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AUSTERE AND ARID PROPERTIES FOR
PF SUBMANIFOLDS IN HILBERT SPACES

MASAHIRO MORIMOTO

Abstract. Austere submanifolds and arid submanifolds constitute respec-
tively two different classes of minimal submanifolds in finite dimensional
Riemannian manifolds. In this paper we introduce these two notions into
a class of proper Fredholm (PF) submanifolds in Hilbert spaces, discuss
their relation and show examples of infinite dimensional austere PF sub-
manifolds and arid PF submanifolds in Hilbert spaces. We also mention a
classification problem of minimal orbits in hyperpolar PF actions on Hilbert
spaces.

Introduction

An austere submanifold is a minimal submanifold of a Riemannian manifold
which has a local symmetry. More precisely a submanifold M immersed in a
finite dimensional Riemannian manifold M̄ is called austere if for each normal
vector ξ the set of eigenvalues with multiplicities of the shape operator Aξ is
invariant under the multiplication by (−1). This notion was originally intro-
duced by Harvey and Lawson [5] in the study of calibrated geometry. Except
for the case of surfaces the austere condition is much stronger than the min-
imal one. It is an interesting problem to classify austere submanifolds under
suitable conditions (e.g. [1], [2], [13], [12], [14]).

In [12] Ikawa Sakai and Tasaki introduced a certain kind of austere sub-
manifold which has a global symmetry, which they call a weakly reflective
submanifold. A submanifold M immersed in a finite dimensional Riemannian
manifold M̄ is called weakly reflective if for each normal vector ξ at each p ∈ M
there exists an isometry νξ of M̄ which satisfies

νξ(p) = p, dνξ(ξ) = −ξ, νξ(M) = M.

Here we call νξ a reflection with respect to ξ. A reflective submanifold ([19]),
defined as a connected component of the fixed point set of an involutive isom-
etry on M̄ , is an example of a weakly reflective submanifold. Another example
is a singular orbit of a cohomogeneity one action, which was essentially shown
to be weakly reflective by Podestà [27]. It is an interesting problem to study
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2 M. MORIMOTO

submanifold geometry of orbits under isometric actions of Lie groups and to
determine their weakly reflective orbits (e.g. [12], [23], [3]).

Recently Taketomi [29] introduced a generalized concept of weakly reflective
submanifolds, namely arid submanifolds. A submanifold M immersed in a
finite dimensional Riemannian manifold M̄ is called arid if for each nonzero
normal vector ξ at each p ∈ M there exists an isometry φξ of M̄ which satisfies

φξ(p) = p, dφξ(ξ) ̸= ξ, φξ(M) = M.

Here we call φξ an isometry with respect to ξ. From this definition we have:

austere⇒ ⇒
reflective ⇒ weakly reflective minimal.⇒ ⇒arid

In [29] he gave an example of an arid submanifold which is not an austere
submanifold (therefore not a weakly reflective submanifold). Also he showed
that any isolated orbit of a proper isometric action is an arid submanifold. It
is a problem for a given proper isometric action to determine their arid orbits
which are not isolated.

It is also interesting to study these submanifolds and problems in the infinite
dimensional case.

A fundamental class of infinite dimensional submanifolds is given by proper
Fredholm (PF) submanifolds in Hilbert spaces (Terng [30]), where the shape
operators are compact operators and the distance functions satisfy the Palais-
Smale condition ([24], [28]). It is known that many examples of PF submani-
folds are obtained through a certain Riemannian submersion ΦK : Vg → G/K
which is called the parallel transport map ([15], [32]). Here G/K is a compact
normal homogeneous space and Vg := L2([0, 1], g) the Hilbert space of all L2-
paths with values in the Lie algebra g of G (cf. Section 2). It was proved ([32])
that if N is a closed submanifold of G/K then its inverse image Φ−1

K (N) is
a PF submanfold of Vg. A fundamental problem is to study the geometrical
relation between N and Φ−1

K (N). For example, it was shown ([15], [16], [7])
that if N is minimal then Φ−1

K (N) is also minimal (in some sense).
Recently the author [22] introduced the concept of weakly reflective sub-

manifolds into a class of PF submanifolds in Hilbert spaces and studied the
geometrical relation between submanifolds N and Φ−1

K (N). To simplify ex-
planation here we suppose that G/K is an irreducible Riemannian symmetric
space of compact type. The author showed ([22, Theorem 8]):

If N is weakly reflective, then Φ−1
K (N) is also weakly reflective.

It is noted that even if N is reflective, Φ−1
K (N) can not be reflective ([22,

Remark 5]). Then there are two questions:

Question A: If N is austere, is Φ−1
K (N) austere ?

Question B: If N is arid, is Φ−1
K (N) arid ?

The purpose of this paper is to give answers to Questions A and B as far as
possible. Main results are Theorem 4.1 and Theorem 5.1. Here Theorem 4.1
gives an affirmative answer to Question A under the assumption that G/K is
a sphere, while in other cases it remains unsolved because there is no simple
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relation between the principal curvatures of N and Φ−1
K (N). On the other hand

Theorem 5.1 is just an affirmative answer to Question B. Note that Theorem
5.1 is proved similarly to the weakly reflective case [22]. As an application we
show examples of arid PF submanifolds which are not austere (therefore not
weakly reflective) PF submanifolds (Examples 5.4, 5.7, 5.9). Also we mention
a classification problem of minimal orbits in the P (G,H)-action, which is an
isometric PF action of a Hilbert Lie group P (G,H) on the Hilbert space Vg.

This paper is organized as follows. In Section 1 we define the arid property
for PF submanifolds in Hilbert spaces. In Section 2 we prepare the setting
of P (G,H)-actions and the parallel transport map. In Section 3 we calculate
the principal curvatures of PF submanifolds obtained through the parallel
transport map. In Section 4, to answer Question A, we study the austere
property of so obtained PF submanifolds. In section 5, to answer Question B,
we study the arid property of so obtained PF submanifolds. In Section 6 we
mention the classification problem of minimal orbits in hyperpolar P (G,H)-
actions.

1. PF submanifolds with symmetries

Let V be a separable Hilbert space over R and M a Hilbert manifold im-
mersed in V . The end point map Y : T⊥M → V is defined by Y (ξ) := p+ξ for
ξ ∈ T⊥

p M . M is called proper Fredholm (PF) ([30]) if it has finite codimension
and the restriction of Y to a normal disc bundle of any finite radius is proper
and Fredholm. It is known ([30, Proposition 2.7]) that for each p ∈ M and
each ξ ∈ T⊥

p M the shape operator Aξ is a self-adjoint compact operator on
TpM which is not of trace class in general.

At present there are three kinds of definitions for ‘minimal’ PF submanifolds,
namely ζ-minimal ([15]), r-minimal ([7]) and f -minimal ([16]). Here we recall
the first two which are used in this paper. Let M be a PF submanifold of V
and ξ ∈ T⊥M . We denote by

µ1 ≤ µ2 ≤ · · · < 0 < · · · ≤ λ2 ≤ λ1.

the eigenvalues repeated with multiplicities of the shape operator Aξ.
We say that Aξ is ζ-regularizable ([15]) if

∑
k λ

s
k+
∑

k |µk|s < ∞ for all s > 1
and

trζ Aξ := lim
s↘1

(∑
k

λs
k −

∑
k

|µk|s
)

exists. Then we call trζ Aξ the ζ-regularized mean curvature in the direction
of ξ. M is called ζ-regularizable if Aξ is ζ-regularizable for all ξ ∈ T⊥M . If
M is ζ-regularizable and trζ Aξ vanishes for all ξ ∈ T⊥M , we say that M is
ζ-minimal.

We say that Aξ is regularizable ([7]) if trA2
ξ < ∞ and

trr Aξ :=
∞∑
k=1

(λk + µk)
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converges, where we regard λk or µk as zero if there are less than k positive
or negative eigenvalues, respectively. Then we call trr Aξ the regularized mean
curvature in the direction of ξ. M is called regularizable if Aξ is regularizable
for all ξ ∈ T⊥M . If M is regularizable and trr Aξ vanishes for all ξ ∈ T⊥M ,
we say that M is r-minimal.
In [22] the concepts of reflective submanifolds, weakly reflective submanifolds

and austere submanifolds were introduced into a class of PF submanifolds in
Hilbert spaces. Similarly we can define arid PF submanifolds:

Definition. Let M be a PF submanifold of V . M is called arid if for each
p ∈ M and each ξ ∈ T⊥

p M\{0} there exists an isometry φξ of V which satisfies

φξ(p) = p, dφξ(ξ) ̸= ξ, φξ(M) = M.

We have the following relation:

austere PF⇒reflective PF ⇒ weakly reflective PF ⇒
arid PF.

The ζ-minimality and r-minimality of austere PF submanifolds were discussed
in [22, Section 1]. We do not know in general whether arid PF submanifolds are
ζ-minimal or r-minimal because it is not clear that the mean curvature vector
of a PF submanifold is well-defined or not. However it will not interfere our
purpose because we will give attention to PF submanifolds obtained through
the parallel transport map ([15], [32]), where the mean curvature vector is
well-defined ([15, Theorem 4.12], [7, Lemma 5.2]) and thus the arid property
implies both ζ-minimality and r-minimality.

2. P (G,H)-actions and the parallel transport map

In this section we prepare the setting of P (G,H)-actions and the parallel
transport map. The related and detailed facts can be found in [22, Section 2]
and references therein.

Let G be a connected compact Lie group with Lie algebra g. Choose an
Ad(G)-invariant inner product of g and equip the corresponding bi-invariant
Riemannian metric with G. Denote by G := H1([0, 1], G) the Hilbert Lie group
of all Sobolev H1-paths in G parametrized on [0, 1] and by Vg := H0([0, 1], g)
the Hilbert space of all Sobolev H0-paths in g parametrized on [0, 1]. For each
a ∈ G (resp. x ∈ g) we denote by â ∈ G (resp. x̂ ∈ Vg) the constant path which
values at a (resp. x). Then G acts on Vg via the gauge transformations:

(2.1) g ∗ u := gug−1 − g′g−1, g ∈ G, u ∈ Vg,

where g′ denotes the weak derivative of g with respect to the parameter on
[0, 1]. We know that this action is isometric, transitive, proper and Fredholm
([25, Theorem 5.8.1]).

Let H be a closed subgroup of G × G with Lie algebra h. Define a Lie
subgroup P (G,H) of G by

P (G,H) := {g ∈ G | (g(0), g(1)) ∈ H}
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with Lie algebra

LieP (G,H) = {Z ∈ H1([0, 1], g) | (Z(0), Z(1)) ∈ h}.

The induced action of P (G,H) on Vg is called the P (G,H)-action. We know
that P (G,H)-action is isometric, proper and Fredholm ([31, p. 132]). Thus
each orbit of the P (G,H)-action is a PF submanifold of Vg ([25, Theorem
7.1.6]). Also we know ([32, Corollary 4.2]) that both P (G, {e} ×G)-action on
Vg and P (G,G× {e})-action on Vg are simply transitive.
The parallel transport map ([15], [31]) Φ : Vg → G is a Riemannian submer-

sion defined by

Φ(u) := Eu(1), u ∈ Vg,

where Eu ∈ G is the unique solution to the linear ordinary differential equation{
E−1

u Eu = u,
Eu(0) = e.

Note that G×G acts on G isometrically by

(2.2) (b1, b2) · a := b1ab
−1
2 , a, b1, b2 ∈ G.

We know ([31, Proposition 1.1]) that for g ∈ G and u ∈ Vg

(2.3) Φ(g ∗ u) = (g(0), g(1)) · Φ(u)

and that for any closed subgroup H of G×G,

(2.4) P (G,H) ∗ u = Φ−1(H · Φ(u)).

More generally, if N is a closed submanifold of G then the inverse image
Φ−1(N) is a PF submanifold of Vg ([32, Lemma 5.1]).

The differential (dΦ)0̂ : T0̂Vg → TeG ∼= g of Φ at 0̂ ∈ Vg (cf. [32, p. 685]) is
given by

(dΦ)0̂(X) =

∫ 1

0

X(t)dt, X ∈ T0̂Vg
∼= Vg.

Using this we obtain the orthogonal direct sum decomposition

T0̂Vg = ĝ⊕Ker(dΦ)0̂, X =

(∫ 1

0

X(t)dt

)
⊕
(
X −

∫ 1

0

X(t)dt

)
.

Let K be a closed subgroup of G with Lie algebra k. Denote by g = k+m the
orthogonal direct sum decomposition. Restricting the Ad(G)-invariant inner
product of g to m we define the induced G-invariant Riemannian metric on the
homogeneous spaceG/K. Such a metric is called a normal homogeneous metric
and G/K a compact normal homogeneous space. We write π : G → G/K for
the natural projection, which is a Riemannian submersion with totally geodesic
fiber. The parallel transport map ΦK over G/K is a Riemannian submersion
defined by

(2.5) ΦK := π ◦ Φ : Vg → G → G/K.
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Note that for each g ∈ P (G,G× {e}) and a ∈ G the diagrams

(i)

Vg
g∗−−−→ Vg

Φ

y Φ

y
G

(g(0), e)−−−−→ G

(ii)

G
la−−−→ G

π

y π

y
G/K

La−−−→ G/K

(2.6)

commute, where la denotes the left translation by a and La the isometry on
G/K defined by La(bK) := (ab)K. Thus setting a := g(0) we obtain a com-
mutative diagram

(2.7)

Vg
g∗−−−→ Vg

ΦK

y ΦK

y
G/K

La−−−→ G/K.

Let G, K be as above. Denote by FK := Φ−1
K (eK) = Φ−1(K) the fiber of

ΦK at eK ∈ G/K and by F := Φ−1(e) the fiber of Φ at e ∈ G. Since

FK = Φ−1(({e} ×K) · e) = P (G, {e} ×K) ∗ 0̂
we can write (cf. [22, equation (9)])

(2.8) T0̂FK = {−Z ′ | Z ∈ H1([0, 1], g), Z(0) = 0, Z(1) ∈ k}.
Similarly we have

(2.9) T0̂F = {−Q′ | Q ∈ H1([0, 1], g), Q(0) = Q(1) = 0}.
Suppose that a closed submanifold N of G/K through eK ∈ G/K is given.

Since Φ and ΦK are Riemannian submersions we have the orthogonal direct
sum decompositions

T0̂Φ
−1
K (N) ∼= T0̂FK ⊕ TeKN ∼= T0̂F ⊕ k⊕ TeKN.

From now on AΦ−1
K (N), Aπ−1(N) and AN denote the shape operators of Φ−1

K (N),
π−1(N) and N , respectively. We fix a normal vector ξ of N at eK. Then its

horizontal lift at 0̂ ∈ Φ−1
K (N) is given by the constant path ξ̂.

Proposition 2.1. Suppose [m,m] ⊂ k. For −Q′ ∈ T0̂F , x ∈ k, y ∈ TeKN

A
Φ−1

K (N)

ξ̂
(−Q′) = [ξ̂, Q]−

[
ξ,

∫ 1

0

Q(t)dt

]⊥
,(2.10)

A
Φ−1

K (N)

ξ̂
(x) =

1

2
[ξ, x]⊥ − t[ξ, x],(2.11)

A
Φ−1

K (N)

ξ̂
(y) = AN

ξ (y) + (1− t)[ξ, y],(2.12)

where ⊥ denote the projection from g onto T⊥
eKN(⊂ m).

Proof. The formula (2.10) follows from [22, Corollary 1 (ii)]. Also from [22,
Corollary 1 (i)] we have the following formula: for v ∈ Teπ

−1(N)

A
Φ−1

K (N)

ξ̂
(v) = A

π−1(N)
ξ (v)−

(
t− 1

2

)
[ξ, v].
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Further by [22, Remark 1 (ii)], for v = x⊕ y ∈ Teπ
−1(N) = k⊕ TeKN

(2.13) A
π−1(N)
ξ (v) = AN

ξ (y) +
1

2
[ξ, y]k −

1

2
[ξ, x]⊤,

where the subscript k and⊤ denote the projections onto k and TeN respectively.
Since we are supposing [m,m] ⊂ k these formulas imply (2.11) and (2.12). □

Corollary 2.2. For −Z ′ ∈ T0̂FK

(2.14) A
Φ−1

K (N)

ξ̂
(−Z ′) = [ξ̂, Z]−

[
ξ,

∫ 1

0

Z(t)dt

]⊥
.

Proof. Set Q := Z − tZ(1) and x := −Z(1) so that −Z ′ = −Q′ + x. By (2.10)
and (2.11) the desired formula follows. □

3. Principal curvatures

In this section we calculate the principal curvatures of PF submanifolds
obtained through the parallel transport map. For technical reasons, here we
will restrict our attention to PF submanifolds obtained from curvature adapted
submanifolds in compact symmetric spaces. Although such a subject has been
studied by Koike [16] there are some inaccuracies in his eigenspace decomposi-
tion and so here we give the corrected formula with another elementary proof
by using the formulas for shape operators prepared in the last section.

Recall that a submanifold M immersed in a Riemannian manifold M̄ is
called curvature adapted if for each p ∈ M and each ξ ∈ T⊥

p M the Jacobi

operator Rξ := R̄(·, ξ)ξ : TpM̄ → TpM̄ , where R̄ denotes the curvature tensor
of M̄ , satisfies

Rξ(TpM) ⊂ TpM and AM
ξ ◦Rξ|TpM = Rξ|TpM ◦ AM

ξ ,

where AM
ξ denotes the shape operator of M in the direction of ξ.

Let G be a connected compact Lie group and K a closed subgroup of G.
Suppose that K is symmetric, that is, there exists an involutive automorphism
θ of G such that Gθ

0 ⊂ K ⊂ Gθ, where Gθ is the fixed point subgroup of θ
and Gθ

0 the identity component. Denote by g and k the Lie algebras of G
and K respectively and by g = k + m the direct sum decomposition into the
±1-eigenspaces of dθ. We fix an inner product ⟨·, ·⟩ of g which is invariant
under both Ad(G) and θ. Then the above direct sum decomposition is or-
thogonal with respect to this inner product ⟨·, ·⟩. We equip the corresponding
bi-invariant Riemannian metric with G and a normal homogeneous metric with
G/K. Then G/K is a compact symmetric space and the natural projection
π : G → G/K is a Riemannian submersion with totally geodesic fiber. We
denote by ΦK : Vg → G/K the parallel transport map.
Let N be a curvature adapted closed submanifold of G/K. Note that in

order to calculate the principal curvatures of a PF submanifold Φ−1
K (N) we can

assume without loss of generality that N contains eK and moreover it suffices
to consider normal vectors only at 0̂ ∈ Φ−1

K (N) because of the commutativity
(2.7). Thus in the rest of this section we fix ξ ∈ T⊥

eKN and calculate the
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principal curvatures of Φ−1
K (N) in the direction of ξ̂ ∈ T⊥

0̂
Φ−1

K (N). Note that

in this case the Jacobi operator is given by Rξ = − ad(ξ)2 : m → m.
Denote by {

√
−1 ν} the set of all distinct eigenvalues of the skew adjoint

operator ad(ξ) : g → g. Consider the complexification ad(ξ) : gC → gC and
the eigenspace decomposition

gC = gC0 +
∑
ν ̸=0

gν ,

g0 := {x ∈ g | ad(ξ)(x) = 0},
gν := {z ∈ gC | ad(ξ)(z) =

√
−1 νz}.

Since ḡν = g−ν we can write

gC = gC0 +
∑
ν>0

(gν + g−ν)

and thus we obtain

g = g0 +
∑
ν>0

(gν + g−ν)R,

(gν + g−ν)R = {x ∈ g | ad(ξ)2(x) = −ν2x},
which is nothing but the eigenspace decomposition with respect to ad(ξ)2 :
g → g. Since ad(ξ)2 commutes with involution θ we have the simultaneous
eigenspace decomposition

(3.1) k = k0 +
∑
ν>0

kν , m = m0 +
∑
ν>0

mν ,

k0 := {x ∈ k | ad(ξ)(x) = 0},
m0 := {y ∈ m | ad(ξ)(y) = 0},
kν := {x ∈ k | ad(ξ)2(x) = −ν2x},
mν := {y ∈ m | ad(ξ)2(y) = −ν2y}.

By similar arguments as in [18, p. 60], for each ν > 0 we can take bases
{xν

1, · · · , xν
m(ν)} of kν and {yν1 , · · · , yνm(ν)} of mν wherem(ν) := dim kν = dimmν

such that

(3.2) [ξ, xν
k] = −νyνk , [ξ, yνk ] = νxν

k.

Thus a linear isomorphism φν : kν → mν is defined by

(3.3) φν(x) := −1

ν
[ξ, x].

Let {λ} denote the set of all distinct eigenvalues of the shape operator AN
ξ .

Set

Sλ := Ker(AN
ξ − λ id).
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Since N is curvature adapted, for each ν ≥ 0 we have the decomposition

m = TeKN ⊕ T⊥
eKN

∪ ∪ ∪
mν = mν ∩ TeKN ⊕ mν ∩ T⊥

eKN

=∑
λ(mν ∩ Sλ).

For each ν ≥ 0 we set

m(ν, λ) := dim(mν ∩ Sλ), m(ν,⊥) := dim(mν ∩ T⊥
eKN).

For each ν ≥ 0 and λ, choose

{y(ν,λ)1 , · · · , y(ν,λ)m(ν,λ)} : a basis of mν ∩ Sλ,

{y(ν,⊥)
1 , · · · , y(ν,⊥)

m(ν,⊥)} : a basis of mν ∩ T⊥
eKN .

Then for each ν ≥ 0 we obtain

{y(ν,λ)1 , · · · , y(ν,λ)m(ν,λ)}λ ∪ {y(ν,⊥)
1 , · · · , y(ν,⊥)

m(ν,⊥)} : a basis of mν .

Thus for each ν > 0, via an isomorphism (3.3) we obtain

{x(ν,λ)
1 , · · · , x(ν,λ)

m(ν,λ)}λ ∪ {x(ν,⊥)
1 , · · · , x(ν,⊥)

m(ν,⊥)} : a basis of kν .

For ν = 0 we choose and denote by

{x0
1, · · · , x0

dim k0
} : a basis of k0.

Note that these satisfy

[ξ, x0
i ] = 0, [ξ, y

(0,λ)
j ] = [ξ, y

(0,⊥)
l ] = 0,

[ξ, x
(ν,λ)
k ] = −ν y

(ν,λ)
k , [ξ, y

(ν,λ)
k ] = ν x

(ν,λ)
k ,

[ξ, x
(ν,⊥)
r ] = −ν y

(ν,⊥)
r , [ξ, y

(ν,⊥)
r ] = ν x

(ν,⊥)
r .

Set V (g) := Vg = H0([0, 1], g). We decompose

V (g) =
∑
ν≥0

V (kν) +
∑
ν≥0

(
V (mν ∩ TeKN) + V (mν ∩ T⊥

eKN)
)

and equip a basis with each term above. Recall that there are well-known
three kinds of orthonormal bases in H0([0, 1],R):

{1,
√
2 cos 2nπt,

√
2 sin 2nπt}∞n=1 ,(3.4)

{1,
√
2 cosnπt}∞n=1 ,(3.5)

{
√
2 sinnπt}∞n=1 .(3.6)

For ν = 0 we consider the following bases:

a basis of V (k0) : {x0
i sinnπt}i, n ,

a basis of V (m0 ∩ TeKN) : {y(0,λ)j }λ, j ∪ {y(0,λ)j cosnπt}λ, j, n ,

a basis of V (m0 ∩ T⊥
eKN) : {y(0,⊥)

l }l ∪ {y(0,⊥)
l cosnπt}l, n .
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For each ν > 0 we consider the following bases:

a basis of V (kν) : {x(ν,λ)
k sinnπt}λ, k, n ∪ {x(ν,⊥)

r sinnπt}r, n ,

a basis of V (mν ∩ TeKN) : {y(ν,λ)k }λ, k ∪ {y(ν,λ)k cosnπt}λ, n, k ,

a basis of V (mν ∩ T⊥
eKN) : {y(ν,⊥)

r }r ∪ {y(ν,⊥)
r cosnπt}n, r .

Clearly all these bases form a basis of V (g) = Vg. Identifying T0̂Vg
∼= Vg and

considering the orthogonal direct sum decomposition

T0̂Vg = T0̂Φ
−1
K (N)⊕ T⊥

eKN, X =

(
X −

∫ 1

0

X(t)⊥dt

)
⊕
∫ 1

0

X(t)⊥dt

we consequently obtain the following basis of T0̂Φ
−1
K (N):

{x0
i sinnπt}i, n ∪ {y(0,λ)j }λ, j ∪ {y(0,λ)j cosnπt}λ, j, n ∪ {y(0,⊥)

r cosnπt}r, n

∪
∪
ν>0

(
{x(ν,λ)

k sinnπt}λ, k, n ∪ {y(ν,λ)k }λ, k ∪ {y(ν,λ)k cosnπt}λ, k, n
)

∪
∪
ν>0

(
{x(ν,⊥)

r sinnπt}r,n ∪ {y(ν,⊥)
r cosnπt}r, n

)
.

Lemma 3.1.

(i) A
Φ−1

K (N)

ξ̂
(x0

i sinnπt) = 0, A
Φ−1

K (N)

ξ̂
(y

(0,λ)
j ) = λy

(0,λ)
j ,

(ii) A
Φ−1

K (N)

ξ̂
(y

(0,λ)
j cosnπt) = A

Φ−1
K (N)

ξ̂
(y

(0,⊥)
l cosnπt) = 0,

(iii) A
Φ−1

K (N)

ξ̂
(x(ν,⊥)

r sinnπt) = − ν

nπ
y(ν,⊥)
r cosnπt,

A
Φ−1

K (N)

ξ̂
(y(ν,⊥)

r cosnπt) = − ν

nπ
x(ν,⊥)
r sinnπt,

(iv) A
Φ−1

K (N)

ξ̂
(y

(ν,λ)
k ) = λy

(ν,λ)
k +

2ν

π

∞∑
n=1

1

n
(x

(ν,λ)
k sinnπt),

(v) A
Φ−1

K (N)

ξ̂
(x

(ν,λ)
k sinnπt) = − ν

nπ
y
(ν,λ)
k (−1 + cosnπt),

(vi) A
Φ−1

K (N)

ξ̂
(y

(ν,λ)
k cosnπt) = − ν

nπ
x
(ν,λ)
k sinnπt.

Proof. (i) and (ii): The second equality of (i) follows from (2.12). Let Q be

1

nπ
x0
i cosnπt, − 1

nπ
y
(0,λ)
j sinnπt or − 1

nπ
y
(0,⊥)
l sinnπt.

By (2.10) we obtain the first formula of (i) and formulas in (ii). (iii): Set

Z1 :=
1

nπ
x(ν,⊥)
r (−1 + cosnπt), Z2 := − 1

nπ
y(ν,⊥)
r sinnπt.

Then we have

[ξ, Z1] = − ν

nπ
y(ν,⊥)
r (−1 + cosnπt), [ξ, Z2] = − ν

nπ
x(ν,⊥)
r sinnπt.

Thus we have[
ξ,

∫ 1

0

Z1(t)dt

]⊥
=

ν

nπ
y(ν,⊥)
r ,

[
ξ,

∫ 1

0

Z2(t)dt

]⊥
= 0.
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Hence by (2.14) the desired equalities follow. (iv): By (2.12) we have

A
Φ−1

K (N)

ξ̂
(y

(ν,λ)
k ) = λy

(ν,λ)
k + (1− t) νx

(ν,λ)
k .

Since
∫ 1

0
(1 − t) sinnπt dt = (nπ)−1 the Fourier expansion with respect to a

basis (3.6) of a function f : [0, 1] → R, t 7→ 1− t is given by

f =
2

π

∞∑
n=1

1

n
(sinnπt).

This shows the desired equality. (v), (vi): Set

Z1 :=
1

nπ
x
(ν,λ)
k (−1 + cosnπt), Z2 := − 1

nπ
y
(ν,λ)
k sinnπt.

Then we have

[ξ̂, Z1] = − ν

nπ
y
(ν,λ)
k (−1 + cosnπt), [ξ̂, Z2] = − ν

nπ
x
(ν,λ)
k sinnπt,

Thus we have [
ξ,

∫ 1

0

Z1(t)dt

]⊥
=

[
ξ,

∫ 1

0

Z2(t)dt

]⊥
= 0.

Hence by (2.14) we obtain the desired formulas. □
We come now to the principal curvatures of a PF submanifold Φ−1

K (N):

Theorem 3.2. Let G/K be a compact symmetric space, ΦK : Vg → G/K
the parallel transport map, N a curvature adapted closed submanifold of G/K
through eK ∈ G/K, and ξ ∈ T⊥

eKN ⊂ m. Denote by {
√
−1 ν} the set of

all distinct eigenvalues of ad(ξ) : g → g and by {λ} the set of all distinct
eigenvalues of the shape operator AN

ξ . For each ν > 0, each λ and each m ∈ Z
we set

µ = µ(ν, λ,m) :=
ν

arctan ν
λ
+mπ

,

where we set arctan(ν/λ) := π/2 if λ = 0. Then the principal curvatures of a

PF submanifold Φ−1
K (N) in the direction of ξ̂ ∈ T⊥

0̂
Φ−1(N) are given by{

0, λ,
ν

nπ
, µ(ν, λ,m)

}
λ, ν>0, n∈Z\{0}, m∈Z

.

The eigenfunctions and the multiplicities are given in the following table.

eigenvalue basis of eigenfunctions multiplicity

0 {x0
i sinnπt, y

(0,λ)
j cosnπt, y

(0,⊥)
l cosnπt}n∈Z≥1, λ, i, j, l ∞

λ {y(0,λ)j }j m(0, λ)

ν

nπ
{x(ν,⊥)

r sinnπt− y
(ν,⊥)
r cosnπt}r m(ν,⊥)

µ(ν, λ,m)
{∑

n∈Z
ν

nπµ+ν
(x

(ν,λ)
k sinnπt+ y

(ν,λ)
k cosnπt)

}
k

m(ν, λ)
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Remark 3.3. Let a be a maximal abelian subspace of m and ∆+ the set
of positive roots satisfying α(ξ) ≥ 0 for each α ∈ ∆+. Then for each ν > 0
there exists α ∈ ∆+ such that ν = α(ξ) and thus the above eigenvalues coincide
with those given by Koike [16, Theorem 3.3]. However note that the eigenspace
decomposition [16, p. 73, line 3] does not hold in general.

Proof of Theorem 3.2. By Lemma 3.1 (i) - (iii) it follows that 0, λ and ν
nπ

are

eigenvalues of A
Φ−1

K (N)

ξ̂
with eigenfunctions described above. Let W denote

a subspace of T0̂Φ
−1
K (N) spanned by all such eigenfunctions and consider its

orthogonal complements W⊥ in T0̂Φ
−1
K (N). We know that one basis of W⊥ is

given by ∪
ν>0

(
{y(ν,λ)k }λ, k ∪ {x(ν,λ)

k sinnπt, y
(ν,λ)
k cosnπt}λ, k, n∈Z≥1

)
.

In particular Lemma 3.1 (iv) - (vi) show that for each ν > 0, λ and k, a
subspace of T0̂Φ

−1
K (N) spanned by

{y(ν,λ)k } ∪ {x(ν,λ)
k sinnπt, y

(ν,λ)
k cosnπt}n∈Z≥1

is invariant under A
Φ−1

K (N)

ξ̂
. We denote such a subspace by W⊥

(λ,ν,k). Suppose

that for constants an, bn, c ∈ R

φ := cy
(ν,λ)
k +

∞∑
n=1

{an(x(ν,λ)
k sinnπt) + bn(y

(ν,λ)
k cosnπt)} ∈ W⊥

(λ, ν, k)

is a (nonzero) eigenfunction of A
ΦK(N)

ξ̂
for some eigenvalue µ. By Lemma 3.1

(iv) - (vi) we have

A
Φ−1

K (N)

ξ̂
(φ) =

(
cλ+

ν

π

∞∑
n=1

an
n

)
y
(ν,λ)
k

+
ν

π

∞∑
n=1

2c− bn
n

(x
(ν,λ)
k sinnπt)− ν

π

∞∑
n=1

an
n
(y

(ν,λ)
k cosnπt).

Comparing with

µφ = µcy
(ν,λ)
k +

∞∑
n=1

{µan(x(ν,λ)
k sinnπt) + µbn(y

(ν,λ)
k cosnπt)}

we obtain a system of equations

cλ+
ν

π

∞∑
n=1

an
n

= cµ,(3.7)

ν

π

2c− bn
n

= µan,(3.8)

− ν

π

an
n

= µbn.(3.9)
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Summing (3.9) with respect to n ∈ Z≥1 we have

−ν

π

∞∑
n=1

an
n

= µ

∞∑
n=1

bn.

Applying this to (3.7) we obtain

(3.10) cλ− µ
∞∑
n=1

bn = cµ.

On the other hand, multiplying (3.9) by µ we have

− ν

nπ
µan = µ2bn.

Applying (3.8) to this we obtain

−2c
( ν

nπ

)2
= bn

(
µ2 −

( ν

nπ

)2)
for all n ∈ Z≥1. Note that this implies c ̸= 0, µ ̸= 0 and µ2 − ( ν

nπ
)2 ̸= 0 for

all n ∈ Z. Therefore without loss of generality we can (and will) assume c = 1
from now on, and

(3.11) bn =
−2r2

n2 − r2
, where r :=

ν

πµ
.

From (3.10), (3.11) and the standard formula (see [21, 1.449 - 4]):

∞∑
n=1

1

n2 − a2
=

1

2a2
− π

2a
cot(πa), a ∈ R\Z

we have

λ− µ = µ

∞∑
n=1

bn = −µ+ ν cot(ν/µ).

Thus

µ =
ν

arctan(ν/λ) +mπ
, m ∈ Z.

By (3.11) we have

bn =
−2ν2

(nπµ)2 − ν2
=

−2(arctan(ν/λ) +mπ)2

(nπ)2 − (arctan(ν/λ) +mπ)2

= (arctan(ν/λ) +mπ)

×
(

1

nπ + (arctan(ν/λ) +mπ)
− 1

nπ − (arctan(ν/λ) +mπ)

)
.
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By (3.9) we have

an = −nπbnµν
−1 =

2nπ(arctan(ν/λ) +mπ)

(nπ)2 − (arctan(ν/λ) +mπ)2

= (arctan(ν/λ) +mπ)

×
(

1

nπ + (arctan(ν/λ) +mπ)
+

1

nπ − (arctan(ν/λ) +mπ)

)
.

Therefore we obtain

φ = y
(ν,λ)
k +

∑
n∈Z\{0}

arctan(ν/λ) +mπ

nπ + (arctan(ν/λ) +mπ)
{(x(ν,λ)

k sinnπt) + (y
(ν,λ)
k cosnπt)}

=
∑
n∈Z

ν

nπµ+ ν
{(x(ν,λ)

k sinnπt) + (y
(ν,λ)
k cosnπt)}.

This proves the theorem. □
Considering the case that N = {eK} we obtain:

Corollary 3.4. Let G/K be a compact symmetric space. Take ξ ∈ TeK(G/K) =
m. Denote by {

√
−1 ν} the set of all distinct eigenvalues of ad(ξ) : g → g.

Then the principal curvatures of the fiber Φ−1
K (eK) in the direction of ξ̂ ∈

T⊥
0̂
Φ−1

K (eK) are given by {
0,

ν

nπ

}
ν>0, n∈Z\{0}

.

Denoting by {x0
i }i a basis of k0, by {y0j}j a basis of m0 and by {xν

k}k, {yνk}k
the bases defined by (3.2), the eigenfunctions and the multiplicities are given
in the following table.

eigenvalue basis of eigenfunctions multiplicity

0 {x0
i sinnπt, y

0
j cosnπt}n∈Z≥1, λ, i, j ∞

ν

nπ
{xν

k sinnπt− yνk cosnπt}k m(ν)

The principal curvatures of π−1(N) are given by the following proposition,
which is proved by the straightforward computations using the formula (2.13).

Proposition 3.5. With notation as in Theorem 3.2, for each ν > 0 and each
λ we set

κ+ = κ+(ν, λ) :=
1

2
(λ+

√
λ2 + ν2),

κ− = κ−(ν, λ) :=
1

2
(λ−

√
λ2 + ν2).

Then the principal curvatures of π−1(N) in the direction of ξ ∈ T⊥
e π−1(N) ∼=

T⊥
eKN are given by

{0, λ, κ+(ν, λ), κ−(ν, λ)}λ, ν>0 .



AUSTERE AND ARID PROPERTIES FOR PF SUBMANIFOLDS 15

The eigenfunctions and the multiplicities are given in the following table.

eigenvalue basis of eigenfunctions multiplicity

0 {x0
i }i, {x(ν,⊥)

r }r, ν dim k0 + dimT⊥
eKN

λ {y(0,λ)j }j m(0, λ)

κ+(ν, λ) {νx(ν,λ)
k + 2κ+y

(ν,λ)
k }k m(ν, λ)

κ−(ν, λ) {νx(ν,λ)
k + 2κ−y

(ν,λ)
k }k m(ν, λ)

4. The austere property

In this section we study the austere property of PF submanifolds obtained
through the parallel transport map ΦK . Notice that even if N is an austere
curvature adapted submanifold of a compact symmetric space G/K, it is not
clear in general whether the inverse image Φ−1

K (N) is austere or not; according
to Theorem 3.2 it is not clear whether the set of eigenvalues with multiplicities
of the shape operator is invariant under the multiplication by (−1) or not.
From this reason here we will restrict our attention further to the case that
G/K is a sphere and show that in this case N is austere if and only if Φ−1

K (N)
is austere (Theorem 4.1).

Let Sl(r) = G/K denote the l-dimensional sphere of radius r > 0, where l ∈
Z≥1 and (G,K) = (SO(l+ 1), SO(l)). Note that in this case any submanifold
of G/K is automatically curvature adapted. Let N be a closed submanifold of
G/K. Suppose eK ∈ N and fix ξ ∈ T⊥

eKN . Then for v ∈ TeKN and η ∈ T⊥
eKN

the Jacobi operator Rξ satisfies

Rξ(v) :=
∥ξ∥2

r2
v, Rξ(η) :=

1

r2
{∥ξ∥2η − ⟨η, ξ⟩ξ}.

Thus in this case the eigenspace decomposition (3.1) of m is given by

m = m0 +mν , where ν := ∥ξ∥/r,

m0 = Rξ ⊂ T⊥
eKN,

mν = TeKN ⊕ {η ∈ T⊥
eKN | η ⊥ ξ}.

In particular we have

m0 ∩ TeKN = {0}, m0 ∩ T⊥
eKN = Rξ,

mν ∩ TeKN = TeKN, mν ∩ T⊥
eKN = {η ∈ T⊥

eKN | η ⊥ ξ}.

Hence by Proposition 3.5 the principal curvatures of π−1(N) in the direction
of ξ ∈ T⊥

e π−1(N) ∼= T⊥
eKN are given by

(4.1) {0, κ+(∥ξ∥/r, λ), κ−(∥ξ∥/r, λ)}λ .
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Further by Theorem 3.2 the principal curvatures of a PF submanifold Φ−1
K (N)

in the direction of ξ̂ ∈ T⊥
0̂
Φ−1(N) are given by

(4.2)

{
0,

∥ξ∥
rnπ

, µ(∥ξ∥/r, λ,m)

}
λ, n∈Z\{0}, m∈Z

.

Notice that in this case the multiplicities of

λ, κ+(∥ξ∥/r, λ), κ−(∥ξ∥/r, λ), µ(∥ξ∥/r, λ,m)

are the same for each λ.

Theorem 4.1. Let N be a closed submanifold of the l-dimensional sphere
Sl(r) = G/K of radius r > 0, where l ∈ Z≥1 and (G,K) = (SO(l+1), SO(l)).
Then the the following are equivalent:

(i) N is an austere submanifold of G/K,
(ii) π−1(N) is an austere submanifold of G,
(iii) Φ−1

K (N) is an austere PF submanifold of Vg.

Proof. “(i) ⇒ (ii)”: Take a ∈ π−1(N) and w ∈ T⊥
a π−1(N). Set η := dπ(w) ∈

T⊥
aKN , N ′ := L−1

a (N) and ξ := dL−1
a (η) ∈ T⊥

eKN
′. Denote by v ∈ T⊥

e π−1(N ′)
the horizontal lift of ξ. By commutativity of (2.6) (ii), we have la(π

−1(N ′)) =

π−1(N) and dla(v) = w. Thus in order to show the austerity of A
π−1(N)
w it

suffices to show that of A
π−1(N ′)
v . For each eigenvalue λ of AN ′

ξ it follows from

the austerity of AN ′

ξ that −λ is also an eigenvalue of AN ′

ξ and

(−1)× κ+(∥ξ∥/r, λ) = κ−(∥ξ∥/r,−λ),

(−1)× κ−(∥ξ∥/r, λ) = κ+(∥ξ∥/r,−λ).

Note that these identities still hold even if the multiplicities are taking account
of. This shows that the set (4.1) with multiplicities is invariant under the
multiplication by (−1) and (ii) follows.

“(ii) ⇒ (i)”: Take aK ∈ N and η ∈ T⊥
aKN . Denote by w ∈ T⊥

a π−1(N) the
horizontal lift of η. Defining N ′, ξ, v by the above way it suffices to show the
austerity of AN ′

ξ . Let λ be an eigenvalue of AN ′

ξ . Since the set (4.1) is invariant

under the multiplication by (−1) there exist eigenvalues λ′ and λ′′ of AN ′

ξ such
that

(−1)× κ+(∥ξ∥/r, λ) = κ−(∥ξ∥/r, λ′),

(−1)× κ−(∥ξ∥/r, λ) = κ+(∥ξ∥/r, λ′′).

Note that the function R → R>0, x 7→ κ+(∥ξ∥/r, x) is monotonically increas-
ing. Thus the relation

κ−(∥ξ∥/r, x) = −κ+(∥ξ∥/r,−x)

shows that also the function R → R<0, x 7→ κ−(∥ξ∥/r, x) is monotonically
increasing. From these we obtain λ′ = λ′′ = −λ. Note that this identity still
holds even if the multiplicities are taken account of. This shows (i).

“(i)⇒ (iii)”: Take u ∈ Φ−1
K (N) andX ∈ T⊥

u Φ−1
K (N). Also take g ∈ P (G,G×

{e}) so that u = g ∗ 0̂. Set a := g(0) = Φ(u), η := dΦK(X) ∈ T⊥
aKN ,
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N ′ := L−1
a (N) and ξ := dL−1

a (η) ∈ T⊥
eKN

′. Denote by ξ̂ ∈ T⊥
0̂
Φ−1

K (N ′) the

horizontal lift of ξ. By commutativity of (2.7) we have g∗(Φ−1
K (N ′)) = Φ−1

K (N)

and dg ∗ (ξ̂) = X. Thus in order to show the austerity of A
Φ−1

K (N)

X it suffices to

show that of A
Φ−1

K (N ′)

ξ̂
. For each λ it follows from the austerity of AN ′

ξ that −λ

is also an eigenvalue of AN ′

ξ and

(−1)× µ(∥ξ∥/r, λ,m) = µ(∥ξ∥/r,−λ,−m).

Note that this identity still hold even if the multiplicities are taken account of.
This shows that the set

{µ(∥ξ∥/r, λ,m)}λ, m∈Z

with multiplicities is invariant under the multiplication by (−1). This together

with (4.2) shows the austerity of A
Φ−1

K (N ′)

ξ̂
and (iii) follows.

“(iii) ⇒ (i)”: Take aK ∈ N and η ∈ T⊥
aKN . Choose u ∈ Φ−1

K (a). Denote by

X ∈ T⊥
u Φ−1

K (N) the horizontal lift of η. Defining N ′, ξ, ξ̂ by the above way it
suffices to show the austerity of AN ′

ξ . From (4.2) and the assumption the set

{µ(∥ξ∥/r, λ,m)}λ, m∈Z

with multiplicities is invariant under the multiplication by (−1). Thus for each
eigenvalue λ of AN ′

ξ and each m ∈ Z there exists an eigenvalue λ′ of AN ′

ξ and
m′ ∈ Z such that

(−1)× µ(∥ξ∥/r, λ,m) = µ(∥ξ∥/r, λ′,m′).

That is,

− arctan
∥ξ∥
rλ

−mπ = arctan
∥ξ∥
rλ′ +m′π.

Since −π/2 < arctanx < π/2, the above equality shows m′ = −m and

λ′ = −λ.

Note that this identity still holds even if the multiplicities are taking account
of. This shows (i). □

Example 4.2. Ikawa, Sakai and Tasaki ([12, Theorem 5.1]) classified austere
submanifolds of the standard sphere given as orbits of s-representations of irre-
ducible Riemannian symmetric pairs. Applying Theorem 4.1 to their result we
obtain austere PF submanifolds as follows. Let (U,L) be a compact Riemann-
ian symmetric pair, where L is connected. Denote by u = l⊕ p the canonical
decomposition and by Ad : L → SO(p) the isotropy representation. If an orbit
Ad(L) · x through x ∈ p is an austere submanifold of the hypersphere S(∥x∥)
in p then the orbit P (SO(p),Ad(L)×SO(p)x)∗ 0̂ is an austere PF submanifold
of the Hilbert space Vo(p).
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5. The arid property

In this section we study the arid property of PF submanifolds obtained
through the parallel transport map ΦK . The main theorem is the following:

Theorem 5.1. Let G be a connected compact semisimple Lie group equipped
with a bi-invariant Riemannian metric induced from a negative multiple of
the Killing form and K a symmetric subgroup of G such that the pair (G,K)
effective. If N is an arid submanifold of the symmetric space G/K then

(i) π−1(N) is an arid submanifold of G, and
(ii) Φ−1

K (N) is an arid PF submanifold of Vg.

From this theorem we obtain the following corollary:

Corollary 5.2. Let M be an irreducible Riemannian symmetric space of com-
pact type. Denote by G the identity component of the group of isometries of
M and by K the isotropy subgroup of G at a fixed p ∈ M . If N is an arid
submanifold of M = G/K then Φ−1

K (N) is an arid PF submanifold of Vg.

To prove Theorem 5.1 we need the following lemma:

Lemma 5.3. Let M and B be Riemannian Hilbert manifolds, ϕ : M → B a
Riemannian submersion and N a closed submanifold of B. Fix p ∈ ϕ−1(N)
and X ∈ (T⊥

p ϕ−1(N))\{0}. Suppose that φM is an isometry of M fixing p,
that φB is an isometry of B fixing ϕ(p) and that the diagram

M φM−−−→ M

ϕ

y ϕ

y
B φB−−−→ B

commutes. Then the following are equivalent:

(i) φM satisfies φM(ϕ−1(N)) = ϕ−1(N) and dφM(X) ̸= X.
(ii) φB satisfies φB(N) = N and dφB(dϕ(X)) ̸= dϕ(X).

Proof. It is easily seen that the condition φM(ϕ−1(N)) = ϕ−1(N) is equivalent
to the condition φB(N) = N . Then by commutativity of the diagram

T⊥
p ϕ−1(N)

dφM−−−→ T⊥
p ϕ−1(N)

dϕ

y dϕ

y
T⊥
ϕ(p)N

dφB−−−→ T⊥
ϕ(p)N,

the condition dφM(X) ̸= X is equivalent to the condition dφB(dϕ(X)) ̸=
dϕ(X). This proves the lemma. □
Proof of Theorem 5.1. (i) Take a ∈ π−1(N) and w ∈ (T⊥

a π−1(N))\{0}. Set
η := dπ(w) ∈ T⊥

aKN , N ′ := L−1
a (N) and ξ := dL−1

a (η) ∈ (T⊥
eKN

′)\{0}. Denote
by v ∈ (T⊥

e π−1(N ′))\{0} the horizontal lift of ξ. By commutativity of (2.6)
(ii) we have la(π

−1(N ′)) = π−1(N) and dla(v) = w. Thus in order to show
the existence of an isometry φw with respect to w it suffices to construct an
isometry φv with respect to v. Let φη be an isometry with respect to η. Then
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an isometry φξ with respect to ξ is defined by φξ := L−1
a ◦ φη ◦ La. Now we

define φv as follows. Denote by I(G/K) the group of isometries of G/K. From
the assumption the map L : G → I(G/K), a 7→ La is a Lie group isomorphism
onto the identity component I0(G/K) ([9, Theorem 4.1 in Chapter V]). Since
I0(G/K) is a normal subgroup of I(G/K) an automorphism φv : G → G,
b 7→ φv(b) is defined by

(5.1) Lφv(b) := φξ ◦ Lb ◦ φ−1
ξ .

Since the bi-invariant Riemannian metric on G is induced from the Killing
form of g the automorphism φv is an isometry of G. Moreover since

φξ ◦ π(b) = φξ(bK) = φξ ◦ Lb(eK) = φξ ◦ Lb ◦ φ−1
ξ (eK) and

π ◦ φv(b) = φv(b)K = Lφv(b)(eK) = φξ ◦ Lb ◦ φ−1
ξ (eK)

hold for all b ∈ G it follows from Lemma 5.3 that φv is an isometry with
respect to v. This proves (i).

(ii) Take u ∈ Φ−1
K (N) and X ∈ (T⊥

u Φ−1
K (N))\{0}. Also take g ∈ P (G,G ×

{e}) so that u = g ∗ 0̂. Set a := Φ(u) = g(0) and η := dΦK(X) ∈ (T⊥
aKN)\{0}.

Define N ′, ξ, v as in the above (i). Denote by ξ̂ ∈ (T⊥
0̂
Φ−1

K (N ′))\{0} the
horizontal lift of ξ with respect to the Riemannian submersion ΦK : Vg → G/K.

By commutativity of (2.7) we have g ∗ Φ−1
K (N ′) = Φ−1

K (N) and d(g∗)ξ̂ = X.
Thus in order to show the existence of an isometry φX with respect to X it
suffices to construct an isometry φξ̂ with respect to ξ̂. By the same way as

in (i) we can define an isometry φv with respect to v ∈ (T⊥
e π−1(N ′))\{0}.

Moreover we define a linear orthogonal transformation φξ̂ of Vg by

(5.2) φξ̂(u) := dφv ◦ u, u ∈ Vg.

Since φv is an automorphism of G we have φξ̂(g ∗ 0̂) = (φv ◦g)∗ 0̂ for all g ∈ G.
This together with (2.3) implies that the following diagram commutes:

Vg

φξ̂−−−→ Vg

Φ

y Φ

y
G

φv−−−→ G.

Thus by Lemma 5.3 φξ̂ is an isometry with respect to ξ̂ and (ii) follows. □

Example 5.4. Let m,n ∈ Z≥2. Set M̄ := Smn−1(
√
m) ⊂ Rmn and

M := Sn−1(1)× · · · × Sn−1(1)︸ ︷︷ ︸
m times

⊂ M̄.

Ikawa, Sakai and Tasaki [12, Example 2.3] showed that if m = 2 then M is
a weakly reflective submanifold of M̄ . Taketomi [29, Proposition 3.1] showed
that if m ≥ 3 then M is an arid submanifold of M̄ and is not an austere
submanifold (therefore not a weakly reflective submanifold) of M̄ .
Set G := SO(mn) and K := SO(mn− 1) so that M̄ = G/K. If m = 2 then

Φ−1
K (M) is a weakly reflective PF submanifold of Vg by [22, Theorem 8] and

is not a totally geodesic PF submanifold of Vg by [22, Theorem 3]. If m ≥ 3
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then Φ−1
K (M) is an arid PF submanifold of Vg by Theorem 5.1 and is not an

austere PF submanifold (therefore not a weakly reflective PF submanifold) of
Vg by Theorem 4.1.

In general it is not clear that conversely the arid property of Φ−1
K (N) implies

the arid property of N or not. However the next theorem shows that under
suitable assumptions the arid property of Φ−1

K (N) is equivalent to that of
N . To explain this we now introduce some terminologies which are used in
a context slightly wider than [29]. Let M be a submanifold immersed in a
finite dimensional Riemannian manifold M̄ . Denote by I(M̄) the group of
isometries of M̄ . For a closed subgroup G of I(M̄) we say that M is G-arid
(resp. G-weakly reflective) if for each p ∈ M and each ξ ∈ T⊥

p M\{0} there
exists an isometry φξ (resp. reflection νξ) with respect to ξ satisfying φξ ∈ Gp,
where Gp denotes the isotropy subgroup of G at p. Clearly G-weakly reflective
submanifols are G-arid submanifolds. If G = I(M̄) then “G-arid” (resp. “G-
weakly reflective”) is nothing but “arid” (resp. “weakly reflective”). The same
concepts and relation are also valid for PF submanifolds in Hilbert spaces.

From now on, as in Section 2, we denote by G a connected compact Lie group
equipped with a bi-invariant Riemannian metric, K a closed subgroup of G
and G/K the compact normal homogeneous space. Recall that the Hilbert Lie
group G := H1([0, 1], G) acts on Vg via the gauge transformations (2.1). We

denote by Gu the isotropy subgroup of G at u ∈ Vg. If u = 0̂ then G0̂ is the set

of constant paths Ĝ := {b̂ ∈ G | b ∈ G}. Thus if u = g ∗ 0̂ for some g ∈ G
then Gu = gĜg−1. Recall also that G × G acts on G by the formula (2.2).
We denote by (G×G)a = (a, e)∆G(a, e)−1 the isotropy subgroup of G×G at
a ∈ G, where ∆G := {(b, b) | b ∈ G}. Finally we recall the G-action on G/K
defined by b · (aK) := (ba)K for a, b ∈ G. We denote by GaK = aKa−1 the
isotropy subgroup of G at aK ∈ G/K.

Theorem 5.5.
(i) Let N be a closed submanifold of a compact Lie group G equipped with

a bi-invariant Riemannian metric. Then the following are equivalent:
(a) N is a (G×G)-arid submanifold of G.
(b) Φ−1(N) is a G-arid PF submanifold of Vg.

(ii) Let N be a closed submanifold of a compact normal homogeneous space
G/K. Then the following are equivalent:
(a) N is a G-arid submanifold of G/K.
(b) π−1(N) is a (G×K)-arid submanifold of G.
(c) Φ−1

K (N) is a P (G,G×K)-arid PF submanifold of Vg.

Proof. (i) “(a) ⇒ (b)”: Take u ∈ Φ−1(N) and X ∈ (T⊥
u Φ−1(N))\{0}. Also

take g ∈ P (G,G × {e}) so that u = g ∗ 0̂. Set a := Φ(u) = g(0), η :=
dΦ(X) ∈ (T⊥

a N)\{0}, N ′ := a−1N and ξ := dL−1
a (η) ∈ (T⊥

e N ′)\{0}. Denote

by ξ̂ ∈ (T⊥
0̂
Φ−1(N ′))\{0} the horizontal lift of ξ. By commutativity of (2.6)

(i) we have g ∗ (Φ−1(N ′)) = Φ−1(N) and (dg∗)ξ̂ = X. Thus in order to
show the existence of an isometry φX with respect to X satisfying φX ∈ Gu

it suffices to construct an isometry φξ̂ with respect to ξ̂ satisfying φξ̂ ∈ G0̂.
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Let φη be an isometry with respect to η which is given by φη(c) = b′cb−1 for
some (b′, b) ∈ (G × G)a. Then an isometry φξ with respect to ξ is defined by
φξ := (a, e)−1 ◦ φη ◦ (a, e), that is, φξ(c) := bcb−1 for c ∈ G. Now we define a
linear orthogonal transformation φξ̂ of Vg by

φξ̂(u) := dφξ ◦ u = bub−1 = b̂ ∗ u, u ∈ Vg.

Clearly φξ̂ ∈ G0̂. Moreover by (2.3) the following diagram commutes:

Vg

φξ̂−−−→ Vg

Φ

y Φ

y
G

φξ−−−→ G.

From Lemma 5.3 φξ̂ is an isometry with respect to ξ̂ and (b) follows.

(i) “(b) ⇒ (a)”: Take a ∈ N and η ∈ (T⊥
a N)\{0}. Fix u ∈ Φ−1(a). Denote

by X ∈ (T⊥
u Φ−1(N))\{0} the horizontal lift of η. Take g ∈ P (G,G × {e}) so

that g ∗ 0̂ = u and define N ′, ξ, ξ̂ as in the above (i). Let φX be an isometry
with respect to X satisfying φX ∈ Gu. Then an isometry φξ̂ with respect to

ξ̂ ∈ (T⊥
0̂
Φ−1(N ′))\{0} is defined by φξ̂ := (g∗)−1 ◦ φX ◦ (g∗). By definition

φξ ∈ G0̂ and thus there exists b ∈ G such that φξ̂(u) = bub−1. Hence defining

an isometry φξ of G by φξ(c) := bcb−1 for c ∈ G it follows from Lemma 5.3
that φξ is an isometry with respect to ξ satisfying φξ ∈ (G × G)e. Therefore
an isometry φη with respect to η is defined by φη := la ◦ φξ ◦ l−1

a so that
φη ∈ (G×G)a. This shows (a).

(ii) “(a) ⇒ (b)”: Take a ∈ π−1(N) and w ∈ (T⊥
a π−1(N))\{0}. Set η :=

dπ(w) ∈ (T⊥
aKN)\{0}, N ′ := L−1

a (N) and ξ := dL−1
a (η) ∈ (T⊥

eKN
′)\{0}.

Denote by v ∈ (T⊥
e π−1(N ′))\{0} the horizontal lift of ξ. By commutativ-

ity of (2.6) (ii), we have la(π
−1(N ′)) = π−1(N) and dla(v) = w. Thus in

order to show the existence of an isometry φw with respect to w satisfying
φw ∈ (G×K)a = (a, e)∆K(a, e)−1 it suffices to construct an isometry φv with
respect to v satisfying φv ∈ (G × K)e = ∆K. Let φη be an isometry with
respect to η which is given by φη(cK) = (bc)K for some b ∈ GaK . Then there
exists k ∈ K such that b = aka−1. Thus an isometry φξ with respect to ξ is
defined by φξ := L−1

a ◦ φξ ◦ La, that is, φξ = Lk. Define an isometry φv of G
by

φv(c) := kck−1, c ∈ G.

Clearly φv ∈ (G×K)e. Moreover the following diagram commutes:

G
φv−−−→ G

π

y π

y
G/K

φξ−−−→ G/K.

Thus by Lemma 5.3 φv is an isometry with respect to v and (b) follows.
(ii) “(b) ⇒ (a)”: Take aK ∈ N and η ∈ T⊥

aKN . Denote by w ∈ T⊥
a π−1(N)

the horizontal lift of η. Define N ′, ξ, v as above. Let φw be an isometry with
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respect to w satisfying φw ∈ (G × K)a. Then an isometry with respect to v
is defined by φv := l−1

a ◦ φw ◦ la so that φv ∈ (G × K)e. Then there exists
k ∈ K such that φv(c) = kck−1. Thus defining an isometry φξ of G/K by
φξ := Lk it follows from Lemma 5.3 that φξ is an isometry with respect to ξ
satisfying φξ ∈ GeK . Hence an isometry φη with respect to η is defined by
φη := la ◦ φξ ◦ l−1

a so that φη ∈ GaK . This shows (b).
Using the fact gP (G,G×K)0̂g

−1 = P (G,G×K)g∗0̂ for g ∈ P (G,G× {e})
the equivalence of (b) and (c) of (ii) follows by the similar arguments to (i). □
Corollary 5.6. Let G, G/K be as in Theorem 5.5.

(i) Let H be a closed subgroup of G×G. Then the following are equivalent:
(a) an orbit H · a through a ∈ G is an H-arid submanifold of G,
(b) an orbit P (G,H) ∗ u through u ∈ Φ(a) is a P (G,H)-arid PF

submanifold of Vg.
(ii) Let K ′ be a closed subgroup of G. Then the following are equivalent:

(a) an orbit K ′ · aK through aK ∈ G/K is a K ′-arid submanifold of
G/K,

(b) an orbit (K ′×K) ·a through a ∈ G is a (K ′×K)-arid submanifold
of G,

(c) an orbit P (G,K ′ ×K) ∗ u through u ∈ Φ−1(a) is a P (G,K ′ ×K)-
arid PF submanifold of Vg.

Proof. (i) Set H ′ := (a, e)−1H(a, e). Then we have H · a = la(H
′ · e). Take

g ∈ P (G,G × {e}) so that g ∗ 0̂ = u. From (2.4) and (2.6) (i) it follows that
P (G,H)∗u = g ∗ (P (G,H ′)∗ 0̂). From this fact we can assume without loss of
generality that a = e. Moreover by homogeneity it suffices to consider normal
vectors only at e ∈ G or 0̂ ∈ Vg. By similar arguments as in Theorem 5.5 (i)
our claim follows. (ii) Similarly we can reduce the case a = e and the assertion
follows by similar arguments as in Theorem 5.5 (ii). □
Example 5.7. Let (U,L) be a compact Riemannian symmetric pair where L
connected. Denote by u = l + p the canonical decomposition, by Ad : L →
SO(p) the isotropy representation and by S the standard sphere in p.
Let us first show that there are examples of Ad(L)-orbits which are Ad(L)-

arid submanifolds in S. By Taketomi’s result ([29, Proposition 4.4]) an orbit
N := Ad(L)w through w ∈ S is an Ad(L)-arid submanifold of S if and only
if N is an isolated orbit of the Ad(L)-action on S. One can find such isolated
orbits by considering the fundamental Weyl Chamber. Fix a maximal abelian
subspace a in p and denote by F the fundamental system of the restricted root
system with respect to a. The fundamental Weyl chamber is defined by

C := {w ∈ a | ∀α ∈ F, α(w) > 0}
with closure

C̄ := {w ∈ a | ∀α ∈ F, α(w) ≥ 0}.
It is known ([10, Lemma 1.2]) that C̄ is decomposed by

C̄ =
⨿

∆: subset of F

C∆ : disjoint union,
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C∆ := {w ∈ a | ∀α ∈ ∆, α(w) > 0 and ∀β ∈ F\∆, β(w) = 0}.

If a subset ∆ consists of only one element then dimC∆ = 1 and thus the
intersection S ∩C∆ consists of only one point, which implies that in this case
the orbit Ad(L)w through w ∈ C∆ is isolated. In this way we can obtain
examples of Ad(L)-arid submanifolds in the standard sphere S. Notice that
from the classification result of austere Ad(L)-orbits ([12, Theorem 5.1]), in
particular we can choose Ad(L)-arid orbits which are not austere.

Applying Corollary 5.6 (ii) to such examples we obtain the orbit

P (SO(p),Ad(L)× SO(p)w) ∗ 0̂

which is an P (SO(p),Ad(L) × SO(p)w)-arid PF submanifolds in the Hilbert
space Vo(p). Moreover by Theorem 4.1 such an arid PF submanifold is not an
austere (therefore not a weakly reflective) PF submanifold in Vo(p).

Compared to Corollary 5.6 (i) the following proposition covers only H-orbits
through e ∈ G. However the isometry φξ with respect to each normal vector
ξ at e ∈ G need not belong to the isotropy subgroup He at e ∈ G.

Proposition 5.8. Let G be a connected compact Lie group with a bi-invariant
Riemannian metric and H be a closed subgroup of G × G. Suppose that the
orbit H · e through e ∈ G is an arid submanifold of G such that for each
ξ ∈ (T⊥

e (H · e))\{0} an isometry φξ with respect to ξ is an automorphism of

G. Then the orbit P (G,H) ∗ 0̂ through 0̂ ∈ Vg is an arid PF submanifold of
Vg.

Proof. Let φξ be an isometry with respect to ξ ∈ (T⊥
e (H · e))\{0} which is an

automorphism of G. Then an isometry φξ̂ with respect to ξ̂ ∈ (T⊥
0̂
P (G,H) ∗

0̂)\{0} is defined similarly to (5.2). By homogeneity of P (G,H) ∗ 0̂ our claim
follows. □

Now we see an example of an arid submanifold H ·e satisfying the condition
in Proposition 5.8. Although the following H · e can be shown to be arid by
applying Theorem 5.1 (i) to Taketomi’s example [29, Proposition 3.1], here we
give a direct proof in order to see an isometry with respect to each normal
vector explicitly.

Example 5.9. Set G := SO(9). Denote by E the 3 × 3 unit matrix. Define
Q ∈ G by

Q :=
1√
6

 √
2E

√
3E E√

2E −
√
3E E√

2E 0 −2E

 .

SetK := Q({1}×SO(8))Q−1, K ′ := SO(3)×SO(3)×SO(3) andH := K ′×K.
Then the tangent space of the orbit H · e is given by

Te(H · e) = k′ + k = k′ +Q(0⊕ o(8))Q−1 = Q(Q−1k′Q+ (0⊕ o(8)))Q−1.
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Then it follows from the direct computations that each X ∈ Q−1T⊥
e (H · e)Q

is written by

X =

 0 S T
−S 0 0
−T 0 0

 ,

S :=

 s 0 0
0 0 0
0 0 0

 , T :=

 t 0 0
0 0 0
0 0 0

 , s, t ∈ R.

The calculation of QXQ−1 shows that each Y ∈ T⊥
e (H · e) is written by

Y =

 0 U V
−U 0 W
−V −W 0

 ,

U :=

 −2x 0 0
0 0 0
0 0 0

 , V :=

 −x− y 0 0
0 0 0
0 0 0

 , W :=

 x− y 0 0
0 0 0
0 0 0


for x, y ∈ R. For each (i, j) ∈ {(1, 2), (1, 3), (2, 3)} we define Pi,j ∈ O(9) by

P1,2 :=

 0 E 0
E 0 0
0 0 E

 , P1,3 :=

 0 0 E
0 E 0
E 0 0

 , P2,3 :=

 E 0 0
0 0 E
0 E 0


and define an automorphism φij of G by

φij(A) := PijAP
−1
ij , A ∈ G.

Then for each ξ ∈ T⊥
e (H · e) there exists (i, j) such that φij is an isometry

with respect to ξ. Thus H · e is an arid submanifold of G. Since φij is an

automorphism of G it follows from Proposition 5.8 that the orbit P (G,H) ∗ 0̂
is an arid PF submanifold of Vg. Notice that we can not apply Corollary 5.6
(i) to this example since φij is not an inner automorphism of G and thus not
belong to the isotropy subgroup He at e ∈ G.

6. Open problems

Recall that an isometric action of a compact Lie group on a Riemannian
manifold M is called polar if there exists a closed connected submanifold S
of M which meets every orbit orthogonally. If S is flat in the induced metric
then such an action is called hyperpolar ([8]). Similarly an isometric PF action
of a Hilbert Lie group on a Hilbert space V is called hyperpolar ([8]) if there
exists a closed affine subspace S of V which meets every orbit orthogonally. It
was shown ([30]) that the P (G,H)-action is hyperpolar if the H-action on G is
hyperpolar. Hyperpolar actions on irreducible Riemannian symmetric spaces
of compact type were classified by Kollross [17].

In this paper and the previous paper [22] we have seen examples of minimal
PF submanifolds with certain symmetries, such as weakly reflective PF sub-
manifolds, austere PF submanifolds and arid PF submanifolds. At present all
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such examples are obtained as orbits of hyperpolar P (G,H)-actions. Then it
is interesting to study the following problem:

Problem. Determine minimal orbits in a hyperpolar P (G,H)-action and clas-
sify the symmetric properties they have.

It is noted ([8]) that a hyperpolar P (G,H)-action can be thought of the
isotropy representation of an affine Kac-Moody symmetric space, which is an
infinite dimensional version of a symmetric space proposed by Terng [31] and
established by Heintze [6], Popescu [26] and Freyn [4]. In the finite dimen-
sional case minimal orbits of the isotropy representation of symmetric spaces
have been systematically studied (e.g. [11], [12]). It may be interesting to
ask whether there are similar properties for minimal orbits in the isotropy
representations of Kac-Moody symmetric spaces.

In order to study the above problem it is noted ([15], [7]) that a P (G,H)-
orbit is minimal if and only if the H-orbit is minimal. This shows that the
determination of minimal P (G,H)-orbits can be reduced to a finite dimen-
sional problem. However the classification of symmetric properties seems not
easy. As we have seen in Section 4 the austere property via the parallel trans-
port map is not clear except for the spherical case. Moreover even if we classify
all austere orbits in H- or P (G,H)-actions it seems very difficult in general to
classify all weakly reflective orbits; it is very hard to assert one austere orbit
is not weakly reflective.

In connection with such a classification problem the author is now giving
attention to the structure of weakly reflective submanifolds. LetM be a weakly
reflective submanifold of a Riemannian manifold M̄ . Denote by I(M̄) the
group of isometries of M̄ and by I0(M̄) its identity component. There are at
least two kinds of weakly reflective submanifolds:

(a) for each p ∈ M and each ξ ∈ T⊥
p M there exists νξ ∈ I0(M̄) (: identity

component) such that νξ(p) = p, dνξ(ξ) = −ξ and νξ(M) = M .
(b) for each p ∈ M there exists an involutive isometry νp ∈ I(M̄) which is

independent of the choice of ξ ∈ T⊥
p M such that νp(p) = p, dνp(ξ) = −ξ

and νp(M) = M .

For example, consider an isometric action of cohomogeneoity one on M̄ . It is
known ([27], [12]) that in this case any singular orbit M is a weakly reflective
submanifold of M̄ . More precisely if M has one codimension in M̄ then M sat-
isfies the condition (b) and otherwise M satisfies the condition (a). Note that
there exist examples of weakly reflective submanifolds which satisfy both con-
ditions (a) and (b): a weakly reflective submanifoldM reviewed in Example 5.4
(the case m = 2) satisfies (b) for all n ∈ Z≥2 and in particular if n is even then
it also satisfies (a). Although examples by Ohno [23] and by Kimura-Mashimo
[14] satisfy the condition (a), Enoyoshi’s example ([3]) does not satisfy (a) but
(b). It should be also noted ([22]) that under suitable assumptions if M satis-
fies the condition (b) then its inverse image under the parallel transport map
is a weakly reflective PF submanifold satisfying the condition (b). It can be
a problem to consider whether weakly reflective submanifolds which does not
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satisfy both conditions (a) and (b) exist or not. Also for arid submanifolds
similar types may work and might be useful to study their structure.
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