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HOMOTOPY MOTIONS OF SURFACES IN 3-MANIFOLDS

YUYA KODA AND MAKOTO SAKUMA

Abstract. We introduce the concept of a homotopy motion of a subset in a man-
ifold, and give a systematic study of homotopy motions of surfaces in closed ori-
ented 3-manifold. This notion arises from various natural problems in 3-manifold
theory such as domination of manifold pairs, homotopical behavior of simple loops
on a Heegaard surface, and monodromies of virtual branched covering surface
bundles associated to a Heegaard splitting.

Introduction

For a manifold M and a compact subspace Σ, a motion of Σ in M is an ambient
isotopy of M of compact support that ends up with a homeomorphism preserving
the subset Σ. The motion group M(M,Σ) of Σ in M is the group made up of the
equivalence classes of such motions where the product is defined by concatenation
of ambient isotopies. The concept of a motion has its origin in the braid group,
which can be regarded as the motion group of a finite set in the plane. In his 1962
PhD thesis [27] supervised by Fox, Dahm developed a general theory of motions
and calculated the motion group of a trivial link in the Euclidean space. In [35],
Goldsmith published an exposition of Dahm’s thesis, and in the succeeding paper
[36], she obtained generators and relations of the motion groups of torus links in S3.
Since then (variations of) motion groups have been studied by many researchers in
various settings. (See [14, 28, 32] and references therein.)

In the case whereM is a closed, orientable 3-manifold and Σ is a Heegaard surface,
Johnson-Rubinstein [52] and Johnson-McCullough [51] studied the (smooth) motion
group M(M,Σ) and its quotient group G(M,Σ) defined by

G(M,Σ) ={[f ] ∈ MCG(Σ) | There exists a motion {ft}t∈I with j ◦ f = f1|Σ.}
={[f ] ∈ MCG(Σ) | j ◦ f : Σ →M is ambient isotopic to j.},

where MCG(Σ) is the mapping class group of Σ and j : Σ → M is the inclusion
map. These groups are also intimately related to the pairwise mapping class group
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MCG(M,Σ) first studied by Goeritz [34] in 1933, which has been attracting attention
of various researchers. See Section 4 for a brief summary.

Motivated by Minsky’s question [37] on the homotopical behavior of simple loops
on a Heegaard surface in the ambient 3-manifold (see Question 0.1 below) and the
second authors’ joint work with Donghi Lee [62] on the corresponding problem for
2-bridge spheres of 2-bridge links (see the paragraph after Question 0.1), we are
naturally lead to a homotopy version of the motion group M(M,Σ) and that of the
group G(M,Σ).

A homotopy motion of a closed surface Σ in a compact 3-manifold M is a ho-
motopy F = {ft}t∈I : Σ × I → M , such that the initial end f0 is the inclusion
map j : Σ → M and the terminal end f1 is an embedding with image Σ, where
ft : Σ → M (t ∈ I = [0, 1]) is the continuous map from Σ to M defined by
ft(x) = F (x, t). The homotopy motion group Π(M,Σ) is the group of equivalence
classes of homotopy motions of Σ in M , where the product is defined by concate-
nation of homotopies (see Section 2 for the precise definition). There is a natural
homomorphism ∂+ : Π(M,Σ) → MCG(Σ) which assigns (the equivalence class of)
a homotopy motion with (the mapping class represented by) its terminal end. We
denote the image of ∂+ by Γ(M,Σ). Then we have

Γ(M,Σ) = {[f ] ∈ MCG(Σ) | j ◦ f : Σ →M is homotopic to the inclusion map j.}.

By denoting the kernel of ∂+ by K(M,Σ), we have the following exact sequence.

1 // K(M,Σ) // Π(M,Σ)
∂+ // Γ(M,Σ) // 1.(1)

In the case where M is a closed, orientable 3-manifold and Σ is a Heegaard surface,
the above exact sequence is a homotopy version of the following exact sequence
studied by Johnson-McCullough [51].

1 // π1(Diff(M)) // M(M,Σ) // G(M,Σ) // 1,(2)

where Diff(M) is the space of diffeomorphisms of M . (The smooth motion group
M(M,Σ) corresponds to H1(M,Σ) in [51], the fundamental group of the space
H(M,Σ) of Heegaard surfaces equivalent to (M,Σ).)

The purpose of this paper is to give a systematic study of the homotopy mo-
tion group Π(M,Σ) and the related groups in the exact sequence (1) for a closed,
orientable surface Σ in a closed, orientable 3-manifold M .

Before stating the main results, we explain our motivation. Let Σ be a Heegaard
surface of a closed, orientable 3-manifold M , and let V1 and V2 be the handlebodies
obtained by cutting M along Σ. Let Γ(Vi) be the kernel of the homomorphism
MCG(Vi) → Out(π1(Vi))) (i = 1, 2). Now, let S(Σ) be the set of the isotopy classes
of essential loops on Σ. Let ∆i ⊂ S(Σ) be the set of (isotopy classes of) meridians,
i.e., the essential loops on Σ that bound disks in Vi. Set ∆ := ∆1∪∆2. Let Z ⊂ S(Σ)
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be the set of (isotopy classes of) essential loops on Σ that are null-homotopic in M .
In [37, Question 5.4], Minsky raised the following question.

Question 0.1. When is Z equal to the orbit ⟨Γ(V1),Γ(V2)⟩∆?

This question also makes sense for bridge spheres of links in S3, and the question
for 2-bridge spheres for 2-bridge links was solved affirmatively by Lee-Sakuma [62],
which in turn led to the complete characterization of epimorphisms among 2-bridge
knot groups by Aimi-Lee-Sakai-Sakuma [3, Theorem 8.1]), showing that any such
epimorphism essentially arises from the construction by Ohtsuki-Riley-Sakuma [78].
This paper is motivated by the natural question to what extent these results (and
the related results explained later) hold in a general setting.

To formulate our question explicitly, note that the group Γ(Vi) is identified with
the group Γ(Vi,Σ) = ∂+(Π(Vi,Σ)) < MCG(Σ). So the subgroup ⟨Γ(V1),Γ(V2)⟩ is
contained in the group Γ(M,Σ) = ∂+(Π(M,Σ)). In particular, we have

⟨Γ(V1),Γ(V2)⟩∆ ⊂ Γ(M,Σ)∆ ⊂ Z.

This means that it would be more natural to work with the group Γ(M,Σ) than to
work with its subgroup ⟨Γ(V1),Γ(V2)⟩ for Question 0.1.

Question 0.2. Let Σ be a Heegaard surface of a closed, orientable 3-manifold M .

(1) When is Z equal to the orbit Γ(M,Σ)∆?
(2) Let κ : S(Σ)/Γ(M,Σ) → S(Σ)/ ≃M be the projection, where ≃M is the

equivalence relation on S(Σ) induced by homotopy in M , namely two essen-
tial simple loops of Σ are equivalent with respect to≃M if they are homotopic
in M . Then how far is the map κ from being injective? In particular, when
is the restriction of κ to (S(Σ)− Z)/Γ(M,Σ) injective?

The corresponding question for 2-bridge spheres for 2-bridge links were completely
solved by Lee-Sakuma [62, 64]. (Below, we use the same symbol (M,Σ) for a 2-bridge
decomposition by abusing notation.) The first question was solved affirmatively in
[62] as already noted, and the second question was solved as follows: the restriction
of κ to (S(Σ) − Z)/Γ(M,Σ) is injective except for the Whitehead link (for which,
κ is injective with precisely two exceptional pairs). These results were applied to
establish a variation of McShane’s identity for hyperbolic 2-bridge links [63]. (See
[60] for summary and see [61] for further extension.) A partial answer to Question
0.2 in a general setting was given by Ohshika-Sakuma [77, Theorems C and E].
In the companion paper [58], we give an answer for the special case where Σ is a
genus-1 Heegaard surface of a lens space, and show that the results of [64] imply
the following results for 2-bridge decompositions.

• For a hyperbolic 2-bridge link, equivalently, for the case where the Hempel
distance of the 2-bridge sphere is ≥ 3, we have

Γ(M,Σ) = ⟨Γ(V1),Γ(V2)⟩.
3



For a 2-bridge torus link (except for the trivial knot and the two-component
trivial link), equivalently for the case where the Hempel distance of the 2-
bridge sphere is 2, we have

Γ(M,Σ) ⪈ ⟨Γ(V1),Γ(V2)⟩.

To be precise, the index [Γ(M,Σ) : ⟨Γ(V1),Γ(V2)⟩] is 2, and the gap arises
from the open book structure of the link complement whose binding is the
axis of the 2-strand braid representing the 2-bridge torus link (see [64, p.5]
and Section 5).
Moreover, in both cases, the image of ⟨Γ(V1),Γ(V2)⟩ in the automorphism
group of the curve complex of the 4-times punctured sphere is isomorphic
to the free product of those of Γ(V1) and Γ(V2).

Thus the following question naturally arises.

Question 0.3. (1) When is the group ⟨Γ(V1),Γ(V2)⟩ equal to Γ(M,Σ)?
(2) When is the group ⟨Γ(V1),Γ(V2)⟩ equal to the free product ⟨Γ(V1)⟩ ∗ ⟨Γ(V2)⟩?

A partial answer to the second question was given Bowditch-Ohshika-Sakuma in
[77, Theorem B] (cf. Bestvina-Fujiwara [9, Section 3]), which says that if the Hempel
distance is large enough, then the orientation-preserving subgroup ⟨Γ+(V1),Γ

+(V2)⟩
is equal to the free product ⟨Γ+(V1)⟩ ∗ ⟨Γ+(V2)⟩.

A main purpose of this paper is to give the following partial answer to Question
0.3(1).

Theorem 8.1. Let M = V1 ∪Σ V2 be a Heegaard splitting of a closed, orientable
3-manifold M induced from an open book decomposition. If M has an aspherical
prime summand, then we have ⟨Γ(V1),Γ(V2)⟩ ⪇ Γ(M,Σ).

To prove this theorem we construct a Z2-valued invariant of Γ(M,Σ), i.e., a map
Deg : Γ(M,Σ) → Z2, such that its mod 2 reduction vanishes on the subgroup

⟨Γ(V1),Γ(V2)⟩. This actually comes from a natural invariant D̂eg : Π(M,Σ) → Z2,

where the well-definedness of Deg is equivalent to the vanishing of D̂eg on the
subgroup K(M,Σ).

An element α of K(M,Σ) is represented by a homotopy motion F = {ft}t∈I :
Σ × I → M , such that both f0 and f1 are equal to the inclusion map j : Σ → M .
Thus F determines a continuous map F̂ : Σ × S1 → M . Though the homotopy
class of F̂ is not always uniquely determined by α ∈ K(M,Σ), its degree is uniquely
determined by α, and so we have a homomorphism deg : K(M,Σ) → Z (Lemma
1.6). The map Deg : Γ(M,Σ) → Z2 is well-defined if and only if the homomorphism
deg : K(M,Σ) → Z vanishes (see the paragraph just before Proposition 8.11). The
problem of whether this condition holds can be regarded as a special case of the
problem of dominations among 3-manifolds, which has been a subject of extensive
literatures (see e.g. [89, 59, 76] and references therein).
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Definition 0.4. We say that a closed, orientable surface Σ in a closed, orientable
3-manifold M (or a pair (M,Σ)) is dominated by Σ × S1 if there exists a map
ϕ : Σ × S1 → M such that ϕ|Σ×{0} is an embedding with image Σ ⊂ M and that
the degree of ϕ is non-zero.

Clearly, the homomorphism deg : K(M,Σ) → Z vanishes if and only if (M,Σ) is
not dominated by Σ× S1. In this regard, we obtain the following theorem.

Theorem 6.1. Let M be a closed, orientable 3-manifold, and suppose that Σ is a
Heegaard surface for M .

(1) If M has an aspherical prime summand, then (M,Σ) is not dominated by
Σ× S1.

(2) If M = #g(S
2 × S1) for some non-negative integer g, or M admits the

geometry of S3 or S2 × R, then (M,Σ) is dominated by Σ× S1.

By Kneser-Milnor prime decomposition theorem [56, 70] (cf. [41, 46]), every
closed, orientable 3-manifold M admits a unique prime decomposition, and by the
geometrization theorem established by Perelman [80, 81, 82] (see [10, 19, 55, 73,
74] for exposition), each prime factor admits a unique decomposition by tori into
geometric manifolds, i.e., those which have one of Thurston’s 8 geometries. This
together with the sphere theorem implies that for a closed, orientable 3-manifoldM ,
the following three conditions are equivalent: (i)M is aspherical, (ii)M is irreducible
and π1(M) is not finite, (iii) the universal covering space of M is homeomorphic
to R3. Thus, for example, a 3-manifold having positive Grmov norm satisfies the
condition of Theorem 6.1(1), for the Gromov norm is additive under connected sum.
Conversely, if M is non-aspherical, then either M is admits the geometry of S3 or
S2 × R, or M is non-prime (cf. [10, Chapter 1]). Here RP3#RP3 is the unique
geometric 3-manifold which is non-prime. Thus, Theorem 6.1 especially implies
that, for a prime 3-manifold M and its Heegaard surface Σ, (M,Σ) is dominated by
Σ× S1 if and only if M is non-aspherical.

Theorem 6.1 guarantees the existence of the map Deg : Γ(M,Σ) → Z2 when M
has an aspherical prime summand, and Theorem 8.1 is proved by using this fact.
Theorem 6.1 is in fact a consequence of the following two theorems.

Theorem 6.2. Suppose that M = #g(S
2×S1) for some non-negative integer g, or

M admits the geometry of S3 or S2 ×R. Let Σ be a Heegaard surface for M . Then
(M,Σ) is dominated by Σ × S1. Moreover, the following hold for the image of the
homomorphism deg : K(M,Σ) → Z.

(1) If M = #g(S
2 × S1), then deg(K(M,Σ)) = Z.

(2) If M admits the geometry of S3, then deg(K(M,Σ)) ⊃ |π1(M)| · Z
(3) If M admits the geometry of S2×R, then deg(K(M,Σ)) = Z or 2Z according

to whether M = S2 × R or RP3#RP3.
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Theorem 7.1. Let M be a closed, orientable, aspherical 3-manifold, and Σ be a
Heegaard surface for M . Then (M,Σ) is not dominated by Σ × S1. To be precise,
the following hold.

(1) The group K(M,Σ) is isomorphic to the center Z(π1(M)) of π1(M). Thus
if M is a Seifert fibered space with orientable base orbifold, then K(M,Σ)
is isomorphic to Z3 or Z according to whether M is the 3-torus T 3 or not.
Otherwise, K(M,Σ) is the trivial group.

(2) The homomorphism deg : K(M,Σ) → Z vanishes.

We remark here that Kotschick-Neofytidis [59, Theorem 1] proved that a closed,
orientable 3-manifoldM is dominated by a product Σ×S1 for some closed, orientable
surface Σ if and only if M is finitely covered by either a product F × S1, for some
aspherical surface F , or a connected sum #g(S

2×S1) for some non-negative integer
g. (In [59] and the present paper, we employ the usual convention that the empty
connected sum #0(S

2×S1) represents S3.) Thus Theorem 7.1(2) follows from their
results. The proof of Theorem 6.2, however, require more subtle arguments, for we
impose that the product Σ× S1 dominates not only the manifold M itself but also
the pair (M,Σ). Thus our constructions of dominating maps are quite different from
those in [59].

In this paper, we also study incompressible surfaces in Haken manifolds. In Theo-
rem 2.3 and Corollary 2.6, we completely describe the structures of their homotopy
motion groups and related groups. The proof of that theorem is inspired by the
work of Jaco-Shalen [47] (see also [46, Chapter VII]), where they introduced the
concept of a spatial deformation of a subset Σ in the boundary of a manifold. The
concept of a homotopy motion is also regarded as a variation of that of a spatial
deformation. As in [47] and [46, Chapter 5], the proof of Theorem 2.3 uses the
covering spaces of compact 3-manifolds corresponding to the surface fundamental
groups, and it is based on the positive solution of Simon’s conjecture [86] (see [18,
Theorem 9.2]) concerning manifold compactifications of such covering spaces.

The opposite case where Σ is homotopically trivial, in the sense that the inclusion
map j : Σ → M is homotopic to the contant map, is studied as well (see Theorem
3.2). In that case, we prove that if M is aspherical then Π(M,Σ) ∼= π1(M) ×
MCG(Σ): the factors π1(M) and MCG(Σ) correspond to K(M,Σ) and Γ(M,Σ),
respectively. Conversely, if Γ(M,Σ) = MCG(Σ) then Σ is homotopically trivial
provided that M is irreducible (Corollary 3.4).

Our interest in the group Γ(M,Σ) has also its origin in the virtual branched fibra-
tion theorem, which says that, for every Heegaard surface Σ of a closed, orientable
3-manifold M , there exists a double branched covering of M such that the inverse
image of Σ is the union of two fiber surfaces ([83, Addendum 1]). We show that
this theorem is intimately related to the subgroup ⟨Γ(V1),Γ(V2)⟩ of Γ(M,Σ). Let
I(Vi) (⊂ MCG(Σ)) be the set of torsion elements of Γ(Vi). By slightly refining the
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arguments of Zimmermann [90, Proof of Corollary 1.3], we can see that this is noth-
ing but the set of vertical I-bundle involutions of Vi (Lemma 9.3). Here, a vertical
I-bundle involution of a handlebody V is an involution h for which there exists an
I-bundle structure of V such that h preserves each fiber setwise and acts on it as a
reflection. We then prove the following refinement of [83, Addendum 1].

Theorem 9.1. Let M = V1 ∪Σ V2 be a Heegaard splitting of a closed, orientable 3-
manifold M . Then there exists a double branched covering p : M̃ →M that satisfies
the following conditions.

(i) M̃ is a surface bundle over S1 whose fiber is homeomorphic to Σ.
(ii) The preimage p−1(Σ) of the Heegaard surface Σ is a union of two (disjoint)

fiber surfaces.

Moreover, the set D(M,Σ) of monodromies of such bundles is equal to the set {h1 ◦
h2 | hi ∈ I(Vi)}, up to conjugation and inversion.

This paper is organized as follows. In Section 1, we give formal definitions of
the homotopy motion group Π(M,Σ), its subgroup K(M,Σ) and its quotient group
Γ(M,Σ), and present basic properties of these groups. Section 2 is devoted to the
case where Σ is an incompressible surface in a Haken manifold M . Section 3 treats
the opposite case where Σ is homotopically trivial. The remaining sections are
devoted to the case where Σ is a Heegaard surface. In Section 4, we recall various
natural subgroups of MCG(Σ) associated with a Heegaard surface, and describe
their relationships with the group Γ(M,Σ). In Section 5, we consider the Heegaard
splitting obtained from an open book decomposition, and introduce two homotopy
motions, the half book rotation ρ and the unilateral book rotation σ, which play key
roles in the proofs of the main theorems given in the succeeding three sections. In
Sections 6 and 7, we study the group K(M,Σ) of a Heegaard surface Σ of a closed,
orientable 3-manifold M . In Section 8, we discuss gaps between Γ(M,Σ) and the
subgroup ⟨Γ(V1),Γ(V2)⟩, and prove Theorem 8.1, which provides a partial answer to
Question 0.3(1). In Section 9, we prove the branched fibration theorem (Theorem
9.1), which gives another motivation for defining and studying the group Γ(M,Σ).

Acknowledgement. Part of this work was first announced at a zoom workshop
held at RIMS in May 2020, and it is summarized in the unrefereed conference paper
[57], which includes brief outlines of some of the proofs. Both authors would like to
thank the organizers, Tomotada Ohtsuki and Hirotaka Akiyoshi, for giving us the
opportunity to announce the results in a difficult time. The second author would
like to thank Ken Baker for pointing out the importance of book rotations [7] that
motivated the definition of the group Γ(M,Σ). Both authors would like to thank
Michel Boileau for his valuable suggestions [11] concerning nonzero degree maps form
Σ×S1 to a closed, orientable 3-manifold. His suggestions were indispensable for the
proof of Theorem 6.1. Both authors would also like to thank Norbert A’Campo, José
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Maria Montesinos, and Christoforos Neofytidis whose suggestions greatly improved
this paper.

1. The homotopy motion groups

LetX and Y be topological spaces. We denote by C(X,Y ) the space of continuous
maps from X to Y , endowed with the compact-open topology. For a subspace A of
X, we denote by J(A,X) the subspace of C(A,X) consisting of embeddings of A
into X with image A = j(A), where j : A→ X is the inclusion map. For subspaces
A1, . . . , An of X, let Homeo(X,A1, . . . , An) denote the topological group of self-
homeomorphisms of X that preserves each Ai (1 ≤ i ≤ n). By MCG(X,A1, . . . , An)
we mean the mapping class group of (X,A1, . . . , An), i.e., the group of connected
components of Homeo(X,A1, . . . , An). We usually do not distinguish notationally
between f ∈ Homeo(X,Y1, . . . , Yn) and the element [f ] ∈ MCG(X,A1, . . . , An)
represented by f . Note that we allow orientation-reversing homeomorphisms when
X is an orientable manifold, so our MCG(X,A1, . . . , An) is what is often called
the extended mapping class group. A “plus” symbol, as in MCG+(X,A1, . . . , An),
indicates the subgroup, of index 1 or 2, consisting of the elements represented by
orientation-preserving homeomorphisms of X.

Throughout the paper, we identify S1 with R/Z. In our notation, we will not
distinguish between an element of S1 and its representative in R.

Let Σ be a subspace of a manifold M , and j : Σ → M the inclusion map. In
this section, we first introduce formal definitions of the homotopy motion group
Π(M,Σ), its subgroup K(M,Σ), and the quotient group Γ(M,Σ). We then describe
their basic properties especially whenM is a 3-manifold and Σ is a closed, orientable
surface.

Let C(Σ,M) be the space of continuous maps from Σ to M , and J(Σ,M) the
subspace of C(Σ,M) consisting of embeddings of Σ into M with image j(Σ). We
call a path

α : (I, {1}, {0}) → (C(Σ,M), J(Σ,M), {j})
a homotopy motion of Σ. We call the maps α(0) and α(1) from Σ to M the initial
end and the terminal end, respectively, of the homotopy motion. Two homotopy
motions (I, {1}, {0}) → (C(Σ,M), J(Σ,M), {j}) are said to be equivalent if they
are homotopic via a homotopy through maps of the same form. We usually do not
distinguish notationally between a homotopy motion and its equivalence class. We
define

Π(M,Σ) := π1(C(Σ,M), J(Σ,M), j)

to be the set of equivalence classes of homotopy motions, as usual in the definition
of relative homotopy groups πn(X,A, x0) for x0 ∈ A ⊂ X, where X is a topological
space. In general, the relative fundamental group π1(X,A, x0) is defined only when
X is a topological group and A is a subgroup (cf. [35, Remark 2.7]). Inspired by
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the definition of the relative fundamental group, however, we equip Π(M,Σ) with a
group structure as in the following way.

Let α and β be homotopy motions. Then the concatenation

α · β : (I, {1}, {0}) → (C(Σ,M), J(Σ,M), {j})
of them is defined by

α · β(t) =
{
α(2t) (0 ≤ t ≤ 1/2)
β(2t− 1) ◦ α(1) (1/2 ≤ t ≤ 1).

We can easily check that the concatenation naturally induces a product of el-
ements of π1(C(Σ,M), J(Σ,M)). The identity deformation e : (I, {1}, {0}) →
(C(Σ,M), J(Σ,M), {j}) defined by e(t) = j (t ∈ I) represents the identity element
of Π(M,Σ). The inverse ᾱ of a homotopy motion α is defined by

ᾱ(t) = α(1− t) ◦ α(1)−1,

where we regard α(1) as a self-homeomorphism of Σ, and α(1)−1 denotes its inverse.
Note that the inverse of [α] in the group π1(C(Σ,M), J(Σ,M)) is given by [ᾱ].

Definition 1.1. We call the group Π(M,Σ) the homotopy motion group of Σ in M .

Remark 1.2. When Σ is a single point x0, Π(M,Σ) is nothing but the fundamental
group π1(M,x0) of M . Thus, the group Π(M,Σ) is a sort of generalization of
π1(M,x0). See also Theorem 3.2 below.

Notation 1.3. For a homotopy motion

α : (I, {1}, {0}) → (C(Σ,M), J(Σ,M), {j})
we employ the following notation.

(1) We occasionally regard α as a continuous map Σ × I → M defined by
α(x, t) = α(x)(t).

(2) When we regard α as a continuous family of maps, we occasionally write
α = {ft}t∈I where ft = α(t) : Σ →M .

(3) When α is a closed path, i.e., α(1) = α(0) = j, α induces a continuous
map Σ × S1 → M , which we denote by α̂, that sends (x, t) ∈ Σ × S1 to
α(t)(x) = α(x, t). The homotopy class of this map relative to Σ × {0} is
uniquely determined by the element [α] ∈ π1(C(Σ,M), j).

Since the inclusion map j is nothing but the identity if we think of the codomain
of j as Σ, J(Σ,M) can be canonically identified with Homeo(Σ). Thus, the terminal
end α(1) = f1 of a homotopy motion α = {ft}t∈I can be regarded as an element of
Homeo(Σ). Therefore, we obtain a map

∂+ : Π(M,Σ) → MCG(Σ)

by taking the equivalence class of a homotopy motion α = {ft}t∈I to the mapping
class of α(1) = f1 ∈ Homeo(Σ). Clearly, this map is a homomorphism. (To be
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precise, this holds when we think of Homeo(Σ) as acting on X from the right:
under the usual convention where Homeo(Σ) acts on X from the left, which we
employ in this paper, the map ∂+ is actually an anti-homomorphism.)

Definition 1.4. We denote the image of ∂+ by Γ(M,Σ). Namely, Γ(M,Σ) is the
subgroup of the extended mapping class group MCG(Σ) defined by

Γ(M,Σ) = {[f ] ∈ MCG(Σ) | There exists a homotopy motion {ft}t∈I with f = f1.}
= {[f ] ∈ MCG(Σ) | j ◦ f : Σ →M is homotopic to the inclusion map j.}.

The kernel of ∂+ is denoted by K(M,Σ): thus we have the exact sequence (1) in the
introduction.

Throughout the remainder of this paper, Σ denotes a connected, closed, orientable
surface embedded in a connected, orientable 3-manifold M , and j : Σ →M denotes
the inclusion.

We now provide a few basic properties concerning the groups defined in the above,
by using elementary arguments in homotopy theory.

Note that we have the following long exact sequence.

· · · → π1(J(Σ,M), j)
I−→ π1(C(Σ,M), j) → π1(C(Σ,M), J(Σ,M), j)

→ π0(J(Σ,M)) → π0(C(Σ,M)).

The boundary map π1(C(Σ,M), J(Σ,M), j) → π0(J(Σ,M)) respects the group
structures of Π(M,Σ) = π1(C(Σ,M), J(Σ,M), j) and MCG(Σ) = π0(J(Σ,M)),
and it is identical with the (anti-) homomorphism ∂+. Thus we have the following
description of the kernel K(M,Σ).

Lemma 1.5. We have the isomorphism

K(M,Σ) ∼= π1(C(Σ,M), j)/I (π1(J(Σ,M), j)).

Moreover, if the genus of Σ is at least 2, then we have

K(M,Σ) ∼= π1(C(Σ,M), j).

Proof. The first assertion is a direct consequence of the exact sequence. The sec-
ond assertion follows from the fact that J(Σ,M) can be canonically identified with
Homeo(Σ) as discussed before, and the result of Hamstrom [39] that π1(J(Σ,M), j)
is the trivial group when the genus of Σ is at least 2. □
Lemma 1.6. Suppose that M is an oriented, closed 3-manifold and Σ is a closed,
oriented surface in M . Then there is a homomorphism deg : K(M,Σ) → Z such
that deg(α) is the degree of the map α̂ : Σ× S1 →M defined in Notation 1.3.

Proof. As noted in Notation 1.3(3), each element α in π1(C(Σ,M), j) determines
a continuous map α̂ : Σ × S1 → M whose homotopy class is uniquely deter-
mined by the element α ∈ π1(C(Σ,M), j). Thus we obtain a homomorphism from
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π1(C(Σ,M), j) to Z which sends α to the degree of α̂. If α belongs to the subgroup
I (π1(J(Σ,M), j)), then image(α̂) = Σ× {0} and therefore α belongs to the kernel
of the homomorphism. Hence it descends to the desired homomorphism

deg : K(M,Σ) ∼= π1(C(Σ,M), j)/I (π1(J(Σ,M), j)) → Z.
□

For an element α ∈ K(M,Σ), we call the value deg(α) ∈ Z the degree of α.
The following lemma gives a characterization of the group Γ(M,Σ) in terms of

the induced homomorphisms between the fundamental groups. This lemma will be
used in the companion paper [58] to determine the group Γ(M,Σ) when M is a lens
space and Σ is its genus-1 Heegaard surface.

Lemma 1.7. Let Σ be a closed, orientable surface embedded in a 3-manifold M .
Then for every mapping class [f ] ∈ Γ(M,Σ) < MCG(Σ), the homomorphism (j ◦
f)∗ : π1(Σ) → π1(M) is equal to the homomorphism j∗ modulo post composition
of an inner-automorphism of π1(M). Moreover, if M is irreducible then the above
condition is also a sufficient condition for a mapping class [f ] ∈ MCG(Σ) to be
contained in Γ(M,Σ).

Proof. The first assertion is obvious from the definition of Γ(M,Σ). To prove the
second assertion, assume that M is irreducible and let [f ] ∈ MCG(Σ) be a mapping
class satisfying the condition. We may choose the representative f so that it fixes
a base point x0 ∈ Σ ⊂ M . Then the condition means that there is a closed path
δ : (I, ∂I) → (M,x0) such that (j ◦ f)∗ : π1(Σ, x0) → π1(M,x0) is equal to the
composition of j∗ and the inner-automorphism of π1(M,x0) determined by [δ] ∈
π1(M,x0), namely, the following holds.

• For any closed path γ : (I, ∂I) → (M,x0), the path f ◦ γ is homotopic rel.
∂I to the product path δ−1 · γ · δ.

We want to construct a map F = {ft}t∈I : Σ × I → M such that f0 = j and
f1 = f . The condition for F determines the restriction, F ′, of the desired map to
the subspace Y := Σ × {0, 1}. Our task is to extend F ′ to the whole space Σ × I.
This can be done through an elementary argument in homotopy theory as follows.
Consider a (standard) cellular decomposition of Σ, consisting of the single 0-cell
e0 = x0, 1-cells e

1
1, . . . , e

1
2g (g is the genus of Σ), and a single 2-cell e2. Let C3 be

the product cellular decomposition of Σ × I, where the I-factor is endowed with
the cellular decomposition consisting of two 0-cells {i} (i = 0, 1) and a single 1-cell
[0, 1]. Then C3 consists of 0-cells e0×{i}, 1-cells e1k ×{i}, e0× [0, 1], 2-cells e2×{i},
e1k × [0, 1], and the unique 3-cell e2 × [0, 1], where i, j ∈ {0, 1} and k ∈ {1, . . . , 2g}.
Note that all 1-cells, except for e0 × [0, 1], and all 2-cells, except for e1k × [0, 1],

are contained in the domain of F ′. We first extend F ′ to the map F (1) from the
1-skeleton of C3, by defining its restriction to the unique remaining 1-cell e0 × [0, 1]

by using the path δ, namely F (1)(e0, t) = δ(t). The condition for f stated in the
11



above implies that the restriction of F (1) to the boundary of each of the remaining
2-cell e1k × [0, 1] is homotopic to a constant map. Hence we can extend F (1) to the
2-skeleton of C3. The resulting map can be extended to the whole C3, because the
assumption that M is irreducible together with the sphere theorem implies that
π2(M) = 0. □

The next lemma plays important roles in the proofs of Theorems 2.3, 3.2 and 7.1.

Lemma 1.8. Let Σ be a closed, orientable surface embedded in a 3-manifold M ,
and x0 ∈ Σ. Then there exists a homomorphism

Φ : π1(C(Σ,M), j) → Z(j∗(π1(Σ, x0)), π1(M,x0)),

where the target is the centralizer of j∗(π1(Σ, x0)) in π1(M,x0), which maps [α] ∈
π1(C(Σ,M), j) to the element of π1(M,x0) represented by the loop

(I, ∂I) → (M, {x0}), t 7→ α(t)(x0).

Moreover, if M is aspherical, then Φ is injective.

Proof. For an element [α] ∈ π1(C(Σ,M), j), let α̂ : Σ×S1 →M be the map defined
in Notation 1.3(3). Let w be the element of π1(Σ×S1, (x0, 0)) = π1(Σ, x0)×π1(S1, 0)
representing the generator of π1(S

1, 0). Then α̂∗(w) belongs to Z(j∗(π1(Σ)), π1(M,x0)),
and it is represented by the based loop t 7→ α(t)(x0). Since the homotopy class of
α̂ relative to (x0, 0) is uniquely determined by [α] ∈ π1(C(Σ,M), j), we obtain the
desired homomorphism Φ.

To prove the second assertion, assume that M is aspherical, and let [α] be an
element of π1(C(Σ,M), j) which is contained in kerΦ. We want to construct a
homotopy between the path α and the constant path e in C(Σ,M) relative to the
endpoints. By regarding α and e as maps from Σ × I to M (cf. Notation 1.3(1)),
this is equivalent to constructing a continuous map H = {hs}s∈I : (Σ× I)× I →M
such that h0 = α, h1 = e, and hs|Σ×{0} = hs|Σ×{1} = j for every s ∈ I where we
identify Σ × {0} and Σ × {1} with Σ; namely, H(x, t, 0) = α(x, t), H(x, t, 1) = x,
and H(x, 0, s) = H(x, 1, s) = x for every x ∈ Σ and t, s ∈ I. The condition
for H determines the restriction, H ′, of the desired map H to the subspace Y :=
(Σ× I × {0, 1}) ∪ (Σ× {0, 1} × I). Our task is to extend the map H ′ to the whole
space (Σ × I) × I. To this end, consider a (standard) cellular decomposition of
Σ in the proof of Lemma 1.7, and let C4 be the product cellular decomposition of
(Σ× I)× I. Then C4 consists of 0-cells

e0 × {i} × {j},
1-cells

e1k × {i} × {j}, e0 × [0, 1]× {j}, e0 × {i} × [0, 1],

2-cells

e2 × {i} × {j}, e1k × [0, 1]× {j}, e1k × {i} × [0, 1], e0 × [0, 1]× [0, 1],
12



and several 3 and 4-cells, where i, j ∈ {0, 1} and k ∈ {1, . . . , 2g}. Note that all
0-cells, 1-cells, and 2-cells, except for e0 × [0, 1]× [0, 1] are contained in the domain
Y of the map H ′. By the assumption that [α] belongs kerΦ, the restriction of H ′

to the boundary of the 2-cell e0 × [0, 1] × [0, 1] is homotopic to a constant map.
So, we can extend the map H ′ to the 2-cell. Since M is aspherical, there is no
obstruction to extending the map over 3 and 4-cells. Consequently, we have [α] =
[e] ∈ π1(C(Σ,M), j). □

2. The homotopy motion groups of incompressible surfaces in Haken
manifolds

In this section, we consider the groups Π(M,Σ) and Γ(M,Σ) in the case where Σ
is a closed, orientable, incompressible surface in a closed, orientable Haken manifold
M . Let us begin with two examples of non-trivial elements of Π(M,Σ). We will see
soon in Theorem 2.3 that they are in fact the only elements necessary to generate
Π(M,Σ).

Example 2.1. Let φ be an element of MCG(Σ). Consider the 3-manifold M :=
Σ × R/(x, t) ∼ (φ(x), t + 1), which is the Σ-bundle over S1 with monodromy φ.
We denote the image of Σ × {0} in M by the same symbol Σ and call it a fiber
surface. Then we have a natural homotopy motion λ = {ft} of Σ in M defined by
ft(x) = [x, t], where [x, t] is the element of M represented by (x, t). Its terminal end
is equal to φ−1, because f1(x) = [x, 1] = [φ−1(x), 0] = φ−1(x). Thus φ belongs to
Γ(M,Σ).

Example 2.2. Let h be an orientation-reversing free involution of a closed, ori-
entable surface Σ. Consider the 3-manifold N := Σ × [0, 1]/(x, t) ∼ (h(x), 1 − t),
which is the orientable twisted I-bundle over the closed, non-orientable surface Σ/h.
The boundary ∂N is identified with Σ by the homeomorphism Σ → ∂N mapping x
to [x, 0], where [x, t] denotes the element of N represented by (x, t). Then we have
a natural homotopy motion µ = {ft}t∈I of Σ = ∂N in N , defined by ft(x) = [x, t].
Its terminal end is equal to h, because f1(x) = [x, 1] = [h(x), 0] = h(x) for every
x ∈ Σ = ∂N . Let N ′ be any compact, orientable 3-manifold whose boundary is
identified with Σ, i.e., a homeomorphism ∂N ′ ∼= Σ is fixed, and let M = N ∪N ′ be
the closed, orientable 3-manifold obtained by gluing N and N ′ along the common
boundary Σ. Then the homotopy motion µ = {ft}t∈I of Σ in N defined as above
can be regarded as that of Σ inM , and thus h is an element of Γ(M,Σ). If N ′ is also
a twisted I-bundle associated with an orientation-reversing involution h′ of Σ, then
we have another homotopy motion µ′ of Σ in N ′ with terminal end h′ ∈ Γ(M,Σ).

The following theorem is proved by using the positive solution of Simon’s con-
jecture [86] concerning manifold compactifications of covering spaces, with finitely
generated fundamental groups, of compact 3-manifolds, which in turn is proved by
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using the geometrization theorem established by Perelman [80, 81, 82] and the tame-
ness theorem of hyperbolic manifolds established by Agol [2] and Calegari-Gabai [17]
(see also Soma [87] and Bowditch [13]). A proof of Simon’s conjecture can be found
in Canary’s expository article [18, Theorem 9.2], where he attributes it to Long and
Reid.

Theorem 2.3. Let M be a closed, orientable Haken manifold, and suppose that Σ
is a closed, orientable, incompressible surface in M . Then the following hold.

(1) If M is a Σ-bundle over S1 with monodromy φ and Σ is a fiber surface,
then Π(M,Σ) is the infinite cyclic group generated by the homotopy motion
λ described in Example 2.1.

(2) If Σ separates M into two submanifolds, M1 and M2, precisely one of which
is a twisted I-bundle, then Π(M,Σ) is the order-2 cyclic group generated by
the homotopy motion µ described in Example 2.2.

(3) If Σ separates M into two submanifolds, M1 and M2, both of which are
twisted I-bundles, then Π(M,Σ) is the infinite dihedral group generated by
the homotopy motions µ and µ′ described in Example 2.2.

(4) Otherwise, Π(M,Σ) is the trivial group.

To show the above theorem, we require the following two lemmas.

Lemma 2.4. Let Σ be a closed, orientable surface of genus at least 1. Then

Π(Σ× R,Σ× {0}) = 1.

Proof. Consider the projection q : Σ × R → Σ × {0}. Then for any homotopy
motion α = {ft}t∈I of Σ× {0} in Σ×R, the composition {q ◦ ft}t∈I is a homotopy
of maps from Σ × {0} to itself with initial end idΣ×{0} and terminal end f1. It
follows form Baer [5] (cf. [29, Theorem 1.12]) that f1 is isotopic to idΣ×{0}. Hence
Γ(Σ× R,Σ× {0}) is trivial, and so Π(Σ× R,Σ× {0}) = K(Σ× R,Σ× {0}).

Suppose first that the genus of Σ is at least 2. Then K(Σ × R,Σ × {0}) ∼=
π1(C(Σ× {0},Σ× R), j) by Lemma 1.5, and this group admits an embedding into
Z(j∗(π1(Σ× {0})), π1(Σ× R)) ∼= Z(π1(Σ)) by Lemma 1.8. Since Z(π1(Σ)) = 1, we
have K(Σ× R,Σ× {0}) = 1.

Suppose next that Σ is the torus. Then, by Lemmas 1.5 and 1.8, K(Σ×R,Σ×{0})
admits an embedding into the quotient of the centralizer Z(j∗(π1(Σ×{0})), π1(Σ×
R)) ∼= Z(π1(Σ)) by Φ(I (π1(J(Σ × {0},Σ × R)))), where I and Φ are homo-
morphisms in Lemmas 1.5 and 1.8, respectively. Now, identify Σ with R2/Z2,
and denote by [x, y] the point of Σ represented by (x, y) ∈ R2. For an element
(m,n) ∈ Z2 = π1(Σ), let ξm,n = {gt}t∈I be the ambient isotopy of Σ, defined by
gt([x, y]) = ([x+mt, y+nt)]), and regard it as an element of π1(J(Σ×{0},Σ×R)).
Then we can easily check that Φ(I (ξm,n)) = (m,n). Thus Φ ◦ I is surjective, and
therefore we again have K(Σ × R,Σ × {0}) = 1. Hence Π(Σ × R,Σ × {0}) = 1 as
desired. □
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Lemma 2.5. Let Σ be a closed, orientable surface of genus at least 1. For t ∈ [0, 1],
let jt : Σ → R be the embedding defined by jt(x) = (x, t), and set κ := {jt}t∈I : I →
C(Σ,Σ × R). Then any continuous map α = {ft}t∈I : (I, {1}, {0}) → (C(Σ,Σ ×
R), J(Σ× {1},Σ×R) ◦ j1, {j0}) is homotopic to κ via a homotopy through maps of
the same form.

Proof. Let α = {ft}t∈I be a continuous map from (I, {1}, {0}) to (C(Σ,Σ×R), J(Σ×
{1},Σ × R) ◦ j1, {j0}). Let q : Σ × R → Σ be the projection. Then, by Baer [5],
q ◦α(1) = q ◦ f1 is isotopic to the identity map as a self-homeomorphism of Σ. Thus
deforming α by a homotopy through maps (I, {1}, {0}) → (C(Σ,Σ × R), J(Σ ×
{1},Σ× R) ◦ j1, {j0}) if necessary, we may assume that α(1) = f1 = j1.

Consider the path

a : (I, {1}, {0}) → (Σ× R, {(x0, 0)}, {(x0, 1)}), t 7→ ft(x0).

We see that the closed loop q ◦ a represents an element of the center Z(π1(Σ)),
through an argument as in the first part of the proof of Lemma 1.8. (Here, we
use the map ᾱ : Σ × S1 → Σ defined by ᾱ(x, t) = q(ft(x)) instead of α itself.)
If Σ has genus at least 2, then q ◦ a represents the trivial element of π1(Σ). If
Σ is a torus, using the ambient isotopy ξm,n for (m,n) ∈ Z2 defined in the proof
of Lemma 2.4, we can deform α by a homotopy through maps (I, {1}, {0}) →
(C(Σ,Σ×R), J(Σ×{1},Σ×R)◦ j1, {j0}) so that q ◦a represents the trivial element
of π1(Σ). Hence the path a is homotopic to the path

b : (I, {1}, {0}) → (Σ× R, {(x0, 0)}, {(x0, 1)}), t 7→ jt(x0)

relative to the end points.
The remaining arguments, which we briefly describe here, actually run in the

same way as those of Lemma 1.8. Our aim is to construct a continuous map H =
{φs}s∈I : (Σ × I) × I → M such that φ0(x, t) = ft(x), φ1(x, t) = jt(x) = (x, t) for
any x ∈ Σ, t ∈ I, and φs(x, 0) = (x, 0), φs(x, 1) = (x, 1) for any x ∈ Σ. Consider
the product cellular decomposition C4 of (Σ× I)× I as in the proof of Lemma 1.8.
The condition for H determines the restriction, H ′, of the desired map H to the
subspace consisting of all 0-cells, 1-cells, and 2-cells, except for e0 × [0, 1] × [0, 1].
Since a and b are homotopic relative to the endpoints, the restriction of H ′ to the
boundary of the 2-cell e0 × [0, 1] × [0, 1] is homotopic to a constant map. So, we
can extend H ′ to the 2-cell. Since Σ × R is aspherical, there is no obstruction to
extending the resulting map over 3 and 4-cells. This completes the proof. □
Proof of Theorem 2.3. Let p : M̃ → M be the covering corresponding to π1(Σ) <
π1(M). Then, by the positive solution of Simon’s conjecture (see [18, Theorem 9.2]),

M̃ admits a manifold compactification, that is, there exists a compact 3-manifold
M̂ with boundary, such that M̃ is homeomorphic to M̂ − Ĉ, where Ĉ is a closed
subset of ∂M̂ . We actually have Ĉ = ∂M̂ and M̃ ∼= Int M̂ , because M is closed.
Brown’s theorem [16, Theorem 3.4] implies that M̂ ∼= Σ× [−∞,∞], where [−∞,∞]
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is the closed interval that is obtained by compactifying R = (−∞,∞). Thus M̃ is
identified with Σ × R. We assume that the restriction of the covering projection p
to Σ × {0} is given by p(x, 0) = x. In other words, the inclusion map j : Σ → M

has a lift j̃ : Σ → M̃ = Σ× R such that j̃(x) = (x, 0).
Suppose that Π(M,Σ) has a nontrivial element α = {ft}t∈I with f1 = f . Let

α̃ = {f̃t}t∈I be the lift of α with f̃0 = j̃, and let f̃ be the lift of f defined by

f̃ = f̃1. Since f(Σ) = Σ, the image f̃(Σ) is a component of p−1(Σ) to which
the restriction of p is a homeomorphism onto Σ. In particular, we have either
f̃(Σ) = Σ × {0} or f̃(Σ) ∩ (Σ × {0}) = ∅. If f̃(Σ) = Σ × {0}, the map α̃ is

homotopic to the constant map from I to j̃ ∈ C(Σ, M̃) via a homotopy through maps

(I, {1}, {0}) → (C(Σ, M̃), J(Σ × {0}, M̃) ◦ j̃, {j̃}) by Lemma 2.4. This homotopy
projects to a homotopy from α to the trivial homotopy motion of Σ ⊂ M . This
contradicts the assumption that α is a nontrivial element of Π(M,Σ). Therefore we

have f̃(Σ)∩ (Σ×{0}) = ∅. Then, by [16], f̃(Σ) is parallel to Σ×{0} in M̃ = Σ×R.
We may choose the product structure so that f̃(Σ) = Σ×{1}. Since p is a covering
and since Σ is incompressible, we see that p−1(Σ) ∩ (Σ × (0, 1)) is a finite disjoint

union of compact surfaces that are incompressible in M̃ and so in Σ×R. The result
of [16] implies that all components of p−1(Σ) ∩ (Σ × (0, 1)) are parallel to Σ × {0}
in M̃ . Hence there exists a component that is closest to Σ × {0}. We choose α so

that f̃(Σ) = Σ× {1} is the closest component, namely p−1(Σ) ∩ (Σ× (0, 1)) = ∅.
Fix an orientation of the surface Σ ⊂M , and orient the surfaces Σ× {t} ⊂ M̃ =

Σ × R (t ∈ R) via the canonical identification with the oriented Σ. Consider the
homeomorphism ψ : Σ × {0} → Σ × {1} defined by ψ = (p|Σ×{1})

−1 ◦ p|Σ×{0}. It
should be noted that ψ is a “local covering transformation”, in the sense that ψ
extends to a homeomorphism between a neighborhoods of Σ×{0} and Σ×{1} that
commutes with the covering projection p. Let q : Σ × R → Σ be the projection to
the first factor, which is identified with the surface Σ in M .

Case 1. Suppose that ψ is orientation-preserving. Consider the 3-manifold M ′ :=
(Σ × [0, 1])/(x, 0) ∼ (q(ψ(x)), 1). Then the restriction of the covering projection
p to Σ × [0, 1] descends to a continuous map p′ : M ′ → M , which is a local-
homeomorphism at the image of Σ×(0, 1) inM ′. The condition that ψ is orientation-
preserving implies that p′ is also a local homeomorphism at an open neighborhood
of the image of Σ × {0} (which is equal to that of Σ × {1}) in M ′. (Here, we use
the fact that ψ is a local covering transformation.) Thus p′ : M ′ → M is a local
homeomorphism. Since M is a compact, connected manifold, it follows that p′ has
the path-lifting property, and hence p′ is a covering (see e.g. Forster [30, Theorem
4.19]). Since p−1(Σ) ∩ (Σ × (0, 1)) = ∅, the preimage of a point in Σ ⊂ M by p′

is a singleton. Hence p′ is a homeomorphism and so M is identified with the Σ-
bundle (Σ×R)/(x, t) ∼ (φ(x), t+1) over S1, where the monodromy φ is defined by
φ = q ◦ ψ.
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Case 2. Suppose that ψ is orientation-reversing. Consider the submanifoldM ′ :=
Σ × [0, 1] of M̃ and its image M1 := p(M ′) in M . Since p−1(Σ) ∩ (Σ × (0, 1)) = ∅,
p(intM ′) is disjoint from Σ. This together with the assumption that ψ is orientation-
reversing implies that M1 is a submanifold of M with boundary Σ. Moreover, as in
Case 1, we can see that the restriction p′ : M ′ → M1 of p to M ′ is a covering and
that it has geometric degree 2. (Note that the preimage of a point x ∈ Σ = ∂M1 by
p′ consists of the two points (x, 0) and (ψ(x), 1) ofM ′ = Σ× [0, 1].) By [41, Theorem
10.3], this implies that M1 is a twisted I-bundle, Σ × [0, 1]/(x, t) ∼ (h(x), 1 − t),
associated with some orientation-reversing free involution h of Σ.

The above arguments show that if Π(M,Σ) is nontrivial, then either (i) M is a
Σ-bundle over S1 or (ii) Σ separates M into two submanifolds, at least one of which
is a twisted I-bundle. In particular, we obtain the assertion (4) of the theorem.

Suppose that the conclusion (i) holds, namely M ∼= (Σ×R)/(x, t) ∼ (φ(x), t+1)
for some φ ∈ MCG+(Σ). Consider the map ζ : Π(M,Σ) → Z that sends the

homotopy motion α = {ft}t∈I to n ∈ Z given by f̃1(Σ) = Σ×{n}, where α̃ = {f̃t}t∈I
is the lift of α with f̃0 = j̃. Then ζ is injective, because if two homotopy motions
α and α′ are mapped to the same element n ∈ Z, then the homotopy between α̃
and α̃′, given by Lemmas 2.4 and 2.5 according to whether n = 0 or not, projects
to a homotopy which gives the equivalence of α and α′ as elements of Π(M,Σ).
It is obvious that ζ is a group homomorphism and maps λ to 1, where λ is the
homotopy motion described in Example 2.1. Hence Π(M,Σ) is the infinite cyclic
group generated by λ, proving the assertion (1).

Suppose that the conclusion (ii) holds, namely M = M1 ∪Σ M2 and M1 = Σ ×
[0, 1]/(x, t) ∼ (h(x), 1 − t), where h is an orientation-reversing involution of Σ. By

the preceding argument, we may assume that M̃ = Σ×R and the restriction of the
covering projection p to Σ×[0, 1] is the double covering ofM1 that maps (x, t) to the
point [x, t] ∈M1 it represents. Note that the homotopy motion µ = {ft}t∈I defined

in Example 2.2 lifts to the map µ̃ = {f̃t}t∈I : Σ → Σ × R given by f̃t(x) = (x, t).

Moreover, Lemma 2.5 implies if a homotopy motion α = {f ′t} has a lift α̃ = {f̃ ′t}t∈I :

Σ → Σ×R such that f̃ ′0(x) = (x, 0) and image(f̃ ′1) = Σ×{1}, then it is equivalent to
µ. We can easily see from the definition of the concatenation that µ ·µ is equivalent
to the identity deformation, thus, the order of µ in Π(M,Σ) is 2.

Suppose that there exists a nontrivial element β = {gt}t∈I of Π(Σ,M) that is not
equivalent to α. Then the previous arguments imply that g̃1(Σ) is equal to neither

Σ× {0} nor Σ × {1}, and so g̃1(Σ) ∩ (Σ× [0, 1]) = ∅. (Here, β̃ = {g̃t}t∈I is the lift
of β with g̃0 = j̃.) By choosing β = {gt}t∈I suitably, we may assume that g̃1(Σ)
is the lift of Σ closest to Σ × {0} in Σ × (−∞, 0). Then the argument in Case 2
implies that M2 is a twisted I-bundle and that the terminal end g1 is (represented
by) the involution h′ corresponding to the twisted I-bundle structure of M2. This,
in particular, proves the assertion (2). In order to prove the assertion (3), observe

that p : M̃ →M is a regular covering and that the covering transformation group is
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the infinite dihedral group generated by the two involutions γ and γ′ of M̃ = Σ×R
defined by

γ(x, t) = (h(x), 1− t), γ′(x, t) = (h′(x),−1− t).

In this case, p−1(Σ) = Σ×Z, and the argument for the case (i) implies that Π(Σ,M)
is the infinite dihedral group generated by the two elements µ and µ′ of order 2.
This completes the proof of the assertion (3). □

Corollary 2.6. Let M be a closed, orientable Haken manifold M , and suppose that
Σ is an incompressible surface in M . Then the following hold.

(1) If M is a Σ-bundle over S1 with monodromy φ and Σ is a fiber surface,
then Γ(M,Σ) is the cyclic group ⟨φ⟩, and K(M,Σ) is the (possibly trivial)
subgroup generated by λn of the infinite cyclic group Π(M,Σ) = ⟨λ⟩, where n
is the order of φ. Moreover, the homomorphism deg : K(M,Σ) = ⟨λn⟩ → Z
is given by deg(λn) = n under a suitable orientation convention.

(2) If Σ separates M into two submanifolds, M1 and M2, precisely one of which
is a twisted I-bundle, then Γ(M,Σ) is the order-2 cyclic group generated by
the orientation-reversing involution of Σ associated with the twisted I-bundle
structure, and K(M,Σ) is the trivial group.

(3) If Σ separates M into two submanifolds, M1 and M2, both of which are
twisted I-bundles, then Γ(M,Σ) is the (finite or infinite, and possibly cyclic)
dihedral group generated by the two orientation-reversing involutions h1 and
h2 of Σ associated with the twisted I-bundle structures, and K(M,Σ) is the
subgroup of the inifinite dihedral group Π(M,Σ) = ⟨µ, µ′ | µ2, µ′2⟩ generated
by (µµ′)n, where n is the order of hh′. Moreover, the homomorphism deg :
K(M,Σ) = ⟨(µµ′)n⟩ → Z is given by deg((µµ′)n) = 2n under a suitable
orientation convention.

(4) Otherwise, both Γ(M,Σ) and K(M,Σ) are the trivial group.

Proof. The assertions except for those concerning the homomorphism deg : K(M,Σ) →
Z follow immediately from Theorem 2.3 and the exact sequence (1). It is also easy to
see that deg(λn) = n. The identity deg((µµ′)n) = 2n can be verified by considering
the double covering ofM , which is the Σ-bundle over S1 with monodromy h1h2. □

3. Homotopy motion groups of homotopically trivial surfaces

In this section, we study the case contrastive to that treated in the previous
section. We say that a closed, orientable surface Σ embedded in a closed, orientable
3-manifold M is homotopically trivial if the inclusion map j : Σ →M is homotopic
to a constant map.

Lemma 3.1. A closed, orientable surface Σ embedded in a closed, orientable, irre-
ducible 3-manifold M is homotopically trivial if and only if j∗ : π1(Σ) → π1(M) is
the trivial map.
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Proof. The “only if” part is obvious. The “if” part can be proved by an argument
similar to the proof of Lemma 1.7. □

We have the following theorem.

Theorem 3.2. Let Σ be a closed, orientable surface embedded in a closed, orientable
3-manifold M . Then the following hold.

(1) If Σ is homotopically trivial and ifM is aspherical, then Π(M,Σ) ∼= π1(M)×
MCG(Σ). To be more precise, Γ(M,Σ) = MCG(Σ), and K(M,Σ) is identi-
fied with the factor π1(M). Moreover, the homomorphism deg : K(M,Σ) →
Z vanishes.

(2) Conversely, if Γ(M,Σ) = MCG(Σ) and if M is irreducible, then Σ is homo-
topically trivial.

Proof. (1) Suppose that Σ is a homotopically trivial and M is aspherical. Pick a
base point x0 ∈ Σ ⊂ M , and define a homomorphism Ψ : Π(M,Σ) → π1(M,x0)
as follows. For an element of Π(M,Σ), choose a representative homotopy motion α
such that α(1)(x0) = x0. Then the element of π1(M,x0) represented by the closed
path

(I, ∂I) → (M,x0), t 7→ α(t)(x0)

does not depend on the choice of a representative α, by the following reason. Two
such closed paths are related, up to homotopy relative to ∂I, by concatenation of a
closed path on Σ based at x0. However, since Σ is homotopically trivial in M , any
closed path on Σ is null-homotopic in M . Thus two such closed paths represent the
same element of π1(M,x0). We define Ψ([α]) ∈ π1(M,x0) to be that element.

Suppose first that the genus of Σ is at least 2. By Lemma 1.5, K(M,Σ) can be
canonically identified with π1(C(Σ,M), j), and the restriction of Ψ to π1(C(Σ,M), j)
is nothing but the map Φ defined in Lemma 1.8. Therefore, we have the following
commutative diagram:

1 // π1(C(Σ,M), j) //

Φ
��

Π(M,Σ)
∂+ //

Ψ×∂+
��

Γ(M,Σ) //

ι

��

1

1 // π1(M,x0) // π1(M,x0)×MCG(Σ) // MCG(Σ) // 1,

where the two rows are exact, and ι : Γ(M,Σ) → MCG(Σ) is the inclusion map. It
suffices to show that both Φ and ι are isomorphisms. Φ is injective by Lemma 1.8,
and ι is obviously injective.

To prove the surjectivity of Φ and ι, let {ht : Σ → M}t∈I be the homotopy such
that h0 = j and h1(Σ) = x0, which exists by the assumption that Σ is homotopically
trivial. For a given loop a : (I, ∂I) → (M,x0), let α = {ft}t∈I be the element of
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π1(C(Σ,M), j) defined by

ft(x) =

 h3t(x) (0 ≤ t ≤ 1/3)
a(3t− 1) (1/3 ≤ t ≤ 2/3)
h3−3t(x) (2/3 ≤ t ≤ 1).

Then Φ([α]) = [a] ∈ π1(M,x0), and so Φ is surjective.
The sujectivity of ι is proved as follows. Given g ∈ MCG(Σ), consider a homotopy

motion β = {gt}t∈I defined by

gt =

{
h2t (0 ≤ t ≤ 1/2)
h2−2t ◦ g (1/2 ≤ t ≤ 1).

Then we have ∂+(β) = g, which implies that ι is surjective. Consequently, both Φ
and ι are isomorphisms, so does Ψ× ∂+.

Suppose that the genus of Σ is less than 2. In that case, by replacing π1(C(Σ,M), j)
with π1(C(Σ,M), j)/I (π1(J(Σ,M), j)), the same argument as above still works be-
cause the map Φ vanishes on I (π1(J(Σ,M), j)) due to the assumption that Σ is
homotopically trivial.

The vanishing of deg : K(M,Σ) → Z can be seen as follows. Suppose that
deg(α) ̸= 0 for some α ∈ K(M,Σ). Then the image of α̂∗ : π1(Σ × S1) → π1(M)
has finite index in π1(M) (cf. [41, Lemma 15.12]). Since M is an aspherical, closed,
orientable 3-manifold, this implies that the cohomological dimension of image(α̂∗)
is 3. On the other hand, since Σ is homotopically trivial, image(α̂∗) is cyclic. This
is a contradiction, because the cohomological dimension of a cyclic group is 0, ∞, or
1, according as it is trivial, nontrivial finite cyclic, or infinite cyclic. This completes
the proof of (1).

(2) Note that the assertion is trivial when Σ = S2. We assume that the genus of
Σ is at least 1, and we show the assertion by induction on the genus g of Σ. Suppose
that g = 1 and Γ(M,Σ) = MCG(Σ). By Corollary 2.6, Σ cannot be incompressible
inM . Thus, there exists an essential simple closed curve on Σ that is null-homotopic
in M . Since MCG(Σ) acts on the set S(Σ) of (isotopy classes of) essential simple
closed curves on Σ transitively, every simple closed curve on Σ is null-homotopic
in M . Thus, the map j∗ : π1(Σ) → π1(M) vanishes, which implies by Lemma 3.1
that Σ is homotopically trivial in M , as M is irreducible. For the inductive step,
suppose that the assertion holds for any surface Σ with genus at most g. Let Σ be a
closed, orientable surface of genus g+1 embedded inM so that Γ(M,Σ) = MCG(Σ).
Again, by Corollary 2.6, Σ is compressible. Let D be a compression disk for Σ. If
∂D is non-separating in Σ, the proof runs as in the case of g = 1. Suppose that
∂D is separating. Let Σ1 and Σ2 be the surface obtained by compressing Σ along
D. Then we can see that Γ(M,Σi) = MCG(Σi) (i = 1, 2) as follows. Let Σ′

1 and
Σ′
2 (i = 1, 2) be the closures of components of Σ − ∂D. We regard Σi as Σ′

i ∪ D
(i = 1, 2), so Σ1 ∩ Σ2 = D. Let f1 be an arbitrary element of MCG(Σ1). We show
that f1 ∈ Γ(M,Σ1). We can assume that f1(D) = D. Then there exists an element
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f2 ∈ MCG(Σ2) such that f2(D) = D and f1|D = f2|D. Let f be the element of
MCG(Σ) defined by

f(x) =

{
f1(x) (x ∈ Σ′

1)
f2(x) (x ∈ Σ′

2).

By the assumption, there exists a homotopy motion α : Σ×I →M with terminal end
f . Now let f̄ : Σ∪D →M be an arbitrary extension of f . Then we can extend α to a
homotopy motion ᾱ : (Σ∪D)×I →M with terminal end f̄ becauseM is irreducible
and hence π2(M) = 0. By restriction, ᾱ determines a homotopy motion of Σ1(⊂
Σ∪D) with terminal end f1, which implies that Γ(M,Σ1) = MCG(Σ1). Clearly, the
same consequence holds for Σ2. By the assumption of induction, both Σ1 and Σ2

are homotopically trivial in M . Hence the image of π1(Σ ∪D)) ∼= π1(Σ1) ∗ π1(Σ2)
in π1(M) is trivial. Thus j∗ : π1(Σ) → π1(M) is the trivial homomorphism, and so
Σ is homotopically trivial in M , by Lemma 3.1. □
Remark 3.3. The assumption that M is aspherical in Theorem 3.2(1) is essential.
In fact, in Example 6.6 we will see that when Σ is a Heegaard surface of S3, which is
homotopically trivial, the kernel of the map Ψ×∂+ : Π(S3,Σ) → π1(S

3)×MCG(Σ) =
MCG(Σ) defined in the above proof consists of infinitely many elements.

Corollary 3.4. Let Σ be a closed, orientable surface embedded in a closed, ori-
entable, irreducible 3-manifold M . Then Σ is homotopically trivial and if and only
if Γ(M,Σ) = MCG(Σ).

Proof. The “if” part is nothing other than Theorem 3.2(2), and the “only if” part
follows from Lemma 1.7. □

4. The group Γ(M,Σ) for a Heegaard surface and its friends

From this section, we are going to study the homotopy motion group Π(M,Σ)
and related groups Γ(M,Σ) and K(M,Σ) for a Heegaard surface Σ of a closed,
orientable 3-manifold M . Recall that a closed surface Σ in a closed orientable 3-
manifold M is called a Heegaard surface if Σ separates M into two handlebodies V1
and V2. Such a decomposition M = V1 ∪Σ V2 is then called a Heegaard splitting of
M , and the genus of the splitting is defined to be the genus of Σ. In this section,
we mainly consider the group Γ(M,Σ) rather than Π(M,Σ). We recall various
natural subgroups of MCG(Σ) associated with a Heegaard surface, and describe
their relationships with the group Γ(M,Σ). We also describe the group Γ(M,Σ)
and give answers to Questions 0.2 and 0.3 for the very special cases where Σ is
either an arbitrary Heegaard surface of M = S3 and where Σ is a minimal genus
Heegaard surface of M = #g(S

2 × S1).
By definition, the group Γ(M,Σ) is a subgroup of the extended mapping class

group MCG(Σ) of the Heegaard surface Σ. For a Heegaard splitting M = V1 ∪Σ

V2, many other (and similar) subgroups of MCG(Σ) associated with the Heegaard
splitting M = V1 ∪Σ V2 has been studied as follows.
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(1) The handlebody group MCG(Vi) of the handlebody Vi, which is identified
with a subgroups of MCG(Σ), by restricting a self-homeomorphism of Vi to
its boundary ∂Vi = Σ. This has been a target of various works (see a survey
by Hensel [43] and references therein).

(2) The intersection MCG(V1)∩MCG(V2), which is identified with MCG(M,V1, V2).
This group or its orientation-subgroup MCG+(M,V1, V2) is called theGoeritz
group of the Heegaard splitting M = V1 ∪Σ V2 and it has been extensively
studied. In particular, the problem of when this group is finite, finitely
generated, or finitely presented attracts attention of various researchers (cf.
Minsky [37, Question 5.1]). The work on this problem goes back to Goeritz
[34], which gave a finite generating set of the Goeritz group of the genus-2
Heegaard splitting of S3. In these two decades, great progress was achieved
by many authors [84, 75, 4, 21, 48, 49, 22, 23, 24, 25, 31, 26, 45], however,
it still remains open whether the Goeritz group a Heegaard splitting of S3

is finitely generated when the genus is at least 4.
(3) The group ⟨MCG(V1),MCG(V2)⟩ generated by MCG(V1) and MCG(V2).

Minsky [37, Question 5.2] asked when this subgroup is the free product
with amalgamated subgroup MCG(V1)∩MCG(V2). A partial answer to this
question was given by Bestvina-Fujiwara [9].

(4) The mapping class group MCG(M,Σ) of the pair (M,Σ). This contains
MCG(M,V1, V2) as a subgroup of index 1 or 2. The result of Scharlemann-
Tomova [85] says that the natural map MCG(M,Σ) to MCG(M) is surjective
if the Hempel distance d(Σ) (see [42]) is greater than 2g(Σ). On the other
hand, it is proved by Johnson [48], improving the result of Namazi [75],
that the natural map MCG(M,Σ) to MCG(M) is injective if the Hempel
distance d(Σ) is greater than 3. Hence, the natural map gives an isomor-
phism MCG(M,Σ) ∼= MCG(M) if g(Σ) ≥ 2 and d(Σ) > 2g(Σ). Building on
the work of McCullough-Miller-Zimmermann [69] on finite group actions on
handlebodies, finite group actions on the pair (M,Σ) are extensively studied
(see Zimmermann [91, 92] and references therein).

(5) The subgroup G(M,Σ) := ker(MCG(M,Σ) → MCG(M)), which forms a
subgroup of the group Γ(M,Σ). We can write this group as

G(M,Σ) = {[f ] ∈ MCG(Σ) | j ◦ f is ambient isotopic to j.},
where j : Σ →M is the inclusion map, and thus we can think of Γ(M,Σ) as
a “homotopy version” of G(M,Σ). Johnson-Rubinstein [52] gave systematic
constructions of periodic, reducible, pseudo-Anosov elements in this group.
Johnson-McCullough [51] called this group the Goeritz group instead of the
one we described in (2), and they used this group to study the homotopy
type of the space of Heegaard surfaces. In particular, they prove that if
Σ is a Heegaard surface of a closed, orientable, aspherical 3-manifold M ,
then, except the case where M is a non-Haken infranilmanifold, the exact
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sequence (2) in the introduction is refined to the following exact sequence

1 → Z(π1(M)) → M(M,Σ) → G(M,Σ) → 1,

where M(M,Σ) is the smooth motion group of Σ in M [51, Corollary 1].
(6) The group Γ(Vi) := ker(MCG(Vi) → Out(π1(Vi))). As noted in the introduc-

tion, the group Γ(Vi) is identified with the group Γ(Vi,Σ) < MCG(Σ). It was
shown by Luft [66] that its index-2 subgroup Γ+(Vi) := ker(MCG+(Vi) →
Out(π1(Vi))) is the twist group, that is, the subgroup of MCG+(Vi) gener-
ated by the Dehn twists about meridian disks. McCullough [68] proved that
Γ(Vi) is not finitely generated by showing that it admits a surjection onto a
free abelian group of infinite rank. A typical orientation-reversing element
of Γ(Vi) (< MCG(Σ)) is the restriction to Σ = ∂Vi of a vertical I-bundle
involution of Vi.

(7) The group ⟨Γ(V1),Γ(V2)⟩ generated by Γ(V1) and Γ(V2), which is contained
in Γ(M,Σ). It was proved by Bowditch-Ohshika-Sakuma in [77, Theorem
B] (see also Bestvina-Fujiwara [9, Section 3]) that its orientation-preserving
subgroup ⟨Γ+(V1),Γ

+(V2)⟩ is the free product Γ+(V1)∗Γ+(V2) if the Hempel
distance d(Σ) is high enough. (The question of whether the same conclusion
holds for ⟨Γ(V1),Γ(V2)⟩ is still an open question.)

In summary, the subgroups of MCG(Σ) introduced above are related as follows:

G(M,Σ) < Γ(M,Σ) ∩MCG(M,Σ) < Γ(M,Σ),

⟨Γ(V1),Γ(V2)⟩ < Γ(M,Σ) ∩ ⟨MCG(V1),MCG(V2)⟩ < Γ(M,Σ).

As noted in the introduction, our interest in Γ(M,Σ) was motivated by Minsky’s
Question 0.1 and its refinement Question 0.2, and our main concern is Question
0.3(1) about the relationship between Γ(M,Σ) and its subgroup ⟨Γ(V1),Γ(V2)⟩. We
end this section by giving an answer to Questions 0.2 and 0.3 in two very special
cases.

Example 4.1. Let S3 = V1 ∪Σ V2 be the genus-g Heegaard splitting of S3. Recall
that the (orientation-preserving) mapping class group MCG+(Σ) is generated by
the Dehn twists about certain 3g − 1 simple closed curves on Σ by Lickorish [65],
where g is the genus of Σ. Since we can find those simple closed curves in ∆, we
have ⟨Γ+(V1),Γ

+(V2)⟩ = MCG+(Σ). It is thus easy to see that

⟨Γ(V1),Γ(V2)⟩ = Γ(S3,Σ) = MCG(Σ)

and

⟨Γ(V1),Γ(V2)⟩∆ = Γ(S3,Σ)∆ = S(Σ) = Z.

We note that the group Γ(M,Σ) detects the 3-sphere as in the following meaning.

Proposition 4.2. Let M = V1 ∪Σ V2 be a Heegaard splitting of a closed, orientable
3-manifold. Then we have Γ(M,Σ) = MCG(Σ) if and only if M = S3.
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Proof. This is straightforward from Corollary 3.4 and the Poincaré conjecture proved
by Perelman [80, 81, 82]. □

Example 4.3. Let M = #g(S
2 × S1), and M = V1 ∪Σ V2 the genus-g Heegaard

splitting. In this case, M is the double of the handlebody V1, and thus ∆ = ∆i = Z
(i = 1, 2). Further, we can check easily that

Γ(Vi) = ⟨Γ(V1),Γ(V2)⟩ = Γ(M,Σ)

and

⟨Γ(V1),Γ(V2)⟩∆ = Γ(M,Σ)∆ = Z.

In the above easy examples, the group ⟨Γ(V1),Γ(V2)⟩ coincides with the whole
group Γ(M,Σ) in an obvious way. However, this is not the case in general, as
indicated in the introduction and proved in Theorem 8.1.

5. Open book rotations

In this section, we first recall the definition of an open book decomposition and the
Heegaard splitting obtained from an open book decomposition. We then introduce
two homotopy motions of the Heegaard surface, the “half book rotation” ρ and the
“unilateral book rotation” σ, which play key roles in the subsequent three sections.

LetM be a closed, orientable 3-manifold. Recall that an open book decomposition
of M is defined to be the pair (L, π), where

(1) L is a (fibered) link in M ; and
(2) π : M − L → S1 is a fibration such that π−1(θ) is the interior of a Seifert

surface Σθ of L for each θ ∈ S1.

We call L the binding and Σθ a page of the open book decomposition (L, π). The
monodromy of the fibration π is called the monodromy of (L, π). We think of the
monodromy φ of (L, π) as an element of MCG(Σ0, rel ∂Σ0), the mapping class group
of Σ0 relative to ∂Σ0, i.e., the group of self-homeomorphisms of Σ0 that fix ∂Σ0,
modulo isotopy fixing ∂Σ0. The pair (M,L), as well as the projection π, is then
recovered from Σ0 and φ. Indeed, we can identify (M,L) with

(Σ0 × R, ∂Σ0 × R)/ ∼,

where ∼ is defined by (x, s) ∼ (φ(x), s+1) for x ∈ Σ0 and s ∈ R, and (y, 0) ∼ (y, s)
for y ∈ ∂Σ0 and any s ∈ R. So, we occasionally denote the open book decomposition
(L, π) by (Σ0, φ). Under this identification, the Seifert surface Σθ is identified with
the image Σ× {θ}. We define an R-action {rt}t∈R on M , called a book rotation, by
rt([x, s]) = [x, s+ t], where [x, s] denotes the element of M represented by (x, s).
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Figure 1. The homotopy motion ρ = {ft}t∈I .
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g2/3(Σ0)

g2/3(Σ1/2)

g1(Σ0)g1(Σ1/2)

Figure 2. The homotopy motion σ = {gt}t∈I .

Given an open book decomposition (L, π) of M , we obtain a Heegaard splitting
M = V1 ∪Σ V2, where

V1 = cl(π−1([0, 1/2])) = π−1([0, 1/2]) ∪ L = ∪0≤θ≤1/2Σθ,

V2 = cl(π−1([1/2, 1])) = π−1([1/2, 1]) ∪ L = ∪1/2≤θ≤1Σθ,

Σ = Σ0 ∪ Σ1/2.

We call this the Heegaard splitting ofM induced from the open book decomposition
(L, π). For the resulting Heegaard surface Σ, we define two particular homotopy
motions in M . The first one, ρ = ρ(L,π) = ρ(Σ0,φ), is defined by restricting the book
rotation, with time parameter rescaled by the factor 1/2, to the Heegaard surface Σ,
namely ρ(t) = rt/2|Σ, see Figure 1. The second one, σ = σ(L,π) = σ(Σ0,φ), is defined
by

σ(t)(x) =

{
rt(x) (x ∈ Σ0)
x (x ∈ Σ1/2),

see Figure 2. We call ρ and σ, respectively, the half book rotation and the unilateral
book rotation associated with the open book decomposition (L, π) (or (Σ0, φ)).

The elements of the group Γ(M,Σ) obtained as the terminal ends ρ(1) = ∂+(ρ)
and σ(1) = ∂+(σ) play a key role in the proof of the main Theorem 8.1. We note
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that ρ(1) is orientation-reversing whereas σ(1) is orientation-preserving, and they
are related as follows.

Lemma 5.1. σ(1) = ρ(1)◦h, where h is the restriction to Σ of the vertical I-bundle
involution on V1 with respect to the natural I-bundle structure given by (L, π).

Proof. Under the identification (M,L) = (Σ0 × R, ∂Σ0 × R)/ ∼, the following for-
mulas hold for every x ∈ Σ0.

h([x, 0]) = [x, 1/2], h([x, 1/2]) = [x, 0],

ρ(1)([x, 0]) = [x, 1/2], ρ(1)([x, 1/2]) = [x, 1] = [φ−1(x), 0],

σ(1)([x, 0]) = [x, 1] = [φ−1(x), 0], σ(1)([x, 1/2]) = [x, 1/2].

By using these formulas, we see that the following hold for every x ∈ Σ0, which in
turn imply the desired identity.

ρ(1) ◦ h([x, 0]) = ρ(1)([x, 1/2]) = [φ−1(x), 0] = σ(1)([x, 0]),

ρ(1) ◦ h([x, 1/2]) = ρ(1)([x, 0]) = [x, 1/2] = σ(1)([x, 1/2]).

□

For open book decompositions with trivial monodromies, we have the following
lemma. Though it should be well-known and the proof is straightforward, we provide
a brief proof here, for this plays a key role in Section 6.

Lemma 5.2. Let M be a closed, orientable 3-manifold that admits an open book
decomposition (Σ0, idΣ0) with trivial monodromy idΣ0, where Σ0 is a compact, con-
nected surface embedded in M . Let Σ be the Heegaard surface of M associated with
the open book decomposition (Σ0, idΣ0). Then the following hold.

(1) M ∼= #g(S
2 × S1), where g is the first Betti number of Σ0, and Σ is the

unique minimal genus Heegaard surface of M .
(2) The unilateral book rotation σ associated with (Σ0, idΣ0) determines a non-

trivial element of K(M,Σ) of degree 1.

Proof. Let {δi}1≤i≤g be a complete non-separating arc system of Σ0, namely a family
of disjoint non-separating arcs which cuts Σ0 into a disk. Then the image of {δi ×
R}1≤i≤g in M = (Σ0 × R, ∂Σ0 × R)/ ∼ gives a family of disjoint non-separating
spheres which cut M into a 3-ball. Hence M ∼= #g(S

2 × S1) and Σ is a genus
g Heegaard surface of M . Since #g(S

2 × S1) admits a unique Heegaard splitting
of genus g by Waldhausen [88], Bonahon-Otal [12] and Haken [38], we obtain the
assertion (1). Since the monodromy of the open book decomposition is the identity
map, the terminal end σ(1) of σ is the identity map. Thus σ determines an element
of K(M,Σ). Obviously, deg(σ) = deg(σ̂ : Σ × S1 → M) = 1, and so we obtain the
assertion (2). □
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6. The group K(M,Σ) for non-aspherical manifolds

Let M = V1 ∪Σ V2 be a Heegaard splitting of a closed, orientable 3-manifold,
and j : Σ → M the inclusion map. Recall the homomorphism deg : K(M,Σ) → Z
introduced in Lemma 1.6, and the fact that this homomorphism does not vanish
if and only if the pair (M,Σ) is dominated by Σ × S1 (cf. Definition 0.4). In
this section and the next, we discuss the problem of which pair (M,Σ) of a closed,
orientable 3-manifold and its Heegaard surface Σ is dominated by Σ×S1, and prove
the following result.

Theorem 6.1. Let M be a closed, orientable 3-manifold, and suppose that Σ is a
Heegaard surface for M .

(1) If M has an aspherical prime summand, then (M,Σ) is not dominated by
Σ× S1.

(2) If M = #g(S
2 × S1) for some non-negative integer g, or M admits the

geometry of S3 or S2 × R, then (M,Σ) is dominated by Σ× S1.

This theorem is obtained as a consequence of Theorem 6.2 for non-aspherical
manifolds and Theorem 7.1 for aspherical manifolds. In this section, we discuss the
case where M is non-aspherical, and prove the following theorem.

Theorem 6.2. Suppose that M = #g(S
2×S1) for some non-negative integer g, or

M admits the geometry of S3 or S2 ×R. Let Σ be a Heegaard surface for M . Then
(M,Σ) is dominated by Σ × S1. Moreover, the following hold for the image of the
homomorphism deg : K(M,Σ) → Z.

(1) If M = #g(S
2 × S1), then deg(K(M,Σ)) = Z.

(2) If M admits the geometry of S3, then deg(K(M,Σ)) ⊃ |π1(M)| · Z.
(3) If M admits the geometry of S2×R, then deg(K(M,Σ)) = Z or 2Z according

to whether M = S2 × R or RP3#RP3.

The proof is given at the end of this section, after providing case by case con-
struction, for Heegaard surfaces Σ of non-aspherical manifoldsM , of non-zero degree
maps (Σ × S1,Σ × {0}) → (M,Σ) that realize dominations of (M,Σ) in the sense
of Definition 0.4. We call such a map a Σ-domination of (M,Σ).

To begin with, recall that a stabilization of a Heegaard splitting M = V1 ∪Σ V2
(or a Heegaard surface Σ ⊂ M) is an operation to obtain a Heegaard splitting
M = V ′

1 ∪Σ′ V ′
2 (or a Heegaard surface Σ′ ⊂ M) of higher genus by adding V1 a

trivial 1-handle, that is, a 1-handle whose core is parallel to Σ in V2, and removing
that from V2.

Lemma 6.3. Let M be a closed, orientable 3-manifold, Σ a Heegaard surface for
M , and Σ′ a Heegaard surface obtained by a stabilization from Σ. If there exists
a degree-d Σ-domination of (M,Σ), then there exists a degree-d Σ′-domination of
(M,Σ′) as well.
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Proof. Suppose that there exists a degree-d Σ-domination ϕ : (Σ × S1,Σ× {0}) →
(M,Σ). Without loss of generality we can assume that ϕ(x, 0) = x for any x ∈ Σ.
Further, we can assume that the stabilization is performed in a 3-ball B in M
that intersects Σ in a disk, thus, Σ − B = Σ′ − B. Then there exists a homotopy
F = {ft}t∈I : Σ′ × I →M such that

(1) f0(x) = x, for x ∈ Σ′;
(2) ft(x) = x for x ∈ Σ′ −B, t ∈ I;
(3) ft(x) ∈ B for x ∈ B ∩ Σ, t ∈ I; and
(4) f1(Σ

′) = Σ.

Using this homotopy, we can define a Σ′-domination ϕ′ : (Σ′×S1,Σ′×{0}) → (M,Σ′)
by

ϕ′(x, θ) =

 f3θ(x) (0 ≤ θ ≤ 1/3)
ϕ(f1(x), 3θ − 1) (1/3 ≤ θ ≤ 2/3)
f3−3θ(x) (2/3 ≤ θ ≤ 1).

Since the homotopy F moves Σ′ only inside the local 3-ball B, the degree of ϕ′ is
d. □

In each example given below, a particular choice of a Heegaard splitting does not
matter.

Example 6.4. Let M = #g(S
2 × S1), and suppose that Σ is a Heegaard surface of

M . Then there exists a degree-d Σ-domination of (M,Σ) for any integer d.

Remark 6.5. It is proved in [59, Proposition 4] that there exists a double branched
covering map from Σ×S1 to #g(S

2 ×S1) where Σ is a closed, orientable surface of
genus g. (See [76, Lemma 2.3] for a related interesting result.) That map actually
gives a domination of the minimal genus Heegaard surface of #g(S

2×S1) by Σ×S1.
However, this does not imply the full statement of the example, because the map
has degree 2 and it gives domination of only the minimal genus Heegaard surface.

Proof. Let V1 ∪Σ V2 be the unique genus-g Heegaard splitting of M = #g(S
2 × S1).

Then by Lemma 5.2, there exists a degree-1 Σ-domination of (M,Σ). Since deg :
K(M,Σ) → Z is a homomorphism, there exists a degree-d Σ-domination of (M,Σ)
for any integer d. On the other hand, by Waldhausen [88], Bonahon-Otal [12] and
Haken [38], any Heegaard splitting of M is V1∪Σ V2 itself or its stabilization. Hence
we obtain the desired result for any Heegaard splitting by Lemma 6.3. □

In the following, we observe the existence of Σ-dominations of (M,Σ) when M
admits the geometry of S3 or S2 × R.

For M with the geometry of S3, we have the following.

Example 6.6. Let M be a closed, orientable 3-manifold which admits the S3 geom-
etry with |π1(M)| = n, and suppose that Σ is a Heegaard surface for M . Then there
exists a degree-d Σ-domination of (M,Σ) for any integer d with n|d. Moreover, in
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the case where M is a lens space L(p, q), there exists a degree-d Σ-domination of
(M,Σ) if and only if d ∈ pZ.

Proof. The case ofM = S3 follows immediately from Example 6.4, however, we first
describe a degree-1 Σ-domination ϕst : (Σ × S1,Σ × {0}) → (S3,Σ) for any given
Heegaard surface Σ of S3 in a slightly different (but essentially the same) way for the
later use. Let Σ be a Heegaard surface of S3. LetD be a disk in Σ with the boundary
K, which is the trivial knot. Then there exists an open book decomposition (K,π)
of S3, where each page Dθ = π−1(θ) is a disk. We can assume that D = D0. Let
{rt}t∈R be the book rotation with respect to (K,π). Since the monodromy of (K,π)
is the identity, we can define, by modifying the construction using the unilateral
rotation in Lemma 5.2(2), a degree-1 Σ-domination ϕst : (Σ×S1,Σ×{0}) → (S3,Σ)
as follows.

ϕst(x, θ) =

{
rθ(x) (x ∈ D = D0)
x (x ∈ Σ−D).

Next we consider the general case. Let M be an arbitrary closed orientable 3-
manifold that admits the S3 geometry with |π1(M)| = n, and suppose that Σ is a
Heegaard surface for M . Let p : S3 → M be the universal covering. It is easy to
see that the preimage Σ̃ = p−1(Σ) is a Heegaard surface for S3, and every covering
transformation of p restricts to an orientation-preserving self-homeomorphism of
Σ̃. Let D be a disk in Σ. Then the preimage p−1(D) consists of n disjoint disks

D̃1, . . . , D̃n in Σ̃. For each i ∈ {1, . . . , n}, there exists a unique element τi in the
covering transformation group of p satisfying τi(D1) = Di. For the Heegaard surface

Σ̃ for S3 with a disk D̃1 ⊂ Σ̃, we obtain a degree-1 Σ̃-domination ϕst : (Σ̃ ×
S1, Σ̃× {0}) → (S3, Σ̃) as described in the previous paragraph. Now, define a map

ϕ̃ : (Σ̃× S1, Σ̃× {0}) → (S3, Σ̃) by

ϕ̃(x, θ) =

{
τi ◦ ϕst(τ−1

i (x), θ)) (x ∈ Di)
x (x ∈ Σ− (D1 ⊔ · · · ⊔Dn)).

By definition, this map is equivariant with respect to the action of the covering
transformation group, and we have deg(ϕ̃) = n. Therefore, we can define a Σ-

domination ϕ : (Σ×S1,Σ×{0}) → (M,Σ) by ϕ ◦ p′ = p ◦ ϕ̃, where p′ := p|Σ̃ × idS1 .

Since the degree of each of ϕ̃, p and p′ is n, we have deg(ϕ) = n. Since deg :
K(M,Σ) → Z is a homomorphism, this implies the first assertion of the lemma.

When M is a lens space L(p, q), there exists a degree-d map from Σ × S1 to
L(p, q) only if p divides d by Hayat-Legrand-Wang-Zieschang [40, Theorem 2]. This
completes the proof. □

There exist only two closed, orientable 3-manifolds that admits the geometry of
S2 × R: S2 × S1 and RP3#RP3, where we note that RP3#RP3 is the only closed,
non-prime 3-manifold that possesses a geometric structure. The former case has
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Figure 3. The manifold RP3#RP3 as an S2-bundle over the orbifold S1/η

already observed in Example 6.4. The next example gives an answer for the latter
case.

Example 6.7. Let M = RP3#RP3, and suppose that Σ is a Heegaard surface for
M . Then there exists a degree-d Σ-domination of (M,Σ) if and only if d ∈ 2Z.

Proof. We first show the “if” part. By Montesinos-Safont [72] and Haken [38], any
Heegaard splitting of M is a stabilization of the unique genus-2 Heegaard splitting
M = V1 ∪Σ V2. Therefore, by Lemma 6.3 it suffices to show that there exists a
degree-d Σ-domination of (M,Σ) for any even integer d. For this, it is enough to
find a degree-2 Σ-domination of (M,Σ).

Let τ be the antipodal map of S2, and η the involution of S1 defined by η(θ) = −θ.
Identify M = RP3#RP3 with (S2 × S1)/(τ × η), and let p : S2 × S1 → M be the
covering projection. Thus we can regard M as an S2-bundle over the orbifold
S1/η with underlying space [0, 1/2]. Choose disjoint disks D− and D+ in S2 with
τ(D−) = D+. Let R = I × I be a rectangle in S2 such that R ∩D− = {0} × I and

R∩D+ = {1}×I. Then Ṽ1 := ((D−∪D+)×S1)∪(R×[1/6, 2/6])∪(τ(R)×[4/6, 5/6])

is a (τ × η)-invariant handlebody of genus 3, and its exterior Ṽ2 := Cl(M − Ṽ1) is

also a (τ × η)-invariant handlebody of genus 3. Thus the pair (Ṽ1, Ṽ2) determines
a (τ × η)-invariant Heegaard splitting of S2 × S1, and it projects to the genus-2

Heegaard splitting (V1, V2) of M , where Vi := p(Ṽi) (i = 1, 2). See Figure 3. We are
going to construct a domination of the Heegaard surface Σ := V1∩V2, by constructing
an equivariant domination of the Heegaard surface Σ̃ = p−1(Σ) = Ṽ1 ∩ Ṽ2, as in the
proof of Example 6.6.

To this end, consider an annulus A := δ×S1 ⊂ Σ̃, where δ is an arc in ∂D− disjoint
from the rectangleR. Then there is an open book decomposition (L, π) with L = ∂A,
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such that A is the page π−1(0) ∪ L. Let {rt}t∈R be the book rotation with respect
to (L, π). Now consider the conjugate of the above open book decomposition by the
covering involution τ × η, and let {r′t}t∈R be the associated book rotation obtained
from {rt}t∈R through conjugation by τ × η. Observe that the page A′ := (τ × η)(A)
is disjoint from A. Since the monodromy of the open book decomposition (L, π) is

the identity, we can construct a Z/2Z-equivariant map ϕ̃ : Σ̃× S1 → S2 × S1 by

ϕ̃(x, t) =


rt(x) (x ∈ A)

r′t(x) (x ∈ A′)

x (x ∈ Σ̃− (A ∪A′)).

This map naturally induces a Σ-domination ϕ : (Σ× S1,Σ× {0}) → (M,Σ) whose
restriction to Σ × {0} is a homeomorphism onto the Heegaard surface Σ, that is
actually the identity map under a natural identification of the two surfaces. Since
the degree of each of ϕ̃, p and the map Σ̃× S1 → Σ× S1 is 2, the degree of ϕ is 2.

To show the other direction, suppose that ϕ is a degree-d map from Σ × S1 to
RP3#RP3. Here we do not need to require that ϕ(Σ × {0}) is a Heegaard surface
of RP3#RP3. Let p : RP3#RP3 → RP3 be a degree-1 map defined by pinching
one summand RP3 to a 3-ball in the other summand RP3. Then the composition
p ◦ ϕ is a degree-d map from Σ× S1 to RP3. From Hayat-Legrand-Wang-Zieschang
[40, Theorem 2] it follows that d should be an even number. This completes the
proof. □

Proof of Theorem 6.2. The proof is straightforward from Examples 6.4, 6.6, and
6.7. In fact, if M = #g(S

2 × S1), then the homomorphism deg : K(M,Σ) → Z is
surjective by Example 6.4. If M admits the geometry of S3, then deg(K(M,Σ)) ⊃
|π1(M)| ·Z by Example 6.6. Finally, if M admits the geometry of S2 × S1, then we
have M = S2 × S1 or RP3#RP3. The former case has already discussed above, and
in the latter case, we have deg(K(M,Σ)) = 2Z by Example 6.7. □

7. The group K(M,Σ) for aspherical manifolds

Let M = V1 ∪Σ V2 be a Heegaard splitting of a closed, orientable 3-manifold,
and j : Σ → M the inclusion map. In this section, we consider the group K(M,Σ)
in the case where M is non-aspherical. We note that in this case, the genus of Σ
is at least 2, and thus, we can canonically identify K(M,Σ) with π1(C(Σ,M), j)
by Lemma 1.5. Thus, the homomorphism Φ in Lemma 1.8 determines an injective
homomorphism

Φ : K(M,Σ) → Z(π1(M)),

because j∗(π1(Σ)) = π1(M). Then we have the following theorem, which completely
determine K(M,Σ) in the aspherical case. We note that this theorem may be
regarded as an (easier) analogy of the result of Johnson-McCullough [51, Corollary

31



1] concerning the fundamental group of the space of Heegaard splittings, i.e., the
(smooth) motion group of Heegaard surfaces, explained in (5) in Section 4.

Theorem 7.1. Let M be a closed, orientable, aspherical 3-manifold, and Σ a Hee-
gaard surface of M . Then (M,Σ) is not dominated by Σ × S1. To be precise, the
following hold.

(1) The map Φ : K(M,Σ) → Z(π1(M)) is an isomorphism. Thus if M is a
Seifert fibered space with orientable base orbifold, then K(M,Σ) is isomorphic
to Z3 or Z according to whether M is the 3-torus T 3 or not. Otherwise,
K(M,Σ) is the trivial group.

(2) The homomorphism deg : K(M,Σ) → Z vanishes.

Proof. To prove (1), we have only to show that Φ : K(M,Σ)) → Z(π1(M)) is
surjective. If Z(π1(M)) = 1, there is nothing to prove. Suppose that Z(π1(M)) is
non-trivial. By the Seifert fiber space conjecture proved by Gabai [33] and Casson-
Jungreis [20], M is then a Seifert fibered space with orientable base orbifold. If
M is not the 3-torus T 3, then, M admits a unique Seifert fibration with orientable
base orbifold, and the center Z(π1(M)) is generated by an (infinite order) element
corresponding to a regular fiber of the Seifert fibration of M , see Jaco [46, VI].
When M = T 3, we have Z(π1(M)) = π1(M) = Z3, and any primitive element of
Z(π1(M)) can be realized as a regular fiber of a Seifert fibration of M . In any case,
let z be a primitive element of Z(π1(M)). Equip M with a Seifert fibration where
z is represented by its regular fiber. Fix a faithful action of S1 = R/Z on M that is
compatible with the Seifert fibration. Let αz be the homotopy motion of Σ defined
by αz(t)(x) = t · x for t ∈ I and x ∈ Σ, where t · x is the image of x by the action of
t ∈ S1. Then we see that αz determines an element of K(M,Σ) and that Φ(αz) = z.
Hence Φ : K(M,Σ) → Z(π1(M)) is surjective, completing the proof of (1).

Next, we prove (2). Though this follows from Kotschick-Neofytidis [59, Theorem
1], we give a direct geometric proof here. We may suppose thatM is a Seifert fibered
space with orientable base orbifold. Let z be a primitive element of Z(π1(M)). It
suffices to show that the degree of the element αz ∈ K(M,Σ), defined as in the
previous paragraph, is equal to 0, namely the degree of the map α̂z : Σ × S1 →
M is 0. To this end, let Y1 be a spine of the handlebody V1 in M bounded by
the Heegaard surface Σ, and let {rt}t∈I be a strong deformation retraction of V1
onto Y1, namely r0 = idV1 , rt|Y1 = idY1 (t ∈ I), and r1(V1) = Y1. Define a map
H = {hs}s∈I : (Σ × S1) × I → M by H(x, t, s) = t · rs(x). Then h0 = α̂z and
h1(Σ × S1) = S1 · Y1. Since Y1 is 1-dimensional, the image h1(Σ × S1) is strictly
smaller than M . Hence deg(α̂z) = deg(h1) = 0. This completes the proof. □

We now give a proof of Theorem 6.1.

Proof of Theorem 6.1. (1) Suppose thatM has an aspherical prime summand, namely
M is a connected sum M1#M2 of an aspherical prime manifold M1 and another 3-
manifoldM2, which is possibly S3. Suppose on the contrary that there is a Heegaard
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surface Σ of M , such that (M,Σ) admits a Σ-domination ϕ : (Σ × S1,Σ × {0}) →
(M,Σ). By Haken’s theorem on Heegaard surfaces of composite manifolds (see [46,
Theorem II.7]), (M,Σ) is a pairwise connected sum (M1,Σ1)#(M2,Σ2) where Σi is a
Heegaard surface of Mi (i = 1, 2). By pinching (M2,Σ2) into a point as in the proof
of Lemma 6.3, we obtain from ϕ a Σ1-domination of (M1,Σ1). This contradicts
Theorem 7.1.
(2) This is an immediate consequence of Theorem 6.2. □

As noted in the introduction, the problem of the existence of Σ-domination of
(M,Σ) is completely solved by Theorem 6.1 especially when M is prime. We do
not know, however, what happens when M is non-prime and M has no aspherical
prime summand, in other words, each prime summand of M is S2 × S1, or has the
geometry of S3, except when M = #g(S

2 × S1) or RP3#RP3.

Question 7.2. Let M = #n
i=1Mi (n ≥ 2) be a closed, orientable non-prime 3-

manifold such that each Mi is either S
2 × S1 or admits the geometry of S3. When

is a Heegaard surface Σ of M dominated by Σ× S1?

8. Gap between Γ(M,Σ) and the subgroup ⟨Γ(V1),Γ(V2)⟩

In this section, we show the following theorem, which gives a partial answer to
Question 0.3(2).

Theorem 8.1. Let M = V1 ∪Σ V2 be a Heegaard splitting of a closed, orientable
3-manifold M induced from an open book decomposition. If M has an aspherical
prime summmand, then we have ⟨Γ(V1),Γ(V2)⟩ ⪇ Γ(M,Σ).

In fact, we will see that neither ρ(1) nor σ(1), defined in Section 5, is not contained
in ⟨Γ(V1),Γ(V2)⟩ under the assumption of Theorem 8.1. To show this, we will define
a Z2-valued invariant Deg(f) for elements f of Γ(M,Σ). To this end, we first define

a Z2-valued invariant D̂eg(α) for elements α of the homotopy motion group Γ(M,Σ),
and study its basic properties. We then show, by using Theorem 7.1, that it descends
to an invariant for elements of Γ(M,Σ) whenM satisfies the assumption of Theorem
8.1.

Remark 8.2. Let Σ be a Heegaard surface of a closed, orientable 3-manifold M .
The existence of a gap between ⟨Γ(V1),Γ(V2)⟩ and Γ(M,Σ) given in the above
theorem implies, in particular, that the Seifert-van Kampen-like theorem for the
homotopy motion group Π(M,Σ) is no longer valid as in the following meaning,
though Π(M,Σ) is regarded as a generalization of the fundamental group (cf. Re-
mark 1.2 and Theorem 3.2). Consider the homotopy motion groups Π(V1,Σ) and
Π(V2,Σ). Recall that the group Γ(Vi) (i = 1, 2) is the image of the natural map
∂+ : Π(Vi,Σ) → MCG(Σ). Since a homotopy motion of Σ in Vi is that of Σ in M
as well, we have a canonical map Ii : Π(Vi,Σ) → Π(M,Σ). Since the manifold M is
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obtained by gluing V1 and V2 along Σ, one might expect that

⟨I1(Π(V1,Σ)), I2(Π(V2,Σ))⟩ = Π(M,Σ),

that is, Π(M,Σ) is generated by elements of I1(Π(V1,Σ)) and I2(Π(V2,Σ)) as we see
in the Seifert-van Kampen theorem. The incoincidence ⟨Γ(V1),Γ(V2)⟩ ⪇ Γ(M,Σ),
however, implies that this is not true because

∂+(⟨I1(Π1(V1,Σ)), I2(Π1(V2,Σ))⟩) = ⟨Γ(V1),Γ(V2)⟩

while

∂+(Π(M,Σ)) = ⟨Γ(M,Σ)⟩,
and they are different.

Let M = V1 ∪Σ V2 be a Heegaard splitting of a closed, orientable 3-manifold M .
We will adopt the following convention. Given an orientation of M , or equivalently,
a fundamental class [M ] ∈ H3(M), we always choose the fundamental classes [Vi] ∈
H3(Vi, ∂Vi) (i = 1, 2) and [Σ] ∈ H2(Σ) so as to satisfy the following.

Convention 8.3. [M ] = [V2]− [V1] and [Σ] = [∂V1] = [∂V2], where [∂Vi] is the one
induced from [Vi].

By [I] ∈ H1(I; ∂I) we always mean the fundamental class corresponding to the
canonical orientation of I.

We define a map D̂eg : Π(M,Σ) → Z2 as follows. First, we fix an orientation ofM .
Let α = {ft}t∈I : Σ× I →M be a homotopy motion. Consider the homomorphism

α∗ : H3(Σ× I,Σ× ∂I) → H3(M,Σ) ∼= H3(V1, ∂V1)⊕H3(V2, ∂V2),

and let (d1, d2) be the pair of integers such that α∗([Σ× I]) = d1[V1]+ d2[V2], where
[Σ × I] is the cross product of [Σ] and [I]. This pair is uniquely determined by

the equivalence class of α. We then define D̂eg(α) = (d1, d2). We note that this
invariant does not depend on the orientation ofM under the above convention. The
following examples can be easily checked.

Example 8.4. Let f be a Dehn twist about a meridian of V1. This is an element
of Γ+(V1). In fact, we can construct a homotopy motion α of Σ = ∂V1 in V1 with
terminal end f as follows. As in the proof of Theorem 7.1(2), let Y1 be a spine of V1
and let {rt}t∈I be a strong deformation retraction of V1 onto Y1. Define a homotopy
motion α of Σ in M = V1 ∪ V2 by

α(t)(x) =

{
r2t(x) (0 ≤ t ≤ 1/2)

r2−2t(f(x)) (1/2 ≤ t ≤ 1).

Then we have D̂eg(α) = (0, 0).
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Example 8.5. Let h be a vertical I-bundle involution on V1, which is an element
of Γ−(V1). Then we can construct a homotopy motion α of Σ = ∂V1 in V1 with
terminal end h as follows. For a point x ∈ Σ, let Ix ∼= [−1, 1] be the fiber containing
x where x corresponds to 1 ∈ [−1, 1]. Then α(t) maps x to the point corresponding
to 1− 2t ∈ [−1, 1] of Ix. Regarding α as a homotopy motion of Σ in M = V1 ∪ V2,
we have D̂eg(α) = (−2, 0). Similarly, if h is a vertical I-bundle involution on V2,

then we have D̂eg(α) = (0,−2) for the corresponding homotopy motion α of Σ in
M .

Example 8.6. Recall the homomorphism deg : K(M,Σ) → Z introduced in Lemma
1.6. For each α ∈ K(M,Σ), we have

D̂eg(α) = (deg(α), deg(α)).

Example 8.7. Suppose that M = V1 ∪Σ V2 is the Heegaard spitting induced from
an open book decomposition, and let ρ and σ, respectively, be the half rotation and
the unilateral rotation of Σ associated with the open book decomposition. Then we
have

D̂eg(ρ) = (−1,−1), D̂eg(σ) = (−1, 1).

Examples 8.4, 8.5, and 8.7 allow us to predict that ρ(1) and σ(1) should give
a gap between Γ(M,Σ) and the subgroup ⟨Γ(V1),Γ(V2)⟩ for a Heegaard spitting
M = V1 ∪Σ V2 induced from an open book decomposition. We are going to verify
that when M has an aspherical prime summand.

Lemma 8.8. The invariant D̂eg : Π(M,Σ) → Z2 has the following properties.

(1) Let α be an element of Π(M,Σ), and let D̂eg(α) = (d1, d2). Then we have

d1 + d2 = −1 + deg ∂+(α).

(2) For any pair α, β of elements of Π(M,Σ), we have

D̂eg(α · β) = D̂eg(α) + deg ∂+(α) · D̂eg(β).

In the above lemma, deg ∂+(α) ∈ {±1} is the degree of the terminal end ∂+(α) =
α(1) ∈ Γ(M,Σ) < Γ(Σ) of α, as a mapping class of the closed, orientable surface Σ.

Proof. (1) Let α be a homotopy motion of Σ in M with terminal end α(1) = f .
Consider the following commutative diagram:

H3(Σ× I,Σ× ∂I)
α∗−−−−→ H3(M,Σ)y y

H2(Σ× ∂I)
α∗−−−−→ H2(Σ),
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where the vertical allows are the connecting maps. By the connecting map H3(Σ×
I,Σ× ∂I) → H2(Σ× ∂I), the fundamental class [Σ× I] is mapped to −[Σ× {0}] +
[Σ× {1}]. The induced map α∗ : H2(M,Σ) → H2(Σ) then takes this to

j∗(−[Σ]) + (j ◦ f)∗([Σ]) = (−1 + deg f)[Σ],

where j : Σ → M is the inclusion map. On the other hand, the induced map
α∗ : H3(Σ × I,Σ × ∂I) → H3(M,Σ) takes [Σ × I] to d1[V1] + d2[V2], and then,
the connecting map H3(M,Σ) → H2(Σ) takes this to (d1 + d2)[Σ]. This implies
d1 + d2 = −1 + deg f .
(2) Let f = ∂+(α) = α(1) be the terminal end of α. Then the concatenation α · β
is given by

α · β(x, t) =

{
α(x, 2t) (0 ≤ t ≤ 1/2)

β(f(x), 2t− 1) (1/2 ≤ t ≤ 1).

Let D̂eg(α) = (d1, d2) and D̂eg(β) = (e1, e2). The assertion then follows from

(α · β)∗([Σ× I]) = α∗([Σ× I]) + (β∗ ◦ (f × idI)∗)([Σ× I])

= (d1[V1] + d2[V2]) + deg(f × idI)(e1[V1] + e2[V2])

= (d1[V1] + d2[V2]) + deg f · (e1[V1] + e2[V2]).

□

The following corollary generalizes Examples 8.4 and 8.5.

Corollary 8.9. Let α be a homotopy motion of Σ in Vi (i = 1 or 2) with terminal

end f , and regard it as a homotopy motion of Σ inM . Then D̂eg(α) = (−1+deg f, 0)
or (0,−1 + deg f) according to whether i = 1 or 2.

Proof. Put (d1, d2) = D̂eg(α) and suppose that α comes from a homotopy motion in
V1. Then the image of α is equal to V1, and so we have d2 = 0. By Lemma 8.8(1),
d1 = −1 + deg f − d2 = −1 + deg f , completing the proof for the case i = 1. The
remaining case i = 2 is proved by the same argument. □

The following corollary is a consequence of Lemma 8.8(2) and the definition of a
semi-direct product.

Corollary 8.10. Let C2 = {±1} be the order-2 cyclic group, and consider its action
on Z2 defined by (−1) · (d1, d2) = (−d1,−d2). Let Z2⋊C2 be the semi-direct product
determined by this action. Then the map Π(M,Σ) → Z2 ⋊ C2 defined by α 7→
(D̂eg(α), deg ∂+(α)) is a group homomorphism.
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By the above corollary we can define a map Deg : Γ(M,Σ) → Z2 so that the
diagram

1 // K(M,Σ) // Π(M,Σ)
∂+ //

D̂eg
��

Γ(M,Σ) //

Deg
xxqqq

qqq
qqq

qq
1

Z2

commutes if and only if D̂eg vanishes on K(M,Σ). By Example 8.6, the latter
condition is satisfied if and only if the homomorphism deg : K(M,Σ) → Z vanishes,
namely (M,Σ) is not dominated by Σ×S1. Hence, Theorem 6.1 implies the following
proposition.

Proposition 8.11. Let M be a closed, orientable 3-manifold, and suppose that Σ
is a Heegaard surface for M . Then if M has an aspherical prime summand, then
the map Deg : Γ(M,Σ) → Z2 is well-defined.

From the properties of D̂eg we have the following.

Lemma 8.12. Let M = V1 ∪Σ V2 be a Heegaard splitting of a closed, orientable

3-manifold M , and assume that the map D̂eg vanishes on K(M,Σ) and so the map
Deg : Γ(M,Γ) → Z is defined. Then the following hold.

(1) Let f be an element of Γ(M,Σ), and let Deg(f) = (d1, d2). Then we have
d1 + d2 = −1 + deg f .

(2) For any f, g ∈ Γ(M,Σ), we have Deg(g ◦ f) = Deg(f) + deg f ·Deg(g)
(3) For any f ∈ Γ(V1), we have Deg(f) = (−1+deg f, 0); and for any f ∈ Γ(V2),

we have Deg(f) = (0,−1 + deg f).
(4) If f ∈ ⟨Γ(V1),Γ(V2)⟩, then Deg(f) is one of (2k,−2k) and (2k− 2,−2k) for

some k ∈ Z, according to whether f is orientation-preserving or reversing.
In particular, the mod 2 reduction of Deg(f) is (0, 0) ∈ (Z/2Z)2.

Proof. The assertions (1) and (2) follow from Lemma 8.8, and the assertion (3)
follows from Corollary 8.9. To prove the assertion (4), let f be an element of
⟨Γ(V1),Γ(V2)⟩. Then we can write

f = fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1,

where fi ∈ Γ(V1) for odd i and fi ∈ Γ(V2) for even i (or vice verca). We show the
proposition by induction on n. If n = 1, the assertion follows from the assertion (3)
of this lemma. Assume that Deg(fn−1 ◦ · · · ◦ f2 ◦ f1) is of the desired form. Suppose
first that fn−1 ◦ · · · ◦ f2 ◦ f1 is orientation-preserving. Then by the assertion (2) of
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this lemma, we have

Deg(f) = Deg(fn−1 ◦ · · · ◦ f2 ◦ f1) + deg fn

= (2k,−2k) +


(0, 0) (fn ∈ Γ+(V1) ∪ Γ+(V2))

(−2, 0) (fn ∈ Γ−(V1))

(0,−2) (fn ∈ Γ−(V2)),

for some k ∈ Z. Since deg f = deg fn, we see that Deg(f) is of desired form. Suppose
next that fn−1 ◦ · · · ◦ f2 ◦ f1 is orientation-reversing. Then by the assertion (2) of
this lemma, we have

Deg(f) = Deg(fn−1 ◦ · · · ◦ f2 ◦ f1)− deg fn

= (2k − 2,−2k)−


(0, 0) (fn ∈ Γ+(V1) ∪ Γ+(V2))

(−2, 0) (fn ∈ Γ−(V1))

(0,−2) (fn ∈ Γ−(V2)),

for some k ∈ Z. Since deg f = −deg fn, we see that Deg(f) is of desired form. □
Now we are ready to prove Theorem 8.1.

Proof of Theorem 8.1. Let M = V1 ∪Σ V2 be the Heegaard splitting of a closed,
orientable 3-manifold M induced from an open book decomposition, and assume
thatM has an aspherical prime summand. Then by Proposition 8.11, the map Deg :
Γ(M,Σ) → Z2 is well-defined. Let ρ and σ be the half rotation and the unilateral
rotation of Σ, respectively. Then by Example 8.7, we have Deg(ρ(1)) = (−1,−1)
and Deg(σ(1)) = (−1, 1). Therefore, ρ(1) and σ(1) do not belong to ⟨Γ(V1),Γ(V2)⟩
by Lemma 8.12(4), as desired. □

In the above proof, we have shown that neither σ(1) nor ρ(1) is contained in
⟨Γ(V1),Γ(V2)⟩. Clearly, the same consequence holds for any odd power of σ(1) and
ρ(1) by Lemma 8.12. We do not know, however, whether σ(1)2 or ρ(1)2 is contained
in ⟨Γ(V1),Γ(V2)⟩.
Question 8.13. Under the assumption of Theorem 8.1, is σ(1)2 or ρ(1)2 contained
in ⟨Γ(V1),Γ(V2)⟩?

We see from a result in the companion paper [58] that, for the genus-1 Hee-
gaard surface Σ of a lens space L(p, q), there is a gap between Γ(L(p, q),Σ) and
⟨Γ(V1),Γ(V2)⟩ generically. This and Theorem 8.1 are the only examples of Hee-
gaard splittings we know for which there are gaps between the two groups. On the
other hand, the Hempel distance of a Heegaard splitting induced from an open book
decomposition is at most 2.

Question 8.14. Let Σ be a Heegaard surface of genus at least 2 of a closed, ori-
entable 3-manifoldM . Is it true that Γ(M,Σ) = ⟨Γ(V1),Γ(V2)⟩ if Σ has high Hempel
distance?
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9. The virtual branched fibration theorem and the group ⟨Γ(V1),Γ(V2)⟩

In this section, we give yet another motivation for studying the group Γ(M,Σ)
and its subgroup ⟨Γ(V1),Γ(V2)⟩ associated with a Heegaard splitting M = V1∪Σ V2.
To describe this, let I(Vi) (⊂ MCG(Σ)) be the set of torsion elements of Γ(Vi). (In
fact, this set will turn out to be equal to the set of vertical I-bundle involutions of
Vi as shown in Lemma 9.3.) Then we have the following theorem, which refines the
observation [83, Addendum 1] that every closed, orientable 3-manifold M admits a
surface bundle as a double branched covering space.

Theorem 9.1. Let M = V1 ∪Σ V2 be a Heegaard splitting of a closed, orientable 3-
manifold M . Then there exists a double branched covering p : M̃ →M that satisfies
the following conditions.

(i) M̃ is a surface bundle over S1 whose fiber is homeomorphic to Σ.
(ii) The preimage p−1(Σ) of the Heegaard surface Σ is a union of two (disjoint)

fiber surfaces.

Moreover, the set D(M,Σ) of monodromies of such bundles is equal to the set {h1 ◦
h2 | hi ∈ I(Vi)}, up to conjugation and inversion.

Example 9.2. Let M = #g(S
2×S1), and V1∪Σ V2 the genus-g Heegaard splitting.

Recall that Γ(V1) = Γ(V2) (cf. Example 4.3). Pick an element h1 = h2 from
I(V1) = I(V2). Then h1 ◦ h2 = idΣ and hence the above theorem implies that
Σ × S1 is a double branched covering space of M = #g(S

2 × S1), and so Σ × S1

dominates #g(S
2 × S1). This gives the construction by Kotschick-Neofytidis [59,

Proposition 4].

We first prove the lemma below, following and correcting the arguments of Zim-
mermann [90, Proof of Corollary 1.3].

Lemma 9.3. Let V be a handlebody with ∂V = Σ. Then an element of Γ(V ) <
MCG(Σ) is a nontrivial torsion element if and only if it is represented by (the
restriction to Σ = ∂V of) a vertical I-bundle involution of V .

Proof. Since the “if” part is clear, we prove the “only if” part. If the genus of V is
0 or 1, then the assertion can be easily proved by using the facts that MCG(B3) =
Z/2Z and MCG(S1 × D2) ∼= MCG+(S1 × D2) ⋊ C2

∼= D∞ ⋊ C2, the semi-direct
product of the infinite dihedral group D∞ and the order-2 cyclic group C2. Assume
that the genus of V is greater than 1. Let h be a torsion element of Γ(V ) ⊂
MCG(Σ). Then, by the solution of the Nielsen realization problem (see Kerckhoff
[53]), there exists a conformal structure on Σ = ∂V and a conformal (or anti-
conformal) map h′ of the Riemann surface Σ which is isotopic to h. By Bers [8,
Theorem 3], the Riemann surface Σ admits a Schottky uniformization, i.e., there
is a Schottky group G such that the Riemann surface Σ is conformally equivalent
to the Riemann surface ∂Ω(G)/G, where Ω(G) is the domain of discontinuity of G,
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and such that the identification of Σ with ∂Ω(G)/G extends to an identification of
V with V (G) := (H3 ∪ Ω(G))/G. By Marden’s isomorphism theorem [67, Theorem

8.1], h′ extends to an isometry of V (G), which we continue to denote by h′. Let h̃
be the lift of h′ to H3. Then, by the assumption that h ∈ Γ(V ), the conjugation

action of h̃ on G is an inner-automorphism of G, that is, there exists an element
k ∈ G such that h̃◦g ◦ h̃−1 = k ◦g ◦k−1 for every g ∈ G. Thus h̃◦k−1 belongs to the
centralizer, Z, of G in IsomH3. Since G is a free group of rank ≥ 2, it follows that Z
is trivial except when G preserves a hyperbolic plane, in which case Z is the order-2
cyclic group generated by the reflection in the hyperbolic plane. In the exceptional
case, we may assume that h̃ is the reflection in the hyperbolic plane preserved by
G. This implies that the isometry h′ of V (G) is a vertical I-bundle involution. This
completes the proof of the lemma. □

Remark 9.4. The assertion in the proof that there exists a Schottky group G
such that h is realized by an isometry of V (G) is proved by Zimmermann [90,
Theorem 1.1] under a more general setting. In fact, [90, Theorem 1.1] says that
any finite subgroup of MCG(V ) is realized as a subgroup of the isometry group of
V (G). His proof is based on Zieschang’s partial solution of the Nielsen realization
problem, which was available at that time, and some delicate consideration on the
group structure, which guarantees that Zieschang’s result is applicable to his setting.
Since we only need to consider cyclic groups, we do not need the consideration of
the group structure, or we may simply appeal to Kerckhoff’s full solution of the
Nielsen realization problem [53]. In our terminology, [90, Corollary 1.3] should be
read as follows: the orientation-preserving subgroup of Γ+(V ) of Γ(V ) is torsion-
free. (A similar proof of this result was also given by Otal [79, Proposition 1.7], and
an outline of a similar proof, suggested by Minsky, is included in [9, Introduction].)
Thus Lemma 9.3 is a slight extension of [90, Corollary 1.3].

Lemma 9.5. Let V be a handlebody with ∂V = Σ, and suppose that h is an
orientation-reversing involution of Σ that extends to a vertical I-bundle involution
of V . Then there exists a double branched covering projection p : Σ × [−1, 1] → V
satisfying the following conditions.

(i) p(x, 1) = p(h(x),−1) = x ∈ Σ = ∂V for every x ∈ Σ.

(ii) The covering transformation is given by the involution ĥ := h × (−1) of

Σ× [−1, 1] defined by ĥ(x, t) = (h(x),−t). In particular, the branch set of p
is equal to the image of Fix(h)× {0} ⊂ Σ× [−1, 1] in V .

Proof. Let V̂ be the quotient of Σ×[−1, 1] by the orientation-preserving involution ĥ

defined by the formula in (ii), and let p̂ : Σ×[−1, 1] → V̂ be the projection. Then p̂ is
a double branched covering projection with branched set the image of Fix(h)×{0} ⊂
Σ × [−1, 1] in V̂ , and the restriction of p̂ to Σ × {1} is a homeomorphism onto

∂V̂ . We identify ∂V̂ with Σ via this homeomorphism, i.e., identify each x ∈ Σ
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with p̂(x, 1) ∈ ∂V̂ . We show that the identification of Σ = ∂V with ∂V̂ extends

to a homeomorphism from V to V̂ . To this end, recall the assumption that h
extends to a vertical I-bundle involution of V , that is, there exists an I-bundle
structure of V such that h preserves each fiber setwise and acts on it as a reflection.
Then the base space of the I-bundle structure is identified with the quotient surface
F := Σ/h and we can construct a complete meridian system of V as follows. Pick
a complete arc system {δi}gi=1. Then the preimages of these arcs by the I-bundle
projection form a complete meridian disk system of V . Let {αi}gi=1 be the family
of essential loops on Σ = ∂V obtained as the boundaries of these meridian disks.
Note that the involution h preserves each αi and that αi/h = δi ⊂ Σ/h = F .

This implies that the quotient (αi × [−1, 1])/ĥ is a meridian disk of the handlebody

V̂ = Σ × [−1, 1]/ĥ bounded by the loop αi ⊂ Σ = ∂V̂ . Since the meridian loop αi

of V remains to be a meridian loop of V̂ under the identification of Σ = ∂V with
∂V̂ , the identification homeomorphism extends to a homeomorphism from V to V̂ .
Thus the composition of the branched covering projection p̂ : Σ× [−1, 1] → V̂ and

the identification homeomorphism V̂ ∼= V determines the desired branched covering
projection p : Σ× [−1, 1] → V . □

By using the result of Kim-Tollefson [54, Theorem A] on involutions of product
spaces, we can obtain the following converse to Lemma 9.5.

Lemma 9.6. Let V be a handlebody with ∂V = Σ, and p : Σ× [−1, 1] → V a double
branched covering projection such that the restriction p|Σ×{1} : Σ × {1} → ∂V = Σ
is the identity, i.e., p(x, 1) = x for every x ∈ Σ. Then there exists an orientation-
reversing involution h of Σ that extends to a vertical I-bundle involution of V such
that p is equivalent to the covering projection constructed from h as indicated in
Lemma 9.5. To be precise, there exists a self-homeomorphism of Σ × [−1, 1] that
fixes Σ×{1} such that the composition of this homeomorphism and p is equal to the
covering projection constructed in Lemma 9.5.

Proof. Let g be the covering transformation of the double branched covering p. Since
g interchanges the two components of Σ×∂I, the result [54, Theorem A] implies that
there exists an orientation-reversing involution h of Σ such that g is equivalent to the
involution h× (−1). To be more precise, we can see that g is conjugate to h× (−1)
by a self-homeomorphism of Σ×[−1, 1] that fixes Σ×{1}. Thus we may assume that
g = h× (−1). By the assumption, Σ× [−1, 1]/g is identified with the handlebody V
in such a way that the point [x, 1] of Σ× [−1, 1]/g represented by (x, 1) is identified
with the point x ∈ Σ = ∂V for every x ∈ Σ. Now consider the involution h × 1 of
Σ × [−1, 1]. This map is commutative with the involution g = h × (−1) and so it
descends to an involution h̄ of V = Σ × [−1, 1]/g. The restriction of h̄ to ∂V = Σ
is equal to h. Moreover, h̄ is a vertical I-bundle involution of V , as shown below.
Note that V = Σ × [−1, 1]/g = Σ × [0, 1]/(x, 0) ∼ (h(x), 0), and so there exists a
deformation retraction of V onto the subspace F := Σ×{0}/(x, 0) ∼ (h(x), 0). Thus
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F is a compact surface with nonempty boundary, which is embedded in the interior
of V and is a deformation retract of V . Note that Fix(h̄) is equal the union of the
image of Fix(h) × [0, 1] and the image of Σ × {0}. The former is a disjoint union
of annuli and the latter is equal to F . Thus Fix(h̄) is a surface properly embedded
in V and contains F as its deformation retract. This implies that h̄ is an I-bundle
involution, where Fix(h̄) ∼= F is the base space of the I-bundle structure of V . Thus
we have proved that the involution h of Σ = ∂V extends to the vertical I-bundle
involution h̄ of V . Since the covering involution g of the double branched covering
projection p : Σ× [−1, 1] → V is given by g = h×(−1), we can say that p is obtained
from h, satisfying the prescribed condition, as indicated in Lemma 9.5. □
Proof of Theorem 9.1. For i = 1, 2, pick an element hi of I(Vi) ⊂ MCG(Σ). By
Lemma 9.3, hi is represented by an orientation-reversing involution of Σ that extends
to a vertical I-bundle involution of Vi. We continue to denote the orientation-
reversing involution of Σ by hi. Let pi : Σ × [−1, 1] → Vi the double branched
covering projection given by Lemma 9.5. Take two copies [−1, 1]i of [−1, 1], and

regard pi as a map Σ× [−1, 1]i → Vi. Let M̃ be the space obtained from the disjoint
union ⊔2

i=1Σ× [−1, 1]i through the identification

(x, 1)1 ∼ (x, 1)2, (h1(x),−1)1 ∼ (h2(x),−1)2 (x ∈ Σ).

Here (x, t)i denotes the point in Σ × [−1, 1]i corresponding to (x, t) ∈ Σ × [−1, 1].

Then M̃ is a Σ-bundle over S1 with monodromy h−1
1 ◦ h2 = h1 ◦ h2. Moreover we

can glue the branched covering projections pi : Σ× [−1, 1]i → Vi (i = 1, 2) together

to obtain a continuous map p : M̃ →M = V1 ∪Σ V2, because

p1((h1(x),−1)1) = p1((x, 1)1) = x = p2((x, 1)2) = p2((h2(x),−1)2).

Then p is a branched covering projection whose branch set is the union of those
of p1 and p2. Hence the Σ-bundle over S1 with monodromy h1 ◦ h2 is a double
branched covering space of M . Moreover the preimage p−1(Σ) of the Heegaard
surface Σ = ∂V1 = ∂V2 is the image of Σ×∂[−1, 1]1 (and so is that of Σ×∂[−1, 1]2)

in M̃ . Thus, p−1(Σ) is a union of two fiber surfaces. This completes the proof of the
first assertion of Theorem 9.1 and the assertion {h1 ◦ h2 | hi ∈ I(Vi)} ⊂ D(M,Σ).

We prove D(M,Σ) ⊂ {h1 ◦ h2 | hi ∈ I(Vi)}. To this end, let p : M̃ → M be
a double branched covering satisfying the conditions (i) and (ii) of Theorem 9.1,
and let τ be the covering involution. By the condition (ii), p−1(Σ) consists of two
(distinct and so disjoint) fiber surfaces, Σ0 and Σ1, and τ interchanges these two

components. Set Ṽi = p−1(Vi) (i = 1, 2). Then Ṽ1 ∩ Ṽ2 = ∂Ṽ1 = ∂Ṽ2 = Σ0 ⊔Σ1 and

Ṽ1 ∼= Ṽ2 ∼= Σ× [−1, 1]. We identify the fiber surface Σ0 with the Heegaard surface Σ

via the restriction p|Σ0 . Then there exists a homeomorphism ψi : Ṽi → Σ × [−1, 1]
such that ψi(x) = (p(x), 1) for every x ∈ Σ0. Let τi be the involution of Σ× [−1, 1]
defined by ψi ◦ τ |Ṽi

◦ ψ−1
i . Then pi := p|Ṽi

◦ ψ−1
i : Σ × [−1, 1] → Vi is a double

branched covering whose restriction to Σ × {1} is the identity map onto Σ = ∂Vi.
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Hence, by Lemma 9.6, there exists an element hi ∈ I(Vi) such that the covering pi
is equivalent to that constructed from hi as indicated in Lemma 9.5. This implies
that the monodromy of the Σ-bundle M̃ is equal to h1 ◦ h2. □

The characterization of D(M,Σ) in Theorem 9.1 reminds us of the result of
A’Campo [1, Corollary 1] which says that the geometric monodromy of an iso-
lated complex hypersurface singularity, which is defined by a real equation, is the
composition of two orientation-reversing involutions of the fiber, one of which is the
restriction of the complex conjugation. Brooks [15] and Montesinos [71] indepen-
dently proved that D(M,Σ) contains a pseudo-Anosov element whenever g(Σ) ≥ 2.
Hirose and Kin [44] studied the asymptotic behavior of the minimum of the dilata-
tions of pseudo-Anosov elements contained in D(S3,Σg) as g → ∞, where Σg is the
genus-g Heegaard surface of S3.

When g(Σ) = 1, we will see in the companion paper [58] that, for any element ϕ
of D(M,Σ), the minimum translation length d(ϕ) of the action of ϕ on the curve
graph is comparable with 2d(Σ), where d(Σ) is the Hempel distance of Σ. We expect
that this toy example may be extended to a result for general Heegaard splittings.

Question 9.7. For a Heegaard splitting M = V1 ∪Σ V2 of a closed, orientable 3-
manifold M and for an element ϕ ∈ D(M,Σ), is there an estimate of d(ϕ), the
translation length or the asymptotic translation length of the action of ϕ on the
curve graph of Σ, in terms of the Hempel distance d(Σ)?
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mit der topologischen Deformation der Flächen, J. Reine Angew. Math. 159 (1928), 101–116.

[6] H. Baik, C. Kim, S. Kwak, H. Shin, On translation lengths of Anosov maps on curve graph of
torus, arXiv:1908.00472.

[7] K. Baker, Private discussion, Hiroshima, June, 2013.
[8] L. Bers, Uniformization by Beltrami equations, Comm. Pure Appl. Math. 14 (1961), 215–228.
[9] M. Bestvina and K. Fujiwara, Handlebody subgroups in a mapping class group, In the tradition

of Ahlfors-Bers. VII, 29–50, Contemp. Math., 696, Amer. Math. Soc., Providence, RI, 2017.
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