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SIMILARITY AND KIRILLOV-SCHILLING-SHIMOZONO

BIJECTION

MASATO OKADO

Abstract. The behavior of the Kirillov-Schilling-Shimozono bijection is ex-
amined under the similarity map on Kirillov-Reshetikhin crystals. It enables

us to define this bijection over Q. Conjectures on the extension to R are also
presented.

1. Introduction

The Kerov-Kirillov-Reshetikhin bijection [9, 10], or Kirillov-Schilling-Shimozono
bijection in more general setting [11], describes a one-to-one correspondence be-
tween highest weight elements of a multiple tensor product of Kirillov-Reshetikhin
crystals of type A [6, 21] and certain combinatorial objects called rigged configura-
tions. Let B be a tensor product of Kirillov-Reshetikhin crystals and P(B) be the
set of highest weight elements of B. Then there corresponds a datum L(B), the set
RC(L(B)) of rigged configurations associated to L(B), and there exists a bijection

Φ : P(B) −→ RC(L(B)).

The Kirillov-Schilling-Shimozono bijection, KSS bijection for short, has various
applications. There exist notions of weight and energy or charge statistic on both
sets, and Φ preserves them. Hence, taking generating functions with a fixed weight
give rise to an identity known as X = M [3, 2]. Using the Kyoto path model [5]
M in a suitable limit gives an explicit form of a branching function of the highest

weight ŝln-module with respect to the underlying simple Lie algebra sln. Another
significant application is found in the box-ball system [23], where the bijection Φ
linearize this nonlinear ultra-discrete dynamical system [12].

In [17] we reported that Kirillov-Reshetikhin (KR) crystals have the similarity
property. Let Br,s stand for a KR crystal where r is an index of the Dynkin
diagram and s a positive integer. The similarity map Sm (m ∈ Z>0) is an injective
map Sm : Br,s → Br,ms satisfying some properties on crystal operators. For type
A, representing elements of Br,s by semistandard tableaux of r × s rectangular
shape, the image of Sm is obtained by enlarging it horizontally m times. Then it
is a natural question to ask how the composition map Φ ◦ Sm is described. The
answer is quite simple and natural. A rigged configuration (ν, J) is composed of a
sequence of partitions ν and a set of nonnegative integers J . The similarity map
Sm on RC(L(B)) amounts to multiplying by m each part of all partitions in ν and
each integer in J (Theorem 3.3).

The above theorem enables us to consider the KSS bijection over Q. Namely, we
represent an element of Br,s and of P(B) as an integer point of a certain polytope
in the Euclidian space. We then consider any rational points of the polytope, apply
Φ ◦ Sm (m is chosen so that the image of Sm is an integer point), and shrink by
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2 M. OKADO

m on the rigged configuration side. We can show the map so constructed is well-
defined and extends the bijection from integer points to rational ones (Proposition
4.1). Furthermore, one should be able to consider Φ over R. However, the proof of
well-definedness seems nontrivial and we leave it to future problem. We end with
conjectures on this extension to R and a connection to the tropical periodic Toda
lattice by [22].

2. Reviews on KR crystals, paths and rigged configurations

2.1. KR crystal. A Kirillov-Reshetikhin crystal, KR crystal for short, is a crystal
basis of certain finite-dimensional quantum affine algebra module called Kirillov-
Reshetikhin module. If the corresponding affine algebra is of nonexceptional type,
its existence was shown in [18]. A KR crystal is denoted by Br,s, since it is
parametrized by (r, s) ∈ I \ {0} × Z>0 where I is the index set of the Dynkin
diagram of the affine algebra and 0 is the index as prescribed in [4]. In this paper
we denote Kashiwara operators by ei, fi.

In [17] we showed the following property of KR crystals of nonexceptional type.

Theorem 2.1. For m ∈ Z>0 there exists a unique injective map

Sm : Br,s −→ Br,ms

satisfying
Sm(eib) = emi Sm(b), Sm(fib) = fm

i Sm(b)

for i ∈ I and b ∈ Br,s. Here Sm(0) is understood to be 0.

In what follows we consider the case of A
(1)
n . Set I0 = I \ {0}. Let αi (i ∈ I)

be simple roots and ϖi (i ∈ I0) level 0 fundamental weights. We describe the KR

crystal Br,s of A
(1)
n . As a set Br,s is given by semistandard tableaux of shape (sr)

with letters from {1, 2, . . . , n + 1}. The action of Kashiwara operators ei, fi for
i ∈ I0 is described in [7] by reading letters of the tableau in a certain manner. For
e0, f0 it is defined through the so called promotion operator pr [21] by

e0 = pr−1 ◦ e1 ◦ pr, f0 = pr−1 ◦ f1 ◦ pr.
See also [16, §2.2] on these descriptions. For an element b of Br,s Sm(b) is described
as follows. For each row a node with letter a is replaced with m nodes with the
same letter a.

2.2. Path. Let B1, B2 be crystals. The tensor product of crystals B2⊗B1 is defined
with its crystal structure given by

ei(b2 ⊗ b1) =

{
b2 ⊗ eib1 if εi(b2) ≤ φi(b1)
eib2 ⊗ b1 if εi(b2) > φi(b1),

(2.1)

fi(b2 ⊗ b1) =

{
b2 ⊗ fib1 if εi(b2) < φi(b1)
fib2 ⊗ b1 if εi(b2) ≥ φi(b1).

(2.2)

Here 0⊗ b and b⊗ 0 are understood by 0 and

εi(b) = max{m ≥ 0 | emb ̸= 0}, φi(b) = max{m ≥ 0 | fmb ̸= 0}.
From (2.1), (2.2) we have

εi(b2 ⊗ b1) = max(εi(b1), εi(b1) + εi(b2)− φi(b1)),(2.3)

φi(b2 ⊗ b1) = max(φi(b2), φi(b1) + φi(b2)− εi(b2)).(2.4)
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As seen from above we use the anti-Kashiwara convention for the tensor product
of crystals.

It is known [5] that for KR crystals Br,s, Br′,s′ there exists an isomorphism of
crystals

R : Br,s ⊗Br′,s′ −→ Br′,s′ ⊗Br,s,

called combinatorial R-matrix. R commutes with ei, fi (i ∈ I). The image of R is

given as follows [21]. Suppose R(b⊗ b′) = b̃′ ⊗ b̃. Then b← row(b′) = b̃′ ← row(b̃),
where row(b) is the row word of b, word reading from left to right, bottom to top,
and T ← wd stands for the tableau given by row inserting the word wd into T .
This condition uniquely determines b̃′ and b̃ from b⊗ b′.

Let B = Bk ⊗ · · · ⊗B1 be a multiple tensor product of KR crystals. An element
of b of B is called a (highest-weight) path if eib = 0 for any i ∈ I0. The set of paths
in B is denoted by P(B).

Example 2.1.

b = 1 1 2
2 3 4

⊗ 2
3
⊗ 1 1 1 3 ⊗ 2 ⊗ 1

is an element of P(B2,3⊗B2,1⊗B1,4⊗(B1,1)2) of weight 6ϖ1+4ϖ2−(4α1+4α2+α3).

2.3. Rigged configuration. We concentrate on rigged configurations of type A
(1)
n .

Let (Cab)a,b∈I0 be the Cartan matrix of An, that is, Cab = 2δa,b − δa,b+1 − δa,b−1.

Consider a matrix L = (L
(a)
i )a∈I0,i∈Z>0 of nonnegative integers, almost all zero. L

is called a multiplicity array. Let ν = (m
(a)
i ) be another such matrix. Say that ν is

an admissible configuration if it satisfies

(2.5) p
(a)
i ≥ 0 for any a ∈ I0 and i ∈ Z>0,

where

(2.6) p
(a)
i =

∑
j∈Z>0

(
L
(a)
j min(i, j)−

∑
b∈I0

Cab min(i, j)m
(b)
j

)
.

p
(a)
i is called a vacancy number.

Let ν = (m
(a)
i )a∈I0,i∈Z>0 be an admissible configuration. We identify ν with a

sequence of partitions (ν(a))a∈I0 such that

(2.7) ν(a) = (1m
(a)
1 2m

(a)
2 · · · ).

One can also identify the partition ν(a) with a Young diagram whose number of

rows of length i is m
(a)
i . A rigging J on ν is to associate, with each part of the

Young diagram ν(a) of the same width i, a partition (J
(a,i)
1 ≥ J

(a,i)
2 ≥ . . . ≥ J

(a,i)

m
(a)
i

)

of length at most m
(a)
i such that p

(a)
i ≥ J

(a,i)
1 . A pair (ν, J) of an admissible

configuration ν and a rigging J on ν is called a rigged configuration.
For a partition µ and i ∈ Z>0, define

(2.8) Qi(µ) =
∑
j

min(µj , i),

the area of µ in the first i columns. Then the vacancy number (2.6) is rewritten as

(2.9) p
(a)
i = Qi(L

(a)) +Qi(ν
(a−1)) +Qi(ν

(a+1))− 2Qi(ν
(a)).
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Here L(a) is a partition (1L
(a)
1 2L

(a)
2 · · · ), and both ν(0) and ν(n+1) should be consid-

ered as an empty partition. The set of rigged configurations with multiplicity array
L is denoted by RC(L). We define a weight of the rigged configuration (ν, J) by

λ =
∑
a∈I0

(
Q∞(L(a))ϖa −Q∞(ν(a))αa

)
.

It does not depend on the rigging J .

Example 2.2. The following diagrams show an example of rigged configuration of
weight 6ϖ1 + 4ϖ2 − (4α1 + 4α2 + α3).

1
1

0
0

1
1

1
0 0 0

Upper diagrams are L(1), L(2), L(3) (L(3) is empty) drawn from left to right and
lower ones are ν(1), ν(2), ν(3). On the left (resp. right) of each row the corresponding
vacancy number (resp. rigging) is written.

3. KSS bijection and similarity

3.1. Operations on paths. We define several operations on paths. We first define

lh, lb(s), ls(m). In this subsection B is a tensor product of KR crystals.

(1) Suppose B = B1,1 ⊗ B′, b = c ⊗ b′ ∈ B1,1 ⊗ B′. The map lh : B → B′ is
defined by lh(b) = b′. We set lh(B) = B′.

(2) Suppose B = Br,s ⊗ B′, b = c ⊗ b′ ∈ Br,s ⊗ B′ (r ≥ 2). The map lb(s) :

B → B1,s ⊗ Br−1,s ⊗ B′ is defined by lb(s)(b) = c′ ⊗ c′′ ⊗ b′, where c′

is the lowest row of c and c′′ is obtained by removing c′ from c. We set

lb(s)(B) = B1,s ⊗Br−1,s ⊗B′.

(3) Suppose B = Br,s ⊗ B′, b = c ⊗ b′ ∈ Br,s ⊗ B′ (s ≥ 2). The map ls(m) :

B → Br,m ⊗Br,s−m ⊗B′ (1 ≤ m < s) is defined by ls(m)(b) = c′ ⊗ c′′ ⊗ b′,
where c′ is the leftmost m columns of c and c′′ is obtained by removing c′

from c. We set ls(s)(B) = Br,m ⊗Br,s−m ⊗B′.

These maps send a path to another path. In [20] operations lb(s), ls(m) were defined
only when s = 1 and m = 1. We need the extensions of them to prove our main

result. We set lb = lb(1), ls = ls(1).

Example 3.1. For a path b in Example 2.1 we have b′ = ls(b), b′′ = lb(b′), b′′′ =
lh(b′′) as follows.

b′ = 1
2
⊗ 1 2

3 4
⊗ 2

3
⊗ 1 1 1 3 ⊗ 2 ⊗ 1

b′′ = 2 ⊗ 1 ⊗ 1 2
3 4

⊗ 2
3
⊗ 1 1 1 3 ⊗ 2 ⊗ 1

b′′′ = 1 ⊗ 1 2
3 4

⊗ 2
3
⊗ 1 1 1 3 ⊗ 2 ⊗ 1



SIMILARITY AND KSS BIJECTION 5

For later use we need the transpose of a path b given in [20]. Let B = Brk,sk ⊗
Brk−1,sk−1 ⊗ · · · ⊗Br1,s1 . For b = bk ⊗ bk−1 ⊗ · · · ⊗ b1 ∈ B rotate each rectangular

tableau bi by 90◦ clockwise to obtain b̃i. Suppose the letter a occurs in cell c of b̃i.
Then replace letter a in cell c by ã where ã is chosen such that the letter a in cell c
is the ã-th letter a in row(b) reading from right to left. Finally, turn each tableau
up side down and define it to be tr(b). If b ∈ P(B), then tr(b) ∈ P(tr(B)) where
tr(B) = Bsk,rk ⊗Bsk−1,rk−1 ⊗ · · · ⊗Bs1,r1 . The map tr satisfies tr2 = id.

Example 3.2. For a path b in Example 2.1 we have

tr(b) =
1 3
3 5
4 6

⊗ 2 2 ⊗
1
2
3
4

⊗ 1 ⊗ 1 .

Finally, we define the map Sm on P(B). For an element b = bk ⊗ bk−1⊗ · · · ⊗ b1
of B we define Sm(b) = Sm(bk)⊗Sm(bk−1)⊗· · ·⊗Sm(b1), where Sm on a single KR
crystal was defined in §2.1. If b ∈ P(B), then we have Sm(b) ∈ P(Sm(B)), where
Sm(B) is obtained by replacing each single KR crystal Br,s in B with Br,ms. It is
easy to see that Sm ◦ Sm′ = Smm′ .

Example 3.3. For a path b in Example 2.1 we have

S2(b) =
1 1 1 1 2 2
2 2 3 3 4 4

⊗ 2 2
3 3

⊗ 1 1 1 1 1 1 3 3 ⊗ 2 2 ⊗ 1 1 .

3.2. Operations on rigged configurations. We define the corresponding oper-
ations on rigged configurations. We first define δ, β(s), γ(m). Say a row of a rigged

configuration singular if its rigging is equal to the vacancy number p
(a)
i .

(1) Suppose L(1) contains a row of length 1. Set ℓ(0) = 1 and repeat the
following process for a = 1, 2, . . . , n or until stopped. Find the smallest
integer i ≥ ℓ(a−1) such that there exists a singular row of length i in (ν, J)(a).
If no such i exists, set rk(ν, J) = a and stop. Otherwise, select a row of
length i, set ℓ(a) = i and continue the process with a+1. Set all undefined
ℓ(a) to ∞. As for the new multiplicity array L̃, L̃(1) is given by removing
a row of length 1 from L(1) and other L(a) remain the same. δ(ν, J) is
obtained by removing a box from the selected rows and making the new
rows singular again.

(2) Suppose L(r) contains a row of length s. L̃ is given by removing a row of
length s from L(r) and adding a row of length s to both L(1) and L(r−1)

(two rows of length s to L(1) if r = 2). β(s)(ν, J) is obtained by adding
singular rows of length s to (ν, J)(a) for 1 ≤ a < r.

(3) Suppose L(r) contains a row of length s. L̃ is given by removing a row of
length s from L(r) and adding a row of length m and a row of length s−m.
We set γ(m)(ν, J) = (ν, J).

These maps send a rigged configuration in RC(L) to another one in RC(L̃). In
[20] operations β(1), γ(1) were defined in the notations j, i. We set β = β(1), γ = γ(1).

Example 3.4. Let (ν, J) be as in Example 2.2. Then (ν′, J ′) = γ(ν, J), (ν′′, J ′′) =
β(ν′, J ′), (ν′′′, J ′′′) = δ(ν′′, J ′′) are given successively as follows.
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1
1

0
0

2
1

1
0 0 0

1
1

0
1

0
2
1

1
0 0 0

2
2

0
0

1
0

1
0 0 0

Example 3.5. In the next example L(1) = (113), L(2) = L(3) = ∅. δ removes the
box with ×.

6

2
0

5
6
1
2

0

×
1

1

0
0
1×

0
0

0
0× 0 0

Next we define the map tr on rigged configurations following [20] (see also [11]).

The new multiplicity array L̃ = (L̃
(a)
i ) is defined by L̃

(a)
i = L

(i)
a . We assume n is

sufficiently large so that L̃ is well defined. For a configuration ν = (m
(a)
i ) define a

matrix N = (Nai)a∈I0,i∈Z>0 by

(3.1) Nai =
∑
j≥i

(
m

(a−1)
j −m

(a)
j

)
.

Note that
∑

j≥i m
(a)
i is the depth of the i-th column of ν(a). m

(0)
j is defined to be

zero for any j. Now set (ν̃, J̃) = tr(ν, J). Then Ñ = N(ν̃) is given by

(3.2) Ñia = −Nai + χ((a, i) ∈ λ)−
∑
b,j

L
(b)
j χ(a ≤ b& i ≤ j).

Here χ(θ) = 1 if θ is true, = 0 otherwise. λ is the partition (λ1, λ2, . . .) such that
the weight of (ν, J) is given by

∑
j λj(ϖj −ϖj−1) (ϖ0 = 0), and (a, i) ∈ λ signifies

that the cell of the a-th row and the i-th column belongs to the Young diagram of
λ.

Note that the rigging J can be viewed as a double sequence of Young diagrams

J = (J (a,i)) where J (a,i) is a Young diagram inside the rectangle of depth m
(a)
i and
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width p
(a)
i . The Young diagram J̃ (i,a) is defined as the transpose of the comple-

mentary Young diagram to J (a,i) in the rectangle of depth m
(a)
i and width p

(a)
i .

This tr also satisfies tr2 = id. The following lemma, which is clear from the above
rule, is used later.

Lemma 3.1. Let Br,s be the leftmost tensor factor of B. Then we have ls ◦ tr =
tr ◦ lb(s) on P(B).

Example 3.6. Let (ν, J) be as in Example 2.2. Then we have

λ = , N =


−2 −1 −1
0 0 0
1 1 1
1 0 0

 , Ñ =


−2 −1
0 0
0 0
0 1
1 0
1 0

 .

All entries of N, Ñ outside the given part are zero. Thus tr(ν, J) is given as follows.

1
1

1
0

0
0

0
0

1
1

1
1 0

0
0 0 0

Finally, operation Sm on rigged configurations is defined by enlarging all rows of

L(a) and ν(a) m times and multiplying m to all riggings. Note that p
(a)
mi(Sm(ν)) =

mp
(a)
i (ν). It is again easy to see that Sm ◦ Sm′ = Smm′ .

Example 3.7. Let (ν, J) be as in Example 2.2. S2(ν, J) is given below.

2
2

0
0

2
2

2
0 0 0

3.3. KSS bijection and the main theorem. For a tensor product of KR crystals
B = Brk,sk⊗Brk−1,sk−1⊗· · ·⊗Br1,s1 we define the corresponding multiplicity array

L(B) = (L
(a)
i ) by

(3.3) L
(a)
i = ♯{j | (rj , sj) = (a, i), 1 ≤ j ≤ k}.

The following theorem is proved essentially in [11]. We adopt the formulation in
[20].

Theorem 3.2. Let B = B1,1 ⊗ B′ in (1), B = Br,1 ⊗ B′ (r ≥ 2) in (2), and
B = Br,s ⊗ B′ (s ≥ 2) in (3). There exists a unique bijection Φ from P(B) to
RC(L(B)) that maps the empty path to the empty rigged configurations and makes
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the following diagrams commutative.

(1) P(B)
Φ //

lh

��

RC(L(B))

δ

��
P(lh(B))

Φ
// RC(L(lh(B)))

(2) P(B)
Φ //

lb

��

RC(L(B))

β

��
P(lb(B))

Φ
// RC(L(lb(B)))

(3) P(B)
Φ //

ls

��

RC(L(B))

γ

��
P(ls(B))

Φ
// RC(L(ls(B)))

Moreover, under Φ, tr corresponds to tr and Ri corresponds to id for any i =
1, 2, . . . , k−1 where Ri stands for the combinatorial R-matrix acting on the (i+1)-
th and the i-th position Bi+1 ⊗Bi of B.

Now we can state our theorem.

Theorem 3.3. Under Φ, Sm corresponds to Sm.

We need to prepare lemmas to prove it.

Lemma 3.4. Suppose (ν, J) ∈ RC(L) with L
(1)
1 > 0. We apply δ on (ν, J). Let

ℓ(1) ≤ ℓ(2) ≤ · · · ≤ ∞ be the lengths of rows whose box is removed from ν(1), ν(2), . . .
by δ and set (ν̃, J̃) = δ(ν, J). Then we have

p
(a)
i (ν̃) = p

(a)
i (ν)− χ(ℓ(a−1) ≤ i) + 2χ(ℓ(a) ≤ i)− χ(ℓ(a+1) ≤ i).

Proof. Easy from (2.9). □

Lemma 3.5. Suppose (ν, J) ∈ RC(L) with L
(1)
1 > 0. Let (ν′, J ′) = Sm(ν, J). Then

we can apply δ ◦ (δ ◦ γ)m−1 on (ν′, J ′). During the operation m boxes are removed
from the same row in each ν′(a).

Proof. Let ℓ(1), ℓ(2), . . . be as in the previous lemma. Since a singular row remains
singular and a nonsingular row does nonsingular by Sm, by the first δ ◦ γ a box is
removed from a row of length mℓ(a) in each ν′(a).

Now we apply next δ ◦ γ on (ν̃, J̃) = (δ ◦ γ)(ν′, J ′). We show that during this
process a box is removed from a singular row in ν̃(a) of length mℓ(a)− 1 proceeding
with a = 1, 2, . . .. Suppose ℓ(a) <∞. From the previous lemma, we have

p
(a)
i (ν̃)− p

(a)
i (ν′) =

{
0 if i < mℓ(a−1)

−1 if mℓ(a−1) ≤ i < mℓ(a).

Here ℓ(0) should be understood as 1/m. We look for a singular row in ν̃(a) of length
not less thanmℓ(a−1)−1. Suppose ℓ(a−1) < ℓ(a). In the interval i < mℓ(a−1) we only
need to consider the case of i = mℓ(a−1)−1. However, there is no row in ν̃(a) of this

length. In the intervalmℓ(a−1) ≤ i < mℓ(a) we have p
(a)
i (ν̃) = p

(a)
i (ν′)−1. However,

all the riggings in ν̃(a) are multiple of m and hence remain nonsingular, except the
one in the row of length mℓ(a) − 1 from which a box is removed in the previous δ.
Since this row is singular, we remove a box from it. When ℓ(a−1) = ℓ(a), from the
same reason a box is removed from a unique row of length mℓ(a)− 1. Suppose now
ℓ(a) =∞. Then all rows of length not less than mℓ(a−1) − 1 are nonsingular.
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We continue the application of δ(◦γ) but the fact that a box is removed from
the same row in each ν′(a) remains true. □

Proposition 3.6. Suppose the leftmost factor of B is Br,s. Then the following
diagram commutes.

P(B)
Φ //

lb(s)

��

RC(L(B))

β(s)

��
P(lb(s)(B))

Φ
// RC(L(lb(s)(B)))

Proof. First recall Lemma 5.3 given in [11]. Consider the following diagram.

• //

��@
@@

@@
@@

��

•

����
��
��
�

��

• //

��

•

��
• // •

•

??������� // •

j
__@@@@@@@

Viewing this diagram as a cube with front face given by the large square, suppose the
square diagrams given by all faces of the cube except the front commute. Assume
also that the map j is injective. Then the front face should also commute.

Now consider the following diagram.

P(B)
Φ //

tr ''OO
OOO

OOO
OOO

O

lb(s)

��

RC(L(B))

truukkkk
kkkk

kkkk
kk

β(s)

��

P(tr(B))
Φ //

ls

��

RC(L(tr(B)))

γ

��
P(ls(tr(B)))

Φ
// RC(L(ls(tr(B))))

P(lb(s)(B))

tr

77ooooooooooo

Φ
// RC(L(lb(s)(B)))

tr

iiRRRRRRRRRRRRR

We wish to show the front face commutes. The left face commutes by Lemma 3.1
and the back, top, bottom faces do by Theorem 3.2. Since tr is a bijection, we
are left to show the right face commutes. Let β(s)(ν, J) = (ν′, J ′), and tr(ν, J) =

(ν̃, J̃), tr(ν′, J ′) = (ν̃′, J̃ ′). In view of the description of γ, it is enough to show

ν̃ = ν̃′, J̃ = J̃ ′.

We first prove ν̃ = ν̃′. Let m
(a)
j be defined as (2.7) for ν and m

′(a)
j for ν′. Then

we have

m
′(a)
j = m

(a)
j + χ(a < r)δjs.
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Using a similar notation for Nai in (3.1) to ν we get

N ′
ai = Nai + (δar − δa1)χ(i ≤ s).

Then by (3.2) one calculates

Ñ ′
ia = −N ′

ai + χ((a, i) ∈ λ)−
∑
b,j

L
′(b)
j χ(a ≤ b& i ≤ j)

= −Nai − (δar − δa1)χ(i ≤ s) + χ((a, i) ∈ λ)

−
∑
b,j

(L
(b)
j + (δb,r−1 + δb1 − δbr)δjs)χ(a ≤ b& i ≤ j)

= Ñia,

and hence we obtain ν̃ = ν̃′.
To prove J̃ = J̃ ′ note that J (a,i) = J ′(a,i) except when a < r and i = s, in

which case J ′(a,i) has an extra row of length p
′(a)
i compared to J (a,i). Recalling

p
(a)
i = p

′(a)
i and that the partition corresponding to tr is defined as the transpose

of the complementary partition in the rectangle of height m
(a)
i and width p

(a)
i , we

obtain J̃ = J̃ ′. □

Proposition 3.7. Let b ∈ Br,s and 1 ≤ m < s. Then we have

R(ls(m)(b)) = ls(s−m)(b).

Proof. It is clear from the combinatorial description of R in §2.2. □

Proposition 3.8. Suppose the leftmost factor of B is Br,s with s ≥ 2. For any m
(1 ≤ m < s) the following diagram commutes.

P(B)
Φ //

ls(m)

��

RC(L(B))

γ(m)

��
P(ls(m)(B))

Φ
// RC(L((ls(m)(B)))

Proof. We prove by induction on m. The m = 1 case is nothing but Theorem 3.2
(3). Consider the following sequence of maps.

Br,s ⊗B′ ls(m−1)

−→ Br,m−1 ⊗Br,s−m+1 ⊗B′ R⊗1−→ Br,s−m+1 ⊗Br,m−1 ⊗B′

ls−→ Br,1 ⊗Br,s−m ⊗Br,m−1 ⊗B′ 1⊗R⊗1−→ Br,1 ⊗Br,m−1 ⊗Br,s−m ⊗B′

ls−1

−→ Br,m ⊗Br,s−m ⊗B′

At each step the maps cut, move the cutting line, or concatenate the tableau be-

longing to Br,s, by the definition of ls(k) and Proposition 3.7. In particular, the
last map ls−1 is well defined. It is clear that the composition of these maps coin-

cides with ls(m). Since all maps in the sequence correspond to the identity in the
rigged configuration side by the induction hypothesis and Theorem 3.2, the proof
is finished. □

Proof of Theorem 3.3. For B = Brk,sk ⊗ Brk−1,sk−1 ⊗ · · · ⊗ Br1,s1 we introduce

(
∑k

j=1 rjsj ,
∑k

j=1(rj−1)sj ,
∑k

j=1(sj−1)). Note that the operation for B in (i) (i =

1, 2, 3) of Theorem 3.2 decreases its i-th component by 1. We prove by induction
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on the lexicographic order of this index. We again use the cube diagram introduced
in the proof of Proposition 3.6.

First suppose that the leftmost factor of B is B1,1 and consider the following
diagram.

P(B)
Φ //

lh ''PP
PPP

PPP
PPP

P

Sm

��

RC(L(B))

δuukkkk
kkkk

kkkk
kk

Sm

��

P(lh(B))
Φ //

Sm

��

RC(L(lh(B)))

Sm

��
P(Sm(lh(B)))

Φ
// RC(L(Sm(lh(B))))

P(Sm(B))

lh(m)
77nnnnnnnnnnnn

Φ
// RC(L(Sm(B)))

δ(m)
iiSSSSSSSSSSSSSS

Here we have set lh(m) = lh◦(lh◦ ls)m−1, δ(m) = δ◦(δ◦γ)m−1. We wish to show the
front face commutes. Note that if we restrict the domain to that of a fixed weight,
δ(m) is injective. By the above lemma and the injectivity, it is enough to show all
the other faces commute. The back face is assumed to commute by induction. The
commutativity of the left face is clear, while the right face is due to Lemma 3.5.
The top and bottom faces commute by Theorem 3.2.

Next suppose that the leftmost factor of B is Br,1(r ≥ 2). Consider

P(B)
Φ //

lb ''PP
PPP

PPP
PPP

P

Sm

��

RC(L(B))

βuukkkk
kkkk

kkkk
kk

Sm

��

P(lb(B))
Φ //

Sm

��

RC(L(lb(B)))

Sm

��
P(Sm(lb(B)))

Φ
// RC(L(Sm(lb(B))))

P(Sm(B))

lb(m)
77nnnnnnnnnnnn

Φ
// RC(L(Sm(B)))

β(m)
iiSSSSSSSSSSSSSS

Again, we show all the other faces other than the front one commute. The back face
commutes by induction. The commutativity of the left and right faces is clear. The
top face commutes by Theorem 3.2, while the bottom face is due to Proposition
3.6.
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Finally suppose that the leftmost factor of B is Br,s(s ≥ 2). Consider

P(B)
Φ //

ls ''OO
OOO

OOO
OOO

O

Sm

��

RC(L(B))

γ
uukkkk

kkkk
kkkk

kk

Sm

��

P(ls(B))
Φ //

Sm

��

RC(L(ls(B)))

Sm

��
P(Sm(ls(B)))

Φ
// RC(L(Sm(ls(B))))

P(Sm(B))

ls(m)
77oooooooooooo

Φ
// RC(L(Sm(B)))

γ(m)
iiSSSSSSSSSSSSSS

In this case we use Proposition 3.8 for the commutativity of the bottom face. □

4. Application

Theorem 3.3 motivates us to extend the notions of P(B) and RC(L). In the
sequel we assume R to be one of Z,Q or R. We set R>0 = {z ∈ R | z > 0}, R≥0 =
{z ∈ R | z ≥ 0}. First we recall an alternative description of Br,s. For a tableau in
Br,s let xi,j (1 ≤ i ≤ r, i ≤ j ≤ n− r + i+ 1) be the number of boxes with letter j
in the i-th row. Then they must satisfy

n−r+i+1∑
k=i

xi,k = s (i = 1, 2, . . . , r),(4.1)

j∑
k=i

xi,k ≥
j+1∑

k=i+1

xi+1,k (i = 1, . . . , r − 1; j = i, . . . , n− r + i).(4.2)

Now for r ∈ I0, s ∈ R>0 define

Br,s = {(xi,j) | xi,j ∈ R≥0 and satisfies (4.1) and (4.2)}.
We can also consider a formal tensor product

B = Brk,sk ⊗ · · · ⊗ Br1,s1 .
Recall that P(B) was defined as the set of elements b satisfying eib = 0 for i ∈ I0
in §2.2. Note that eib = 0 is equivalent to εi(b) = 0. Hence our new notion PR(B)
should be defined as the set of elements b ∈ B satisfying εi(b) = 0 for i ∈ I0 where
εi(b) for b ∈ Br,s is given in [19, §5.2] and εi(b) for a multiple tensor product b ∈ B
is calculated by extending (2.3) via coassociativity. For m ∈ R>0 the similarity

map Sm on PR(B) is defined as follows. For b = bk ⊗ · · · ⊗ b1, bl = (x
(l)
i,j) ∈ Brl,sl ,

Sm(b) = b′k ⊗ · · · ⊗ b′1 is given by b′l = (mx
(l)
i,j) for 1 ≤ l ≤ k. Then Sm turns out a

map from PR(B) to PR(B′) where B′ = Brk,msk ⊗ · · · ⊗ Br1,ms1 . It is easy to see
that Sm ◦ Sm′ = Smm′ .

The set of rigged configurations RC(L) defined in §2.3 can also be extended by

allowing the indices i to take values in R>0. Consider L = (L
(a)
i )a∈I0,i∈R>0 such

that L
(a)
i ∈ Z≥0 and L

(a)
i > 0 only for finitely many (a, i). Let ν = (m

(a)
i )a∈I0,i∈R>0

be similar such data. ν is said to be an admissible configuration if it satisfies

p
(a)
i ≥ 0 for any a ∈ I0 and i ∈ R>0,
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where

p
(a)
i =

∑
j∈R>0

(
L
(a)
j min(i, j)−

∑
b∈I0

Cab min(i, j)m
(b)
j

)
.

We identify an admissible configuration ν with a sequence (ν(a))a∈I0 such that each
ν(a) is a weakly decreasing sequence of elements of R>0 in which every i ∈ R>0

appears m
(a)
i times. L(a) = (L

(a)
i )i∈R>0 and ν(a) can be viewed as a generalized

Young diagram in which each row can have length in the set R>0. A rigging J
on ν is to associate, with each part of such generalized Young diagram ν(a) of the

same width i, a sequence (J
(a,i)
1 ≥ J

(a,i)
2 ≥ . . . ≥ J

(a,i)

m
(a)
i

) of length m
(a)
i such that

J
(a,i)
j ∈ R≥0 for j = 1, . . . ,m

(a)
i and p

(a)
i ≥ J

(a,i)
1 . We call such pair (ν, J) a

rigged configuration and denote the set of rigged configurations by RCR(L). For
m ∈ R>0 the similarity map Sm on RCR(L) is defined by enlarging all rows of L(a)

and ν(a) m times and multiplying m to all riggings. It is again easy to see that
Sm ◦ Sm′ = Smm′ .

For B = Brk,sk ⊗ · · · ⊗ Br1,s1 we define L(B) = (L
(a)
i )a∈I0,i∈R>0 by (3.3). From

Theorem 3.2 there is a bijection ΦZ = Φ from PZ(B) to RCZ(L(B)). We now define

a map ΦQ from PQ(B) to RCQ(L(B)). Let b = bk ⊗ · · · ⊗ b1, bl = (x
(l)
i,j) ∈ Brl,sl be

an element of PQ(B). Take the minimal positive integer m0 such that m0x
(l)
ij ∈ Z

for all i, j, l. We define ΦQ(b) = (S1/m0
◦ Φ ◦ Sm0)(b).

Proposition 4.1. This ΦQ is a bijection from PQ(B) to RCQ(L(B)).

Proof. For well-definedness we need to show that if m is a multiple of m0, the image
of the above map ΦQ stays the same with m0 replaced with m. But it is true since
all the small diagrams below are commutative. (The middle one is from Theorem
3.3.)

PQ(B)
Sm0 //

Sm $$I
II

II
II

II
PZ(B′)

ΦZ //

Sm/m0

��

RCZ(L(B′))

Sm/m0

��

S1/m0

''OO
OOO

OOO
OOO

PZ(B′′)
ΦZ

// RCZ(L(B′′))
S1/m

// RCQ(L(B))

where B′ = Brk,m0sk ⊗ · · · ⊗ Br1,m0s1 ,B′′ = Brk,msk ⊗ · · · ⊗ Br1,ms1 . □

Similarly, we can try to define a map ΦR from PR(B) to RCR(L(B)) by using
the similarity map Sm for m ∈ R and considering a sequence of elements in PQ(B′)
convergent to the element in PR(B). (The second index of each single KR crystal
in B′ is slightly shifted from B.) We conjecture that this map is well-defined, but
its proof seems nontrivial. We also conjecture that ΦR is a homeomorphism.

Remark 4.1. An evidence of this conjecture is given in [14], where a piecewise
linear formula of the inverse map of ΦR is obtained when rj = 1 for any j. Recently,
a piecewise linear formula of the shapes of rigged configurations in the same cases
was conjectured as the tropicalization of ratios of so-called cylindric loop Schur
functions and proven for the first shape in [15]. It is highly probable that such
piecewise linear formulas exist in both ways for any tensor product of KR crystals,
thereby proving the above conjecture.



14 M. OKADO

Remark 4.2. Although we introduced PR(B) by using the similarity map, it is
also motivated from geometric crystals [1, 13, 8], where the tropicalization of the
corresponding geometric crystals produces a similar object.

Remark 4.3. A similar map to our ΦR in the case of A1 has been constructed in
[22] to linearize a certain integrable system called the tropical periodic Toda lattice.
It would be interesting to establish an explicit connection between them.
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