α
2

for l = 1, 2.

By (3.4) we estimate∫ t

0
||∇S (t − s)Pdiv F̃ j||2ds ≤

∫ t

0

C2

(t − s)
1
2

||div F̃ j||2ds

≤ 2C2K̃2
j t

1
2 .

We obtain

||w j+1||L∞∩Ḣ1 ≤ C1||w0||L∞∩Ḣ1 + (3αC3M1 + 2C2)K̃2
j t

1
2 .

Similarly, applying (3.3) and (3.5) implies
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t
1
2 ||∇w j+1||L∞ ≤ C1||w0||L∞∩Ḣ1 + 3αC3M2K̃2

j t
1
2 .

By combining the above estimates and

K̃ j ≤ K j + N
≤ K j + K,

we obtain

K j+1 ≤ C5K +C6(K j + K)2T
1
2

with the constants

C5 = 2C1,

C6 = 2αC3(M1 + M2) + 2C2.

We take T ≤ ε0K−2 for

ε0 =

(
C5

C6(2C5 + 1)2

)2

,

and obtain (3.10) for C = 2C5. Since S (t)w0 is weakly-star continuous on L∞ at time zero
by Corollary 2.2, the sequence {w j} is uniformly bounded in Cw([0,T ]; L∞). Moreover, the
sequence w j satisfies t1/2∇w j ∈ Cw([0,T ]; L∞) and ∇w j ∈ Cw([0,T ]; L2).

We show that {w j} converges to a limit w ∈ Cw([0,T ]; L∞). We set

ρ j = w j − w j−1,

L j = sup
0<t≤T

{
||ρ j||L∞∩Ḣ1(t) + t

1
2 ||∇ρ j||L∞(t)

}
.

Since

w̃ j · ∇w̃ j − w̃ j−1 · ∇w̃ j−1 = w̃ j · ∇(w̃ j − w̃ j−1) + w̃ j · ∇w̃ j−1 − (w̃ j−1 − w̃ j) · ∇w̃ j−1 − w̃ j · ∇w̃ j−1

= w̃ j · ∇ρ j + ρ j · ∇w̃ j−1,

we estimate

ρ j+1 = −
∫ t

0
S (t − s)P(w̃ j · ∇ρ j + ρ j · ∇w̃ j−1)ds.
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We set F1 = w̃ jρ j. Since div F1 = w̃ j · ∇ρ j, we have

||F1||∞ ≤ K̃ jL j,

||∇F1||∞ ≤
2

s1/2 K̃ jL j,

||div F1||2 ≤ K̃ jL j.

Since s ≤ 1, it follows that

||F1||1−α∞ ||F1||α1,∞ ≤ (K̃ jL j)1−α
(
K̃ jL j +

2

s
1
2

K̃ jL j

)α
≤ 3α

s
α
2

K̃ jL j.

We apply (3.5) to estimate

∫ t

0
||S (t − s)Pdiv F1||∞ds ≤

∫ t

0

C3

(t − s)
1−α

2

||F1||1−α∞ ||F1||α1,∞ds

≤ 3αC3K̃ jL j

∫ t

0

ds

(t − s)
1−α

2 s
α
2

= 3αC3M1K̃ jL jt
1
2 .

Similarly, applying (3.5) and (3.4) yields

∫ t

0
||∇S (t − s)Pdiv F1||∞ds ≤ 3αC3M2K̃ jL j,∫ t

0
||∇S (t − s)Pdiv F1||2ds ≤ 2C2K̃ jL jt

1
2 .

By combining the above estimates, we have

∫ t

0
||S (t − s)Pdiv F1||L∞∩Ḣ1ds + t

1
2

∫ t

0
||∇S (t − s)Pdiv F1||L∞ds

≤ (3αC3(M1 + M2) + 2C2)K̃ jL jt
1
2 .

By a similar way, we set F2 = ρ jw̃ j−1 and estimate
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∫ t

0
||S (t − s)Pdiv F2||L∞∩Ḣ1ds + t

1
2

∫ t

0
||∇S (t − s)Pdiv F2||2ds

≤ (3αC3(M1 + M2) + 2C2)K̃ j−1L jt
1
2 .

By combining the above estimates for F1 and F2, we obtain

L j+1 ≤ C7(K̃ j + K̃ j−1)L jT
1
2

with the constant C7 = 3αC3(M1 +M2) + 2C2. Since the estimate (3.10) holds for C = 2C5,
it follows that

K̃ j ≤ K j + N
≤ 2C5K + N
≤ (2C5 + 1)K.

We take T ≤ ε1K−2 for

ε1 =

(
1

4C7(2C5 + 1)

)2

,

so that

L j+1 ≤
1
2

L j for j = 1, 2, · · · .

It follows that

L j+1 ≤
(1
2

) j
L1 → 0 as j→ ∞.

Thus, w j converges to a limit w ∈ Cw([0,T ]; L∞) uniformly in Ω × [0,T ] and the limit w
satisfies t1/2∇w ∈ Cw([0,T ]; L∞) and ∇w ∈ Cw([0,T ]; L2). By sending j → ∞ to (3.9), the
limit w satisfies the integral equation. It is not difficult to show the uniqueness by estimating
difference of two mild solutions. We proved the existence of mild solution for T > 0
satisfying T ≤ ε2K−2 for ε = min{ε0, ε1}. Thus the existence time is estimated from below
by T ≥ εK−2 for

ε =
ε2

2
.

The proof is now complete. □
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4. Global solutions of the perturbed system

The goal of this section is to construct global solutions of the perturbed system (3.1) for
w0 = 0 (Theorem 4.5). We first show that mild solutions on L∞∩ Ḣ1 satisfy the system (3.1)
in a suitable sense and a global energy estimate holds. In the subsequent section, we prove
that mild solutions are globally bounded on L∞ by using an Lp-blow-up estimate. We then
estimate a global H1-norm of mild solutions by using an integral form.

4.1. Energy estimates. We first show that the mild solution for w0 = 0 satisfies (3.1) on
L2.

Lemma 4.1. Assume that w0 = 0. Then, the mild solution w of (3.1) satisfies

(4.1)
w ∈ C([0,T ]; Lp), 2 ≤ p ≤ ∞,
∇w ∈ C([0,T ]; Lq), 2 ≤ q < ∞.

Moreover,

∂tw, ∇2w ∈ Ls(0,T ; L2), s ∈ (1,∞),(4.2)

and w satisfies (3.1) on L2 for a.e. t ∈ (0,T ) with the associated pressure π.

In order to investigate regularity properties of mild solutions, we prepare an Lp-estimate
of the Stokes semigroup.

Proposition 4.2. There exists a constant C such that

||∂k
xS (t)P f ||Lp ≤ C

t
|k|+1

2 −
1
p

||P f ||L2(4.3)

holds for f ∈ L2, 2 ≤ p ≤ ∞, |k| ≤ 1 and 0 < t ≤ T0.

Proof. It suffices to show the cases p = 2 and p = ∞. Then, the desired estimates follow
from interpolation. When k = 0, (4.3) holds for p = 2 and p = ∞ by (3.4) and (3.6). When
|k| = 1, (4.3) holds for p = 2 by (3.4). By the L∞-estimate of the Stokes semigroup [5], we
have

||∇S (t)P f ||∞ =
∥∥∥∥∇S

( t
2

)
S
( t
2

)
P f

∥∥∥∥∞
≤ C

t
1
2

∥∥∥∥S
( t
2

)
P f

∥∥∥∥∞.
Since (4.3) holds for |k| = 0 and p = ∞, we obtain
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||∇S (t)P f ||∞ ≤
C
t
||P f ||2.

We proved (4.3) for |k| = 1 and p = ∞. □

Proof of Lemma 4.1. We estimate the mild solution

w =
∫ t

0
S (t − s)P f ds

for f = −w̃ ·∇w̃ and w̃ = w+v. Since w̃ satisfies w̃ ∈ Cw([0,T ]; L∞) and ∇w̃ ∈ Cw([0,T ]; L2)
by Theorem 3.1 and (3.2), we observe that

f ∈ L∞(0,T ; L2).

If follows from (4.3) that

||w||Lp ≤
∫ t

0
||S (t − s)P f ||Lpds

≤ C
∫ t

0

ds

(t − s)
1
2−

1
p

||P f ||L∞(0,T ;L2)

≤ Ct
1
2+

1
p || f ||L∞(0,T ;L2) → 0 as t → 0.

Thus, w ∈ C([0,T ]; Lp) for p ∈ [2,∞]. By a similar way, applying (4.3) for |k| = 1 implies
that ∇w ∈ C([0,T ]; Lq) for q ∈ [2,∞).

It remains to show (4.2). By the maximal regularity estimate of the Stokes operator A
[12, Theorem 4.4] ([52, IV. 1.6.2 Lemma]), we estimate

||∂tw||Ls(0,T ;L2) + ||Aw||Ls(0,T ;L2) ≤ C|| f ||Ls(0,T ;L2) for s ∈ (1,∞).

By the resolvent estimate, we have

||∇2w||2 ≤ C′(||w||2 + ||Aw||2).

Thus (4.2) holds and w satisfies (3.1) on L2 with the associated pressure π. □

Since the mild solution w satisfies (3.1) on L2, by integration by parts we obtain the global
energy estimate.
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Lemma 4.3. The estimate∫
Ω

|w|2dx +
∫ t

0

∫
Ω

|∇w|2dxds ≤ 1
2

(e2N2t − 1) 0 ≤ t ≤ T0(4.4)

holds for mild solutions of (3.1) for w0 = 0 and T0 > 0 with the constant N in Theorem 3.1.
In particular, w ∈ L4(0,T0; L4).

Proof. We multiply 2w by (3.1) and observe that

d
dt

∫
Ω

|w|2dx + 2
∫
Ω

|∇w|2dx = −2
∫
Ω

(w · ∇v) · wdx − 2
∫
Ω

(v · ∇v) · wdx.

Applying the Young’s inequality implies that∣∣∣∣∣∣2
∫
Ω

(w · ∇v) · wdx

∣∣∣∣∣∣ =
∣∣∣∣∣∣2

∫
Ω

(w · ∇w) · vdx

∣∣∣∣∣∣
≤ 2||w||2||v||∞||∇w||2
≤ ||w||22||v||2∞ + ||∇w||22,∣∣∣∣∣∣2

∫
Ω

(v · ∇v) · wdx

∣∣∣∣∣∣ ≤ ||v||2∞||w||22 + ||∇v||22.

It follows that

d
dt

∫
Ω

|w|2dx +
∫
Ω

|∇w|2dx ≤ 2N2
∫
Ω

|w|2dx + N2.

We set

φ(t) =
∫
Ω

|w|2dx,

and observe that φ satisfies φ(0) = 0 and

d
dt

(φe−2N2t) = (φ̇ − 2N2φ)e−2N2t

≤ N2e−2N2t.

Integrating the both sides between (0, t) yields that

φ(t) ≤ 1
2

(e2N2t − 1).

It follows that
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∫
Ω

|w|2dx +
∫ t

0

∫
Ω

|∇w|2dxds ≤ 2N2
∫ t

0
φ(s)ds + N2t

≤ N2
∫ t

0
(e2N2 s − 1)ds + N2t

=
1
2

(e2N2t − 1).

We proved (4.4). By the Sobolev inequality [38, Chapter1, Lemma 1], we estimate

||w||4 ≤ Cs||w||
1
2
2 ||∇w||

1
2
2 .

By the global energy estimate (4.4), w ∈ L4(0,T0; L4) follows. □

4.2. L∞-bounds. The global bound in L4(0,T0; L4) implies:

Proposition 4.4. The mild solution w of (3.1) for w0 = 0 is globally bounded in Ω× [0,T0].

Proof. We observe that the mild solution w is locally bounded in L4 by (4.1). We shall show
the global bound

w ∈ C([0,T0]; L4).(4.5)

The global bound (4.5) implies that w ∈ C([0,T0]; L∞). In fact, by the local solvability of
the perturbed system on L4 (Lemma A.1), for each t0 ∈ (0,T0), we have

(t − t0)
1
2∇w ∈ C([t0, t0 + T1]; L4),(4.6)

for T1 ≥ ε4K−4
4 with the constants

K4 = ||w||L4(t0) + N
1
2 (t0),

N(t0) = sup
t0<t≤T0

{
||v||L∞∩Ḣ1(t) + (t − t0)

1
2 ||∇v||L∞(t)

}
.

The constant N(t0) is bounded for t0 ∈ (0,T0] by (3.2). The global bound (4.5) implies that
K4 is bounded for all t0 ∈ (0,T0]. Thus the constant T1 is uniformly estimated from below
for t0 ∈ (0,T0]. Since ∇w is bounded in L4 near t = 0 by (4.1), it follows from (4.6) that

∇w ∈ C([0,T0]; L4).

By the Sobolev inequality [42, Lemma 3.1.4], we estimate
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||w||∞ ≤ Cs||w||
1
2
4 ||∇w||

1
2
4 .

Thus, w ∈ C([0,T0]; L∞) follows.

We prove (4.5). Suppose that there exists some T∗ ∈ (0,T0] such that w blows up at t = T∗
on L4. Then, applying Corollary A.2 implies that

||w||4(t) + N
1
2 (t) ≥

ε′4

(T∗ − t)
1
4

for t < T∗,

with some constant ε′4. Since N(t) is bounded for all t ∈ [0,T0] by (3.2), we have

∫ T∗

0
||w||44dt = ∞.

This contradicts w ∈ L4(0,T0; L4) by Lemma 4.3. We reached a contradiction. The proof is
complete. □

It remains to show that ∇w is globally bounded in L2.

Theorem 4.5. The mild solution of (3.1) for w0 = 0 is globally bounded in L∞ ∩ H1, i.e.,
w ∈ C([0,T0]; L∞ ∩ H1).

Proof. We set

J(T ) = sup
0<t≤T

||∇w||2(t).

The constant J = J(T ) is finite up to some T ∈ (0,T0] by Theorem 3.1. We show that

J(T0) < ∞.

Since w is globally bounded on L2 ∩ L∞ by Lemma 4.3 and Proposition 4.4, we have

R(T0) = sup
0<t≤T0

{||w||2 + ||w||∞} < ∞.

We separate ∇w into two terms and estimate
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||∇w||2 ≤
∫ t

0
||∇S (t − s)Pw̃ · ∇w̃||2ds

≤
∫ t

0
||∇S (t − s)Pw̃ · ∇w||2ds +

∫ t

0
||∇S (t − s)Pw̃ · ∇v||2ds

=: I + II.

We estimate I. By (3.4) and a duality, we have

||S (t)Pdiv F||2 ≤
C2

t
1
2

||F||2 for F ∈ H1, t ≤ T0.(4.7)

It follows from (3.4) and (4.7) that

||∇S (t − s)Pw̃ · ∇w||2 =
∥∥∥∥∥∥∇S

(
t − s

2

)
S
(
t − s

2

)
Pdiv (w̃w)

∥∥∥∥∥∥
2

≤
√

2C2

(t − s)
1
2

∥∥∥∥∥∥S
(
t − s

2

)
Pdiv (w̃w)

∥∥∥∥∥∥
2

≤
2C2

2

t − s
||w̃||∞||w||2.

Since the right-hand side is not integrable near s = t, we use the constant J = J(T ) and
estimate I. Applying (3.4) implies that

||∇S (t − s)Pw̃ · ∇w||2 ≤
C2

(t − s)
1
2

||w̃||∞||∇w||2.

By combining the above two estimates, we have

||∇S (t − s)Pw̃ · ∇w||2 = ||∇S (t − s)Pw̃ · ∇w||
1
2
2 ||∇S (t − s)Pw̃ · ∇w||

1
2
2

≤
(

2C2
2

t − s
||w̃||∞||w||2

) 1
2
(

C2

(t − s)
1
2

||w̃||∞||∇w||2
) 1

2

≤
√

2C
3
2
2

(t − s)
3
4

||w̃||∞||w||
1
2
2 ||∇w||

1
2
2 .

We estimate



26

I ≤
∫ t

0

√
2C

3
2
2

(t − s)
3
4

||w̃||∞||w||
1
2
2 ||∇w||

1
2
2 ds

≤
√

2C
3
2
2 (R + N)R

1
2 J

1
2

∫ t

0

ds

(t − s)
3
4

= 4
√

2C
3
2
2 (R + N)R

1
2 J

1
2 T

1
4 ,

with the constant N in Theorem 3.1. Here, the time variables are suppressed for J = J(T )
and R = R(T0). We estimate II by (3.4). It follows that

II ≤
∫ t

0

C2

(t − s)
1
2

||w̃ · ∇v||2ds

≤ 2C2(R + N)NT
1
2 .

By combining the estimates for I and II, we obtain

J ≤ C(R + N)(R
1
2 J

1
2 T

1
4

0 + NT
1
2

0 ),

with some constant C. Applying Young’s inequality implies that

J ≤ C2(R + N)2RT
1
2

0 + 2C(R + N)NT
1
2

0 .

Thus J = J(T ) is bounded for all T ≤ T0. We proved that ∇w ∈ C([0,T0]; L2). The proof is
now complete. □

5. Mild solutions on L∞ ∩ Ḣ1

Now, we construct global solutions of (1.1) for u0 ∈ L∞σ ∩ Ḣ1
0 . It suffices to show a global

bound for local solutions on L∞ ∩ Ḣ1

Proof of Theorem 1.1. We apply Theorem 3.1 for v = 0 and observe that for u0 ∈ L∞σ ∩ Ḣ1
0 ,

there exists

T ≥ ε

||u0||2L∞∩Ḣ1

and a unique mild solution u ∈ Cw([0,T ]; L∞) of (1.1) satisfying t1/2∇u ∈ Cw([0,T ]; L∞)
and ∇u ∈ Cw([0,T ]; L2). We set
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u(t) = S (t)u0 −
∫ t

0
S (t − s)P(u · ∇u)(s)ds

=: u1 + u2.

We observe that v = u1 satisfies the condition (3.2) by Corollary 2.2 and u2 is a mild solution
of (3.1) for w0 = 0, i.e.,

u2(t) = −
∫ t

0
S (t − s)P(u · ∇u)(s)ds, u = u2 + v.

Since u2 is globally bounded in L∞ ∩ H1 by Theorem 4.5, the local solution u is globally
bounded L∞ ∩ Ḣ1 and extendable for all t > 0. The proof is now complete. □

Remarks 5.1. (i) (Regularity) The mild solutions constructed in Theorem 1.1 are Hölder
continuous up to first derivatives, i.e., ∇u ∈ Cµ,µ/2(Ω × [δ,T ]) for δ,T > 0 and µ ∈ (0, 1).
Since the regularizing estimates

sup
0<t≤T1

{∥∥∥u
∥∥∥

L∞(t) + t
1
2
∥∥∥∇u

∥∥∥
L∞(t) + t

1+β
2
[
∇u

](β)

Ω
(t)

}
≤ C1

∥∥∥u0
∥∥∥

L∞ ,

sup
x∈Ω

{[
u
](γ)

[δ,T1]
(x) +

[
∇u

]( γ2 )

[δ,T1]
(x)

}
≤ C2

∥∥∥u0
∥∥∥

L∞ ,

hold for β, γ ∈ (0, 1), δ ∈ (0,T1) and T1 ≥ ε/||u0||2∞ with some constants ε, C1 and C2 [3],
applying the above estimates for u ∈ Cw([0,∞); L∞) and each t > 0 implies the Hölder
continuity of mild solutions. Here, [·](β)

Ω
denotes the β-th Hölder semi-norm in Ω. The mild

solution satisfies (1.1) in the sense that∫ ∞

0

∫
Ω

(
u · (∂tφ + ∆φ) + uu : ∇φ)dxdt = −

∫
Ω

u0(x) · φ(x, 0)dx

for all φ ∈ C∞c,σ(Ω × [0,∞)). We observe that the second derivatives are in L2
loc(Ω) for

a.e. t ∈ (0,∞). We set u = u1 + u2 as in the proof of Theorem 1.1 and invoke that u1 ∈
C2+µ,1+µ/2(Ω × [δ,T ]) satisfies the Stokes equations in a classical sense [5]. Since u ∈
Cw([0,∞); L∞) satisfies ∇u ∈ Cw([0,∞); L2), the maximal regularity estimate [12] ([52])
implies that ∂tu2,∇2u2 ∈ Ls(0,T ; L2) for s ∈ (1,∞) and each T > 0. Thus u2 satisfies the
inhomogeneous Stokes equations

∂tu2 − ∆u2 + ∇p2 = −u · ∇u on L2

for a.e. t ∈ (0,∞) with the associated pressure p2. Thus ∂tu, ∇2u ∈ L2
loc(Ω) for a.e. t ∈

(0,∞).
(ii) (Associated pressure) We multiply the projection Q = I − P : L2 −→ L2 by (1.1) and
observe that the associated pressure of a mild solution u is expressed by
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∇p = Q∆u − Qu · ∇u.

Since the mild solution u ∈ Cw([0,∞); L∞) satisfies ∇u ∈ Cw([0,∞); L2), the second term
is defined as an element of L2 for each t > 0. Although the first term may not be defined
for mild solutions on L∞ ∩ Ḣ1, we are able to define the associated pressure by using the
solution operator K : L∞tan(∂Ω) −→ L∞d (Ω) of the homogeneous Neumann problem

∆q = 0 in Ω
∂q
∂n
= div∂Ω W on ∂Ω.

Here, L∞tan(∂Ω) denotes the space of all bounded tangential vector fields on ∂Ω and L∞d (Ω)
denotes the space of all locally integrable functions f in Ω such that d f ∈ L∞(Ω) for d(x) =
infy∈∂Ω |x− y| and x ∈ Ω. The symbol div∂Ω denotes the surface divergence on ∂Ω. Note that
∆u · n = div∂Ω W for W = ωn⊥ and ω = ∂1u2 − ∂2u1, where n = (n1, n2) denotes the unit
outward normal vector field on ∂Ω and n⊥ = (n2,−n1). The associated pressure of (1.1) is
then expressed by

∇p = KW − Qu · ∇u

for the mild solution u on L∞ ∩ Ḣ1. See also [3, Remarks 1.2 (v)].

6. Asymptotic behavior at the space infinity

We prove Theorem 1.3. We show that the Stokes flow converges to a constant as |x| → ∞
for asymptotically constant initial data u0 ∈ BUCσ ∩ Ḣ1

0 . We subtract initial data from the
Stokes flow and estimate a spatial decay of the difference by using a fractional power of
the Stokes operator on L2. After the proof of Theorem 1.3, we remark on a half space case
(Remarks 6.4).

Lemma 6.1. Let u0 ∈ BUCσ ∩ Ḣ1
0 satisfy

lim
R→∞

sup
|x|≥R
|u(x) − u∞| = 0

for some constant u∞ ∈ R2. Then,

lim
R→∞

sup
|x|≥R
|S (t)u0 − u∞| = 0 for each t ≥ 0.



29

We observe that S (t)u0 − u0 decays as |x| → ∞.

Proposition 6.2. The estimate

||S (t)u0 − u0||L2 ≤ Ct
1
2 ||u0||L∞∩Ḣ1(6.1)

holds for u0 ∈ L∞σ ∩ Ḣ1
0 and t > 0 with some constant C. If in addition that u0 ∈ BUCσ, then

S (t)u0 − u0 ∈ BUC ∩ L2 for each t ≥ 0.

Proof. We first show (6.1) for u0 ∈ L∞σ ∩ H1
0 with compact support in Ω. By the analyticity

of S (t) and an estimate of a fractional power on L2 [52, III. 2.2.1 Lemma], we have

||S (t)u0 − u0||L2 ≤
∫ t

0
||AS (s)u0||L2ds

≤
∫ t

0
||A 1

2 S (s)A
1
2 u0||L2ds

≤
∫ t

0

1

s
1
2

||A 1
2 u0||L2ds = 2t

1
2 ||∇u0||L2 for t > 0.

Thus (6.1) holds. For general u0 ∈ L∞σ ∩ Ḣ1
0 , we take a sequence {u0,m} ⊂ L∞σ ∩ Ḣ1

0 with
compact support in Ω satisfying (2.4) by Lemma 2.4 and obtain (6.1) by approximation. □

Proposition 6.2 implies the pointwise convergence S (t)u0 − u0 → 0 as |x| → ∞. We
prepare the following Proposition 6.3 and then give a proof for Lemma 6.1.

Proposition 6.3. Assume that f ∈ BUC ∩ L2(Ω). Then,

lim
R→∞

sup
|x|≥R
| f (x)| = 0.

Proof. Suppose on the contrary that

lim
R→∞

sup
|x|≥R
| f (x)| = δ > 0.

Then, there exists a sequence {Rm} such that

sup
|x|≥Rm

| f (x)| ≥ δ
2
,

and Rm → ∞ as m→ ∞. We then take xm ∈ Ω such that |xm| ≥ Rm and
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| f (xm)| ≥ 1
2

sup
|x|≥Rm

| f (x)|

≥ δ
4
.

Since f is uniformly continuous in Ω, for arbitrary ε > 0 there exists η > 0 such that

| f (x) − f (y)| ≤ ε for x, y ∈ Ω satisfying |x − y| ≤ η.

We take ε = δ/8 and estimate

| f (y)| ≥
∣∣∣| f (y) − f (xm)| − | f (xm)|

∣∣∣
≥ δ

8
for y ∈ Bxm(η).

The constant η depends on δ and is independent of m ≥ 1. By choosing a subsequence if
necessary, we may assume that Bxm(η) ∩ Bxl(η) , ∅ for m , l. It follows that

∞ >
∫
Ω

| f |2dx ≥
N∑

m=1

∫
Bxm (η)

| f |2dx

≥
(
δ

8

)2

|B0(η)|N → ∞ as N → ∞.

We reached a contradiction. The proof is complete. □

Proof of Lemma 6.1. For u0 ∈ BUCσ ∩ Ḣ1
0 satisfying u0 → u∞ as |x| → ∞, we observe that

S (t)u0 − u0 ∈ BUC ∩ L2 by Proposition 6.2. Applying Proposition 6.3 implies that

lim
R→∞

sup
|x|≥R
|S (t)u0 − u0| = 0 for each t ≥ 0.

It follows that

sup
|x|≥R
|S (t)u0 − u∞| ≤ sup

|x|≥R
|S (t)u0 − u0| + sup

|x|≥R
|u0 − u∞|

→ 0 as R→ ∞.

□

We now complete:
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Proof of Theorem 1.3. We set

u(t) = S (t)u0 −
∫ t

0
S (t − s)P(u · ∇u)(s)ds

=: u1 + u2 for t ≥ 0.

It suffices to show that

u2(·, t) ∈ BUC ∩ L2(Ω) for each t ≥ 0.(6.2)

In fact, the condition (6.2) implies that

lim
R→∞

sup
|x|≥R
|u2(x, t)| = 0,

by Proposition 6.3. It follows from Lemma 6.1 that

sup
|x|≥R
|u(x, t) − u∞| ≤ sup

|x|≥R
|u1(x, t) − u∞| + sup

|x|≥R
|u2(x, t)|

→ 0 as R→ ∞.

Thus the assertion of Theorem 1.3 holds. It remains to show (6.2). We set f = −u · ∇u and
observe that

f ∈ L∞(0,T0; L2) for T0 > 0,

by u ∈ C([0,T0]; BUC) and ∇u ∈ Cw([0,T0]; L2). By the same way as the proof of Lemma
4.2, applying (4.3) implies that

||u2||Lp ≤ Ct
1
2+

1
p || f ||L∞(0,T0;L2)

for 2 ≤ p ≤ ∞. Moreover, we have ∇u2 ∈ C([0,T0]; Lq) for 2 ≤ q < ∞. Thus u2 ∈ BUC∩L2

for each t ≥ 0. We proved (6.2). The proof is now complete. □

Remarks 6.4. (A half space case) (i) The statement of Theorem 1.1 is valid also for a half
space. Since the Stokes semigroup is a bounded analytic semigroup on L∞σ ∩ Ḣ1

0 as in Re-
marks 2.6 (ii), the proof of Theorem 1.1 is valid also for a half space without modifications.
(ii) The space Ḣ1

0(R2
+) consists of decaying functions as |x| → ∞ in the sense that

lim
r→∞

∫ π

0
|u(rer)|2dθ = 0.(6.3)
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See [32, Proposition 5.6]. For the reader’s convenience, we outline the proof given in [32].
We first observe that u/x2 belongs to L2(R2

+) by the Hardy’s inequality [45, 2.7.1]∥∥∥∥ u
x2

∥∥∥∥
L2(R2

+)
≤ 2||∇u||L2(R2

+)

for u ∈ Ḣ1
0(R2
+). We set Dr = (B0(2r)\B0(r)) ∩ R2

+ for r > 0. Since the L2-trace on
∂B0(1) ∩ R2

+ is estimated by the H1-norm in D1, by dilation we have

1

r
1
2

||u||L2(∂B0(r)∩R2
+) ≤ C

(1
r
||u||L2(Dr) + ||∇u||L2(Dr)

)
.

Since x ∈ Dr satisfies r < |x| < 2r and

1
r
≤ 2
|x| ≤

2
x2
,

we estimate

1
r
||u||L2(Dr) ≤ 2

∥∥∥∥ u
x2

∥∥∥∥
L2(Dr)

.

Hence we have

lim
r→∞

1

r
1
2

||u||L2(∂B0(r)∩R2
+) = 0.

Transforming this by the polar coordinate implies (6.3).

Appendix A. Local solvability of the perturbed system on Lp

In Appendix A, we prove local solvability of the perturbed system (3.1) on Lp (p > 2) and
the blow-up estimate used in Section 4. The proof is by an iterative argument and parallel
to that of Theorem 3.1.

Lemma A.1. Let v be a solenoidal vector field in Ω satisfying (3.2). For p ∈ (2,∞), there
exists a constant εp such that for w0 ∈ Lp

σ, there exists T ≥ εpK−2p/(p−2)
p for

(A.1)
Kp = ||w0||Lp + N1− 2

p ,

N = sup
0<t≤T0

{
||v||L∞∩Ḣ1(t) + t1/2||∇v||L∞(t)

}
,

and a unique mild solution w ∈ C([0,T ]; Lp) of (3.1) satisfying t1/2∇w ∈ C([0,T ]; Lp).
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Corollary A.2. Let w ∈ C([0,T∗); Lp) be a mild solution of (3.1) for w0 ∈ Lp
σ. Suppose that

w blows up at t = T∗ on Lp. Then,

||w||Lp(t) + N(t)1− 2
p ≥

ε′p

(T∗ − t)
1
2−

1
p

for t < T∗,(A.2)

where

N(t) = sup
t<s≤T0

{
||v||L∞∩Ḣ1(s) + (s − t)1/2||∇v||L∞(s)

}
,

and ε
′
p = ε

1/2−1/p
p .

Proof. We fix an arbitrary t0 ∈ (0,T∗). By Lemma A.1, there exists T1 ≥ εpK−2p/(p−2)
p for

Kp = ||w||p(t0) + N(t0)1−2/p and a unique mild solution w in [t0, t0 + T1]. Since w blows up
at t = T∗, the existence time T1 is smaller than T∗ − t0 and (A.2) holds. □

In order to prove Lemma A.1, we prepare Lp-estimates of the Stokes semigroup.

Proposition A.3. Let p ∈ [2,∞) and T0 > 0. There exist constants C1 and C2 such that the
estimates

t
|k|
2 ||∂k

xS (t)Pw0||p ≤ C1||w0||p,(A.3)

t
1
2−

1
p+
|k|
2 ||∂k

xS (t)P f ||p ≤ C2|| f ||2,(A.4)

hold for w0 ∈ Lp, f ∈ L2, |k| ≤ 1 and 0 < t ≤ T0.

Proof. The estimate (A.3) follows from the analyticity of the Stokes semigroup [53], [24]
and the boundedness of the Helmholtz projection on Lp [50]. It follows from (3.6) and (A.3)
that

||S (t)P f ||p ≤ ||S (t)P f ||σ∞||S (t)P f ||1−σ2

≤ C

t
σ
2
|| f ||2,

for σ = 1 − 2/p. By combining (A.3), we obtain (A.4) for |k| ≤ 1. □

Proof of Lemma A.1. We set the sequence {w j} by

w j+1 = S (t)w0 −
∫ t

0
S (t − s)P(w j · ∇w j + v · ∇w j + w j · ∇v + v · ∇v)ds,

w1 = S (t)w0,
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and the constants

K j = sup
0≤t≤T0

{
||w j||p(t) + t

1
2 ||∇w j||p(t)

}
, for p > 2.

By the Sobolev inequality [42, Lemma 3.1.4], we estimate

||w j||∞ ≤
C3

t
1
p

K j for 0 < t ≤ T.(A.5)

We may assume that T ≤ T0. We first show that

K j ≤ 2C1K0 for j = 1, 2, · · · ,(A.6)

and

(A.7)
T ≤ ε0K

− 2p
p−2

0 ,

K0 = ||w0||p + N1− 2
p ,

with some constant ε0. We apply (A.3) and (A.5) to estimate

||S (t − s)P(w j · ∇w j)||p ≤ C1||w j · ∇w j||p

≤ C1C3

s
1
p+

1
2

K2
j ,

||S (t − s)P(v · ∇w j)||p ≤ C1||v · ∇w j||p

≤ C1

s
1
2

NK j.

It follows from (A.4) and (A.5) that

||S (t − s)P(w j · ∇v)||p ≤
C2

(t − s)
1
2−

1
p

||w j · ∇v||2

≤ C2C3

(t − s)
1
2−

1
p s

1
p

K jN,

||S (t − s)P(v · ∇v)||p ≤
C2

(t − s)
1
2−

1
p

N2.

By integrating the above estimates in (0, t), we obtain

||w j+1||p ≤ ||S (t)w0||p +C(K2
j T

1
2−

1
p + NK jT

1
2 + N2T

1
2+

1
p ).
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By a similar way, we estimate

t
1
2 ||∇w j+1||p ≤ t

1
2 ||∇S (t)w0||p +C′(K2

j T
1
2−

1
p + NK jT

1
2 + N2T

1
2+

1
p ).

It follows from (A.3) and (A.7) that

K j+1 ≤ C1K0 +C4(K2
j T

1
2−

1
p + K

p
p−2

0 K jT
1
2 + K

2p
p−2

0 T
1
2+

1
p ),

with some constant C4. We take a constant ε0 > 0 and T > 0 satisfying (A.7). It follows
that

K j+1 ≤ C1K0 +C4
(
K2

j K−1
0 (K0T

1
2−

1
p ) + K j(K

p
p−2

0 T
1
2 ) + K0(K

p+2
p−2

0 T
1
2+

1
p )
)

≤ C1K0 +C4(K2
j K−1

0 ε
1
2−

1
p

0 + K jε
1
2
0 + K0ε

1
2+

1
p

0 ).

By a fundamental calculation, we obtain (A.6) with some constant ε0 satisfying

C4(4C2
1ε0

1
2−

1
p + 2C1ε0

1
2 + ε0

1
2+

1
p ) ≤ C1.

Since S (t)w0 is continuous on Lp and t1/2∇S (t)w0 vanishes at time zero, w j ∈ C([0,T ]; Lp
σ)

satisfies t1/2∇w j ∈ C([0,T ]; Lp) and t1/2||∇w j||p → 0 as t → 0.

We show that the sequence {w j} converges to a limit w ∈ C([0,T ]; Lp
σ). We set

ρ j = w j − w j−1,

L j = sup
0≤t≤T

{
||ρ j||p(t) + t

1
2 ||∇ρ j||p(t)

}
.

By the Sobolev inequality, we have

||ρ j||∞ ≤
C3

t
1
p

L j for 0 < t ≤ T.(A.8)

By a similar way as the proof of Theorem 3.1, we estimate

ρ j+1 = −
∫ t

0
S (t − s)P(w̃ j · ∇ρ j + ρ j · ∇w̃ j−1)ds

= −
∫ t

0
S (t − s)P(w j · ∇ρ j + v · ∇ρ j + ρ j · ∇w j−1 + ρ j · ∇v)ds,

where w̃ j = w j + v. It follows from (A.3)-(A.5) and (A.8) that
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||S (t − s)P(w j · ∇ρ j)||p ≤ C1||w j · ∇ρ j||p

≤ C1C3

s
1
p+

1
2

K jL j,

||S (t − s)P(v · ∇ρ j)||p ≤
C1

s
1
2

NL j,

||S (t − s)P(ρ j · ∇w j−1)||p ≤
C1C3

s
1
p+

1
2

L jK j−1,

||S (t − s)P(ρ j · ∇v)||p ≤
C2C3

(t − s)
1
2−

1
p s

1
p

L jN.

We integrate the above estimates in (0, t) and obtain

||ρ j+1||p ≤ C
(
(K j + K j−1)L jT

1
2−

1
p + NL jT

1
2
)
.

By a similar way, we estimate

t
1
2 ||∇ρ j||p ≤ C′

(
(K j + K j−1)L jT

1
2−

1
p + NL jT

1
2
)
.

By (A.6) and (A.7), we obtain

L j+1 ≤ C5(K0T
1
2−

1
p + K

p
p−2

0 T
1
2 )L j.

We set

K
2p
p−2

0 T ≤ ε1

and observe that

L j+1 ≤
1
2

L j,

for some constant ε1 satisfying

C5(ε
1
2−

1
p

1 + ε
1
2
1 ) ≤ 1

2
.

Thus we have

L j+1 ≤
(1
2

) j
L1 → 0 as j→ ∞,
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for

T ≤ ε2K
− 2p

p−2

0 and ε2 = min{ε0, ε1}.

Thus the sequence {w j} ⊂ C([0,T ]; Lp
σ) converges to a limit w ∈ C([0,T ]; Lp

σ) satisfying
t1/2∇w ∈ C([0,T ]; Lp) and t1/2||∇w||p → 0 as t → 0. The limit w satisfies the integral
equation and is unique. The existence time is estimated from below by T ≥ εK−2p/(p−2)

0 for

ε =
ε2

2
.

The proof is now complete. □

Appendix B. A fractional power of the Stokes operator in a half space

In Appendix B, we show Lp-estimates of a fractional power of the Stokes operator A in a
half space.

Lemma B.1. Let Ω = Rn
+, n ≥ 2. For p ∈ (1,∞), there exist constants C1 and C2 such that

||∇u||p ≤ C1||A
1
2 u||p,(B.1)

||A 1
2 u||p ≤ C2||∇u||p,(B.2)

hold for u ∈ D(A1/2) and D(A1/2) = W1,p
0,σ, where W1,p

0,σ denotes the W1,p-closure of C∞c,σ.

Proof. The estimate (B.1) is proved in [9, Theorem 3.6 (ii)]. We prove (B.2). It suffices to
show (B.2) for u ∈ C∞c,σ since W1,p

0,σ is the closure of C∞c,σ in W1,p. We use L2-theory. Since
the Stokes operator is a positive self-adjoint operator on L2, by a spectral representation we
are able to define the fractional power A1/2v for v ∈ D(A1/2) = H1

0,σ and we have

(A
1
2 u, A

1
2 v) = (∇u,∇v).

Here, (·, ·) denotes the inner product on L2. Moreover, for φ ∈ C∞c there exists v ∈ D(A1/2)
such that A1/2v = Pφ [52, III.2.2.1 Lemma ]. Since the Helmholtz projection P acts as a
bounded operator on Lp′ [46], [9, Theorem 3.1], it follows from (B.1) that

||∇v||p′ ≤ C||A 1
2 v||p′

≤ C′||φ||p′ ,
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where p′ is the Hölder conjugate of p ∈ (1,∞). The above estimate implies that

|(A 1
2 u, φ)| = |(A 1

2 u,Pφ)|

= |(A 1
2 u, A

1
2 v)|

= |(∇u,∇v)| ≤ C′||∇u||p||φ||p′ .

Since φ is arbitrary, the estimate (B.2) holds. □

Remark B.2. The estimates (B.1) and (B.2) hold also for bounded domains of class C3 in
Rn, n ≥ 2. The estimate (B.1) for bounded domains with smooth boundaries is proved in
[25] by estimates of pure imaginary powers of the Stokes operator. Later, more strongly
H∞-calculus is proved in [47] with C3-regularity (see also [22]). By the same way as we
have seen above, the estimate (B.2) is deduced from (B.1) also for bounded domains.
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