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Abstract In this paper, we show a weighted Hardy inequality in a limiting case for
functions in weighted Sobolev spaces with respect to an invariant measure. We also
prove that the constant in the left-hand side of the inequality is optimal. As applica-
tions, we establish the existence and nonexistence of positive exponentially bounded
weak solutions to a parabolic problem involving the Ornstein-Uhlenbeck operator
perturbed by a critical singular potential in two dimensional case, according to the
size of the coefficient of the critical potential. These results can be considered as coun-
terparts in the limiting case of results which established in [8] [10] in the non-critical
cases, and are also considered as extensions of a result in [4] to the Kolmogorov
operator case perturbed by a critical singular potential.
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Singular potential
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1 Introduction

LetΩ be a domain inRN with 0 ∈ Ω, N ≥ 1, 1< p < ∞, A be a realN×N-symmetric
positive semi-definite matrix, and

dµA = ρA(x)dx with ρA(x) = c · exp

(
−1

p
(xtAx)

p
2

)
, x ∈ Ω. (1)
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Herec > 0 is chosen so that
∫
Ω

dµA = 1. More generally, we consider a Borel prob-

ability measuredµ = ρ(x)dx defined onΩ ⊆ RN, and letW1,p
µ,0 (Ω) denote a weighted

Sobolev space which is a completion ofC∞c (Ω) with respect to the (semi-) norm
∥∇ · ∥Lp(Ω;dµ).

In this paper, we concern the limiting casep = N ≥ 2. LetΩ ⊂ RN be a bounded
domain withR = supx∈Ω |x| < ∞ anda ≥ 1. Let p = N ≥ 2 in (1). In this paper, first
we show the following weighted critical Hardy inequality(

N − 1
N

)N ∫
Ω

|u|N

|x|N(log aR
|x| )

N
dµA ≤

∫
Ω

∣∣∣∣∣∇u · x
|x|

∣∣∣∣∣N dµA

+

(
N − 1

N

)N−1 ∫
Ω

|u|N(xtAx)
N
2

|x|N(log aR
|x| )

N−1
dµA (2)

holds for allu in W1,N
µA,0

(Ω). We also prove that the constant
(

N−1
N

)N
in the left-hand

side is optimal when 0∈ Ω. For a general weight functionρ = ρ(x) satisfying some
assumptions, we also prove a weighted critical Hardy inequality (with non-optimal
constant) on two-dimensional domain.

The limiting case is left to be considered in [8] and [10]. Actually in [10], the
authors prove a (non-critical) weighted Hardy inequality(

|N − p|
p

)p ∫
Ω

|u|p
|x|p dµA ≤

∫
Ω

∣∣∣∣∣∇u · x
|x|

∣∣∣∣∣p dµA

+

(
|N − p|

p

)p−1

sgn(N − p)
∫
Ω

|u|p(xtAx)
p
2

|x|p dµA (3)

for functionsu in W1,p
µA,0

(Ω) when 1< p < N, N ≥ 2, andu in W1,p
µA,0

(Ω \ {0}) when
p > N ≥ 1, whereµA is defined in (1). The inequality (3) was first established in [8]
whenp = 2 andN ≥ 3.

Next, by using the optimality of the critical Hardy constant forρA with p = N, we
study the existence and nonexistence of positive weak solutions of a parabolic equa-
tion driven by the symmetric Ornstein-Uhlenbeck operator perturbed by a singular
potential in dimensionN = 2. This part can be considered as an extension of [8] to
the two dimensional critical case. Indeed, by using the weighted Hardy inequality (3)
for µA with p = 2 andN ≥ 3, and a result similar to the one in [4] which is applicable
to the Kolmogorov operator

Lu = ∆u+
∇ρ
ρ
· ∇u

with respect to a positive Borel probability measuredµ = ρdx, the authors in [8]
prove the following result.

Theorem 1 (Goldstein-Goldstein-Rhandi [8]) Assume N≥ 3 and p= 2 in (1). Let
A be a real N× N-symmetric positive definite matrix and0 ≤ V(x) ≤ c

|x|2 , x ∈ RN.
Then the following assertions hold:



Weighted Hardy’s inequality in a limiting case and the perturbed Kolmogorov equation 3

(i) If 0 ≤ c ≤
(

N−2
2

)2
, then there exists a weak solution u∈ C([0,∞), L2(RN; dµA))

of ∂tu(x, t) = ∆u(x, t) − Ax · ∇u(x, t) + V(x)u(x, t), t > 0, x ∈ RN,

u(x,0) = u0(x), x ∈ RN,

satisfying

∥u(t)∥L2(RN;dµA) ≤ Meωt∥u0∥L2(RN;dµA), t ≥ 0

for some constants M≥ 1, ω ∈ R and for any0 ≤ u0 ∈ L2(RN; dµA).

(ii) If c >
(

N−2
2

)2
, then for any0 ≤ u0 ∈ L2(RN; dµA) \ {0}, there is no positive

weak solution with V(x) = c
|x|2 satisfying the above exponential boundedness.

Note that ifµ = µA with p = 2, then the Kolmogorov operatorL is of the form

LAu = ∆u− Ax · ∇u,

which is known as the symmetric Ornstein-Uhlenbeck operator. This type of operator
arises from many areas of mathematics, such as probability, mathematical physics,
and mathematical finance. Later, Theorem 1 was generalized by Hauer-Rhandi [10]
to the casep , 2 andΩ = (0,∞) ⊂ R (N = 1) and Goldstein-Hauer-Rhandi [9] for
the general case. See also [7]. For the classical caseL = ∆, the study of existence and
nonexistence of positive solutions to the heat equation with a singular potential was
initiated by Baras-Goldstein [3] and now enjoys various extensions, see [2], [5], [6],
[11], [12], and the references therein.

In this paper, we prove the corresponding result for the parabolic problem driven
by the symmetric Ornstein-Uhlenbeck operator perturbed by a singular critical po-
tential of the formV(x) = c

|x|2(log aR
|x| )

2 on two dimensional bounded domains with the

Dirichlet boundary conditions.
At the end of this section, we fix several notations: LetBk(R) be thek-dimensional

ball centered at the origin with radiusR in Rk. BN(R) will be denoted byB(R). |Bk(R)|
denotes thek-dimensional volume ofBk(R).ωN denotes the area of the unit sphere in
RN. (X)N be theN-th component of the vectorX ∈ RN.

2 A weighted critical Hardy inequality : p = N

In this section, we prove several weighted Hardy type inequalities for functions in the
critical weighted Sobolev space. Next theorem is a generalization of a result in [10]
to the critical case. Critical Hardy type inequalities with sharp (a = 1) or non-sharp
(a > 1) weight whendµ is the Lebesgue measure have been studied by many authors
recently, see for example, [1], [13], [16], [17], [18], [19] and the references therein.
The sharp critical Hardy inequality was proved originally by Leray in his thesis in
1933 [14] whenN = 2.



4 Megumi Sano, Futoshi Takahashi

Theorem 2 LetΩ be a bounded domain inRN, N ≥ 2, R= supx∈Ω |x|, a ≥ 1, and A
be a real N×N-symmetric positive semi-definite matrix. LetµA be defined in(1) with
p = N. Then the inequality(

N − 1
N

)N ∫
Ω

|u|N

|x|N(log aR
|x| )

N
dµA ≤

∫
Ω

∣∣∣∣∣∇u · x
|x|

∣∣∣∣∣N dµA

+

(
N − 1

N

)N−1 ∫
Ω

|u|N(xtAx)
N
2

|x|N(log aR
|x| )

N−1
dµA (4)

holds for all u∈ W1,N
µA,0

(Ω). Moreover, if0 ∈ Ω, then the constant( N−1
N )N in the left-

hand side of(4) is optimal.

Proof of Theorem 2. By density, it is enough to show that the inequality (4) holds for
all u ∈ C1

c(Ω). We fix λ ≥ 0 andβ > 0, which will be chosen later. Set

F(x) = λρA(x)
x

|x|N(log aR
|x| )
β

for x ∈ Ω \ {0}.

HereρA is defined in (1) withp = N. Then we easily check that

divF(x) = λρA(x)

 β

|x|N(log aR
|x| )
β+1
− (xtAx)

N
2

|x|N(log aR
|x| )
β

 for x ∈ Ω \ {0}.

By applying integration by parts and Young’s inequality, we have∫
Ω

|u|Nλ
 β

|x|N(log aR
|x| )
β+1
− (xtAx)

N
2

|x|N(log aR
|x| )
β

 dµA

= −N
∫
Ω

|u|N−2u(∇u · F)dx

= −Nλ
∫
Ω

|u|N−2u

|x|N−1(log aR
|x| )
β

(
∇u · x
|x|

)
dµA

≤
∫
Ω

∣∣∣∣∣∇u · x
|x|

∣∣∣∣∣N dµA + (N − 1)λ
N

N−1

∫
Ω

|u|N

|x|N(log aR
|x| )

βN
N−1

dµA.

Here note that the left-hand side of the first equality is well-defined because the fol-
lowing properties hold true by the assumption ofA:

1

|x|N(log aR
|x| )
β+1
∈ L1

loc(Ω) and
(xtAx)

N
2

|x|N(log aR
|x| )
β
≤ |A| N2

(log aR
|x| )
β
∈ L1

loc(Ω).

Now, if we chooseβ = N − 1, then we obtain

(λ(N − 1)− (N − 1)λ
N

N−1 )
∫
Ω

|u|N

|x|N(log aR
|x| )

N
dµA ≤

∫
Ω

∣∣∣∣∣∇u · x
|x|

∣∣∣∣∣N dµA

+ λ

∫
Ω

|u|N(xtAx)
N
2

|x|N(log aR
|x| )

N−1
dµA.
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Furthermore, if we chooseλ =
(

N−1
N

)N−1
which attains the maximum of the function

λ 7→ (λ(N − 1) − (N − 1)λ
N

N−1 ) on the half line [0,∞), then we obtain the inequality
(4) for all u ∈ C1

c(Ω). Therefore the inequality (4) also holds for allu ∈W1,N
µA,0

(Ω).

Next we shall show the optimality of the constant (N−1
N )N in (4) when 0∈ Ω. To

do so, we fixλ > ( N−1
N )N and take anỹλ ≥ 0. Set

E(u) =
∫
Ω

∣∣∣∣∣∇u · x
|x|

∣∣∣∣∣N dµA + λ̃

∫
Ω

|u|N(xtAx)
N
2

|x|N(log aR
|x| )

N−1
dµA,

Fλ(u) = λ
∫
Ω

|u|N

|x|N(log aR
|x| )

N
dµA

for u ∈W1,N
µA,0

(Ω) \ {0}. Now we consider the test functionφγ,ε ∈W1,N
µA,0

(B(R)) given by

φγ,ε(x) =

(
log

aR
|x|

)γ
ξε(x),

whereγ < N−1
N , ε > 0 is chosen so thatB(ε) ⊂ Ω, andξε ∈ C∞c (B(ε)) is a cut-off

function with 0 ≤ ξε ≤ 1, ξε ≡ 1 on B( ε2), |∇ξε| ≤ Bε−1 on B(ε) for someB > 0.
Note that there existsα2 > 0 such that 0≤ xtAx ≤ α2|x|2 for all x ∈ Ω, becauseA is
positive semi-definite. Then we have

Fλ(φγ,ε) ≥ λ
∫

B( ε2 )

|φγ,ε|N

|x|N(log aR
|x| )

N
ρA(x)dx

≥ λ
∫

B( ε2 )

(
log

aR
|x|

)γN−N

cexp

−α
N
2
2

N
|x|N

 dx
|x|N

≥ λcexp

−α
N
2
2

N

(
ε

2

)N
ωN

∫ ε
2

0

(
log

aR
r

)γN−N dr
r

= λcexp

−α
N
2
2

N

(
ε

2

)N
 ωN

N

(
log

2aR
ε

)N(γ− N−1
N ) (N − 1

N
− γ

)−1

. (5)

And also we obtain

∫
Ω

∣∣∣∣∣∇φγ,ε · x
|x|

∣∣∣∣∣N dµA ≤ γN
∫

B( ε2 )

(
log

aR
|x|

)γN−N

ρA(x)
dx
|x|N + c

∫
B(ε)\B( ε2 )

|∇φγ,ε|Ndx

≤ γNc
ωN

N

(
log

2aR
ε

)N(γ− N−1
N ) (N − 1

N
− γ

)−1

+ R(γ, ε), (6)
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whereR(γ, ε) = c
∫

B(ε)\B( ε2 )
|∇φγ,ε|Ndx. Note that the remainder termR(γ, ε) can be

estimated as follows:

R(γ, ε)

≤ c2N−1
∫

B(ε)\B( ε2 )

∣∣∣∣∣∣ξε∇
((

log
aR
|x|

)γ)∣∣∣∣∣∣N +
∣∣∣∣∣∣
(
log

aR
|x|

)γ
∇ξε

∣∣∣∣∣∣N dx

≤ c2N−1γN
∫

B(ε)\B( ε2 )

(
log

aR
|x|

)(γ−1)N dx
|x|N + c2N−1(Bε−1)N

∫
B(ε)\B( ε2 )

(
log

aR
|x|

)γN
dx

≤ c2N−1ωNγ
N((γ − 1)N + 1)−1

(log
2aR
ε

)(γ−1)N+1

−
(
log

aR
ε

)(γ−1)N+1


+ c2N−1ωNBN(γN + 1)−1

(log
2aR
ε

)γN+1

−
(
log

aR
ε

)γN+1
 .

By applying the mean value theorem for the functionx 7→ xp for p = (γ − 1)N + 1 or
p = γN + 1, there exist positive constantsb,d satisfying logaR

ε
≤ b andd ≤ log 2aR

ε

such that

|R(γ, ε)| ≤ c2N−1ωN log 2
[
γNbN(γ− N−1

N )−1 + BNdγN
]

≤ c2N−1ωN log 2

γN
(
log

aR
ε

)N(γ− N−1
N )−1

+ BN

(
log

2aR
ε

)γN
= O(1) as γ ↗ N − 1

N
. (7)

In the same way as above, we also obtain∫
Ω

|φγ,ε|N(xtAx)
N
2

|x|N(log aR
|x| )

N−1
dµA ≤ |A|

N
2 cωNε

N(γN − N + 2)−1
(
log

aR
ε

)γN−N+2

= O(1) as γ ↗ N − 1
N
. (8)

From (6), (7), and (8), we have

E(φγ,ε) ≤ γNc
ωN

N

(
log

2aR
ε

)N(γ− N−1
N ) (N − 1

N
− γ

)−1

+ o

(N − 1
N
− γ

)−1 asγ ↗ N − 1
N
. (9)

From the estimates (5) and (9), if we have chosenε > 0 independent ofγ so small

such thatλexp

−α N
2

2
N

(
ε
2

)N
 > ( N−1

N )N > γN, which is possible sinceλ > ( N−1
N )N, then

we observe that

E(φγ,ε) < Fλ(φγ,ε)

for γ close toN−1
N . Therefore the inequality (4) never holds if the constant on the left-

hand side of (4) is bigger than (N−1
N )N. Hence the constant (N−1

N )N in (4) is optimal.
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⊓⊔

Remark 1Let λ̃ ≥ 0 andλ > ( N−1
N )N. Then by using the test functionφγ,ε, we observe

that

inf
0.u∈W1,N

µA,0
(Ω)

∫
Ω
|∇u|NdµA + λ̃

∫
Ω

|u|N(xtAx)
N
2

|x|N(log aR
|x| )

N−1 dµA − λ
∫
Ω

|u|N
|x|N(log aR

|x| )
N dµA∫

Ω
|u|NdµA

= −∞

holds true.

In the caseN = 2, we can obtain the critical Hardy type inequality (with non-
optimal constant) for the general weight functionρ = ρ(x) satisfying the following
conditions:

(H1) 0< ρ ∈ H2(Ω),

(H2) for anyε > 0 there isCε ∈ R such that
∣∣∣∣∣∇ρρ

∣∣∣∣∣2 − ∆ρρ ≤ ε
∣∣∣∣∣∇ρρ

∣∣∣∣∣2 +Cε.

Proposition 1 LetΩ be a bounded domain inR2 containing the origin, R= supx∈Ω |x|
and a≥ 1. Let dµ = ρ(x)dx and assume(H1) and (H2) are satisfied. Then for any
δ > 0, there exists Cδ > 0 such that the inequality

1
4

∫
Ω

|ϕ|2

|x|2(log aR
|x| )

2
dµ ≤ (4+ δ)

∫
Ω

|∇ϕ|2dµ +Cδ

∫
Ω

|ϕ|2dµ (10)

holds for allϕ ∈W1,2
µ,0(Ω).

Proof of Proposition 1. The proof goes along the same way as in [8]. Again we may

assumeϕ ∈ C∞c (Ω). Since div
(

x
|x|2 log aR

|x|

)
= 1
|x|2(log aR

|x| )
2 , we obtain

∫
Ω

|ϕ|2

|x|2(log aR
|x| )

2
dµ =

∫
Ω

|ϕ|2ρ(x)div

 x

|x|2(log aR
|x| )

 dx

= −
∫
Ω

(
2ϕρ∇ϕ + |ϕ|2∇ρ

)
· x

|x|2 log aR
|x|

dx

≤ 2
∫
Ω

|ϕ|
|x| log aR

|x|

∣∣∣∣∣∇ϕ + 1
2
ϕ
∇ρ
ρ

∣∣∣∣∣ dµ
≤ 2

∫
Ω

|ϕ|2

|x|2(log aR
|x| )

2
dµ


1
2 ∥∥∥∥∥∇ϕ + 1

2
ϕ
∇ρ
ρ

∥∥∥∥∥
L2(Ω;dµ)

.

Therefore we have

1
4

∫
Ω

|ϕ|2

|x|2(log aR
|x| )

2
dµ ≤

∥∥∥∥∥∇ϕ + 1
2
ϕ
∇ρ
ρ

∥∥∥∥∥2

L2(Ω;dµ)
. (11)
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Note thatρ ∈ C1,α(Ω) for someα ∈ (0, 1) by (H1) and the Sobolev embedding. Thus
by applying the same argument as the proof of Proposition 3.1. in [8] with (H2), we
obtain ∥∥∥∥∥∇ϕ + 1

2
ϕ
∇ρ
ρ

∥∥∥∥∥2

L2(Ω;dµ)
≤

[
4

1− 2ε

(
1
4
+
η

2

)
+ 1+

1
2η

] ∫
Ω

|∇ϕ|2dµ

+
Cε(1+ 2η)
2(1− 2ε)

∫
Ω

ϕ2dµ (12)

for eachη > 0, ε ∈ (0, 1
2) and a constantCε > 0 in (H2). If we takeη =

√
1−2ε
2 , then

the functionη 7→ 4
1−2ε

(
1
4 +

η
2

)
+1+ 1

2η in (12) attains its minimum2(1−ε+
√

1−2ε)
1−2ε , which

goes to 4 from above asε→ 0. Therefore, from (11) and (12), we get (10).
⊓⊔

3 Existence and nonexistence of positive solution

In this section, we consider the following two dimensional Kolmogorov equation
perturbed by a singular potential

(KV)


∂tu(x, t) = Lu(x, t) + V(x)u(x, t), t > 0, x ∈ Ω,
u(x, t) = 0, t > 0, x ∈ ∂Ω,
u(x,0) = u0(x), x ∈ Ω

whereΩ ⊆ R2 is a domain, 0∈ Ω, u0 ∈ L2(Ω; dµ), dµ = ρ(x)dx is a probability Borel
measure,V ∈ L1

loc(Ω), V ≥ 0, andL is the Kolmogorov operator given by

Lu = ∆u+
∇ρ
ρ
· ∇u.

Of course ifΩ = R2, we do not impose the Dirichlet boundary conditions. Especially,
if ρ(x) = ρA(x) = cexp

(
− 1

2(xtAx)
)

and A is a positive semi-definite real 2× 2-
symmetric matrix, thenL = LA is the symmetric Ornstein-Uhlenbeck operatorLAu =
∆u− Ax · ∇u. We define the bottom of the spectrum of−(L + V) to be

λ1(L + V) := inf
0.ϕ∈H1

0(Ω;dµ)

∫
Ω
|∇ϕ|2dµ −

∫
Ω

Vϕ2dµ∫
Ω
ϕ2dµ

.

We put the following definition.

Definition 1 We say thatu is a weak solution to (KV) if for eachT > 0 and any
compact subsetK ⊂ Ω, we haveu ∈ C([0,T]; L2(Ω; dµ)),Vu ∈ L1(K × (0,T),dµdt)
and ∫ T

0

∫
Ω

u(−∂tϕ − Lϕ)dµdt−
∫
Ω

u0ϕ(·,0)dµ =
∫ T

0

∫
Ω

Vuϕdµdt
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for all ϕ ∈ W2,1
2 (QT) such thatϕ(·, t) has compact support inΩ andϕ(·,T) = 0. Here

QT = Ω × (0,T) andW2,1
2 (QT) denotes a standard parabolic Sobolev space:

W2,1
2 (QT) = {u ∈ L2(QT) : Dαxu ∈ L2(QT) for |α| ≤ 2, ∂tu ∈ L2(QT)}.

LetΩ be a smooth bounded domain inR2, 0 ∈ Ω, andR= supx∈Ω |x|. In this case,
as in [4] and [8], we can obtain the existence and nonexistence result of solutions to
(KV) as follows. Since the way of the proof is almost the same as [4] and [8], we give
here the outline of the proof only.

Theorem 3 Assume that0 < ρ ∈ C1(Ω) ∩ C(Ω) and 0 ≤ V ∈ L1
loc(Ω). Then the

following assertions hold:
(i) If λ1(L + V) > −∞, then for any u0 ≥ 0, u0 ∈ L2(Ω; dµ), there exists a positive

weak solution u∈ C([0,∞), L2(Ω; dµ)) of (KV) satisfying

∥u(t)∥L2(Ω;dµ) ≤ Meωt∥u0∥L2(Ω;dµ), t ≥ 0 (13)

for some constants M≥ 1 andω ∈ R.
(ii) If λ1(L + V) = −∞, then for any0 ≤ u0 ∈ L2(Ω; dµ) \ {0}, there is no positive

weak solution of(KV) satisfying (13).

Proof of Theorem 3. (i) Assumeλ1(L + V) > −∞ and takeu0 ≥ 0, u0 . 0. Set
Vn(x) = min{V(x),n} andu0,n(x) = min{u0(x),n}. Note that sinceρ ∈ C(Ω), the L2

norm is equivalent to theL2
µ norm. Consider the following truncated problem (KVn):

(KVn)


∂tun(x, t) = Lun(x, t) + Vn(x)un(x, t), t > 0, x ∈ Ω,
un(x, t) = 0, t > 0, x ∈ ∂Ω,
un(x,0) = u0,n(x), x ∈ Ω.

SinceVn andu0,n are bounded and nonnegative and the drift term∇ρ
ρ

is also bounded,
(KVn) admits a unique positive classical solutionun, see e.g. Proposition C.3.2. in
[15]. Furthermore 0< un(x, t) ≤ un+1(x, t) for n ∈ N holds onΩ × (0,∞), see e.g.
Proposition C.2.3. in [15]. If we multiply (KVn) by un and integrate by parts, we obtain
the following in the same way as [8]:

∥un(t)∥L2(Ω;dµ) ≤ e−λ1(L+V)t∥u0,n∥L2(Ω;dµ), t ≥ 0,

which yields that

∥un(t)∥L2(Ω;dµ) ≤ e−λ1(L+V)t∥u0∥L2(Ω;dµ), t ≥ 0. (14)

By the monotone convergence theorem, we observe thatun(t) converges tou(t) in
L2(Ω; dµ) uniformly for t ∈ [0,T]. Sinceun is a weak solution of (KVn), it follows
that u is a weak solution of (KV). The estimate (13) follows from (14) and it holds
with M = 1.
(ii) Assumeλ1(L + V) = −∞ and assume that there exists a positive solutionu of
(KV) with initial data 0 ≤ u0 ∈ L2(Ω; dµ) \ {0} satisfying (13). We shall derive a



10 Megumi Sano, Futoshi Takahashi

contradiction. Fixϕ ∈ C∞c (Ω) with
∫
Ω
ϕ2dx = 1. Let un be the unique solution of

(KVn) andvn be the unique solution of

(Kn)


∂tvn(x, t) = Lvn(x, t), t > 0, x ∈ Ω,
vn(x, t) = 0, t > 0, x ∈ ∂Ω,
vn(x,0) = u0,n(x), x ∈ Ω.

We observe that

u(x, t) ≥ un(x, t) ≥ vn(x, t) ≥ v1(x, t), t ≥ 0. (15)

It is known that there exists a unique positive functionGΩ ∈ C((0,∞) × Ω × Ω) such
that foru0,n ∈ C(Ω),

vn(t, x) =
∫
Ω

GΩ(t, x, y)u0,n(y)dy, t > 0, x ∈ Ω,

see e.g. Proposition C.3.2. in [15]. Since there exists a ballBr such thatu0,1(x) > 0
for x ∈ Br , we observe that for a.e.x ∈ suppϕ,

v1(t, x) =
∫
Ω

GΩ(t, x, y)u0,1(y)dy

≥
(

min
(x,y)∈suppϕ×Br

GΩ(t, x, y)

) ∫
Br

u0,1(x)dx=: cr (t; u0,1) > 0.

Thus by (15), we haveun(x, t) ≥ cr (t; u0,1) > 0. If we multiply (KVn) by ϕ2

un
and

integrate by parts, then for everyt > 1 we obtain∫
Ω

Vnϕ
2dµ ≤ ∂t

(∫
Ω

(logun(t))ϕ2dµ

)
+

∫
Ω

|∇ϕ|2dµ.

By integrating fromt = 1 to t = t, we have

(t − 1)
∫
Ω

Vnϕ
2dµ ≤

∫
Ω

(
log

un(t)
un(1)

)
ϕ2dµ + (t − 1)

∫
Ω

|∇ϕ|2dµ

for t > 1 and anyn ∈ N, see [8]. Since there exists a minimal solution ˜u(t) :=
limn→∞ un(t) by (15) and the monotone convergence theorem, we obtain∫

Ω

Vϕ2dµ −
∫
Ω

|∇ϕ|2dµ ≤ 1
(t − 1)

[∫
Ω

(
log ũ(t)

)
ϕ2dµ −

∫
Ω

(
log ũ(1)

)
ϕ2dµ

]
≤ 1

(t − 1)

[
log(M∥u0∥L2(Ω;dµ)) + ωt + log∥ϕ∥∞ −

∫
Ω

(
log ũ(1)

)
ϕ2dµ

]
≤ C < ∞

in the same way as [8]. This contradicts the assumptionλ1(L + V) = −∞. Therefore
there is no positive weak solution of (KV) satisfying (13).

⊓⊔
As a consequence of Theorem 3 and Remark 1, we obtain the main result.
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Theorem 4 LetΩ be a bounded domain inR2, 0 ∈ Ω, a ≥ 1, and R= supx∈Ω |x|.
Assume that A be a positive semi-definite real2×2-symmetric matrix and0 ≤ V(x) ≤

c
|x|2(log aR

|x| )
2 . Then the followings hold:

(i) If 0 ≤ c ≤ 1
4, then there exists a positive weak solution u∈ C([0,∞), L2(Ω; dµA))

of 
∂tu(x, t) = ∆u(x, t) − Ax · ∇u(x, t) + V(x)u(x, t), t > 0, x ∈ Ω,
u(x, t) = 0, t > 0, x ∈ ∂Ω,
u(x,0) = u0(x), x ∈ Ω,

(16)

satisfying

∥u(t)∥L2(Ω;dµA) ≤ Meωt∥u0∥L2(Ω;dµA), t ≥ 0 (17)

for some constants M≥ 1, ω ∈ R, and any0 ≤ u0 ∈ L2(Ω; dµA).
(ii) If c > 1

4, then for any0 ≤ u0 ∈ L2(Ω; dµA) \ {0}, there is no positive weak
solution of (16) with V(x) = c

|x|2(log aR
|x| )

2 satisfying (17).

Furthermore the following result also follows from Proposition 1 and Theorem 3.

Corollary 1 LetΩ be a bounded domain inR2, 0 ∈ Ω, a ≥ 1, and R= supx∈Ω |x|.
Assume that(H1)− (H2) in §2 are satisfied and0 ≤ V(x) ≤ c

|x|2(log aR
|x| )

2 . If c < 1
16, then

there exists a weak solution u∈ C([0,∞), L2(Ω; dµ)) of (KV) satisfying

∥u(t)∥L2(Ω;dµ) ≤ Meωt∥u0∥L2(Ω;dµ), t ≥ 0 (18)

for some constants M≥ 1, ω ∈ R, and any0 ≤ u0 ∈ L2(Ω; dµ).

4 Weighted Hardy inequality on the half space

In this section, we obtain a weightedLp-Hardy inequality on the half spaceRN
+ =

{x = (x′, xN) ∈ RN−1 × R | xN > 0}. Though the obtained inequality does not have any
concrete application in this paper, we hope it may be also useful to the study of the
corresponding parabolic problems.

Theorem 5 Let 1 < p < ∞, let A be a real N× N-symmetric positive semi-definite
matrix, and let

dµA = ρA(x)dx with ρA(x) = c · exp

(
−1

p
(xtAx)

p
2

)
, x ∈ RN

+ ,

where c is chosen so that
∫
RN
+

ρAdx= 1. Then the inequality(
p− 1

p

)p ∫
RN
+

|u|p
xp

N

dµA ≤
∫
RN
+

∣∣∣∣∣ ∂u∂xN

∣∣∣∣∣p dµA −
(

p− 1
p

)p−1 ∫
RN
+

|u|p(xtAx)
p−2
2 (Ax)N

xp−1
N

dµA

(19)

holds for all u∈W1,p
µA,0

(RN
+ ). Moreover the constant( p−1

p )p in the left-hand side of(19)
is optimal.



12 Megumi Sano, Futoshi Takahashi

Proof of Theorem 5. It is enough to show that the inequality (19) holds for allu ∈
C1

c(RN
+ ). We fix λ ≥ 0 which will be chosen later. Set

F(x) =
(
0, · · · ,0, λρA(x)x1−p

N

)
for x ∈ RN

+ .

Then we compute that

divF(x) =
∂

∂xN

(
λρA(x)x1−p

N

)
= −λρA(x)

 p− 1

xp
N

+
(xtAx)

p−2
2 (Ax)N

xp−1
N

 .
By applying integration by parts and Young’s inequality, we have

∫
RN
+

|u|pλ
 p− 1

xp
N

+
(xtAx)

p−2
2 (Ax)N

xp−1
N

 ρA(x)dx

= −p
∫
RN
+

|u|p−2u (∇u · F) dx

= −pλ
∫
RN
+

|u|p−2u

xp−1
N

(
∂u
∂xN

)
dµA

≤
∫
RN
+

∣∣∣∣∣ ∂u∂xN

∣∣∣∣∣p dµA + (p− 1)λ
p

p−1

∫
RN
+

|u|p
xp

N

dµA,

which yields that

(p− 1)(λ − λ
p

p−1 )
∫
RN
+

|u|p
xp

N

dµA ≤
∫
RN
+

∣∣∣∣∣ ∂u∂xN

∣∣∣∣∣p dµA − λ
∫
RN
+

|u|p(xtAx)
p−2
2 (Ax)N

xp−1
N

dµA.

If we chooseλ =
(

p−1
p

)p−1
which attains the maximum of the functionλ 7→ (λ −

λ
p

p−1 ) on the half line [0,∞), then we obtain the inequality (19) for allu ∈ C1
c(RN

+ ).
Therefore the inequality (19) also holds for allu ∈W1,N

µA,0
(RN
+ ) by density.

Next we show the optimality of the constant (p−1
p )p in (19). To do so, we fix

λ > ( p−1
p )p and take anỹλ ∈ R. Set

E(u) =
∫
RN
+

∣∣∣∣∣ ∂u∂xN

∣∣∣∣∣p dµA − λ̃
∫
RN
+

|u|p(xtAx)
p−2
2 (Ax)N

xp−1
N

dµA,

Fλ(u) = λ
∫
RN
+

|u|p
xp

N

dµA

for u ∈W1,N
µA,0

(RN
+ ) \ {0}. Now we consider a test functionφγ,ε ∈W1,p

µA,0
(RN
+ ) given by

φγ,ε(x) = xγN ξε(xN) ξε(|x′|),
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wherex = (x′, xN) ∈ RN−1 × R+, γ > p−1
p , ε > 0 will be chosen later independent of

γ, andξε is a cut-off function defined by

ξε(t) =


1, if 0 ≤ t ≤ ε2 ,
2
3ε (2ε − t), if ε

2 < t < 2ε,

0, if t ≥ 2ε.

Note that there existsα2 > 0 such that 0≤ xtAx ≤ α2|x|2 for all x ∈ RN
+ . Then we

have

Fλ(φγ,ε) ≥ λc
∫ ε

2

xN=0

∫
|x′ |≤ ε2

xγp−p
N exp

−α
p
2
2

p
|x|p

 dx′dxN

+ λc
∫ ε

2

xN=0

∫
ε
2≤|x′ |≤2ε

xγp−p
N ξε(|x′|)p exp

−α
p
2
2

p
|x|p

 dx′dxN,

which yields that

Fλ(φγ,ε) ≥ λ
c | BN−1( ε2) |
γp− p+ 1

(
ε

2

)γp−p+1
exp

−α
p
2
2

p

(
ε
√

2

)p


+ λ
c C(ε)
γp− p+ 1

(
ε

2

)γp−p+1
exp

−α
p
2
2

p

(
3
2
ε

)p
 . (20)

Here |BN−1(r)| =
∫
|x′ |≤r

dx′ denotes the volume of the (N − 1)-dimensional ball with
radiusr, and

C(ε) =
∫
ε
2≤|x′ |≤2ε

ξε(|x′|)pdx′.

On the other hand, we obtain∫
RN
+

∣∣∣∣∣∣∂φγ,ε∂xN

∣∣∣∣∣∣p dµA ≤ γpc
∫ ε

2

xN=0

∫
|x′ |≤ ε2

xγp−p
N dx′dxN

+ γpc
∫ ε

2

xN=0

∫
ε
2≤|x′ |≤2ε

xγp−p
N ξε(|x′|)pdx′dxN

+ c
∫ 2ε

xN=
ε
2

∫
|x′ |≤2ε

∣∣∣∣∣ ∂∂xN

(
xγNξε(xN)

)∣∣∣∣∣p ξε(|x′|)pdx′dxN,

which yields that∫
RN
+

∣∣∣∣∣∣∂φγ,ε∂xN

∣∣∣∣∣∣p dµA ≤ γp
c | BN−1( ε2) |
γp− p+ 1

(
ε

2

)γp−p+1
+ γp c C(ε)
γp− p+ 1

(
ε

2

)γp−p+1

+ c2p−1 (γp D(ε) + E(ε)) (21)
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where

D(ε) =
∫ 2ε

xN=
ε
2

∫
|x′ |≤2ε

xγp−p
N ξε(xN)pξε(|x′|)pdx′dxN,

E(ε) =
∫ 2ε

xN=
ε
2

∫
|x′ |≤2ε

xγp
N

(
2
3ε

)p

ξε(|x′|)pdx′dxN.

Note that

D(ε) ≤ |BN−1(2ε)|
∫ 2ε

xN=
ε
2

xγp−p
N ξε(xN)pdxN

≤ CεN−1
∫ 2ε

t= ε2

tγp−pdt

= Cεγp−p+N (22)

and

E(ε) ≤ |BN−1(2ε)|
∫ 2ε

xN=
ε
2

xγp
N

(
2
3ε

)p

dxN = Cεγp−p+N (23)

for some absolute valueC > 0. In the same way as above, we also obtain∣∣∣∣∣∣∣
∫
RN
+

|φγ,ε|p(xtAx)
p−2
2 (Ax)N

xp−1
N

dµA

∣∣∣∣∣∣∣ ≤ α p−2
2

2

∫ 2ε

xN=0

∫
|x′ |≤2ε

xγp−p+1
N |A||x|p−1ρA(x)dx

≤ Cεγp+N (24)

for γ > p−1
p sufficiently close top−1

p . From (21), (22), (23), and (24), we have

E(φγ,ε) ≤ γp c | BN−1( ε2) |
γp− p+ 1

(
ε

2

)γp−p+1
+ γp c C(ε)
γp− p+ 1

(
ε

2

)γp−p+1
+C (25)

for an absolute valueC > 0 whenγ > p−1
p andε ∈ (0,1).

We have chosen a smallε > 0 in advance such that

λexp

−α
p
2
2

p

(
3
2
ε

)p
 >

(
p− 1

p

)p

,

which is possible sinceλ >
(

p−1
p

)p
. For this choice ofε, we may takeγ > p−1

p
sufficiently close to realize that

λexp

−α
p
2
2

p

(
ε
√

2

)p
 > λ exp

−α
p
2
2

p

(
3
2
ε

)p
 > γp (26)

holds true. From the estimates (20) and (25), we observe that

E(φγ,ε) < Fλ(φγ,ε)



Weighted Hardy’s inequality in a limiting case and the perturbed Kolmogorov equation 15

for γ > p−1
p sufficiently close top−1

p satisfying (26). Therefore the inequality (19)

never holds if the constant on the left-hand side of (19) is larger than (p−1
p )p. Hence

the constant (p−1
p )p in (19) is optimal.

⊓⊔
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