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Abstract In this paper, we show a weighted Hardy inequality in a limiting case for
functions in weighted Sobolev spaces with respect to an invariant measure. We also
prove that the constant in the left-hand side of the inequality is optimal. As applica-
tions, we establish the existence and nonexistence of positive exponentially bounded
weak solutions to a parabolic problem involving the Ornstein-Uhlenbeck operator
perturbed by a critical singular potential in two dimensional case, according to the
size of the cofficient of the critical potential. These results can be considered as coun-
terparts in the limiting case of results which established in [8] [10] in the non-critical
cases, and are also considered as extensions of a result in [4] to the Kolmogorov
operator case perturbed by a critical singular potential.
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1 Introduction

LetQ be adomain iRN with0 e ,N > 1, 1< p < o, Abe a reaN x N-symmetric
positive semi-definite matrix, and

dua = pa(¥)dx  with  pa(X) =c- exp(—%}(x‘Ax)g), X€ Q. (1)
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Herec > 0 is chosen so thay@2 dua = 1. More generally, we consider a Borel prob-
ability measuredu = p(x)dx defined on2 ¢ RN, and Ieth P(Q) denote a weighted
Sobolev space which is a completion ©f (Q) with respect to the (semi-) norm
IV - [lLp(e;dy)-

In this paper, we concern the limiting cage= N > 2. Let@ c RN be a bounded
domain withR = sup, IX < co anda > 1. Letp = N > 2 in (1). In this paper, first
we show the following weighted critical Hardy inequality

Vu- X

N-1\" [uN
( N ) fg IX(log ‘X,)N fg IX
N-1\""  juNtAxE
+(—N ) L|X|N(|Og |x|)N 1dllA (2)

holds for alluin W-'(2). We also prove that the consti%? in the left-hand
side is optimal when @ Q. For a general weight functign = p(x) satisfying some
assumptions, we also prove a weighted critical Hardy inequality (with hon-optimal
constant) on two-dimensional domain.
The limiting case is left to be considered in [8] and [10]. Actually in [10], the
authors prove a (non-critical) weighted Hardy inequality
Vu. —

(Mo0) [y, [
p oXP IX]

S e

N
dua

X

uP(CAX) 2
NI TG
for functionsu in Wﬂ -P o) whenl<p<N,N=22 anduin WP o2\ {0}) when
p > N > 1, whereuy is defined in (1). The inequality (3) was Tﬂrst established in [8]
whenp =2 andN > 3.
Next, by using the optimality of the critical Hardy constantgarwith p = N, we
study the existence and nonexistence of positive weak solutions of a parabolic equa-
tion driven by the symmetric Ornstein-Uhlenbeck operator perturbed by a singular
potential in dimensioM = 2. This part can be considered as an extension of [8] to
the two dimensional critical case. Indeed, by using the weighted Hardy inequality (3)
for ua with p = 2 andN > 3, and a result similar to the one in [4] which is applicable
to the Kolmogorov operator

Vo
Lu= Au+— Vu
P

with respect to a positive Borel probability measuie = pdx, the authors in [8]
prove the following result.

Theorem 1 (Goldstein-Goldstein-Rhandi [8]) AssumeN3 and p= 2in (1). Let
A be a real Nx N-symmetric positive definite matrix afdds V(X) < &, x € RN,
Then the following assertions hold:
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(HIfo<c< (NT-z)z, then there exists a weak solutior ([0, c0), L2(RN; dun))

of
Au(x, t) = Au(x, t) — AX- Vu(x,t) + V(X)u(x,t),  t>0,xeRN,
u(x, 0) = Uo(x), xeRN,
satisfying

IULzEnau) < MEIUolliz@n gy t>0

for some constants M 1, w € R and for any0 < ug € L2(RN; dua).

@iy Ifc > NT‘Z)Z then for any0 < ug € L2(RN; dua) \ {0}, there is no positive
weak solution with Y¥x) = # satisfying the above exponential boundedness.

Note that ifu = ua with p = 2, then the Kolmogorov operattris of the form
Lau=A4u- Ax- Vu,

which is known as the symmetric Ornstein-Uhlenbeck operator. This type of operator
arises from many areas of mathematics, such as probability, mathematical physics,
and mathematical finance. Later, Theorem 1 was generalized by Hauer-Rhandi [10]
to the case # 2 andQ = (0,) c R (N = 1) and Goldstein-Hauer-Rhandi [9] for

the general case. See also [7]. For the classicallcasd, the study of existence and
nonexistence of positive solutions to the heat equation with a singular potential was
initiated by Baras-Goldstein [3] and now enjoys various extensions, see [2], [5], [6],
[11], [12], and the references therein.

In this paper, we prove the corresponding result for the parabolic problem driven
by the symmetric Ornstein-Uhlenbeck operator perturbed by a singular critical po-
tential of the formv(x) = m on two dimensional bounded domains with the
Dirichlet boundary conditions.

At the end of this section, we fix several notations: B&R) be thek-dimensional
ball centered at the origin with radi&in R¥. BN(R) will be denoted byB(R). |[BY(R)|
denotes th&-dimensional volume oB*(R). wy denotes the area of the unit sphere in
RN. (X)n be theN-th component of the vectot € RN.

2 A weighted critical Hardy inequality : p= N

In this section, we prove several weighted Hardy type inequalities for functions in the
critical weighted Sobolev space. Next theorem is a generalization of a result in [10]
to the critical case. Critical Hardy type inequalities with shap=(1) or non-sharp

(a> 1) weight wherdu is the Lebesgue measure have been studied by many authors
recently, see for example, [1], [13], [16], [17], [18], [19] and the references therein.
The sharp critical Hardy inequality was proved originally by Leray in his thesis in
1933 [14] wherN = 2.
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Theorem 2 LetQ be a bounded domain ikN, N > 2, R=sup,[x, a> 1, and A
be a real Nx N-symmetric positive semi-definite matrix. ugtbe defined irf1) with
p = N. Then the inequality

B [t
N Q |X|N(|Og \x|)N IUA B
N—1N’l uN(XAX)
N 2 IXN(log 57)

holds for all ue W;'((©2). Moreover, if0 € @, then the constar®)N in the left-
hand side of4) is optlmal

N

X
VU — d A
Xl

Proof of Theorem 2By density, it is enough to show that the inequality (4) holds for
all u e C}(©). We fix 2 > 0 andg > 0, which will be chosen later. Set

F(x) =2 —— for xe 2\ {0}.
(%) pA()HN(I o € 2\ {0)

Herep, is defined in (1) withp = N. Then we easily check that

B (x‘Ax)%
XIN(log 2)5+1 ~ [qN(log 2F

By applying integration by parts and Young’s inequality, we have

N, ~ (XAX) 2
S, wa(log Ryt |x|N(|og,X|)ﬂ}d“A

:—Nf|u|N‘2u(Vu~F)dx
Q

JuN-2u ( )
=—-NA | ————[Vu d
fgmN g By \ " /)

N luN
9 o .
o 2 XN(log &)

Here note that the left-hand side of the first equality is well-defined because the fol-
lowing properties hold true by the assumptionfof

divF(X) = 20a(X)

} for x e 2\ {0}.

X
Vu.- —
X

1 (%A@% |Aﬁ
. S— (@ and <
XN(log Ryt © o IXN(log &)~ (log 2 b

Now, if we choosgs = N — 1, then we obtain

N
(AN = 1) (N - 1)a%) fg N og )N (||2|g o

Q).

X
|X

uN(¢AR)E
A ———  dua.
fg|x|N(log RN A

dua <
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Furthermore, if we choosé = (NT‘l)N_l which attains the maximum of the function
A (A(N-1)—- (N - 1)/1%) on the half line [Q0), then we obtain the inequality
(4) for all u € C}(€). Therefore the inequality (4) also holds for ale W;'(Q).

Next we shall show the optimality of the consta#g¥)N in (4) when 0e ©. To
do so, we fixt > (81N and take anyl > 0. Set
1 f UMNOAAY) 2

— o dua,
2 IXN(log 2F)N-1

E(u) = Vu

X

[X]
Ju

Fa(u) =2

A4) f IxN(log @R IX\

forue W1 "(2)\ {0}. Now we consider the test functign,, € W1 "(B(R)) given by

209 = 0g 25 ) £.(%)

wherey < N— , € > 0is chosen so tha®(s) c Q, andg‘E e C2(B(¢)) is a cut-df
function W|th Os & < 1& = 1onB(§), V& < Be! on B(e) for someB > 0.
Note that there exists, > 0 such that Oé XLAX < ay|x? for all x € Q, because is
positive semi-definite. Then we have

gy
Faleye) > A f vl (xdx
ly B(3) [XN(log SN

N-N g
>/1f (Iogiq)7 7 cexp —£|x|N dx
— Jes) ] XN
[ e\N 5 aR\"N-N dr
> Acexp| - (—) wa (Iog—) —
2 0 r

= AC exp{—

And also we obtain

‘Lv

X N
‘p,y’g . —
X

aR yN-N
Nf (Iog —) pa( ) N f Vipy.I"dx
B(;) ] M B(e)\B(%)

w 2aR\NOT) (N—1 )7
< chWN (Iog T) (T - 7) +R(y,¢),  (6)
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whereR(y, &) = ch(F)\B(é) IVe,..[Ndx. Note that the remainder terR(y, €) can be
- 2
estimated as follows:

R(y.¢)

Y
< c2N‘1f IAY ((Iog ﬂq) )
B(e)\B(Z) X

(y-1N yN
aR dx aR
< 2NN f (Iog —) — + 2N (BN f (Iog —) dx
B(e)\B(%) [X] x| B(e)\B(5) X

2aR (y-1N+1 R\(~DN+1
< M Loy ((y = DN + 1) [(Iog i) - (|o a )
&£

N
+

y N
(Iogﬂq) V& | dx

X

yN+1 yN+1
+ 2Nty BN(yN + 1)1 [(Iog @) - (Iog a_R) } .
& &

By applying the mean value theorem for the functior» xP for p=(y —1)N+1 or
p = yN + 1, there exist positive constartisd satisfying Iog‘j‘;R < bandd < log 2%3
such that

IR(y. &)l < 2V Lwy log 2[yNpNO= )1 1 NG|

R\NO-)-1 2aR\"N
< c2N Loy log 2|yN (Iog a_) N (Iog 2aR )
& &
N-1
=0(1) as v/ N @)
In the same way as above, we also obtain
oy N (XAY)E v T
S dua < |A%C N—N+2 (lo —)
fg i (og v a = A eneTly I \leo
N-1
=0(1) as y/ -~ (8)

From (6), (7), and (8), we have
ra N~ 7

-1
+O((¥—7) ) aSy/'¥. 9)

From the estimates (5) and (9), if we have chosen O independent of so small

N

such thauexp(—% (E)N) > (N2)N 5 )N which is possible since > (N2)N, then

2aR\NO-) (N—1 |
o) < vy 0025 T (Mg

2
we observe that

E(‘py,s) < Fxl(‘py,s)

for y close toNT*F Therefore the inequality (4) never holds if the constant on the left-
hand side of (4) is bigger thafig})N. Hence the constan¢t)N in (4) is optimal.
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O

Remark 1LetA > 0 andl > (NT‘l)N. Then by using the test functigs ., we observe
that

Nelpp + 1 [ LEOAT gt
inf L”VWCMA+ALHWWM%W4WM ’?pr@g%wmm___m
OEuergo(Q) fg NG n

holds true.

In the caseN = 2, we can obtain the critical Hardy type inequality (with non-
optimal constant) for the general weight functior= p(X) satisfying the following
conditions:

(H1) 0< p € H3(Q),
2

\Y
p + C,.

(H2) for anye > Othere isC, € R such tha}—
P

2
o _ |V
P P

Proposition 1 LetQ be a bounded domain ik? containing the origin, R= sup.., X
and a> 1. Let du = p(X)dx and assumg@H1) and (H2) are satisfied. Then for any
6 > 0, there exists €> 0 such that the inequality

1 lpI? f 2 f 2
= | —————=—du<(4+$6 Vé|“du + C d 10
4L|x|2(|oga—xﬁ*)2 < (4+0) | IVoFdu+Cy | o (10)

holds for all € W;5(<).

Proof of Proposition 1 The proof goes along the same way as in [8]. Again we may

assumep € C°(9). Since di\,( we obtain

X — 1
IX2log &7 )~ Ix(log £5)2

I

[ S — | oo X |ax
2 IX%(log £)? o X%(log §¢

X [X|

=- f (26 + 161°Vp) -
Q

]
<2
fg X log 2%

X

162 :
2 — T __d
= Ug X2(log ZB)2 " ]

1

———dx
R
|x|2logf‘7|
1V,
Vo + —¢—p‘d,u
2" p

Vo + }qﬁ@
2" p

(@)
Therefore we have

1 P fros 1o
G (R —ry | Pl
i), xedog e =¥ 2%

2

. (11)
L2(2;dw)
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Note thatp € C**(Q) for somee € (0, 1) by (H1) and the Sobolev embedding. Thus
by applying the same argument as the proof of Proposition 3.1. in [8] with (H2), we

obtain
1 Vp [ 4 (1 n) f 5
Vo + < + 1+ — [Vo|“du
H p L2(2;d) 1-2:\4 2
C(1+2n) f 2
2(1 %) ¢°du (12)

for eachn > 0,¢ € (0, 2) and a constar®. > 0 in (H2). If we taken = V 2 then

the functiory > % (5 + 3)+1+ 4 in (12) attains its m|n|munf7i(18+71 which
goes to 4 from above as— 0. Therefore, from (11) and (12), we get (10).

O

3 Existence and nonexistence of positive solution

In this section, we consider the following two dimensional Kolmogorov equation
perturbed by a singular potential

ou(x,t) = Lu(xt) + VOu(x,t), t>0,xeQ,
(Kv) ux,t) =0, t>0,xed,
ux,0) = ug(x), XeQ

whereQ C R? is a domain, G @, Up € L?(Q; du), du = p(X)dxis a probability Borel
measureV € L (Q), V > 0, andL is the Kolmogorov operator given by

\Y
Lu:Au+—’D~Vu.
P

Of course ifQ = R?, we do not impose the Dirichlet boundary conditions. Especially,
if p(X) = pa(¥) = cexp(-3(XAX) andA is a positive semi-definite real 2 2-
symmetric matrix, theh = L is the symmetric Ornstein-Uhlenbeck operdtgu =
Au— Ax- Vu. We define the bottom of the spectrum-¢L + V) to be

Vol?d V¢?d
A(L+V)i=  inf Jo V7 — J Vord
0% peHI(Q;d) J, #%du

We put the following definition.

Definition 1 We say thatu is a weak solution toKy) if for eachT > 0 and any
compact subsdf c Q, we haveu € C([0, T]; L2(@2; du)), Vu € LYK x (0, T), dudt)

and
T T
f f u(—0i¢ — Lep)dudt — f U (-, 0)du = f f V updudt
0 Q Q 0 Q
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forall ¢ € W22*1(QT) such thats(-, t) has compact support i@ and¢(-, T) = 0. Here
Qr=92x(0,T) andWZZ’l(QT) denotes a standard parabolic Sobolev space:

W2Y(Qr) = {ue LX(Qr) : Dfu e LA(Qr)forlal < 2, du € LA(Qr)}.

Let Q be a smooth bounded domainks, 0 € 2, andR = sup,, |X. In this case,
as in [4] and [8], we can obtain the existence and nonexistence result of solutions to
(Ky) as follows. Since the way of the proof is almost the same as [4] and [8], we give
here the outline of the proof only.

Theorem 3 Assume thad < p € C}©Q) N C(Q) and0 < V e L (©). Then the
following assertions hold:

(i) If 22(L +V) > —oo, then for any y > 0, Uy € L?(2; du), there exists a positive
weak solution & C([0, o), L?(2; du)) of (Ky) satisfying

NUlL2@d < MEIUollLzg@dys t>0 (13)

for some constants M 1andw € R.
(i) If A1(L + V) = —oo, then for any0 < up € L%(Q2; du) \ {0}, there is no positive
weak solution ofKy) satisfying (13).

Proof of Theorem 3(i) Assumed(L + V) > —co and takeup > 0, ugp # 0. Set
Va(X) = min{V(x), n} andupn(X) = min{ug(x), n}. Note that sincep € C(Q), the L2
norm is equivalent to theﬁ norm. Consider the following truncated probleky():

Otun(%,t) = Lup(%t) + Va(Xun(x, 1), t>0,xe Q,
(Kv,) Un(xt) =0, t>0,xe 00,
Un(x,0) = ugn(X), X€ Q.

SinceV, andug,, are bounded and nonnegative and the drift t&fnis also bounded,
(Ky,) admits a unique positive classical solutiof see e.g. Proposition C.3.2. in
[15]. Furthermore O< up(X,t) < Ups1(X t) for n € N holds onQ x (0, ), see e.g.
Proposition C.2.3. in [15]. If we multiplyy, ) by u, and integrate by parts, we obtain
the following in the same way as [8]:

lun@®lliz@ay < €S Mluonlliz@gy, =0,
which yields that
lun@®llizay < €S Mluollzqy, T2 0. (14)

By the monotone convergence theorem, we observeulfgt converges tai(t) in
L2(2; du) uniformly for t € [0, T]. Sinceuy is a weak solution ofKy, ), it follows
thatu is a weak solution ofKy/). The estimate (13) follows from (14) and it holds
with M = 1.

(il) Assumey(L + V) = —oo and assume that there exists a positive solutiarf
(Ky) with initial data 0 < uy € L?(®Q;du) \ {0} satisfying (13). We shall derive a
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contradiction. Fixp € C(Q) with fQ¢2dx = 1. Letu, be the unique solution of
(Kv,) andv, be the unique solution of

Ovn(X,t) =Lvy(xt), t>0,xeQ,
(Kn) Vn(X, 1) =0, t>0,xedQ,
Vn(X,0) = Ugn(X), X € Q.

We observe that
u(x t) = up(X,t) = vp(X, t) > va(x,t), t=0. (15)

It is known that there exists a unique positive functiagm € C((0, ) x 2 x Q) such
that forugn € C(Q),

Vih(t, X) = ng(t, X YUon(y)dy, t>0,xeQ,
Q

see e.g. Proposition C.3.2. in [15]. Since there exists aBhadluch thatuy(x) > 0
for x € By, we observe that for a.&.€ supm,

vi(t, X) = fg Galt, X, y)uoa(y)dy

> ( min  Go(t, X, Y))f Up1(X)dXx =: ¢ (t; Up1) > O.
(X.y)esuppbx By B

Thus by (15), we havein(x,t) > c(t;up1) > 0. If we multiply (Ky,) by g and
integrate by parts, then for every- 1 we obtain

f Vng?du < 6, ( f (Iogun(t))¢2du)+ f IVoldu.
Q Q Q

By integrating fromt = 1 tot = t, we have

(t-1) fg Vod?du < fg (logs:T(;)))tﬁzduﬂt—l) fQ Vol

fort > 1 and anyn € N, see [8]. Since there exists a minimal solutiafh) ~:=
limp_ Un(t) by (15) and the monotone convergence theorem, we obtain

1
V¢2d —fvzd <—
fg ¢°du QI ol u<(t_1)

[log(MnuonLZ(Q;dﬂ)) ot +loglol - [ dogan) ¢2dﬂ} <C<oo

[ toga) - [ (Ioga(l)wzdu}
Q Q

<
T (-1
in the same way as [8]. This contradicts the assumpti¢h + V) = —co. Therefore
there is no positive weak solution df{) satisfying (13).
O
As a consequence of Theorem 3 and Remark 1, we obtain the main result.
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Theorem 4 Let Q be a bounded domain iR?, 0 € Q, a > 1, and R= sup, |XI.
Assume that A be a positive semi-definite BaR-symmetric matrix an@ < V(x) <
Then the followings hold:

[
Ixi%(log 2§)2

MIf 0<c< %1, then there exists a positive weak solution G([0, c0), L?(2; dua))
of

au(x,t) = 4u(xt) — Ax- Vu(x,t) + V(Ju(x,t), t>0,xe Q,

uix,t) =0, t>0,x€dn, (16)
ux,0) = uo(x), X€Q,
satisfying
IUOl2@:du < MEIUollLz(@:dpy), t=0 (17)

for some constants M 1, w € R, and any0 < up € L2(Q; dua).
(i) Ifc > %, then for any0 < up € L2(Q2;dup) \ {0}, there is no positive weak
solution of (16) with \{x) = m satisfying (17).
Ix

Furthermore the following result also follows from Proposition 1 and Theorem 3.

Corollary 1 LetQ be a bounded domain i®?, 0 € Q, a > 1, and R= sup., |X.

Assume thafH1) - (H2) in §2 are satisfied an@ < V(X) < m Ifc < &, then
X
there exists a weak solutionauC([0, c0), L?(2; du)) of (Ky) satisfying
ULz < MEXIUollLz(@dys >0 (18)

for some constants M 1, w € R, and any0 < ug € L?(Q; du).

4 Weighted Hardy inequality on the half space

In this section, we obtain a weightéd-Hardy inequality on the half spad@) =

{x= (X, xn) € RN"1x R| xy > 0}. Though the obtained inequality does not have any
concrete application in this paper, we hope it may be also useful to the study of the
corresponding parabolic problems.

Theorem 5 Letl < p < o, let A be a real Nx N-symmetric positive semi-definite
matrix, and let

dua = pa(X¥)dx  with pa(X) =c- exp(—%)(xtAx)g), X € RT,

where c is chosen so thﬁ,ﬂ padx = 1. Then the inequality

P-1\" [ luP f
—_— —-dua <

( p ) RN X,r\), HA RN

holds for allue W;"’O(R’;‘). Moreover the constami%l)p in the left-hand side dfL9)
is optimal.

ou

OXN

P p-1\"" [ UP(CAYZ (AX)y
d AT\ — p—l d/'lA
p RN XN
(19)
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Proof of Theorem 51t is enough to show that the inequality (19) holds for.ak
CL®RN). we fix 1 > 0 which will be chosen later. Set

F() = (0. .0, 40a(9x ") for xe RY.

Then we compute that

V() = 2 (a0 ) = ~Apa(¥

p-1, (A7 (AXy
X,E‘ xﬁfl '

By applying integration by parts and Young's inequality, we have

fRN |u|p/1[px_pl + (XtAX)Z(AX)N}pA(X)dX

p-1
N XN

=—pf JuP2u(Vu- F)dx
R}

_ /lf [ulP2u { du d

=-p i x,‘fl_l Xn A

f ou
S JR—
RY

6XN

p o |u|p
dua + (p— D)7t —5-dua,
RY Xy

which yields that

o |uP j‘ u
-1 - A7t —dua <
(o-na-1%) [ Crduns [ |5

N

P UP(AAX) 7 (AX
d,uA—/lfll( ) 7 ( )Nd'uA
RY

p1
XN

1 . . .
If we choosed = (p;pl)p which attains the maximum of the function+— (1 —

271) on the half line [0co), then we obtain the inequality (19) for alle CL®RN).
Therefore the inequality (19) also holds for ak W,",(RY) by density.

Next we show the optimality of the constarﬁ%{)p in (19). To do so, we fix
A> (B)P and take anyl € R. Set
0%

E(u):jl;T
|

N
ulP

Fauy=2 | —5dua
RY Xy

ou

)

P < [ UP(XAY)Z (AX
G 7 f O
RY XN

forue Wiﬁ'o(RJ’:‘) \ {0}). Now we consider a test functian, . ijo(R’;‘) given by

QDY,S(X) = XK] E(Xn) E(X ),
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wherex = (X, xy) € RN xR,y > 22 & > 0 will be chosen later independent of
v, andé, is a cut-df function defined by

1, if0<t<g,
&) ={Z@2s-1), if §<t<2s
0, if t>2s.

Note that there exists, > 0 such that O< X'Ax < a»|x? for all x € RY. Then we
have

g
@,

Fa(pye) > AC ’ f X;y\,p_pexp[—?lxlp]d)(dx,\,
X<

— &
Xn=0 5

b

2 . a?
+/lcf f X pfg(IX'I)"exp[——zIXI”]dexN,

xn=0 J§<|x|<2¢ p

which yields that

p
cIBNE) | fa PPt ai (e \°
ez e () ee - ()

b
cC(s) [eyrrppil a; (3 \°
/lyp— o+ 1(2) exp( 0 €] |- (20)

Here|BN-(r)] = [ ,_ dx denotes the volume of thé(- 1)-dimensional ball with

. [x|<r
radiusr, and

Cle) = f £(X1)PdX.

£<ix|<2e

On the other hand, we obtain

p £
f dﬂASprfz f P Pdx dxy
RT Xn=0 J|X|<

£
2

5 )
P f f XPPe, (1X)PdX dxy
xu=0 J §<Ix|<2s

28
rc f f
XN:% |X|<2e

pd SprIBN‘l(g)l(f)vp—pﬂ o cC(e) (f)yp—pﬂ
yp-p+1 yP-p+11\2

0py &
aXN

p
(X )PdX dxy,

0
v (X,y\lfa(XN))
which yields that

fRy

Opy &
6XN

2
+ 2P 1 (yP D(e) + E()) (21)
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where
2
D)= [ [ KPP x)PdXdx,
XN:% |X|<2e
2 2 p
E(s):f f xﬁ’(—) E(IX)PdX dxy.
=g Jixize - \3€
Note that
2c
D(e) < [BV1(2¢)] f XPPE, (x00) Py
XN=3
2 ’
< CeNt f t7P-Pdt
t=5
= Cg?P PN (22)
and
2e 2 p
E(e) < 1BV 1(2¢)| f Ex{,"(g) dxy = Ce?P-PN (23)
XN=5

for some absolute valué > 0. In the same way as above, we also obtain

2e
= _
<’ f f X PP AIXPLpa(x)d X
xn=0 J|X|<2¢

< Cg?PN (24)

-2
oy POCAR) 7 (AX)n

-1
RY X,r\’l

A

fory > p;pl suficiently close top;pl. From (21), (22), (23), and (24), we have

CIB'\‘_l(%)I(5)7'3—P+1Jr o CCle) (E)YP—DH

yp-p+11\2 yp-p+1\2 e @

E(‘Py,s) <yP 2

for an absolute valu€ > 0 wheny > p;pl ande € (0,1).
We have chosen a small> 0 in advance such that

P
@l (3 \P p—1\P
lex ——2(—8) >(—) ,

which is possible sinca > (p;l)p For this choice of, we may takey > £

suficiently close to realize that

5 p 5 p
/lexp(—a—; (%2) ] > /lexp(—a—s (gs) ] > yP (26)

holds true. From the estimates (20) and (25), we observe that

E(‘Py,s) < Fxl(‘f’y,s)
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fory > %1 suficiently close top%l.l satisfying (26). Therefore the inequality (19)
never holds if the constant on the left-hand side of (19) is larger tﬂ?l-l‘)p(. Hence
the constant%:)? in (19) is optimal.

O
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