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FOUR-VARIABLE p-ADIC TRIPLE PRODUCT L-FUNCTIONS AND THE TRIVIAL
ZERO CONJECTURE

MING-LUN HSIEH AND SHUNSUKE YAMANA

ABsTRACT. We construct the four-variable primitive p-adic L-functions associated with the triple product
of Hida families and prove the explicit interpolation formulae at all critical values in the balanced range.
Our construction is to carry out the p-adic interpolation of Garrett’s integral representation of triple product
L-functions via the p-adic Rankin-Selberg convolution method. As an application, we obtain the cyclotomic
p-adic L-function for the motive associated with the triple product of elliptic curves and prove the trivial zero
conjecture for this motive.
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1. INTRODUCTION

The aim of this paper is to construct the four-variable p-adic triple product L-functions for the triple
product of Hida families of elliptic newforms with explicit interpolation formulae at all critical specializations
in the balanced region. Let p be an odd prime, O a valuation ring finite flat over Z, and I a normal domain
finite flat over the Iwasawa algebra A = O[I'] of the topological group I' = 1 + pZ,. Let

F:(.fag’h)

be a triplet of primitive Hida families of tame conductor (N1, No, N3) and nebentypus (x1, X2, x3) with coef-
ficients in I. Roughly speaking, we construct a four-variable Iwasawa function that interpolates the algebraic
part of critical values of the triple product L-function attached to F' at all balanced critical specializations
twisted by Dirichlet characters. Our formulae completely comply with the conjectural form described in
[CPR8Y], [Coa89a| and [Coal9b]. In order to state our result precisely, we need to introduce some notation
from Hida theory for elliptic modular forms and technical items such as the modified Euler factors at p and
the canonical periods of Hida families in the theory of p-adic L-functions.
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2 MING-LUN HSIEH AND SHUNSUKE YAMANA

1.1. Galois representations attached to Hida families. Given a field F', we denote its separable closure
by F and put Gp = Gal(F/F). If F = Y77 a(n,F)¢" € I[q] is a primitive cuspidal Hida family of tame
conductor Nr and nebentypus xr, let pr : Gq — GLa(FracI) be the associated big Galois representation
such that Tr pz(Froby) = a(¢, F) for primes £ t Nz, where Frob, is the geometric Frobenius at ¢ and Vi is
the natural realization of pr inside the étale cohomology groups of modular curves. Thus Vr is a lattice in
(FracI)? with the continuous Galois action via pr, and the Gq,-invariant subspace Fil' Vi := VJ{-” fixed by

the inertia group I, at p is free of rank one over I (|Oht00, Corollary, page 558]). A point @ € SpecI(Q,) is
called an arithmetic point if Q|p: T' — A~ &Q; is given by Q(z) = z¥2eq(x) for some integer kg > 2 and
a finite order character eg : I' — Q; . Let %i" be the set of arithmetic points of I. For each arithmetic point
Qe xf' , the specialization Vz, 1= Vr ®1,¢ Qp is the geometric p-adic Galois representation associated with
the p-stabilized newform Fg = >"°7 , Q(a(n, F))q".

1.2. Triple product L-functions. We denote by Q. the cyclotomic Z,-extension of Q, by w : Gq —

pp—1 = Z, the Teichmiiller character, by €cyc : Gal(Qoo/Q) 5 1+ pZ, =T the p-adic cyclotomic character
and by (ecyc)p 1 Gq — Gal(Qo/Q) — Zp[Gal(Qoo/Q)]* the universal cyclotomic character. Let

I3 = I8pIRol, I = I3[Gal(Qx/Q)]
be finite extensions of the three and four-variable Iwasawa algebras.
Fix a € Z/(p — 1)Z. The main object of this paper is a construction of the p-adic L-function for the triple
tensor product Galois representation
V=V;®0Vy®0Vh, V = V@ow" (Ecye)yp

of rank eight over 1. If (k1, ko, k3) is a triplet of positive integers, we say (k1, k2, k3) is balanced if k1 + ko + k3 >
2k* with k* := max {ki, k2, ks}. Let Xp* denote the set of balanced arithmetic points of (X{)3. An integer k
is said to be critical for (k1, ke, k3) if
k' <k<ki+ko+ks—k"—2.

We define the weight space %}ffl C Specly (Qp) to be the set of balanced critical points of 1 given by

xlffl = {(Ql, QQ, Qg,P) c %'fjl X }:X | kp is critical for (le,kQQ,kQS)}.
For each point (Q, P) = (Q1,Q2,Qs3, P) € .’{}’fl, the specialization V(g p) = Vo ® €f§cepwa_kp is a p-adic
geometric Galois representation, where Vg = Vy o ® Vg 2 ® Vh, and ep is regarded as a Galois character via
€p O Ecyc-

Next we briefly recall the motivic L-function associated with the specialization V(g p). To the geometric
p-adic Galois representation V(g py, we can associate the Weil-Deligne representation WD,(V (¢, p)) of the
Weil-Deligne group of Q; over Q, (See [Tat79, (4.2.1)] for £ # p and [Fon94, (4.2.3)] for £ = p). Fixing an
isomorphism ¢, : Qp =~ C once and for all, we define the motive L-function of V(g p) by the Euler product

L(Vig.pys) = [[ Le(Vig.p) )

< o0

of the local L-factors L¢(V(q, p),s) attached to WD(V(q,p)) 2qQ, . C (cf. [Del79, (1.2.2)], [Tay04, page
85]). On the other hand, we denote by 7¢ 0 (resp. g 057 Thg,) the irreducible unitary cuspidal automorphic
representation of GLz(A) associated with fq, (resp. gq,,hq,) Let L(s, 7, X mg, X Ty, @ epw?Fr) be
the automorphic L-function attached to the triple product of Tfo Tag, and mp,, ®epwakP | as constructed
by Garrett [Gar87] in the classical setting and by Piatetski-Shapiro and Rallis [PSR87| in the adélic setting,.
The analytic theory of L(s, m¢ @ XTgq, X Thq, ®€ pw®¥7) such as meromorphic continuation and a functional
equation has been explored extensively in the literatures (cf. [PSR87, 1ke89, Ike92]), and thanks to [RamO00,
Theorem 4.4.1], we have

L(s+kp —wq/2,mg, X Tg, XThy, ® epw®FP) = Iy (5) - L(V(Q.p),9),
where wq := kg, + kg, + kg, — 3 and I'v, ., (s) is the Gamma factor of V(¢ p) as given by

FV(Q,P) (s):=Tc(s+kp)c(s+14+kp —kg)Tc(s+1+kp—kg,)Tc(s+1+kp —kg,).
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Here I'c(s) = 2(27)°T'(s). Hence we have a good understanding of the analytic properties of the motivic L-
function L(V (g, py,s). The rationality of its critical L-values in the balanced region was proved in [Orl87] and
[GH93], where the authors verify that the Deligne’s period for V(q,p) is the product of Petersson norms of f, ,
9q,> hqs- In this article we shall investigate the arithmetic of critical values L(V(q,p),0) for (Q,P) € %'ffl

and study the p-adic analytic behavior of its algebraic part viewed as a function on the weight space X}’fl.

1.3. The modified Euler factors at p and co. Let Gq, denote the decomposition group at p. Define the
rank four Gq,-invariant subspace of V' by

Fil" V := Fil" V ® w? (ecye) - »

where

Fil* V= Fil’ V; @ Fil’ V, ® Vi + V; @ Fil’ V @ Fil° Vi, + Fil° Vy @ Vy @ Fil® V.
The pair (Fil™ V, X}*) satisfies the Panchishkin condition in [Gre94a, page 217] in the sense that for each
arithmetic point (Q,P) € %E’fl, the Hodge-Tate numbers of Fil* V(Q,p) are all positive, while none of the
Hodge-Tate numbers of V(Q,p)/Fil+ V(q,p) is positive. Here the Hodge-Tate number of Q,(1) is one in our

convention. Now we can define the modified p-Euler factor by

1+ Ly(Fil" V(g p), 0) 1
gp(Fll V(Q’p)) = ot aF v . .
- e(WD,(Fil" V(q.p))) - Lp((Fil" V(@.p))V,1) Lp(V(q,p),0)

We note that this modified p-Euler factor is precisely the ratio between the factor El(,p ) (V(q.p)) in [Coa89b,
page 109, (18)] and the local L-factor L,(V (q,r),0).
In the theory of p-adic L-functions, we also need the modified Euler factor £ (V (g, p)) at the archimedean

place observed by Deligne. It is defined to be the ratio between the factor E((;,/jl ) (V(g,p)) in [Coa89b, page
103 (4)] and the Gamma factor I'y , , (0). In our current case it is explicitly given by

goc(V(Q,P)) — ( /71)kQ1+kQ2+kQ373.

1.4. Hida’s canonical periods. To give the precise definition of periods for the motive V(g py, we recall
Hida’s canonical period of an I-adic primitive cuspidal Hida family F of tame conductor Nz. Let my be the
maximal ideal of I. We say F is controllable if the following hypothesis holds:

Hypothesis (CR). The residual Galois representation pr := pr (mod my) : Gq — GL2(F,) is absolutely
irreducible and is p-distinguished.

Suppose that F is controllable. Then the local component of the universal cuspidal ordinary Hecke algebra
corresponding to F is known to be Gorenstein by [MW86, Prop. 2, §9] and [Wil95, Corollary 2, page 482|,
and with this Gorenstein property, Hida proved in [Hid88a, Theorem 0.1] that the congruence module for F is
isomorphic to I/(nx) for some non-zero element nx € I if p > 3. Moreover, for any arithmetic point Q € %f ,
the specialization nr, = Q(nr) generates the congruence ideal of Fo. We denote by F¢ the normalized
newform of weight kg, conductor Ng = Nrp"? with nebentypus xg corresponding to Fg. There is a unique
decomposition xg = Xé? XQ,(p)> Where X/Q and xq,(p) are Dirichlet characters modulo Nz and p"@ respectively.
Let ag = a(p, Fg). Define the modified Euler factor £,(Fg, Ad) for the adjoint motive of F¢g by

) (1 - ag’xe)p* e (1 - ag’xep)p*e~2)  ifng =0,
Ep(Fq, Ad) = O‘EQ "ex g —1 ifng=1,xq,p =1 (so kg =2),
3(xQ,m)Xa,m (—1) if ng >0, xq,(p # 1.

Here g(xq,(p)) is the usual Gauss sum. Fixing the choice of a generator 77 and letting ”‘FSQH%U(NQ) be the
usual Petersson norm of Fg), we define the canonical period Qx, of F at Q by

Ep(Fg,Ad)

e C*.
Lp(n]:Q)

Qr, = (—2vV/=1)ret!. H]'BH%O(NQ) :
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By [Hid16, Corollary 6.24, Theorem 6.28|, one can show that for each arithmetic point @, up to a p-adic unit,
the period Q, is equal to the product of the plus/minus canonical periods Q(+; F3)(—; F3) introduced in
[Hid94, page 488].

1.5. Statement of the main result. We impose the following technical assumption:
(sf) N; is square-free and y; = w® is a power of the Teichmiiller character for i = 1,2, 3.
Our main result is a construction of the balanced p-adic triple product L-functions:

Theorem A. In addition to (sf), we further suppose that p > 3 and that f,g and h satisfy Hypothesis (CR).
Fiz generators (ng,ng,nn) of the congruence ideals of (f,g,h). Then for each a € Z/(p — 1)Z, there exists a
unique element L, (@) € Iy such that for each arithmetic point (Q, P) = (Q1,Q2,Qs3, P) € X‘ffl, we have

L(V(q.r);0)

L (@ P) =Tvigr 0): 014,04, Onq,

S(V=D)rerthesthes =S g (Rl Vg py).

In the literature, the three weight variable p-adic L-function for the triple product of Hida families in
the balanced case has been extensively studied by Greenberg-Seveso [GS16], the first author [Hsil9] and so
on. These works, based on Ichino’s formula [Ich08|, focuses on the p-adic interpolation of central values and
hence the cyclotomic variable is excluded. Our four-variable p-adic L-function L}:—.7 (@) specializes to this three
variable p-adic L-function along the central critical line (see Remark 7.8). The first attempt to construct the
cyclotomic p-adic triple product L-functions was made by Bocherer and Panchishkin [BP06, BP09], where
they constructed one-variable p-adic L-functions associated with three primitive elliptic newforms. Their
construction is not restricted to the ordinary case but the interpolation formula is less complete and the p-
integrality of the p-adic L-function is not discussed. Without the Hypothesis (CR), we construct a canonical
four-variable p-adic triple product L-functions but with denominators (see Corollary 7.9).

1.6. Application to the trivial zero conjecture. Let E; be a p-ordinary elliptic curve over the rationals
Q of square-free conductor M;. We write L(E, s) for the degree eight motivic L-function for the triple product

(1'1) Vg = Hiﬁt (El/av Qp) @ Hflét (EQ/Qa Qp) ® Hiﬁt(E3/§a Qp)

realized in the middle cohomology of the abelian variety E = F; X FEy X F3 by the Kiinneth formula. Hence
3
L(Hgt(E/Qu Q,),s) =L(E,s) H L(E;, s — 1)
i=1

Our four-variable p-adic L-function yields a cyclotomic p-adic L-function
Ly(E) € Z,[Gal(Qx/Q)] ® Qp,

which roughly interpolates the algebraic part of central values % with a fixed period Q2 for all finite
order characters x of Gal(Qoo/Q). Define an analytic function L,(E,s) := €;2(L,(E)) for s € Z, (See

cyc
Proposition 8.2 for the precise statement). The Euler-like factor &,(Fil™ Vg(2)) can possibly vanish. In this
case the interpolation formula forces L,(E,2) to be zero. Such a zero is called a trivial zero. For example, it
appears if all E; have split multiplicative reduction at p (see Remark 8.3). In this particular case, the trivial
zero conjecture predicts that the leading coefficient of L,(E, s) is the product of the .Z-invariants for E; and
the algebraic part of the complex central value L(E,2) (cf. [Gre94b, (25), p. 166] and [Benll, p. 1579]). Using
the method of Greenberg-Stevens [GS93| and [BDJ17], we establish the trivial zero conjecture for the triple
product of elliptic curves. The following result is a special case of our more general result (see Theorem 8.4).

Theorem B. If Ey, Es, E5 are split multiplicative at p, then L,(E,s) has at least a triple zero at s =2 and

. L,(E,s) T . L(E,2)
11_% (572)3 _ggp(Ez) Q )

where Z,(E;) = 198095 i< the L-invariant of E; with Tate’s p-adic period qg, attached to E;.

ordpqE;
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In the case of a p-adic L-function L,(E, s) of an elliptic curve E over Q the trivial zero arises if and only
if F is split multiplicative at p. An analogus formula for L;,(E7 1) was experimentally discovered in [MTTS86]
and proved in [GS93], and for Hilbert modular forms in [Mok09], [Spil4] and [BDJ17]. Our result proves the
first cases of the trivial zero conjecture where multiple trivial zeros are present and the Galois representation
is not of GL(2)-type.

1.7. The construction of L},(a). We give a sketch of the construction of L;(a). Our method is the com-
bination of Garrett’s integral representation of the triple product L-function, an integrality result of crit-
ical L-values for triple products in [Miz90] and Hida’s p-adic Rankin-Selberg method. We begin with a
constriction of the four-variable p-adic family of the pull-back of Siegel-Eisenstein series. For each point
z=(Q1,Q2,Qs3,P) € %}’fl, we reorder the weights {kq,, kq,, kg, } = {ks,lz, mg} so that k, > I, > m,. For
each v1,v5 € {0,1}, we put

x?sll,w) ={z e X [ ky =l +v1 =m, + 12 (mod 2)}.
Hence we have the partition of the weight space
bal _ bal
= [ x..
v1,v2€{0,1}

Let N = lem(Ny, N3, N3). For each z € xbal we shall construct a nearly holomorphic Siegel-Eisenstein

(v1,v2)?
series B¢ (Z, s) of degree three, weight (ky, ky —1v1, kz —12) and level I‘g‘?’) (Np>) and consider the pull-back
given by

ke—lg—v1 ke—mz—vo wQ +1
nghVQ) (217 22, 23) ‘= €ord Hol <)\22 2 )\2’3 2 E(myl’VZ) (diag(zl, 22, 23)7 kP — >) )

2

(Im 2)?-2 is the weight-lowering differential operator, Hol is the holomorphic projection

where A, = 5
2)

1
T 2m/—1
and e,q is Hida’s ordinary projector. Then we show that ngl’y
on $3 the product of three copies of the upper half plane.

is an ordinary cusp form of weight (k,, I, m,)

The most crucial (and perhaps surprising) point is that the four classes of Siegel-Eisenstein series E&V“W)

can be constructed so that Ggfl’m) can be put into a single four-variable Hida family of triple product modular
forms. More precisely, let S°*4(N, x) denote the space of ordinary A-adic modular forms of tame level N and
character . In the following we will associate to a € Z/(p—1)Z and x = (x1, X2, x3) an explicit triple product

ordinary A-adic form
G\ € SN, x1, Z,[X1]) 2, S (N, X2, Zp[Xa]) Bz, S (N, x5, Zp[X3]) B, Zp [Gal( Qoo / Q)]

2), we prove in Proposition 6.8 that the specialization

By an explicit calculation of Fourier coefficients of G&”l’”
g)(m) at every = € X7 is the g-expansion of Gl
Let T3 be the set of positive definite half-integral matrices of size 3. The Siegel series attached to B € Ty

and a rational prime ¢ is defined by
be(B,s) = > (= tr(B2))v[z] 7
z€Symg(Qe)/ Symg(Zyg)
where 1) is an arbitrarily fixed additive character on Qg of order 0 and v[z] is the product of denominators of
elementary divisors of z. There exists a polynomial Fi ;(X) € Z[X] such that
be(T,8) = (1 —£75)(1 — £2725)F o(£7%).
Let z — [2] denote the inclusion of group-like elements 1+ pZ, < Z,[1 + pZ,]*. Fix a topological generator
u € 1+ pZ, and identify Z,[1 + pZ,] with Z,[X], where X = [u] — 1. Define a character (-) : Z) — 1+ pZ,
by (z) = zw(z)~! and write () = [(z)] = (1 + X)l°& /181 ¢ Z [X]. Let 2, be a set of symmetric
matrices of size 3 over Z, whose off-diagonal entries are p-units but whose diagonal entries are not. Now the
seven-variable formal power series is presented by

W= > QWX Xo, X5, T) Fi (X1, Xo, X5, T) - 37 57205,
B=(b;;)ET, NZ,
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where QS),}'};) € Zp[ X1, X5, X3, T are given by
w?(8ba3bs1b12) (8b23b31b12)
X1(2b23)x2(2b31) X3 (2b12) (2023) x, (2b31) &, (2b12) x,

Fi) (X1 Xe, X5, T) = [ Freli02” (@ xaxaxs) (0 (O, (O)x, (O)x, €.
lpN

QW (X1, X, X3,T) =

Now we apply the p-adic Rankin-Selberg method to define the p-adic L-function. Denote the universal
ordinary cuspidal Hecke algebra by T(N, x,I). For each ? € {f,g, h} we write 1, € T(Ny, x1,I) ®1 Fracl for
the idempotent corresponding to 7. We define

L () = the first Fourier coefficient of ngngnn(1y @ 15 @ 1p(Trn/n, @ Tr)n, ®TrN/N3(g>(<a))) e I3[17],
where Try/n, : Sord(N, xi, I) — S°rd(N;, xi,1) is the usual trace map, and then the p-adic triple product
L-function is defined to be Ly () = L ) - ;{l N1No.Nye Where §y o Ny N, vy € If is a fudge factor which is

essentially a product of epsilon factors at prime-to-p finite places. The p-adic Rankin-Selberg method tells us
that the interpolation formula for the value L (4)(z) at = € %?jl is roughly given by

(fo. ® 9q, © hg, BV (s)

lim Nfo Ngo. Mh
opp et e S 1 Pllgq, Plhes1?
(cf. Lemma 7.3), where (, ) is the Petersson pairing on $3 and ||-|| is the Petersson norm on $);. The series

E:(,;Vl’uz)(Z, s) is constructed from a factorizable section of a certain family of induced representations. By
means of the generalization of Garrett’s work, carried out in [PSR87, Tke89] (see Lemma 7.1) the pairing can
be unfolded and written as a product of L(s + %,Wle X Tgq, X Tho, ® epw“*kP) and the normalized local
zeta integrals at primes dividing p/N. It turns out that these local zeta integrals are essentially given by the
modified Euler factor £,(Fil* V(g py) at p and the local epsilon factors fy,q,n,,n,, N, at primes ¢|N. In both
calculations the key ingredients are Lemma 2.1 and the local functional equations for GL; and GLs, by which
we can generalize Proposition 4.2 of [GK92] without brute force calculations (see Remark 3.3).

This paper is organized as follows. In §2, §3 and §4, we make the choices of local datum for Siegel Eisenstein
series Eé”l’”)(z,s) and carry out the explicit computation of local zeta integrals that appear in Garrett’s
integral representation of triple product L-functions. After preparing some notation in Hida theory in §5, we

(v1,v2)

show that the Fourier expansion of G can be p-adically interpolated by the power series gé“) in §6. The

key ingredient is Proposition 6.3 about the computation of Fourier coefficients of G;”“”z). In §7, we put all

the local computations in §2, 3, and 4 and prove the main interpolation formulae in Theorem 7.6. Finally, in
§8 we construct some improved p-adic L-functions in Lemmas 8.5 and 8.6 and use them to prove the trivial
zero conjecture for the triple product of elliptic curves in Theorem 8.4.

Notation. The following notations will be used frequently throughout the paper. For an associative ring R
with identity element, we denote by R* the group of all its invertible elements, and by M,, ,,(R) the module of
all m xn matrices with entries in R. Put M,,(R) = M,, ,(R) and GL,,(R) = M,,(R)* particularly when we view
the set as a ring. The identity and zero elements of the ring M,,(R) are denoted by 1,, and 0,, (when n needs to
be stressed) respectively. The transpose of a matrix z is denoted by x*. Let Sym,,(R) = {z € M,(R) | 2* = z}
be the space of symmetric matrices of size n over R. For any set X we denote by Ix the characteristic function
of X. When X is a finite set, we denote by #X the number of elements in X. When X is a totally disconnected
locally compact topological space or a smooth real manifold, we write S(X) for the space of Schwartz-Bruhat
functions on X. If x is a real number, then we put [z] = max{i € Z | i < x}.

If R is a commutative ring and G = GL2(R), we denote by p the right translation of G on the space
of C-valued functions on G. Thus (p(9)f)(¢") = f(¢'g). We write 1 : G — C for the constant function
1(g) = 1. For a function f : G — C and a character x : R* — C*, let f ® x : G — C denote the function

F@x(9) = f(g)x(det g).
2. COMPUTATION OF THE LOCAL ZETA INTEGRAL: THE p-ADIC CASE

2.1. The local zeta integral. Let T,, be the subgroup of diagonal matrices in GL,,, U, the subgroup of
upper triangular unipotent matrices in GL,,, Z,, the subgroup of scalar matrices in GL,, and B,, = T,,U,, the
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standard Borel subgroup of GL,,. The symplectic similitude group of degree n is defined by

0 _1n
GSp,,, = {9 € GLay, | 9Jng" = vn(9)Jn, vn(g) € GL1}, Jp = (1 0 ) :
We define the homomorphisms
m : GL,, x GL; — GSp,,,, n, n~ : Sym, — GSp,,
by
A 0 1, =z _ (1, O
man) = (5 a1 o) = (5 7). o= (1)
We write
m(A) =m(A4,1), d(v) =m(1,,v).

A maximal parabolic subgroup P, = M, N,, of GSp,,, is defined by
M, =m(GL, x GL;), N,, = n(Sym,,).
Define algebraic groups of U° Cc U C H by
H ={(g1,92,93) € (GL2)? | det g1 = det g5 = det g},
U ={(n(x1),n(z2),n(z3)) | x1, 22,23 € My},
U° = {(n(x1),n(x2),n(x3)) | 21 + 2o + x3 = 0}.
We define the embedding ¢ : H < GSpg by

ay by
a2 ba
(6 6 2 8|
cr di) \co do)  \c3 d3 C1 dy
C2 dy
c3 d3
We identity Z = Zs with the center of GSpg. Put
0 0 0|—-1 0 O
01 0|0 0O
100 1,0 00
T=171 1 1[0 00
0 00|-110
0 00|-1 01

Let F be a local field of characteristic zero. In the nonarchimedean case F' contains a ring o of integers
having a single prime ideal p and the absolute value ap = |-| on F is normalized via || = ¢! for any
generator w of p, where ¢ denotes the order of the residue field o/p. Fix an additive character b on F' which

is trivial on o but non-trivial on p~!. When F = R, we define 9(z) = e2™V=1* for z € R.

Let K be a standard maximal compact subgroup of GSpg(F'). For quasi-characters &, x : F* — C* we let
I3(@,x) = Indgfpﬁ(F) Y20 X x 73w~ be the space of all right K-finite functions f on GSpg(F') which satisfy

F(m(A, M)n(2)g) = (A2 det A)x(A~*(det A)*)[A7% (det A)| f(g)

for A € GL3(F), A € F*, z € Symg(F) and g € GSpg(F). The group GSpg(F) acts on Is(w,x) by right

translation ps. It is important to note that for ¢t = diag(a,d) € Tb

(2.1) f(mu(tgy, tge, tgs)) = &(d) ™ x(ad™")|ad™ | f(ne(g1, g2, g3))-

It is well worthy of notice that

(2.2) I3(@,x) ® povs = Is(@p~2, xu).
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We call a K-finite function (s,g) — fs(g) on Cx GSps(F) a holomorphic section of I3(w, xa%k) if fs(g) is
holomorphic in s for each g € GSpg(F') and fs € I3(w, xa},) for each s € C. We associate to a non-degenerate
symmetric matrix B of size 3 the degenerate Whittaker functional

W : I3(o, yay) — C. Wi(f.) = /S o ImER (B2 d=

The integral converges if Re s is sufficiently large and can be continued to an entire function.

Given an irreducible admissible infinite dimensional representation 7 of GLy(F'), we denote by #(7) the
Whittaker model of 7 with respect to @. Let 71, w2, T3 be a triplet of irreducible admissible infinite dimensional
representations of GLa(F'). We denote the central character of m; by w;. Set @ = wjwows. We associate to a
holomorphic section fs of I(w, xa3) and Whittaker functions W; € #'(m;) the local zeta integral

Z(Wh, Wo, Wi, f) :/0 Wi(g1)Wa(g2)W3(gs) fs(me(g1, 92, 93)) dgi1dgadgs,
UOZ\H

which converges absolutely if Re s is sufficiently large.
We define a map ¢y : H — GSpg by

to(91, 92, 93) = ne(g1, 92J1, 93J1).
As a preliminary step, we choose a coordinate system on an open dense subset of UYZ\ H.

Lemma 2.1. If (1, u1,us2,us,az,a3) € F*@® F*2, then

_ _ _ A B
to(m™ (un)n(ay), m(az)n (uz), m(az)n (us) = (03 ( At)l) Jsn(~2),
where
1 as2U1 asux —U1 0 0 —T7 a9 as
A=10 a2 0 , B = 0 0 0}, 2= ay uz+addu asasuy
0 0 as 0 0 0 as asasguy usg + a%ul
PROOF. We can prove Lemma 2.1 by the matrix expression of ¢q. ([l

2.2. The unramified case. When 7; is unramified, we write W € # (r;) for the unique Whittaker function
which takes the value 1 on GLgy(0). Assume that & and x are unramified. Then we define the holomorphic
section fO(x) of I3(w, xas) by the condition that fO(k,x) = 1 for k € GSpg(0). Garrett has proved that

L(s—l—%,mxmxm@x)

ZWP, W3, W3, f2(x)) = :
( 1> 29 37f5 (X)) L(2S+2,X2C&)L(43+27x4w2)

We associate to a half-integral symmetric matrix B the series defined by
b(B,s) = > p(—tr(Bz))v[z]~*,
2€Sym;(F)/ Syms(o)

where 1) is an arbitrarily fixed additive character on F of order 0 and v[z] = [20% + 0% : 03]. If det B # 0, then
there exists a polynomial Fp(X) € Z[X] such that

b(B,s) = (1—q *)(1—¢*>)Fp(q*).

The following relation is well-known (cf. [Shi97, Proposition 19.2, page 158]):

Fp(*w(w)g~*7?)

L(2s + 2, x?@)L(4s + 2, Y*a?)

(2:3) Wa(f(0) =
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2.3. The p-adic case. Let St stand for the Steinberg representation of GLo(F'). For quasi-characters u, v of
F* the representation I(u, V) is realized on the space of functions f : GLo(F) — C which satisfy

(5 5)e) =mar@l]”

for a,d € F*, b€ F and g € GLo(F'), where GLy(F) acts by right translation p. Hereafter we assume that m;
are not supercuspidal and are infinite dimensional. Then 7; is a quotient of a principal series representation
I(u;,v;) with quasi-characters p;,v;. If ﬂiufl =+ a;17 then m; ~ I(p;,v;). If ,uil/fl = a}l, then m; ~

St ® uia};/ ®. Let Werd € @/ (7;) be the unique Whittaker function characterized by

W2t (t(a)) = vi(a) af /21, (a)
for a € F*, where t(a) = diag(a, 1). Fix a prime element w of 0. For each non-negative integer n we put
m, = m(w"), by = J7  m, W = (L) W,
Given a character p of 0™, we define ¢, € S(F) by

ou(r) = p(@)lox ().
We write ¢(u) for the smallest integer n such that p is trivial on 0* N (1 + p™). Define the open compact
subgroup /C(()g) (p™) of GSpy,(F') by

k2w ={ (2 1) € Gpayl0

We can define characters ' and pt of Kél)(p”) by

(2.4 m(@ @)zmm, w(@ Q)zmw

provided that n > ¢(uz). We define the Fourier transform of @ € S(Sym,(F')) with respect to 1 by

ceMg(p")}.

d(w) = /Symg(F) P(2)Y(tr(zw)) dz.

Given a Schwartz function @ € S(Symg(F)), we can define a section fa(x) of I3(w, x) by requiring that

(2.5) fo(J3n(z), x) = D(z)
for z € Sym,(F). Lemma 2.1 gives

(2.6)  fa(o(n™ (u1)n(z1), m(az)n™ (uz), m(az)n™ (u3)), x)

X1 —a9 —as
= Q(agaz)x(azaz)?|asas|*® —ay —up —adu;  —asazuy
—as —Qaga3uUy —Uus — a%ul
Now we define ® € S(Symgs(F')) by
Uy T3 T2 3
(27) P r3 Uy Tq = H ¢l(ul)<pl(a?1),
T2 X1 U3 i=1
where we define ¢17 ¢27 ¢37 ©1,¥2,P3 € S(F) by
$1 = o = d3 =1, P1 = Pxurvavss P2 = Pxvipiavss $3 = Pxvrvans-

Lemma 2.2. If n > max{1,c(x),c(u;),c(v;) | i =1,2,3}, then
3

p3(t(g1, 92, 95)) fo (X) = fo ) [ [ 1l (9) 0} (90) ™
i=1

for gi,92,93 € Kél)(pQ”) with det g1 = det go = det gs.
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PROOF.  One can easily check that
(2.8) P € S, Pulazr) = pla) ™ Pu(2), Pulx +0) = pu(x)

for a € 0, b € 0 and = € F. Simply because ¢; = I,-1, we see that ®(z 4 ¢) = ®(z) for ¢ € Syms(0), which
means that fe(x) is fixed by the action of n(Syms(0)). Put

X1 = XH1V2V3, X2 = XVip2Vs, X3 = XV1Va u3-
Since
o . up w3\ [da % Zizz Zzlfz
=L ij Zj i; - ds B T T T
a3 as as a3

if a;,d; € 0™ and A = a1dy = aads = azds, then by (2.8)
p3(u(diag(a1, dy), diag(az, d2), diag(as, ds)

NS
() 8
:@( )\3 3)(u1u21/3) (EZ) 22 ( ) ViVali3) ( >f¢>(x)
(5o () () (32 oo T ()

3
=fo(x) [Jwilai)'ws (EZ) = fa(X) Hﬂz‘(az‘)fll/z‘(di)fy

i=1

Let w € Symy(p?"). If fo(gn~(w),x) # 0, then since gn~(w) € P3Jan(z) with 2z € Symy(p~™) and since

mw = (B2, %) i)

—w (13 — wz

=3
w

we have g € Ps3Jsn(Symg(p~™)). We see by the identity above that

fo(Jan(z)n™ (w), x) = fa(Jsn((1s + 2w)~"2), x) = fe(Jsn(2),x)
for z € Symy4(p~") and w € Sym4(p?"). We conclude that fg () is fixed by right translation by n~ (Syms(p?")).

The proof is complete by K5V (p™) = n(o)d(o* )m(o* )n~ (p™). O

2.4. The p-adic zeta integral.
Proposition 2.3. If n > max{1, c(x), c(ui), c(v;) | i = 1,2,3}, then

3 n
207w . guo) = 1+ T (2

-1

1 - 1
x (xvivavs)(—1)y (2,7T1 ®XV2V3,’¢> 11~ (27XV1V7:M5—¢71P> ;

i=2,3
where a; = p;(w) and B; = vi(w).
PROOF.  We associate to f; € I(u;,v;) a function W(f;) € # (m;) by

Wig, fi) = / filJim(w)g)(—u)du = lem . fi(Jin(uw)g)p(—u) du.
F o0 p_
Here the limit stabilizes and the integral makes sense for any f; € m;. The integral W factors through the
quotient I(u;,v;) — St ® ,uia}m when p,v; " = ag'. Let fo' € I(pi,v;) be such that f2*9(g) = 0 unless
g € By J1Uy and such that f2*4(Jin(z)) = I,(z) for € F. One can easily check

W = w(ferd),
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For ¢« = 2,3 we put
1= p(mp) 54 € I(iy vi), Wi =W(f).
Recall that m,, = diag(w™, @™ "). Then

2w Wy Wy f) = /U gy W O3 (82) W3 9 10 (91. 92:92)) drdgadlgs

Observe that
WL (91)W(92) Wi ) = /U Wi (o(g1,92,95): o 5 du,

where
Wi(g1, 92,933 fh, £3) = W™ (1) £5(J192) £3(J1g3).
Substituting this expression, we are led to
2w W0 W, falx / Wi(o: £4, ) falio(g),x) dg.

Define a function F on SLy(F) by
f(g):/s - f3(J192) f5(J193) fo (t0(g. 92, 93), x) dgzdgs.
Lo (F)?
Let 77 = m(F*) be the diagonal torus of SLa(F'). Then
2 W W falx / d*a / W (t(a)g )/
Fx ’\SLQ(F) SLy (F)2
fo(Jit(a)ga) f3(Jit( )93)f<1>(bo( (a)g,t(a)g2, t(a)gs), x) dg2dgsdg
(29) -/ " (t(a)g)x (a)v(a)vs(a) F(g) dgd o
Fx ’\SLZ(F

by (2.1). To justify the manipulations we show that the integral

/ / / W™ (t(a)k)x(a)va(a)vs(a) F(n(z)k)| dzdkd*a
Fx JSLa(0) JF
is convergent for Re y > 0. The integral

[ @R e ¢

F><

is absolutely convergent. We frequently use the integration formula

_ <@ (a)n- (e 4 adud
/SLQ(F)h(g)dg_C(l)/F/F Fxh( (a)n” (u)n(z)) d*adud

for an integrable function h on SLy(F'). Observe that

(i) fy(Tin(es) / TT (i a2

FX2 293 i

2 2

Recall that

w=(1) w2l (D) e=(

Observe that
fi(Jim(x)) = [ (Iiman(zo ")) = Blay "¢ Ty (2).
Lemma 2.2 shows that

p3(t(12,n(z2), n(x3))J3) fa(x) = p3(J3) fo(x) (22,23 € p°").

11
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It follows that F(g) equals the product of %f;(%; and
_ _ vi(a;)d*a;
fao(to(g, m(az)n™ (uz), m(az)n™ (us)), x) ————du,;.
/sz@Fz igg pi(ag)la;l

T zS{;Lf;<{;z and

x —as —as
/ L P —as — Uy —asasu H (LDXQViui_l)(amai|dxaidui
FX2QF A

—as3 —a20a3U —us 1=2,3

In particular, F(n~ (u)n(x)) equals the product of

:/F - P1(—azazu)pa(—as)ps(—az)é1 () s (—us — aju)da(—us — au) H (@x vy ) (i) as]d* a;du;
X2q 2 1=2,3

by (2.6). Its integral over z,u € F' converges absolutely if Re x is large.
Recall the functional equations

1(gmee) [ mt@o@ata= [ miarone) @

(2.10) Woox®) [ pla@lalda= [ pap(@) ' dxa
Fx FXx
for every Wy € #/ (1) and ¢ € S(F). It follows from (2.9) that
o (;71'1 ® XV2V3,¢> Z(an)7 Wg(n)7 W3n)’f<1>(X))
-/ | W (6(a) T g) (xvavswr)(a) " F(g) dgd=a
Fx JT/\ SLy(F)
(2.11) = [ [ W @) @) @) Fala) dada
Fx JF
where
Folaw) =W+ [ Fom @n()e(-an) du,
P

We have seen that

4n —1\3
WI¢(a,x) :/FX2 @(aaas)x(aza:a)Q|a2a3\2<ﬂ3(—a2)@2(—a3)

X‘/I;‘¢1(7a2a3u)¢(au)du¢l( )’L s ’U/la;ld|alal/¢)z uz du7.
—_ 2 —1 . N X
=¢1() /FX (a a3> 11_2‘[3 i (0)(@wx Vil )(ai)ps—i(—a;)d*a;.

If xu # —1, then
Jim(z)n™ (u) = m((1 4+ uz) " Hn(—=(1 + zu)u)Jin((1 + zu) "),
which implies that
p(n” () fi4 = f7, mi(n” (u)) Wit = wir
for u € p™. If ¢1(x) # 0, then since x € p~1,

W™ (t(a)Jin(x)) = W (b(@)man™ (-w"z)) = ¢ " Bra; " (a)al /2L, ().
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We conclude by (2.11) that
1 n n n
v (2,m ® xu2u3,¢> 2" w3 W5, fa(x)

:/FX /le(n)(t(a)‘]l1n(x))(xl/2y3w1)(a)_lJm]‘_w(a,x)dmdxa

1 f2(J1 fs Jl

= Wl(") (t(a)J; 1) (xvavsw:)(a)™ / Fyla,z)dzd*a

. IR
LUV W (@) ) ( a Xa oD (a; i(—a;)d*a;
B G w00 [ N O G () 0 T @t Dadesi(-a) das

i=2,3
The last integral is equal to
W (t(aazas)J1)

d)(il) F X3 (XVQngl)(a)

pi(a)d*a I Cwins—i)(ai)ps—i(a;) d*a;
i=2,3

~ n rvilaasqa
o)W () [ A0 20, (01002 Vo (—0) 470 ] (isn-a)gs-i(a) 0¥

Fx3 (XV2V3W1)(G) i=2,3
()W ) g (-D) T] [ pomsta) (wavins-(elasl /2 4"
1=2,3 Fx

In the last line we employ the fact that if ¢5_;(a;) # 0, then a; € p~™. The proof is now complete by
fi(Jh) = Blra; g™, Wln (J1) = Bfa; g™ and the functional equation (2.10). O

2.5. Degenerate Whittaker functions at p. Let =, be a subset of Sym;(F") which consists of symmetric

matrices whose the diagonal entries belong to p and whose off-diagonal entries belong to %ox.

Proposition 2.4. Let B = (b;;) € Symy(F). Put y; = bji, whenever {i,j,k} = {1,2,3}. Then

3
Wa(fa(x)) = x(8y1y2ys) [ [ 12yl 2y (b)) [ wi(200).

i=1 j€{1,2,3}\{i}
In particular, Wg(fa(x)) # 0 if and only if B € E,.

ProOOF. Observe that
(2.12) Wi (fa(x)) = / fa(Jsm(2), x)w(~ tx(B2)) dz = B(~ B)
Symd(F)

for any ¢ € S(Syms(F)). We have

R b ys 2 3 R 3
@ - y3 b22 yl = H 907«(72y1)¢1(7b”) = Sox,ull/rzu;;(2y1)§0xu1,u21/3(2y2)¢xu1u2,u3 (ng) HHp(b’L'L)
y2 Y1 bs3z i=1 i=1
by definition. O

2.6. Restatements. We rewrite Propositions 2.3 and 2.4 in a form which is suitable for our later discussion.
Suppose that 7; is a subrepresentation of I(p;,v;) with p; unramified. Thus w; = p,;v; coincides with v; on
0*. Let

Wi(diag(a, 1)) = vi(a) " [al/*Ly(a).
Definition 2.5. We associate to the quadruplet of characters of o*
D = (x, w1, w2, ws)
a holomorphic section fp s = fo,(x0as) of I3(0™1, ywas) by

Uy I3 I2 3

Op T3 U2 I ZHHp(ui)m(Ii)-
To 1 U3 i=1
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For each quadruplet (xo, x1, X2, x3) of characters of 0*, valued in a commutative ring R we set
QB (X0s X15X25 X3) = X0(8b12b23b13) - X1(2b23)X2(2b13)x3(2b12)I=, (B).
Given a section fs of I3(w™!, xwas), we are interested in the quantity

Z(p(ta) Wi, plt.) Wa, plt stfs HC ( wg)”.

L(s—|—2,7r1 X7T2X7T3®X

(2.13) Zy(fs) =
Proposition 2.6. Notations and assumptions being as above, we have

1 n
p3(L(g1, 92, 93)) fp,s = stHW i) 91,92, 93 € K§V (™)
if det g1 = det go = det g3 and n > max{1, c(x), c(w;i)}. Moreover,

1
Wsg(fp,s) = Qr(D), Zy(fp,s) = x(=1)E, (8+ oML X My X 3 ®X> ;
where

By(s,m x my x w3 @ x) " =L(s,m1 x w2 X 13 ® X)Y(s, 1 @ Xpiapiz, ) [ [ Vs, xpmapivs—i, ).
i=2.,3

PROOF.  Since w; coincides with v; on 0*, we apply Proposition 2.4 and get the formula for Wg(fp s) by

replacing 7, pi, wy, Vi, X by Y ~m; ®wi_1, wi_l, /Li_l, I/i_l, xw, respectively. Proposition 2.3 applied to VT/Z,OYd

and I3(w™1, x@) gives

1\"
Z(p(tn)Wh, pl(tn)Wa, p(tn)Ws, fps) = (1+q7") 3H< o )

w

-1 —1
1 N1 - 1
x x(=1)y (5+277T¥®(Xw)y211/317,¢'> 11 7<s+ 5 s (xa@)vy ty g wi/)) ,
3

i=2,
from which the formula for Z;(s) readily follows. d
We will use the following lemma to achieve the functional equation of the p-adic L-function in §7.7.
Lemma 2.7. Put x = x '@, Then
Ey(1—s,m xma X m3®X) =w(—1)Ey(s,m X T3 X 3 ® x)e(s,m1 X T2 X T3 @ X, ).

PROOF.  Since m; @ w; ' ~ 7Y, we get

Ep(s,m X ma X 13 @ X) " =L(s,m) x my x 75 @X)y(s, 7 © Xvavs, %) H v(8, XU Vifis—i; P),
i=2,3

where m; ~ I(u;,v;). By definition we arrive at
(s, m X 2 X T3 @ X, Y)L(s,m1 X o X 3 @ X) 1 Ep (1 — 8,m X T2 X T3 ® )2)71

—y(s,m X 2 X g @ x, Y)y(1 — s, 1) @ Xz ) [[ v(1 — s, Ximpavs i, ).
i=2,3

The statement can now be deduced from multiplicativity and the functional equation of gamma factors. [
3. COMPUTATION OF THE LOCAL ZETA INTEGRAL: THE RAMIFIED CASE

Recall that St denotes the Steinberg representation of GLo(F'). Let m; be either an irreducible unramified
principal series representation or the Steinberg representation. Since

(3.1) Z(W1 @ x1, Wa @ X2, W3 @ X3, f) = Z(Wr, Wa, Ws, f @ (Xaxaxs) © v3)
for characters x1, X2, x3 of F'*, where
(Wi @ xi)(9:) = Wi(gi)xi(det g;), (f @ xovs)(g) = flg)x(vs(g)),
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there is no harm in assuming that m; ~ I(az", a%) with t; € C or m; =~ St. When m; ~ I(aj", a%), we

denote the unique Whittaker function which takes the value 1 on GLy(0) by W2 € # (m;) and let W= € #/(m;)
be the unique Whittaker function characterized by

Wi (t(a) = |a| 2+ D210 (a)

for a € F*. When m; ~ St ® o}, we define W;© € #/(St ® a}) by

Wit (t(a)) = la]*** 1o (a)
and set t; = s; + 1 to be uniform. We define f?™ € I(a.", a) as before. Recall that W;" = W(f¢™). Put
0 -1
n=(2 3). Wi = 7 W WO = )WY

Lemma 3.1. If w; is an irreducible unramified principal series, then

WP =gt

?
PROOF.  The relation W = W2 — ¢(#2t:=1/20)9 implies the stated identity in view of m;(n)W? = WP. O

Fix an unramified character y = af. of F*. We will abbreviate I3(x) = I3(1,x). Take @ = Igyn, () and
put h°%(x) = fas(x). Since

PsJsn(Symy(0)) = PsJsKg” (p) = P3G (0) 1357 (0).
the restriction of the section h°() to GSpg(0) is the characteristic function of Kés) (p)JgK(()S) (p). In particular,
p3(k)h°(x) = h°(x)
for k € K(()S)(p) (cf. Lemma 2.2).

Lemma 3.2. Assume that m ~ St. Then

ZOWE W W 0 (X)) = —(1_le)3§(3+ Ltta+t) [] Cls+1+t—ts50).
i=2,3

Remark 3.3. Lemma 3.2 is compatible with the computation [GK92|. Let ®°(y) € I3(x) be the function
whose restriction to GSpg(0) is the characteristic function of Kés) (p). Put n3 = ¢(n1,m1,m). Then

n K () = K™ (p), KO0 = 67 pa(n)2°(x)
by Lemma 3.1 of [GK92|. We obtain
ZOVE WS W R (X)) =7 5 2(WF, W, W7, @)
When 71 ~ 79 ~ 73 ~ St, Proposition 4.2 of [GK92] gives
1
ZWH Wt Wb, @%) = —(¢+ 1) 3¢ 2L (s + 5,5t xSt x St) :

PROOF.  On account of (2.9) we have

zovt i winee) = [ f Wi (b(a)g)lal* 12+ F(g) dgd*a.
Fx JT/\ SLy(F)
Put f!' = m;(t(w)) f2r4. Since
£ (in(z)) = fr(Nt(w)n(e/m) = ¢ 72021 (2),
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we get

d*a;

|ai

X /F2 RY(1o(g, m(az)n™ (uz)n(zs), m(az)n™ (uz)n(zs3)), x) dusdus

[liczslai |2ti=td> a;du;
q1+t2+tg(1+q 1)2

Fla) =) [ doaden GOt [ T o T

= / h°(1o(g, m(az)n™ (usz), m(az)n™ (us)), x)
FXZ@FQ
In view of (2.6)
X —ao —as Hz 23 ‘a |1+25+2t d*Xa, duz

F(n~ (w)n(z)) = / o[- —w —asasu
Fx2@r? —as —a2a3u —ug q1+t2+t3(1+q )

:q_l_tz_t3(1+q_l)_2ﬂa($)/ ]L,(agagu) H |ai|1+28+2t"dxai.
0? i=2,3

Owing to (2.11) we arrive at
1
o (s +5m® atﬁtS,w) ZWE W Wi % (x))

:/FX /FWf“(t(a)Jl_ln(x))\a|’S’t2’t3}]’p(a,;z:)dxdxa,
where

Fylaa) = (147 [ P () () du
=q (14 g7 () /2 <a2a3> 1 las*s**4d*a;

1=2,3

We conclude that

¢t (147 (8 + 5

:/FX /Fdxdxawl (| (| LNS( ))]Io(x)/oz L, <a2aa3> I lail* ™ d%a;

T ® atz+t‘°’ﬂ/)> ZWE W Wit % (x))

i=2,3
Wi (t(azasa)J; ) .

—_ dxa 1 1 / I a s 28+2t,d><a

o lagasalstt=+ts 02 o )11_2[3| il v

Wt (agasaw)

_ X 1 243 s+ti—ts_; Xa
_/d |a|€+t2+t3 H /|a‘ T

o 1=2,3

C(3— s+t —ty—t3) 1

= q(2t1+1)/2 i=H23C s+ 5 + tl + t’L - t57i .

Assume that m; ~ St. Then t; = % and

1 to+t sty—t5 G(L — 8 —t2 —t3)
s+ =,m@aRth, = —q T ,
7( 9 ¢> 1 C(s+1+15 +13)

from which we complete our proof. O

Proposition 3.4. Let 7; be either an unramified principal series representation or the Steinberg representation
twisted by an unramified character. Set W, = W? in the former case and W; = W, in the latter case. Put

7
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Wi =W, ® wi_l. If not all w; are principal series, then for an unramified character x of F*
Z<Wla WQ; W37 hO(X)) = Z(Wh W27 W?n hO(XLD))
L(%,’/Tl X g X T3 ®X)

(5, M X Ty X T3 R X, P)

= (@) (@)g(1+¢)~°

Remark 3.5. If m; and my are irreducible unramified principal series representations, then

1
L(s,m X my X St) =1L (s + 30 X 7r2> , (s, X T X St, ) = ¢~ 2w (@) we(w)?,
L(s,m x St x St) = L(s,m)L(s+ 1,m1), (s, x St x St, ) = ¢~ 2w, (w)?,
1\ 2
L(s,St x St x St) = ¢ (s + Z) ¢ <s + 2) , £(s, St x St x St, ¢p) = —g~(10575)/2,

PrOOF. In view of [Ike89, Lemma 3.1] and (3.1) we may assume that m; ~ St and m; is a quotient of
I (a;“, a’;i) for i = 2,3. If all m; are discrete series representations, then since W; = —W7j, the result follows
from Lemma 3.2. Let y = o, and 3 ~ I(a;", a?). Lemma 3.2 gives

s—2
2OV WEWEI00) = s s + 1+ s o)l (s + 1= 1o 1),
Thanks to Lemma 3.1 we obtain
ZWi Wy W 10(X)) _ 1jpC(s+1—ta+ts) —((s+1—ts—t3)
¢*2L(s + 1+ t2,m3) (I+q71)3 (gt — g'2)

— (1 + q—l)—3q1/2q—s—1+tzL(s 41— tz,ﬂ'g).

If 7 ~ I(ap"?, &2), then
ZWi Wi, W3, h0(x)) = (L+q71) B2 L(s + 1,mz x m3),

and so again by Lemma 3.1,

to—2 —ty—2

ZWE, W9, W, hO(x) = (1+q ) P L(s + 1,mp x mg) T——1

s ge = (e (s 4 L my x ).

If w5 ~ St, we obtain the claimed result by letting t5 = % ]

4. COMPUTATION OF THE LOCAL ZETA INTEGRAL: THE ARCHIMEDEAN CASE

4.1. Archimedean sections. We define the sign character sgn : R* — {£1} by sgn(x) = ray- Let Sym;" (R)
denote the set of positive definite symmetric matrices of rank n. The Siegel upper half-space ,, of degree

n consists of complex symmetric matrices of size n with positive definite imaginary part. The Lie group
GSp, (R) = {g € GSp,,(R) | vn(g) > 0} acts on the space 9,, by gZ = (AZ + B)(CZ + D)~!, where Z € 9,

and g = g g) with matrices A, B, C, D of size n. Let C°°($),,) be the space of C-valued smooth functions
on the upper half complex plane $,,. For an integer k and f € C°°(9,,) we define
(4.1) flkg(2) = f(92)J(9,2)7", J(9,2) = va(g) "?det(CZ + D).

Put i = /—11,,. We will identity the compact unitary group U(n) = {u € GL,(C) | @'u = 1,} with the
fixator {g € Sp,(R) | g(i) = i} via the map g — J(g,1).

For 1 <i,j <3 and u € U(3) we define H;;(u) to be the (4, j)-entry of the matrix u'u. By definition, H;;
is a function on O(3)\U(3), and hence we can extend it to a unique function on GSpg(R) such that

Hyj(n(z)m(A, v)u) = Hy; (u) (z € Symy(R), A € GL3(R), v € R*, u € U(3)).

A parity type is a triplet A = (A1, A2, A\3) of integers which belongs to one of the following triplets
A € {(0,0,0), (0,1,1), (1,0,1), (1,1,2)}.
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Fix a parity type A and a character yo, of R*. Put

1 if A = (0,0,0),
Hos if A =(0,1,1),
H>\ =
His if A= (1,0,1),
HioHaz  if A= (1,1,2).
For each integer k we define fc[f;’,fq\] € I3(sgnf—M

; Xoo SgD" M agy) by

FE2g) == Ha(g)xo0(v3(9)) - J(g, 1) (g, 0)[F M 7272,

Since
— cosf sinf
Hij(gb(:‘iela 5927’{93)) = eﬁ(91+eJ)Hij(g)7 o = < Sine COS 0) 7
we have
(4.2) FED (guo, Koy o)) = FIN) (g)eV RO (B-A0a (6 20)0s),

4.2. Archimedean degenerate Whittaker functions. For a positive integer m we put

m—1 .
T, (s) = gmm=—1/4 I'(s— J '
(s)=m ]1;[0 5=

If h is positive definite and «, 8 € C, then the integral
det(h)?
I'3(83)
is absolutely convergent for Re 8 > 2 and can be continued to a holomorphic function on C x C by Theorem
3.1 of [Shi82]. It is convenient to introduce the function w*(h; «, ) given by

w*(h;a, B) := det(4mh)*2 - w(4rh; a, B)
(4.3) 1

= — e tr(w) det(u + 47rh)°‘_2(det u)’B_2 du.
FS (/B) /Sym;r (R)

It follows from this expression that if « € Z and a > 2, then w*(h; a, 8) is a polynomial function in & of degree
at most o — 2 and makes sense for an arbitrary symmetric matrix h.

w(h;a, ) = / e~ TR det(u + 15)*2(det u)? 2 du
Sym;r(R)

Lemma 4.1. For z € Symg(R) we have
Hgg(ng’l(.r)) =2V —1(.’1?11:1)23 — 12213 + V —13?23)/(16'6(.’)3‘ + i),
ng(Jgn(l')) = 2v —1(:1;‘12{1,‘33 — 23213 + V —1(E12)/d€t(1‘ =+ l)

PROOF. The Iwasawa decomposition of Jin(z) can be written as

Jsn(z) = (2(’; fl) (Zx _Z) : 2 € GL3(R)

z z zZx

with z'2 = (13 + 2%)7 L. Let u = z(z — i) € U(3). Then u'u = (z —i)(z +1i)~'. We denote the adjugate of a
matrix A € M3(R) by adj(A). Since A -adj(A) = (det A)13, we have

u'u = det(z + 1) "' (z —i)adj(z +1) = —2v/—1det(z + i) 'adj(z +1) + 15.

By definition we find that
1 Z23

Haz(Jan(x)) = Hoz(u) = det(z +1)~' - 2v/—1det (

= det(x + i)71 . 2\/ —1(1?11.1723 — 12213 + V —1:623).

One can compute His(J3n(x)) in the same way. O

11 +vV—1 o192
Z13
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Definition 4.2. We associate to a parity type A the differential operator 2\ on T = (T};) € Syms(R) by

1 .
D0,1,1) = m{amam — Op3(011 — 4m)}, D(0,0,0) = id,
1
9(1,0,1) = m{alzass - 323513}7 9(1,1,2) = -@(0,1,1)@(1,0,1)~
Here
P 0 1 ifi=y,
Yoy 1oifi#]

Definition 4.3. For each parity type A and an integer Ao < r < k —2 we put M =k —r — 2 and define
K%A (T;u) := Dr{det(4nT + u)M},
1
Ts(s)
Lemma 4.4. Let A € GL3(R)" and B € Sym4(Q) with det B # 0. If B is positive definite, then

¢ A*BA; Ny — 1)
. [k,\] [k,m,A] e 2mtr(A BA)w@ ( 2
i Welm(d), fis) = 6 (det A3

wiy, (T, s) = /S . e_tr(“)K]‘gfIA (T;u)(det u)* 2 du = Dyw*(T; M + 2, 5).
ym

where
93(3+2r—k—X2) -6

C’[kv"'a)‘] — /71 k—A2
1 ( ) Fg(k} — 7‘)
If B is not positive definite, then for any integer 0 <r <k —1,
lim  Ws(m(A), 1) =
—

k—Xp
57— —1—1

PROOF.  For each parity type A we define another differential operator Dy on Syms;(R) by

1 .
Do,1,1) = m{algalz — O93(011 — 2m)}, D0,0,0) := id,
1
Do) = m{am

It should be remarked that by Lemma 4.1
Da(e 2V 10Ty = det(z + i)™ det(x — i)™ Hy (Jsn(z))e 27V 10(To),

(033 + 2m) — Oa3013}, Da.1,2) = D(0,1,1)P(1,0,1)-

Recall that
Wi (m(A), fI) = (det A)"22Waipa (e, fI),
which reduces our computation to the case A = 13. We see that

Wpg (16a f[k A]) / ® det(x -+ i)*OCO det(x _ i)*ﬁoH}\(J?’n(x))ef%r\/jltr(Bm) dx
Symg (R

=Dx(£(13, T;00 + A1, B0 + A2)) =B
with ap = s+ 1+ k_;‘l and Bp =s+1— % On the other hand, for any h € Syms(R), we have
(271.)66—277 tr(h)
28I3(a)l'3(B)
by [Shi82, (1.29)]. If h is positive definite, then the last integral equals 23C~=*=#w*(h; a, B) - T'5(8). Observe
that for every polynomial P on Symg(R)
Da(e ™D P(T)) = e > g, P(T).

This proves the case where B is positive definite. If the signature of B is (3— ¢, ¢), then Theorem 4.2 of [Shi82]
gives that a holomorphic function w(«, 8) such that

Fp(ﬁ - %)Fq(a - g) .
I'3(a)l'3(8)

€13, h;a, B) = (vV—=1)3(F=) / e 20 det(u + 2h) 2 (det u)? 2 du
u>0,u>—2mh

5(1373;0[’/6) = &(0‘7B)
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Thus £(13,B;k —r,—r) =0 for 0 <r < k — 2 unless B is positive definite. a

4.3. The constant term of WB(m(diag(,/yb\/yz,\/yg)),fs[’fo’é]) as a polynomial of y;'. Given y =
diag(y1,y2,y3) € Ri, we put A = diag(\/y1, /Y2, v/y3) and define
kor A - A A1+A PYEDY
W%’ ](y) = (1yays) F P2 M TR gt ‘wy (A'BA, Ay —1).
Now we write
w” (T; M+ 2, S) = Z lej2j3Tf§Tg§Tf§7 Cj1jajs € C[T117 Tz, T33]’

0<71,52,43<M

where T = (T;;) € Symj3 (R). Since
W*(e'Te; M + 2,8) = w*(T; M + 2, 5), e =diag(—1,1,1)
in view of the expression (4.3), we get ¢, j,5; = (—1)72193¢; ;... Thus ¢;,j,j, = 0 unless ja = js (mod 2). By
symmetry we conclude that ¢;, ;,;, = 0 unless j; = jo» = j3 (mod 2). Moreover, we can write
TQ>\31 T1>\22T1)\31+/\2w_%A (T7 5) = Z ajljzjslegTZjéleg’ (jyjajs € C[Tlla Tso, T33]'
0<j1,j2.4a <M, j1=j2=js (mod 2)

Thus we can write

(44) Wi (diag(y v vs) = D0 QB w3 s
0<a,b,c<M
We shall determine the coefficient ng,:‘c] (B,r) of W[g’r”\] (y) for matrices B with zero diagonal entries
0 b3 by
B=1bs 0 b
by b1 0O

Let Y be the matrix with variables Y7, Ys, Y3 given by

0 VY1Ye Y1Ys
Y=Y, 0 VY2Ys
VYiYs /Yo Ys 0

For two functions f,g: Ry — C and ¢ € R we say that f(y) = g(y) + o(y°) if lim, fW=9@) _ g,

Lemma 4.5. The polynomial K% (%; u)e C[VY1, VY2, VY3,u] in Definition 4.3 has the form

A A
K ((4m) "' Vi) = OF ™ Vea(Va, Yasu) - ¥~ 7 4o 7)

with CF™N € C and cx(Ya, Ys;u) € C[VYa, /Ya,u] give by
C[k:,r,)\] _ (2M+ /\1)' 93(A1+A2)—A1 [
2 o (2M)! (V=1)%2 M (M — A — Ag)!’
M=A1=22 AHAs Ao
ex(¥z, Yaiu) = (—u22Y3 —u33Y2 + 2Y2Y3 + 2uos m) . \/?2 \/?d .

Proor. This is proved by a direct computation. Note that
O det(T + u) =(Toa + ugo) (T3 + uss) — (Tas + uas)?,
Or12det(T +u) = — (Th2 + u12)(Ts3 + us3) + (Toz + u23)(T13 + ui3),
O13det(T +u) = — (Tiz + u13)(Toz + ua2) + (T12 + u12) (T3 + ua3),
( ) =
( )=

Og3 det(T + u) = — (T3 + ug3)(T11 +va1) + (Th2 + wi2)(Tis + ui3),
933 det(T + u) =(T11 + u11)(Toz + uo2) — (Th2 + u12)?.
Put
A = det(T + u), R = (—u22Y3 — ussYa + 2YaYs + 2up3/YaY3) V1.
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Since Alp=y = R+ o(Y1), we have
K%O‘l)”((m)—ly;u)
:(271'2\/ —1)_1 . (471')2{813812 — 623(611 — 1)}AM‘T:)}
= — 8v —I[M(M — 1)RM_2(813A612A — 823A811A) + MRM_1{813612 — 823(811 — 1)}A]‘T:y
=—8v —1MRM_1823A|T:3)
= — 8V/—1MRM~1/Y,Y3Y; (mod o(Y{M)),
which verifies the case A = (0,1,1). When A = (1,0, 1), we have
K%Lo)l)((élﬂ')_ly;u)
= — 8V—1{M(M — 1)RM?(912A053A — D13A023A) + MRM (9120537 — 0130230) } 17—y

=_ 8M{M(M — 1)RM=2(—R\/Y1Ys) + MRM™! (—2@) }
%)

[N

=4v/—1M(2M + 1)RM~1\/Y Y5 (mod o(Y;
as claimed. Since
@(07171)AM|T:3; = —8v —1MAM_1T12T13|T:y —+ 0(3/1]\/[)7

we have
KY L, ((4m) 71 Y5u) =32M (M — 1)(2M — 1) RM /Y1, Y1/ Ya Vs
— 64M(M — 1)AM72(T13833A — T12823A)|T=y (mod O(YlMié)),
which proves the case A = (1, 1, 2). a
Lemma 4.6. Let F(T') be a polynomial in T = (T;;) € Syms(R). Then we have
detu)*—2 ,
o0 () QT G - B(—0,)(det T) s,
Lo S (~0)(detT) I,
PrOOF. If T is positive definite and Re s > 2, then
d t s—2
/ e~ tr(Tw) 7( etu) du = (detT)~*
Symi (R) I'3(s)
by [Shi81, (1.14)]. The declared formula follows immediately from the fact that
F(=0;)(e” ") = Fu)e (T, m

Now let k > 1 > m be a set of balanced integers. We say that (k,l, m) has the parity type A if
/\1,)\26{0,1}, Alzl—m(mod 2), )\QEkJ—l(mOd 2), A3 = A1 + Ao,

‘ ‘ l+m+A I+
I;)emma 4.7. Let \ be the parity type of k > 1 > m and r an integer such that k — =gt < < =50 — 2,
ut

1 1 1
M=k—-r-2 b:§(k—l—)\2), c:i(k‘—m—)\g)7 n:M+§(l+m—)\1).

Then we have
QYN (B, 1) = wop.e - (brbabs)™by by b5 ™,

,b,¢

where

BM —b—c—2X1—A2g M+ A1 +2hs —b—c (V=DM 722 (2M + Ay)!M! (r—X2)!

wosb.e = (47) MM — X\ — Ao —b— )l blel(r — As — b — o)!




22 MING-LUN HSIEH AND SHUNSUKE YAMANA

PROOF. Substitute Y; = 4w blg§b3 y; into the matrix . Then Y = 47 A*BA and

Wi (y) = 3 QUL (B, ) (dm) Y Yy Y e g e g

a,b,c
a,b,c

On the other hand,
A A2 201+
WA () = (<4W)3blb2bs)”’ N Y R
5 =

*
Y1YsYs3 (47T)2A1+,\2b1\1+A2bé\1 wy, ((

4m) AP Ny — 1)
by definition. The equations above give a complex number wy p . such that
Qi (B,7) = wop.c - (bibabs)"by b5 b5 ™

Our task is to determine wg .. It is the coefficient of YQM_’\I_)‘Z_I’ng\/[_’\l_’\2_C in the polynomial

A7 3M—b—c—2X\1—X2 B r det )52
( ) A1tAz A2 / tr(u)cga ,)\]CX (}/27 Ys; u)¥ du
VT St G

=(4r)3M—be=221-2 C’ék Al

M=Xi=d2 (det u)* >

I'3(s)

X / e () <—U22Y3 —u33Ys + 2Y2Y3 + 2ua3+/ Y2Y3) dufs=r,—r
Symg3 (R)

by Lemma 4.5. Put
L:M—)\l—)\g, T1:’I"—)\2.

Notice that b < ¢ by assumption. The coefficient of YQL_ngL_C in the last integral is given by

2L - p( 1)t Il ¢ (det u)s—2
—tr(u), b—i, c—i 9 2i d _
b—i)l(c— i) (L —b—c)l(20)! /synﬁ(R)e Uz ugy ' (2u2s) T Ta(s) Ul s=—r,

<.
o ||Me~

2L—b—c L|22i
(b —i)l(c =)L = b—c)!(2d)!

2L b—c L'22Z 7‘1 ab i nc—1 1 JTT1 —J T2 7
< (b~ )l(c— )L —b—)l(20) 'Z 33 03 (=T33) |120=Ty5=1,125=0

b—i ac—1i 021 2 \71
1033035 " 053(Ta2Ts3 — T53)"™ | Too=Tys=1,T25=0

.
S|
o

7

HM@

2L b—c L) " i
—Z C—Z ( —b—C)( >( )a (T2 T )|T22:T33:1

2L_bb0_ CL', b (rl) <r1 - z) (rcl_—ii)(l)i

in view of Lemma 4.6. The last summation equals

b .
1! b\ (11 —1 i 1! ri—>b \ rq!
(r1 — )0 ; (2) (7"1 - c>(_1) T (rp =) <r1 -b— c) Coblel(ry —b—¢)l

where we can deduce this equality by equating the terms of degree r; — ¢ of the identity

b

> (f) 14+X)" (=1 =1+ Xx)" (1 - 1+1x>b _ (14 X)X,

i=0
Finally, we see that wg . equals
3M—b—c—201 Az (k7] M= Rombme . (M — A = Mg)! (r—X2)!
2 (M—=X —X2—b—20)! blel(r — g — b —¢)!

by putting together the above computations, which completes our proof.

(4m)
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4.4. The archimedean zeta integral. Let V1 be the weight raising/lowering operator given by

Vi = ﬁ ((é _01> ®1+ (0 1) ® F) € Lie(GL2(R)) ®r C.

For each integer k we denote by o, the (limit of) discrete series of GLy(R) of the minimal weight £k and by
Wi, the Whittaker function of oy, characterized by

Wi(diag(y, 1)) = y*/2e"*™IR, (y).
Set W[t] VEiWy. Tt follows from (6.2) below that

t
\NT(E+k) ey _
45 Wl (di —4 SRR I L) .
(4.5) (diag(y, 1 ]Z: ) <.>F(j+k) y? e ™R (y)
Fix a triplet (k,l,m) of positive integers such that k > 1 > m and k <!+ m. Put J, = ((1) _01) Define
[k—l—/\Z] I:k,—'m,—)\:s}
Zoo(s) = Z(p(Jm)Wk,p(JooWVl (T W T, £’§;§])7
where A is the parity type of (k,I,m). Recall that
k+1 -3 k—1 -1
L(s,0% X 0y X 0) =['c (s + ++2m> I'c (s + +2m>
k+l—m-—1 l— k-1
X I‘C s+ +7m FC s+ L .
2 2
Put
br2ren L8+ 58504 1) (s + *5*) R ) M

* — /71 .
ey (#) = (V1) D(s— 5N g +1) D(s+ 554 +1) AP(s + 22HE)0(25 + k)

Lemma 4.8. If X is the parity type of (k,l,m), then

~ ’y*k,m,l (S) 1
Zo(8) = (XoolWoo ) (—1) vol(SO(2))? - W[/ (s + 5,0k X 01 % am) :

ProoF. For a = (a1,a9,a3) € Ri and x € R, we set

2=z 4+ V=1(af + a3 + a3),
w=as((5 2). (2 2).(5.2)):
wo =ane (5 1)-(6 1)-(6 1))

When x # 0, the Iwasawa decomposition of n¢(u(x)t(a)) can described as follows: Put
a% ajaz aias
P=1aias a% asas3
ajaz az0s3 CL%
. . D -C
We write ne(u(z)t(a)) = n(z)m(A)u with z € Sym;(R), A € GL3(R) and u = c D

D=1C = 271 P, we can choose U € GL3(R) so that

) € U(3). Since

U0 = (2215 + P?)7, - (U“” ur

UP Uz ) € UEd).

utu=Uzx —+— . en u'u = (rls — —1)(z13 + —1)7*. By direct computations we get
P U v—1UP. Th ¢ Py-1 Py/—1)"1. By di i

a2a aia
H23(’U,) = —2\/ —1 22 3, ng(u) = —2\/ -1 12 2

\M

det A = ajasa3 |z\717 detu =

|z
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(see [GK92, (6.7), (6.8)]). Put

b:%(k‘—l—)\g)7 c:%(k‘—m—)\g), (s,k7l,m):(8+)\2z)’7k—)\2,l,m—)\1>.
It follows that

S () 1) = e (1) (2 THZ2Y Y (py iy (e ) T2

2|

A2 —A
— Xm(_l)Q/\l-i-)\z\/jl 2 1(a1a2a3)2s+2a1_)‘2agh|z|_2s_2_k(—z)k.

From (4.2) and (4.5) % equals

w

| [ wila/smen) W e/ 3m(a) W (e /3man) 52 (u(w)t@)a(-1) d ]| T|
B L Ao— ,\1 = - ¢\ T'(l+b) T'(m+c)
=Xeo(~1)2M VL AZ:: Z:: m) <A) (B) T( +4) T(m + B)
3
/ /RB 25+k S+1+2A §s+m+2B | |*25 2— k( )k€27r\/jla:€727r(af+a§+a§) dmj];[ldxaj'

Puta=s+1+ % and f=s+1— % The last integral equals

« a— _ 3
(—2my/=1)*(2mv/—1)P / gkt2s g LH2A+2s m2B+2s (L4¢)> P! ar H d%a;.
R4

[(a)l'(B) Lo 3 eAn (a3 ta3+a3)(1+1)

We here use the identity

/ e 2mV=Ir dg B (%ﬁ)%%ﬁ)ﬂf (t+1)> 11
r (z+V—1y)*(x —v/~1y)% T(a)T(8) R, €242

(see [GK92, (6.11)]). The quadruple integral above equals

m _ _ 3

1 allc+25al2+2A+25a3 +2B+2S(1 t)a 1t6 1 §

ktlim A+ B 2. 2.2 ktltm A+B de H d a;
5 +3s+A+ R4 eaitaz+az (]_ + t) 5= +3s+ A+ -y

dt

(4m)

(TG st AT 45+ B) [ (aae e
- 23(47T)““%+35+A+B R, (1 +t>“ﬂ%+3s+,4+3

Recall that

(L4 p ! B kK+1+m
/o (1+t)"“%+3s+A+Bdt*B 5’1*0‘*5+#+3S+A+B

T (1—a—p+5Em 4+ 3s+ A+ B)
['(1—o+ktm oy 354 4+ B)

We finally get

Zo (5) =VOL(SO(2))P a0 (—1)2M F2A2 248 =Bk 2 msk B8 /T b () hartbrbe
I'(s+ %) b\ (¢ I'w(s; A, B)
s byt S0 () (5) i

A,B

where
I(s+i+AT(s+2+B)I(s+XLm 1444 B)
[(2s + 42 + A+ B) '

IFw(s;A,B) =
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Lemma 3 of [Orl87] with a =1 =1, t:eré, B:BerT_l and N = b gives

b (s+L4+A)D(s+Ebm _ 1444 B
F(l+b)Z(—1)A(b> (s+i+A)T(s+ o + A+ B)
I(s+I(s+B+2+i+b-1)I(s+B+2+b)I(s—1L+1)

F(2s+B+2L +b)(s+B+2)I(s—§—b+1) '

=(-1)"
It follows that
b C Foo st’B
DL+ 0P (m+c) Y (~1)4*F (A) <B> I+ /i)l“(m Jz B)

e yL(s+ 5 (s—4+1) (e I(s+B+2+1+b—1)I'(s+B+2+b)
=(-1) F(m+0)zB:( 1) (B) I'(2s+ B + =t +b)['(m + B)

Again we apply Lemma 3 of [Orl87] with a =m, t =s+ 3 +b, f = Z_Tm —band N = c to obtain

F(s+B+2+14+b—1)'(s+B+2+b)
T(m + _1B<C> 2 2
(m C)ZB:( 5 I'(2s+ B+ = +b)'(m + B)
JE+2 405+ i+mte—D)I(s+5+e)D(s+ 2 +b—m+1)
F(2s+ 22 4+ b4+ o)l (s+ )T (s+ 2 —m+b—c+1) '
Then we can see that the double summation equals

oo+ 4 BT(s+ L 4m e I(s 45 l(s4e—b+1)

(1)

-1
o P(s— 5 —b+1)0(2s+ 25 +b+c)
=(—1)b+cr(s+k_l%)r(s+k+l% — T(s+ E=bm 4 1D (s 4 A=gtd) 1
The last equalityusesb:%,m+c:HTm,s+c:s+k_Tm and 2s +k +m =2s + k + m. 0

5. CLASSICAL AND p-ADIC MODULAR FORMS

5.1. Conventions. Besides the standard symbols Z, Q, R, C, Z,, Q; we denote by R the group of strictly
positive real numbers. Fix algebraic closures of Q and Q,, denoting them by Q and Qp. Let A be the ring of
adéles of Q and p,, the group of n-th roots of unity in Q. Given a place v of Q, we write Q, for the completion
of Q with respect to v. We shall regard Q,, and Q) as subgroups of A and A* in a natural way. We denote
by the formal symbol oo the real place of Q and do not use ¢ for the infinite place. Let 9 : A/Q — C*
be the additive character with the archimedean component ¥ (z) = e2™V =1z and P, : Q¢ — C* the local
component of ¢ at £.

Denote by aq = | - |, the absolute value on Q, normalized so that ag is the usual absolute value on R,
and ||, = ¢7! if v = £ is finite. For a € A%, let a,, € Q) denote the v-component of a. Define the character
aar = Q*\A* = R, by aa(a) =lal, =[], |a,|,- Recall the local Riemann zeta functions

Cool(s) = w5/ (5/2), Co(s) = (1 —e75)7L,

Define the completed Riemann zeta function (q(s) by (q(s) =[], ¢v(s). In particular, (q(2) = %. For each
rational prime ¢, let vy : Q; — Z denote the valuation normalized so that ve(¢) = 1. To avoid possible
confusion, denote by w; = (wy,) € A* the idéle defined by @y = ¢ and wy, =1 if v # £.

If w: A* — C* is a quasi-character, then we denote by w, : QX — C* the local component of w at v. If
x: (Z/NZ)* — Q" is a Dirichlet character modulo N, then we denote the {-exponent of the conductor of x
by ce(x) < ve(N). We can associate to a Dirichlet character x of conductor N a Hecke character ya, called
the adelic lift of x, which is the unique finite order Hecke character xya : QR \A* /(1 + NZ)NZ* - Q"
of conductor N such that xa (ww¢) = x(¢)~! for any prime number £+ N.

Fix an odd prime number p and an isomorphism ¢, : Qp ~ C once and for all.
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Definition 5.1 (Teichmiiller and cyclotomic characters). The action of Gq on ppe 1= lim p,» gives rise to a
—n

continuous homomorphism ey : Gq —+ Z,, called the p-adic cyclotomic character, defined by o(() = (Eeve(@)
for every ¢ € ppeo. The character ey splits into the p-adic Teichmiiller character w : Gq — Gal(Q(u,)/Q) —
Z; and () : Gq — Gal(Qs/Q) = 1+ pZ,. The character w sends o to the unique solution in ZX of
w(0)? = w(0) = ecyc(0) (mod p). We often regard w and (-)* with s € Z, as characters of Z*. We sometimes
identify w with the Dirichlet character ¢, o w : (Z/pZ)* — C*.

Remark 5.2. (1) Let x be a Dirichlet character. If x, stands for the restriction of xa to QJ, then
xe(£) = x(€)~! for each prime number £ N. Furthermore, if N is a power of p and b is not divisible

by p, then x,(b) = x(b)-

(2) Let x be a character of Z, of finite order, which can be regard as either a complex character or a
p-adic character via composition with ¢,. We view x as a character of Gq via composition with the
cyclotomic character ecyc. Let Q™ = [Jy_; Q(pen) be the maximal abelian extension of Q and

recq : QR4 \AX = Gal(Q*/Q)

the geometrically normalized reciprocity law map, i.e., recq(@e)|q(u,) = Frobe for £ # p. Since
x factors through the quotient Z) — (Z /p*XZ)* | we can identify y with a Dirichlet character of
p-power conductor. Then since xa (wr) = x(€) ™' = x(€cyc(Froby)) for £ # p,

XA = X O Ecyc O TECQ, XP‘Z; = X-

5.2. Differential operators and nearly holomorphic modular forms. Let GLJ (R) be the subgroup of
GLy(R) consisting of matrices with positive determinant and $); the upper half plane on which GL] (R) acts
via fractional transformation. Define a subgroup of SLy(Z) of finite index

I'o(N) = {(i z> € GLy(2Z) ‘ Nc}.

The Lie group GLJ (R) acts on the complex vector space of complex valued functions f on $; as in (4.1).
The Maass-Shimura differential operators d; and A, on C*°($)1) are given by

6—1(a+k> =t 22

P /T \0z a1y’ T Tor/1l o

with y = Imz € Ry. Let x : (Z/NZ)* — C* be a Dirichlet character, which we extend to a character
a b

Xt i To(N) — C* by x* ¢ d

holomorphic modular forms of weight k, level N and character x consists of slowly increasing functions

f € C®($H;) such that A™*1f =0 and f|py = x*(7)f for v € To(N) (cf. [Hid93, page 314]). Put Ny (N, x) =

U ./\/',£m] (N,x) (cf |Hid93, (1a), page 310]). By definition ./\/E] (N, x) = My(N, x) is the space of elliptic

modular forms of weight &, level N and character . Denote the space of elliptic cusp forms in My (N, x) by

Sp(N,x). Put 0} = dpt2m—2- - Opt20k. If f € Nig(N, x), then 6} f € Nyyom (N, x) (see [Hid93, page 312]).

Define an open compact subgroup of GLy(Z) by

): x(d). For a non-negative integer m the space N,gm] (N, x) of nearly

Up(N) = {g € GLy(Z) ’ g= (; I) (mod Ni)} .
We extend ya to a character xk of Up(N) by XiA(g) = [y~ x%(gg) (see (2.4) for the definition of Xj) Let
A(N,xx") be the space of functions @ : GLy(A) — C such that V™¢ = 0 for some m and such that
D(zygrou) = XA(Z)_1¢(g)e‘/j1kexk(u)_l (z € A*, v € GL2(Q), 6 € R, u € Uy(N)).

Definition 5.3 (The adélic lift). With each nearly holomorphic modular form f € Ny (N, x) we can associate
a unique automorphic form &(f) € Ay(N,x ") defined by the equation

D(f)(vgoott) = (flgoo) (V—1) - x4 (u) !
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for v € GLa(Q), goo € GL (R) and u € Uy(N) (cf. [Cas73, §3]). We call &(f) the adélic lift of f. Conversely,
we can recover [ from &(f) by

flo+V=T1y) =y ¥ a(f) ((g f)) :

Recall that Vi are the operators as defined in §4.4. By definition we have

P(0rf) = Vio(f), P(X.f) = V-2(f).
We define the Whittaker coefficient and the constant term of @ € Ay (N, X;l) by
Wig.#) = [ dn)gbaldz, a0(9.) = | @ln(a)g)de.
Q\A Q\A

5.3. Ordinary I-adic modular forms. For any subring A C C the space Si(N, x; A) consists of elliptic cusp
forms f =27 a(n, f)¢" € Sp(N,x) such that a(n, f) € A for all n. For every subring A C Q,, containing
Z[x| we define the space of cusp forms over A by

Sk(N,x; A) = Sk(N, x; Z]X]) @z A.

Here we view x as a p-adic Dirichlet character via ¢

-
Definition 5.4 (p-stabilized newforms). We say that a normalized Hecke eigenform f € Si(Np,x) is an
(ordinary) p-stabilized newform (with respect to ¢, : C ~ Qp) if f is new outside p and the eigenvalue of U,,
i.e. the p-th Fourier coeflicient ¢,(a(p, f)), is a p-adic unit. The prime-to-p part N’ of the conductor of f is
called the tame conductor of f. There is a unique decomposition x = x'w%e with a € Z/(p — 1)Z, where x’ is

a Dirichlet character modulo N’ and € is a character of 1 + pZ,. We call x'w® the tame nebentypus of f.

Let f° = > 72 a(n, f°)¢" € Sk(Np,x) be a primitive Hecke eigenform of conductor Nyo. We call f©
ordinary if L;I(a(p, f°)) is a p-adic unit. If this is the case, then precisely one of the roots of the polynomial
X2 —a(p, f0)X + x(p)p"~1 (call it oy, (f)) satisfies |¢,(ap(f))]p, = 1. We associate to an ordinary primitive
form f° the p-stabilized newform by

o x(p)p* !
(51) ) = 17(r) - X2
if Nyo and p are coprime, and f = f° if p divides Nyo.

Let O be the ring of integers of a finite extension of Q, and I a normal domain finite flat over A =
O[1+pZ,]. A point Q € SpecI(Q,), a ring homomorphism @ : I — Q,,, is said to be locally algebraic if the
restriction of @ to 1+ pZ, is of the form Q(z) = 2¥2eg(2) with kg an integer and eq(2) € pp. We shall call
kg the weight of Q and eg the finite part of (). Let X1 be the set of locally algebraic points ) € Spec I(Qp)
of weight kg > 1. A point @ € ¥y is said to be arithmetic if kg > 2. Let .’{i" be the set of arithmetic points,
pg = Ker @ the prime ideal of I corresponding to @ and O(Q) the image of I under Q.

Let N be a positive integer prime to p and x : (Z/NpZ)* — O* a Dirichlet character modulo Np. An
I-adic cusp form is a formal power series f(q) = Y., a(n, f)¢" € I[¢] with the following property: there
exists an integer ay such that for arithmetic points @ € .%’f with kg > ay, the specialization f,(q) =
>0, Q(a(n, f))¢™ is the Fourier expansion of a cusp form Fo € Skq (Np¢, xw *2eq; O(Q)). Denote by
S(N, x, I) the space of I-adic cusp forms of tame level N and (even) branch character y. This space S(N, x, I)
is equipped with the action of the Hecke operators T, for £ Np as in [Wil88, page 537| and the operators Uy,
for £ pN given by U,(3-, a(n, f)q") = >, a(nt, f)q".

Hida’s ordinary projector eq.q is defined by

f°(p1) € Sk(Nyop, x),

. !
€ord := lim UZ'.
n— 00

It has a well-defined action on the space of classical modular forms preserving the cuspidal part as well as on
the space S(NV, x,I) (cf. [Wil88, page 537 and Proposition 1.2.1]). The space S®*4(N, x,I) := eo:aS(N, x, 1) is
called the space of ordinary I-adic forms with respect to x. Put

MPUN, x; A) = eoraMip(Np©, x; A), STYN, x; A) = eoraSk(NDP°, x; A)
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where e is any integer that is greater than the exponent of the p-primary part of the conductor of y. A key
result in Hida’s theory for ordinary I-adic cusp forms is that if f € S°*(N, x,I), then for every arithmetic
point @ € Xi, we have fo € S,?gd(N, xw Feeq; O(Q)). We call f € SN, x,1) a primitive Hida family if

f¢ is a cuspidal p-stabilized newform of tame level N for every arithmetic point ) € %fr .

6. A p-ADIC FAMILY OF PULL-BACKS OF SIEGEL EISENSTEIN SERIES
6.1. Siegel Eisenstein series. We work in adélic form, which allows us to assemble Eisenstein series out of
local data. Put K,, = U(n) GSan(i). Fix characters x,& of Z) of finite order and extend them to Hecke
characters ya,wa : Q*\A* — C* by composition with the quotient map Q*R\A* ~ Zx — Z;. We
regard x as either a p-adic character or a complex character via composition with ¢,. For each place v we
write y, for the restriction of ya to Q. Our setting means that y, = x and x,(¢) = x(¢)~! for £ # p. Let

~— ~ GSpg (A ~ —3 A ~— ~
13(wA1) XAwAaZ) = Ind’])a(p,gg )(X2AwA X XA?)wAlaSA) = ®'/UI3(wU 17 Xvwvaau)

be the global degenerate principal series representation of GSpg(A) on the space of right Ks-finite functions
f : GSpg(A) — C satisfying the transformation laws

Fm(z)m(A,v)g) = da (v~ det A)ya(v=3(det A)%) |3 (det A)2[ " f(g)

for A € GL3(A), v € A*, z € Symy(A) and g € GSpg(A). We define global holomorphic sections of
L(@x", x AWy ) similarly. The Eisenstein series associated to a holomorphic section fs of I3(Wx', X a@a @)
is defined by

Ea(g, fs) = > fs(vg).
YEP3(Q)\ GSps(Q)
Such series is absolutely convergent for Res > 1 and can be continued to a meromorphic function in s on the
whole plane.
Let k be an integer and \ a parity type. Fix a square-free integer N which is not divisible by p. We write
@ = wiwows as a product of three characters wy,ws,ws of Z,;. Set
D = (x, w1, ws,ws)-

Assume that @, = sgn*~*. Now we define a holomorphic section of I3(&;*, Xowyag, ) for v{ N:

e In the archimedean case we consider the section fs[’f;g\] defined in §4.1;

e In the p-adic case we consider fp s p, where the section fp s, of Ig(dJ;l, Xpd;paap) is attached to the

quadruplet D in Definition 2.5;
e If £ and Np are coprime, then f?, is the section with f0,(GSps(Z)) = 1.

Let fsn be an arbitrary holomorphic section of ®5\ NIg(dzg_l,xchgaaé) for the moment. We define the
normalized Siegel Eisenstein series

* k,A oo ~ oo N * — kA
Ea(g, fy ) = LM (25 4+ 2, 3304 ) LOPN) (ds + 2, XA @R )Vt (5) 71 - Balg, fpon)s

where ”y(*k Lm) (s) is defined in §4.4 and fl[;’:: ]N is a global holomorphic section of I3 (@;1, XaWa 0 ) defined by

kX ,
D (9) = YN (goo) o ((90)e13) fD,5.0(90) 1T #2.(90).
UNp
Since fp,s,p is supported in the big cell P3(Q,)J3P3(Q,), we have the Fourier expansion

kA kA
(6.1) Ea(g, foin) = . Walg, fhiw)
BeSym;3(Q)

if g, € P3(Q,). Recall that for a holomorphic section f; of I3(Wx', X a@a %)

Walg, f.) = /S o, UG~ (1) d
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6.2. The Fourier expansion of the pull-back of Eisenstein series. Recall that

Ep = {(bm) S Sym3(Zp) | b11,6227b33 S pr and blg,bzg,bgl S Z;}
Now we evaluate its pull-back at sg = % —r—1. Let E%:;})‘](fs()_’]v): $H? — C be the modular form of
weight (k, k — Ao, k — A3) defined by

* koA
ol B3 (un(z)m(y/m), n(z2)m(y/F2), n(zs)m(y/5s), fo e y)
Ep (@ +yv=1, fs.n) := lim % —k—Xa —k—Xs
5= 50 NV N

for y = (y1,y2,y3) € Rﬁ_ and x = (z1, 29, 73) € R3.

Since w; factors through the quotient Z; — (Z /@D Z)*, we can view w; as a Dirichlet character. The
polynomial Fg 4 is defined in §2.2. We here set Qn = Hz\N Q. Let Symd denote the set of positive definite
rational symmetric matrices of rank 3.

Proposition 6.1. Put n = max{l,c(x),c(w;)}. The pull-back E[Dk7T]\}>\](fSO7N) is a nearly holomorphic cusp

form on $3 of level To(Np?™)? and nebentypus (wfl,wgl,wgl) with Fourier expansion given by

T, C[k’r})\] T ~ ,T
ER Y (foon) = - (kl—xl 1) S W) Qp(D)as (e, k — 2r — M) el il
(kalvm) 2 - BeSym; ﬂEp
where
ap(X’@, k —2r — M) = [[ Frelxe(0)c@)7F),
U Np
S / Fon(Jan(2))ihq(— tr(Bz)) d=.
s—E2 1 JSymy (Qn)

PROOF.  The level and nebentypus are determined by Proposition 2.6. Note that det B € Z for B € =y,
[k,A] [k,A]

In particular, Wg(g, fD <) = 0 unless det B # 0. Lemma 4.4 says that Wg(g, fp i) = 0 unless B € Ts .
We can derive the Fourier expansion formula from (6.1), recalling that local Whittaker functions
hAm WB(m(A)’fs[ﬁ;é\]% WB(]-GafS,Z)v WB(167fD75,P)

k=X
s —F—+—r—1

are computed in (2.3), Proposition 2.6 and Lemma 4.4, respectively. O

[kr)\]

6.3. Holomorphic and ordinary projections of E Recall that A, is the weight-lowering operator

defined in §5.2. We write Hol for the holomorphic prOJectlon. Let Tg+ denote the set of positive definite
symmetric half-integral matrices of rank 3.

Definition 6.2. Define a holomorphic section f,, of Ig(d}[l,mc&gaa ) by letting fs; = fo,s with &, =
Iy, (z,)- When fon = ®jy fae, we write BER N = BRI (£, v). If B € Symy, then b = 1 by (2.12).
Proposition 6.1 gives

[k,r,A]
kyr,A c kA .
E[D N I= - (kl,kl — E WEB ](y) - Qp(D)ap(x*@, k — 2r — A)g" gb?2 5.
Tk1m) 2 BET; NE,

Proposition 6.3. Let A be the parity type of (k,l,m) and r an integer which satisfies

polrmth o lEm
2 2
k—l—Xo k—m-—2X

Putn=Fk—r—2+ Ym0 Thep e,,q Hol (A Az, 2 BE[k’T’A] has the g- )
5 ord z2 23 DN q-expansion

ket TR ) —k ~1 biy baa b
(_1) e Z QB(XE?yC’wlscycvw2€cyc7w3€cyc )a’B(X w,k—2r— A1) 11q 22(] .

B=(b;;) €Ty N=,
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PROOF. Putb= @ and ¢ = E=m=2s If f is a holomorphic function on $);, then

2
_ (4m)~mnl(2) -ymof ifn <a,
)\n a — n
W) {0 ifn>a.
By (4.4) the difference

T, r b'C' R
ALXE SNA](Q) - 7/\] )b Z Q([ka)\c B,1)Qp(D)ap(x*@, k — 2r — A1)q}" g5 ¢5>*

belongs to (y; ', y5 " y3 )Clyr w2 ' ws a1, g2, gs]- On the other hand, we can write
[k,m, A kA ; j
NS ER Y (@) = HolA AL BE ) @)+ D0 6 fil@)d95(42)0h—haas),
itjt>1
where f;, g; and h; are holomorphic modular forms. Equating the constant terms of this identity as a
polynomial in y; Y Yoy Y Ys 1 and employing the relation

t a
t\ I'(t+ k) _ 1 0
6.2 5t = L (—4my)*t —
(62) k az:;) <a) I‘(a—f—k‘)( ™) (27n/—1 8z>
(see [Hid93, (3), page 311]), we see that the holomorphic projection Hol(A2 XS, E [g}'\})‘])(q) equals

{’“” 'HCZQO’?A B,1)Qp(D)ap(x*w, k — 21 = M) a5 a5 — > 07 fi(@1)079;(g2)0 i (g5):
i+j+t>1

Here 6 stands for the Serre’s operator 0(3"; a;q") = ", ia;q". Since e,qf = 0, the g-expansion of the ordinary
projection eqrq Hol(A2 A¢ E[k N )‘})(q) equals

z27°23
[
[k,r,)\ b C: Z b1 b22 b33
Ol b+c €54

where

Al g b1y l_)|12 b13
cp = lim Q70 (B;,r)Qp,(D)an, (@, k —2r — XAy), Bj:= | bz p'ba by
! b3 bz pllbss

Since p?' — 1 in Z; as j — oo for any rational prime £ # p, we get
Qp, (D) = 95(D), lim ap,(X’®,k —2r — A1) = ap(X*@, k — 2r — \y).
J—o0

Since Q([)kb C](B r) is a polynomial in B, we find that

oA 0 b2 b3
cB = Qo io(Boo, 1) QB(D)ap (@, k — 2r — A1), By = 212 bo bos3
13 bes O

k)\
0N (Boo

Applying Lemma 4.7 to Q. ,T), we obtain

3n-+h-+ N
cp = Wope- 2 I QR (el o Wi, wae sk, wae ) ap (X7 @, k — 2r — Ay)

in view of Definition 2.5 of Qp. We thus obtain the lemma by noting the equality
mltAy k—A r
(71)k+ﬂ+)\ ’Y(k L) < . 1 r_ 1) _ C{h 7)\]1)! c!(4ﬂ_)7b7c273n+k+l+m WO e

The constant C{k’m‘

e The power of 2:
3B3+2r—k—X)+{2(k—r)—3} —20b—2c+ (k+14+m—3n)
+(TM —=3b—3c—3\)=—-2—-Fk+2(l+m)+ A\ + 2X2.
e The power of m: (6—2)—b—c+BM —b—c—2 1 — X)) ==3r+k+l4+m+Ir—X\ —2.

J'is defined in Lemma 4.4. The equality can be checked by the following items:
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6.4. The modular forms GL?}JW,,%(@).

Definition 6.4. Let (ki, ko, k3) be a triplet of positive integers. Put k* = max {kq, ko, ks}. We say that
(K1, ka, k3) is balanced if 2k* < k1 + ko + k3. An integer n is said to be critical for (k1, ko, k3) if

k*<n<ki+ky+ky—Ek*—2

Definition 6.5. Fix a balanced triplet (k1, k2, k3) of positive integers. Take a permutation o of {1,2,3} so
that k* = ko1) > ko(2) > ko(3). Denote the parity type of (k(1), ko(2), ko(3)) by 6 = (01,62,03). For each
critical integer n for (k1, ke, ks) and quadruplet Z = (e, €1, €2, €3) of finite-order p-adic characters of Z; we
define the modular form G}, | (2) by

k*—ka<2)—62 k* —ky(3)— 03

n o mtltAg k*,r,8
le],kmkg(‘@) = (_1)k+ 2 +>\2€0rd Hol ()\ZU(Q) 2 Aza(g,) 2 E[D ]>,

where 1 = {%-‘ —n—2and D= (tp0€g,Lp O €1,Lp O €, Ly OE3).
Corollary 6.6. With notation in Definition 6.5, GEg]M ks (2) is an ordinary cusp form of weight (k1, ks, k3),
level To(Np™>)3 and nebentypus (efl, 651, egl) whose q-expansion at the infinity cusp is given by

§ —k —k —k 2 b b b
QB (606&,6, Elgcycl , EQECYCQ 5 635Cyc3)a3 (60616263, 2n — (kl —+ k2 —+ kg) =+ 4) . q111q222 q333 .
B=(b;;)E€T; NE,

PROOF. The assertion for the Fourier expansion is a direct consequence of Proposition 6.3 by symmetry.
Lemma 6.7 below implies the cuspidality of GEZ]’,% ks (2)- O

Lemma 6.7. Let f € MY4(N,x;A). Assume that ag(g, ®(f)) = 0 whenever g, € B2(Qp). Then f €
SPA(N, x; A).

PROOF.  Out task is to prove that ag(g, #(f)) = 0 for all g € GLa(A). Since
ao(yn(x)diag(a, d)gro, B(f)) = (ad " )*/ eV ay(gr, ()
for v € Bo(Q), z € A, a,d € Ry and 6 € R, it suffices to show that ag(g, #(f)) = 0 for all g € GLy(Z). Since
GL2(Zp) = n~ (pZy) B2(Zy) Un(Zy)J1 B2(Zy),

where J; = _1>, we have only to show that ag(hn=(y), ®(f)) = ag(hJy, &(f)) = 0 for all h € GLy(Z®)

0
1 0
and y € pZ,. Recall that the operator U, is defined by
_ o (k=2)/2 Wp T
U, l(9. /) = p > oo 1))

2€Zy/pZ)p

Recall that @, € QX is defined by w, , = p and @, = 1 for £ # p. Since

10\ (@ o\ _ [ = \( 1 0
£ D (F ) 1 L) criaman

for y € pZ,, v € Z,, and sufficiently large m, we get
w," z
ag(hn™(y), Uy f) =p*=2m2 N~ @ (h (Hry 1+w> ,f> =0
0 1
x€Zy/pZy
by assumption. It follows that ag(hn=(y), f) = 1i_{n ap(hn™ (y), UZ!f) =0. If z € p"Z; with n <m, then

0 -1 w x wh™ " —glg! whg! 0
P — P P p -
(1 0 ) ( 0 1> - ( 0 @ > (wm" w”x> € Bo(Qp)n” (rZy).

n
p p p
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One can therefore see that
ao(hJy, Uy f) = p* =2 Pag (b diag(w)', 1), f) = p* =D ag(diag(1, @)A1, f),
from which we conclude that

ag(hJy, f) = lim p*=1"/2a4(diag(1, w(p) “YhJy, f) = 0.

n—00
Here @, € 2; is defined by w,), = 1 and w,) , = p for £ # p. |
6.5. The p-adic interpolation of GEZ]’ ko ks (2). We give the construction the p-adic triple L-function in this
subsection. Let u = 1+ p € 1+ pZ, be a topological generator. We identify O[Gal(Q/Q)] with O[X]
where X = [u] — 1 with the group-like element [u] in A. Put

A = 0[Gal(Qo/Q)], Az = O[X1, X2, X3], Ay = AS[TT.
For each £ { Np and B € Ty, let Fp(X) € Z[X] be as defined in (2.3). Let ax : Z% — Z,[X]* be
the character ax(2) = (2)y = (1 + X)'8»=/198s 1 et X = (X1, X2, x3) be a triplet of O-valued finite-order
characters of Z<. For each a € Z/(p — 1)Z we define the formal power series gé“) € A4fq1, g2, 93] by

géa)(X1;X27X3aT) = Z Qg)(X17X25X37T) "Féa)(X17X2’X3’T) bllqb22qb33
B=(b;;)ET; NE,

where QS;) and F j(ga) € A3[T] are power series given by
Qg)(X1,X2,X3,T) = w(8b23b31b12)a (8ba3bs1bia)y x1(2b23) " <2b23>;_(1 x2(2bs1) ™! <2531>)_(i x3(2b12) 7! <2b12>;_(i ;

]:ga)(XhXQaXi%) H FBZ )(1,)<'27)(37 6_2),
UpN
where

(OF) xoxar = @ X0x2x0) (O (D, (O)x, (O, (07" € A}
Here the set Xbal consists of (Q, P) = (Q1,Q2,Q3,P) € (X1)? x X, C Spec A4(Qp) such that (kg,, kg, kg,)
is balanced and kp is critical for (kq,, kq,, kqs)-

Proposition 6.8. For every (Q, P) € Z{'f\il, we have

[kp] —k -1 _—1, .k -1 -1,k -1 _-1 .k
Q&a)(@ P) ka;7kQ2 kg (epwa Ple €% QI’XQ €Q.% QZ’X3 €Qs% QS)'

In particular, this implies that
G\ € SN, x1, O[X1])@0S (N, x2, O[X2])@0 S (N, x3, O[X3]) 20 O[T].
PROOF. Set x = epw® kP w; = Xgleéjkai and @ = wiwaws. One can check that
(epw®)(8b12b23bi3) <8b12b23b13>kp
(x1€0,)(2b23) (X260 ) (2b13) (X3€Q, ) (2b12) (2b23) 1 (2b31)"2 (2b12)"
= QB(xe'j;”c,mec_ylin WaEege®? Wy ),

<£>g?1),X2,X3,T (Q, P) = (w™*x1x2x3) (D)% - (e, €Qu€qs€p wF PR kaa"kas ) () =1 gkar thay thas —2ke

= 2(0) |07 +2 oy (0) [0~ FanTheathas)

QW (Q, P) =

i

FOQ, P) = ap(x°@, 2%kp — (kg, + ka, + ka,) +4)

(see Definition 2.5 of Qp). Recall the convention that x,(¢) = ¢,(x(¢)) ™! and @, (¢) = 1,(@(¢))~! (see Remark
5.2). From Corollary 6.6, we deduce the interpolation formula and that

(6.3) G(Q, P) € SpEH(N,wi 5 0(Q1))BoSpit (N,wy 15 0(Q2))BoSpit (N, wy ' 0(Qs)) B0 O(P).

By the control theorem for ordinary A-adic forms [Hid93, Theorem 3, p.215], for any arithmetic point @, the
specialization map X — u*@eg(u) — 1 yields an isomorphism

SN, X, OIX])/(1+ X —u'2eq(u)) = Sl (N, xw "2 eq; 0(Q)).
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Hence, from (6.3) we find that for all P with kp = 2
G (X1, X, X3, P) € S4(N, x1, O[X1])B0S” (N, X2, O[ X:]) @08 (N, x3, O[ X3]) @0 O(P).

Now we can deduce the second statement from the above equation combined with the argument in [Hid93,
Lemma 1, page 328|. O

7. FOUR-VARIABLE p-ADIC TRIPLE PRODUCT L-FUNCTIONS

7.1. Measures. We shall normalize the Haar measures dz,, on Q, and d*z,, on Q¢ as follows: Let dz, denote
the usual Lebesgue measure on R and d*z o, = f%" . If v = £ s finite, then vol(Z,,dz,) = vol(Z;,d*z,) = 1.

oo

Define the compact subgroups K, of GL2(Q,) ande; of SL2(Q,) by

Ko =0(2,R), K, = GLy(Zy), K/, =SO(2,R), K} = SLy(Zy).
Let dk, and dk! be the Haar measures on K, and K/ which have total volume 1.
The Haar measure dg, on PGL2(Q,) is given by dg, = |y,|, 'dz,d*y,dk, for g, = (%’ mf) with y, €

X, x, € Q, and k, € K,. Define the Haar measure dg/, on SL3(Q,) by dg, = |y.|,?dz,d*y,dk! for
gv = n(x,)m(y, )k, with y, € QX, x, € Q, and k], € K/. The Tamagawa measures dg on PGLy(A) and dg’
on SLy(A) are given by dg = (q(2) "' [], dg» and dg’ = {q(2)"* [, dg,. Since Z\H ~ PGLy x SLs x SLy, we
can define the Tamagawa measure on Z\H by dg,dgdgs, where dg; is the Tamagawa measure on PGLa(A)

and dgj = dgj are that on SLo(A). The Tamagawa numbers of PGLg, SLy and Z\ H are 2, 1 and 2, respectively.

7.2. Garrett’s integral representation. Let 7; (i = 1,2,3) be an irreducible cuspidal automorphic repre-
sentation of GL2(A) generated by an elliptic cusp form of weight k; and nebentypus w; L Put & = wiwsws
and T; =T, ® wi_,}& for i = 1,2,3. Fix a character xa of A*/Q*R. . For each triplet of cusp forms p; € 7;
and a holomorphic section fs of I3 (a;l, Xawaay ) we consider the global zeta integral defined by

Z(p1, 02,03, Ea(fs)) = ©1(91)p2(92)93(93) Ea(t(g1, g2, 93); fs) dg1dgadgs.

/Z(A)H(Q)\H(A)

The integral converges absolutely for all s away from the poles of the Eisenstein series and is hence meromorphic
in s. Unfolding the Eisenstein series as in [PSR87], we get

Z(p1, 02,03, Ea(fs)) = W (g1, 01)W (g2, 02)W (93, ©3) fs(0L(91, 92, g3)) dg, dgadgs.

/Z(A)UO(A)\H(A)
If W(g,¢i) =11, Wiw(gv) and fs(g) = [, fs,v(gv) are factorizable, then the integral factors into a product
of local integrals and so by §2.2

CQ(2)73L (5+ %aﬂ—l X T2 X T3 ®XA) Z(Wl v;WQ vaW3 vvfs v)
Z , , ,E A — < ~ ) 3 3y )
(Wl ©Y2,P3 A(f )) LS(QS+27X2AWA)LS(4S+27X4AWZA) H L (S+ %Jﬁ,v X g0 X T34 ®Xv)

)

veS

where S is a large enough set of places such that m; ¢, Wi, x; and fs, are unramified for all £ ¢ S. The

complete L-function L(s,m X ma X T3 @ xa ) admits meromorphic continuation and a functional equation
L(S,’]Tl X g X T3 & XA) = E(S,T(l X g X T3 & XA)L(]. — 8,1 X g X T3 ®UD;1XK1)

By Theorem 2.7 of [Tke92] the L-function L(s,7; X w2 X m3 ® xa) has a pole if and only if there exists an
imaginary quadratic field £ and characters of y; of A% /E> such that x1x2x3x” = 1 and such that 7; is induced
automorphically from x;, where x¥ denotes the base change of x to E. Recall that k* = max{ky, ko, k3}. In
particular, if k1 + ko + k3 > 2k* + 2, then L(s,m X w3 X 3 ® xa) is holomorphic everywhere. Let us put

Too = ((1) _01) € GLy(R), tn = (_(;n PO”) € GLy(Q,) < GLy(A).

Let E;( gﬂs)]‘\],) be the Eisenstein series associated with a section f, y = ®€‘N fs.e of ®Z|N Ig(dj[l, ng)gasQZ)
as in §6.1.



34 MING-LUN HSIEH AND SHUNSUKE YAMANA

Lemma 7.1. Let f; € Ski(Ni,wi_l) be an ordinary p-stabilized newform. Put
2 :@(fz), 951' :Qpi®w1‘_’iv W(SOZ) :HWi,vv Wi,v = zv®w137
v

Let x be a character of Z) of finite order. Put n = {1,c(x),c(wi)}. If k1 > ko > k3 and X is the parity type
Of (k‘l, kg, ]{13), then

k1—ko—Xg ki—k3—Ag

Z(p(jmtn)¢17p(jmtn)v+ ¢27p(jootn)v+

953’ E;& ( ’1[5,1573\\]/))

1 1
:L(N) <5—|— 5,71’1 X Mg X ’/T3®XA> Ep (S+ 5,7’(1@ X T2,p X 7T3,p®Xp>

HCP 2) ap fz) nH€|N (Wl 57W2E7W387fs,€)
(1) wi,p(p) (q(2 )325+ ki-+katks)

PrOOF. By Garrett’s integral representation of triple L-functions the left hand side equals

1
Cq(2)~3 (PN (s + 5o m X T2 X Ty @ XA>

ki—ko—Xa ky—kz—X3

Xt ) (8) 2 (AT Wi 9TV * Wase p(Toc)Vi 2 W, S

< Z(p(tn) Wi ps pltn)Wap, p(tn) Wi p, £D.5p) [ [ Z(Wre, Wae, Wiz, for)
(N

in view of Definition 6.2 of EA( [kl)‘]) Since p(joo) i00 = wi(—1)p(JTo0) Wi 00, Lemma 4.8 yields

k1—=ka—=X3 k1—k3—A3

( (joo)Wl 007p<'-700) : W27°0’p(‘700)v+

- VOI(SO(2))3'Y*k Kok (s) 1
:woo(il)Zoo(s) = Xoo(fl) 25+(k1+1§2:kz; ) L <S + 5?0—]61 X Oky X Oy ® Xoo) .

v

o0, f[k1 /\])

Proposition 2.6 calculates the p-adic part:

Z(p(t )WI 2Pt )W2,pv (tn W3p7fD 5.p) H Cp(1) ( 1wz,p(p))n
L(S+277T1PX7T27PX7T3P®XP »(2) ap(fi)?

N 1
=Z,(fp,5.p) = Xp(—1)Ep <3 + 5 TLp X T2p X M3p @ Xp) .

Since xa is unramified outside p, we have xoo(—1) = xp(—1). |

7.3. The congruence number. Put A = (Z/NpZ)*. Let A be the group of Dirichlet characters modulo
Np. Enlarging O if necessary, we assume that every x € A takes value in O*. Let

SN, T) = @, xSUN, X, I)

be the space of ordinary I-adic cusp forms of tame level I'1 (N). Let o4 denote the usual diamond operator for
d € A acting on S°"4(N,I) by 0d(f)ea = (X(d)f),ca- The ordinary I-adic cuspidal Hecke algebra T(N,I)
is defined as the I-subalgebra of Endy S°™4 (N, I) generated over I by the Hecke operators Ty with £{ Np, the
operators U, with /| Np and the diamond operators o4 with d € A. Let Tgrd (N, x) denote the O-subalgebra
of Endg eoraSk(V, x) generated over O by the operators T; with £ Np and U, with ¢|Np.

Let f € S*Y(N, x,I) be a primitive Hida family of tame conductor N and character y. The corresponding
homomorphism Ay : T(N,I) — I is defined by Ag(Ty) = a(¥, f) for £ + Np, A\y(Ug) = a(¢, f) for ¢ | Np
and Ag(oq) = x(d) for d € A. We denote by my the maximal of T(N,I) containing Ker Ay and by Ty,
the localization of T(N,I) at mg. It is the local ring of T(N,I) through which Ay factors. Recall that the
congruence ideal C(f) of the morphism Af : T, — I is defined by

Cc(f) = )\f(AnnTmf (KerAg)) CI
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It is well-known that Ty, is a local finite flat A-algebra, and there is an algebra direct sum decomposition
(7.1) Af : T, @1 Fracl ~ FracI @ 4, t Ap() = (Ap(t), A (t)),
where Z is some finite dimensional (FracI)-algebra ([Hid88b, Corollary 3.7]). Then we have
C(f) = Ap(Twm, N A" (FracI e {0}))
by definition. Now we impose the following hypothesis:
Hypothesis (CR). The residual Galois representation Py of py is absolutely irreducible and p-distinguished.

Under the hypothesis above Ty, is Gorenstein by [Wil95, Corollary 2, page 482]. With this property of
Ty, Hida in [Hid88a| proved that the congruence ideal C(f) is generated by a non-zero element ny € I, called

the congruence number for f. Let 1% be the unique element in Ty, ﬂX;l(Frac I©{0}) such that Ay (1%) = ny.
Then 15 := njill} is the idempotent in Ty, , @1 FracI corresponding to the direct summand FracI of (7.1) and

15 does not depend on any choice of a generator of C'(f). For d € A we write ©0,y for the ideal of T(N,TI)
generated by po = Ker @ and {og — x(d)}4ea. A classical result in Hida theory asserts that

T(N,1)/pgx = Tig (Np*, xw ™ eq) ®0 O(Q)
(see Theorem 3.4 of [Hid88b]). Moreover, for each arithmetic point @, it is also shown by Hida that the
specialization 77 (Q) € O(Q) is the congruence number for f, and
1y := 77]:11} (mod py.q) € Ti’;d(Npe, Xw_erQ) ®o Frac O(Q)
is the idempotent with A¢(15) = 1.

Definition 7.2. Let f be a primitive Hida family satisfying (CR). To each choice of the congruence number 7
we associate Hida’s canonical period €y of a p-ordinary newform f of weight k obtained by the specialization
of f defined by

Qp =yt (VDR SR ey - ol Ad),

where 7)¢ is the specialization of ¢, f° the primitive form associated with f, Ny. its conductor and &,(f, Ad)
the modified p-Euler factor attached to the adjoint motive of f (c¢f. [Hsil9, (3.10)]).

7.4. Hida’s functional. When ¢ € A;(N,wa) and ¢’ € Ai(N, w;l) are cuspidal, we define the pairing by
(p(T)e, @) = / P(9Tx)¢'(9) dg.
AX GL2(Q)\ GL2(A)

Let x be a Dirichlet character and let f € Si(INy,x) be an ordinary p-stabilized newform of level Ny, ie.,
U,f = ap(f)f with p-unit szl(ap(f)). Write Ny = Nyp® with Ny prime to p. For n > ¢, we define Hida’s
functional Ly on Sy (Np®™, x; O) by

(w0 (0Tt (9 @ W), B(F))
L7 )‘< ay(f)? ) (Pt (7 @ w3, )

where wa denotes the central character of the adélic lift ¢ = @(f) of f. Note that for F € Sp(Np?", x) with
Nt | Na

)

Ly(F) = [Lo(N) : Do(Ny)] ™" Ly (Trwyw, F)-
Lemma 7.3. (1) Ly(f) =1.
(2) If Fo € Nigram(Np*™, x) with Ny | N, then

Ly(13 Trayn, cora HOl(AT'Fo)) oy o i (p(Tootn) (Vi @ wy '), 8(Fo))
QOB T eV o (R) &8

prwsp(p) ) (1)
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PrROOF.  The first assertion follows from the following formula stated in [Hsil9, Lemma 3.6]:
(p(Tootn) (9 @ wa'), 0) = wioo(=1{(p(Toctn)p @ Wy, ¥)
_ (_1)kCQ(2)_1 Hf || (f ) ap(f)2n<p(2)
[SL2(Z) : To(Ne)] Fo(Nye) ’ PFwyrp(p)"Cp(1)
@m0y < ap(f)? ) G(2)
[SLa(Z) : To(Ny)] (2v/=1)k \prwrp(p)/) G(1)
We remark that ¢ = ¢ and w(,) = wa in the notation of [Hsil9)].

To see the second part, we note that as a consequence of strong multiplicity one theorem for elliptic modular
forms, the idempotent 17 = n}ll} is generated by the Hecke operators T; with £ 4 Np, which implies that
17 is the adjoint operator of 1¢®w}_\1 with respect to the pairing. We are thus led to Lf(l}f) = nL¢(F).
Moreover, L (UpF) = ap(f)Lys(F) (cf. the proof of Proposition 2.10 of [Kob13]) and hence

Ly(eora) = lim Ly(U}F) = lim op(FY'Ly(F) = Ls(F).

One can easily verify that for ¢ € &(Si(M,x 1)), F1 € Ni(M,x) and Fa € Nypi2(M,x)
(p(Tc)¢, P(Hol F1)) = (p(Toc )9, P(F1)), (p(Toc)d, P(A2F2)) = —(p(Toc)Vi 0, B(F2)).

The second part is a consequence of these results. O

7.5. The construction of p-adic triple product L-functions. Let
F = (.f7g7h> S Sord(Nlaxla:D X Sord(NQaXQa:D X Sord<N3aX37I)

be a triplet of primitive I-adic Hida families of tame square-free level (Ny, No, N3) and tame characters
(X1, X2, x3), where I is a finite flat domain over A = O[I']. Assuming that all f, g and h satisfy Hypothesis
(CR), we fix a choice of the congruence numbers (7, ng,7n). Let

1% € T(Ny, 1), 1, € T(Na, 1), 1; € T(Ns,I)
be the idempotents multiplied by a fixed choice of congruence numbers (1¢,74,75) in the Hecke algebras
attached to the newforms (f,g,h). Put
N :=lem(Ny, Ny, N3), N~ := gcd(Ny, Na, N3), I3 = IQRpIRel.
Definition 7.4. Define the p-adic triple product L-function Lg 4y in I3[T] by
L () = the first Fourier coefficient of 13 ® 13 ® 13 (Try/n, ® Tryyn, ®TrN/N3(g( ) € L3[T7].

We denote by Vy the associated p-adic Galois representation, and by WD,(Vy Q) the representation of the
Weil-Deligne group Wq, attached to Vg o for each prime £. The epsilon factor of V(g py at £ is defined by
ee(Vig,p),s) = e(s + kp —wg/2, WDe(Vy, ) © WDe(Vg,, ) @ WDi(Vhg,) @ w* *ep,4py).
By the assumption (sf) and the rigidity of automorphic types of Hida families WD, (Vy Ql), WDy(Vg Qg),
WD@(VhQs_) are either unramified or the Steinberg representation twisted by an unramified character. More-
over, for £| Ny, there is an unramified finite order character £ : Gq, — QX such that g})e = Xfé and

—1/2

gf (E€cyc <€c c> *
Vilag, ~ [ SF€eve Eevels e
Tida, ( 0 §f.0 (Ecye) Y2

Define e¢(f)x, € I[X1] by ee(f)x, = &5,0() ™ (£)3. Then
eo((1 = kq,)/2, WDe(Vy, ), %) =ce(fq,)

Let Nyv = N~ N* be the tame level of V, which independent of the choice of of arithmetic specializations by
the rigidity. We define the I-adic root number P> (V) € I} by
3
(7.2)  ePI(V) = [T {W)x, - wVW) Ny (M)t (xaxaxs)(NV?) T €000 6g,0(0) ene(0) "
i=1 £N-
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Lemma 7.5. Notation being as above, we get

€(pm)(V(97p)) = H 64(V(Q7p), 0).
L#£p

PROOF.  We retain the notation of the proof of Proposition 6.8. Remark 3.5 gives
ee(Vig,p),0) = Xe(0)4ap(0)2 0~ ¥er+2hoy +hayhay) =4 — <€2>X1 oot (Q, P)
if ¢ divides N/N~. Put & = &5 ¢€qg.¢Ene. If £ divides N, then
0(V(Q.p),0) = xe(£)*&p(Froby) (7= 2kr ke, tha, thas =2)/2
= w(0)7 (axaxs) (0 €. (Frobe) ({07 (O3 (O (OV)(@. PYe™.
We have thus completed our proof. O

7.6. The interpolation formulae. Let V = Vf@)ng@th@@w“ <5CyC>T be the triple tensor product of
I-adic Galois representations associated with primitive Hida families f, g and h twisted by w® (€cyc),. Define
the rank four Gq,-invariant subspace of V by

Filt V= (Fil’ V; @ Fil’ Vg @ Vi, + Fil' Vy @ Vg @ Fil’ Vi, + V3 @ Fil° Vy @ Fil® Vi) @ w® (€cye) 1
Recall that wg = kq, +kq, + kg, =3 and I'v g, ., (s) = Loo (s +kp— 2Q Tfo, X Tgo, X The, ) The modified
p-Euler factor &,(Fil* V(q.p)) is defined in the introduction.

Theorem 7.6. Let p > 3. Assume that N := lem(Ny, No, N3) is square-free and that the conductor of tame
nebentypus x; divides p. Let t denote the number of prime factors of N. If f, g and h satisfy Hypothesis
(CR), then for each arithmetic point (Q, P) = (Q1,Q2,Q3, P) € .’f}’fl we have

L(V(q,r),0)

L P) =T L=
Fy(a) (Q’ ) Via.r (0) Qle QQQQ QhQS

. (1 /_1)kQ1+ka2+kQ3_3 . gp(Fll“F V(Q,P)) . f&,a,Nl,Nz,Ng (Q’ P)’

where fy o N, NyNs € 1) is given by

(_1)t a a —
f&a,Nl,Nz?Ns = N H(<€>(X1),X2,X3,T)2‘€Z(-f ®g®h®w (ecyc)r) L
(N
Proor.  For brevity we write (f1, fa, f3) = (fg,,90,,Pqs), (k1 ) (kgy s kqys kgs), mi = 7y, and N; =
Ny,. We may assume that £ > [ > m. Denote the parity type of ( m) by A. Put
X = epw® kP, w; = whai x;leéj7 D= (x,w; Hwyt ,wgl), n = max{1, ¢(w;), c(x)}-

We define the functional Ly, fz, 5 ON

Sk(N1p™™, w1 0(Q1)) ®o Si(Nap™,wy 5 O(Q2)) @0 Sim(Nsp™, w3 '3 O(Qs))
by
Ly fo.02(F1 @ F2 @ F3) = Ly, (F1) Lg, (F2) L, (F3).
Let 1% be the specialization of 1% at (1. By definition and the theory of newforms

137, ® 1%, @ 13, (Tryyn, ® Trvyw, ®TYN/N3(Q§Z)(Q, P)))=Lr )@ P)  f1® f2® fs.

We apply the functional Ly, s, r, to both the sides to get
Lp ()(Q,P) =Ly, f,,£,(17, @13, @ 17, (Trnyn, @ Trnyn, ®TTN/N3( “NQ, P)))),

taking Lemma 7.3(1) into account. Let ¢; = &(f;) and Ga(D) = @(g;)(g, P)) be the adélic lifts. Put
;= p; Qu; A- In the previous section we verified that

mt Ay B—l—X E—m—2X
Ga(D)=  lim (4W¢¥#%mmﬂﬁ®n22®n23)wﬂgﬂn,

S—— r+k LS
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where r = k — kp + =21 — 2 (see Proposition 6.8 and Definitions 6.2, 6.5). Lemma 7.3 (2) therefore gives

Lp (0)(Q, P) o ktmis (WP T o (p’“%i,p(p))n
Q(2)3[SL2(Z) : To(N)]? /-1 p(2)? i ap(fi)?

i=1
. g = o —e v x ( plk,A]
X 4 hm Z(p(Jootn)Solvp(Jootn)V+ @27p(u700tn)v+ @BaEA( D,s,N))'

s—kp—EtLtm 4]

Let W(y;) = [[, Wi,» be the Whittaker function of ;. Put VuVi,v = Wiy ®w;j. Let 7; be the automorphic
representation generated by ¢;. Writing N = Hf\ ~ ¢, we finally get

I (QP)_L(kP_W’W1XW2XW3®XA)
F.(a ) - _
(@< (\/ _1)3 (k+l+m)Qflﬂf2Qf3

by Lemma 7.1, where

E(FITV @ epw*r kp) [ 2
2N

. S
Z; = [SLa(Z) : To(0))F  lim Wae, Wo Wats foost)
s—kp—EtLEm 4 L (S + 5,16 X T2 g X T34 & Xg)

Proposition 3.4 gives

7k+l+mf3

2; =~ Ol ke s

-1
y 1,6 X T2 0 X T3 ¢ ®X,¢2) .

By what we have seen in the proof of Proposition 6.8

X?@€(€)€_2kp+(k+l+m)_2 = <Z>X1,X2,X3,T (Qv P).

This completes the proof. O
Definition 7.7. We normalize p-adic triple product L-function by
* -1
LF,(a) = LF7(‘1) “Tx,a,N1,Na,N3*

Remark 7.8. Provided that p > 3, x1xa2x3 = w?? for some a, a three-variable p-adic L-function £% € I,
was constructed by a different approach in [Hsil9, Theorem B] such that for each balanced central point

Q = (QlaQQaQ?)) € xi’al

bal 2 L(Vg’ 0 ko, +ka,+kas—3 f
(LF(Q) =Tvo(0) g—g—q—  (V-Drarthetia= g (Rt vy),
o le 9Q, hqs -
where
V= V@ w® (ecye)y (Ecye) s (Ecye) Ko Eapes
FilT VI = FilT V ® 0 (€eye) . (Eeye) sl (Ecye) s Eaye-

We remark that det Vy = (x1 0 €cyc) (Ecye)1 ! €cye. By the interpolation formulae, we find that
L a1y (X1, Xa, Xg,u™ (1 4+ X1) (1 4 Xo) (1 4 X3)}'/? = 1) = L3 (X1, X2, X5)%.
This shows that the compatibility between p-adic L-functions constructed by different methods.

Without Hypothesis (CR) and the assumption p > 3, our method yields the construction of the p-adic
L-function with denominators. For each p-stabilized newform f of weight k, define the modified period by

O o= (21" 0Ny (v,0) - Ep(f, AD).
By definition, Q?c -my is equal to Hida’s canonical period €2y up to p-adic units.
Corollary 7.9. Let p > 2. There exists an element
LF () € Is ®1, (FracI ® FracI ® FracI)
such that
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e for any Hy, Hy and H3 in the congruence ideals of f,g and h,
HHyHs - L ) € Lu;

o for each balanced critical (Q, P) = (Q1,Q2,Q3, P) € x}ofl,

I'vig ) (0)L(V(g,r),0)

b b b
Qle Qng Qh@a

Ly (@ P) = S(VeT)farthethes S g, (FilT Vg p)),

Proor. For any Hp, Hs and Hj in the congruence ideals of f,g and h, we let Ly € I3[T] be the first
Fourier coefficient of

Hllf ® Hg]_g ® H3].h (TI"N/N1 ®TI‘N/N2 ®TI‘N/N3(Q>(£))) S Ig[[T]][[ql,QQ,q;gﬂ.

Then L3,y = L - (HyHoH3)™t- £727N17N27N3 enjoys the desired properties. O

This p-adic L-function L7¥ () is more canonical in the sense that it does not depend on any particular choice
of generators of the congruence ideal of f, g and h.

7.7. The functional equation. Recall that we have fixed the topological generator u =1+p of I' = 1+pZ,
as in §6.5.

Proposition 7.10. Assume that x1x2x3 = w®. Then

. N . 14+ X0)(1+ X)(1+ X
LFV(a)(XlaX27X3aT) = (76(1} )(V)) : LF,(aO—a—Z) (X17X23X37 ( 1)( 2)( 3) — ].)

u2(1+17)
PROOF. Recall that y = epw® %7 and w; = Xfleéjwk‘?i. Put

kp=kg, +kq, +kg, —kp—2, €p = e},lteeQzeQx, X = e;,wao*a*szﬁ’ = Xflwl_lwglwg_l.

Thus the left hand side specialized at (Q, P) equals

L(1—s0,mY X x 1 @Xx')
(V=D ke Than Ra )0 0,0

kQ1+kQ2+kQ3—3 _ 1 _ (k’“ _ kQ1+kQ2+k’Q3—3)
2 - P 2 .

L;‘,(ao—a—Q) (Q’ ]5) =

Ep (1= s0,m1p X T2p X T35 @ Xp)

where sog = kp —
Since (kq, , kg, kq,) is balanced, we know that

£(8 1,00 X T2,00 X M3,00 @ Xoo) = (_1)kQ1+kQ2+kQ3+l = —Woo(—1) = _‘QP(_l)-
By the global functional equation we get

L(sg,m X T2 X T3 Q XA) - =By (so,mp X T2 X T3 ® Xp)
(V=13 keitkasthaa)Qp Qp Op Ty, (50, M0 X 20 X T30 @ Xe,y )

in view of Lemma 2.7. O

L*F,(a07a72) (Q’ p) =

8. THE TRIVIAL ZERO FOR THE TRIPLE PRODUCT OF ELLIPTIC CURVES

8.1. The cyclotomic p-adic triple product L-functions for elliptic curves. Let E = F; x E5 X E3 be
the triple fiber product of rational elliptic curves F; of square-free conductor M; for i = 1,2,3. We denote
the prime p-part of M; by N;. Recall the rank eight p-adic Galois representation Vg defined in (1.1). We
write L(E ® x, s) for the complex L-series attached to Vg twisted by a Dirichlet character x. Let M (resp.
N) and M~ (resp. N7) be the least common multiple and the greatest common divisor of M, My, M3 (resp.
Ny, Na, N3).

Remark 8.1. Let ¥~ be the set of prime factors £ of M~ such that a¢(E1)as(E2)ae(E3) = 1. From Remark
3.5, e(E) = —(—1)#* " is the sign in the functional equation for L(s, E). From the formula (7.2) for the p-adic
root number the p-adic sign ¢, (E) = —®>) (Vg(2)) differs from ¢(E) if and only if p € ™.



40 MING-LUN HSIEH AND SHUNSUKE YAMANA

Let f? =07 an(E;)g™ € S2(M;,1; Z) be the primitive Hecke eigenform associated with the p-adic Galois
representation Hét(Ei Q Q,) by Wiles’ modularity theorem. Hereafter, we assume that E; has either good
ordinary reduction or multiplicative reduction at p. Let f; € Sa(pM;, 1;Z,) be the p-stabilization of f7 (see
(5.1)). If p and M; are coprime, then o; = a,(fi) € Z, denotes the p-adic unit root of the Hecke polynomial
X? — a,(E;)X + p while if p divides M;, then a; = a,(E;). Define a period and a fudge factor by

3 3
Q(E) :HA(LEZ’Ad)a CP:H‘sp(flaAd)a
i=1 i=1
where A(s, E;, Ad) denotes the complete adjoint L-function for f;

Let T; = T(N;,A) be the big cuspidal ordinary Hecke algebra over A = Z,[X] with X = [u] — 1. Each
fi induces a surjective homomorphism Ay, : T; — Z,. Let m; be the maximal ideal of T; containing ker Ay,
and I; = (T;)m, be the localization at m;. Let f; = > > a(n, f;)¢" € S(N;,w?1;) be the primitive Hida
family of tame level N; such that f; is the specialization fi,Q;’ at some arithmetic point Q7 with kge = 2 and
€ge = 1. Now we consider the four-variable p-adic L-function L?(Q) in Corollary 7.9 with F' = (f,, f4, f3)
and a = 2. Define the cyclotomic p-adic L-function by

Ly(E,T) = ¢, Ly 5(QF,Q3,Q3,u*(1+T) — 1) € Z,[Gal(Qus /Q)] © Qp-
Proposition 8.2. The element L,(E) € Z,[Gal(Qo/Q)] ® Q, satisfies the following interpolation property

LE®7%,2)
2450 (E)

for all finite-order characters ¥ of Gal(Qoo/Q). Moreover, it satisfies the functional equation

X(Ly(E)) = E(FiI" VE @ X)

Ly(B,T) = &y(E) (N"N*) " L,(B,(1 +T)™" - 1).

PROOF.  Define (Q°, P) = (Q7,Q3,Q%,P) € %}’fl with Qf as above, kp = 2 and ep = X. Then V(o p) =
VEe(2)@x and X(Lp(E)) = ¢ LF (5)(Q7, P). The assertions follows from Corollary 7.9, Proposition 7.10 and
the equation 22[|f7|| = A(1, E;, Ad) ([Hsil9, (2.18)]). O

8.2. The trivial zero conjecture for the triple product of elliptic curves. We prove the trivial zero
conjecture for the cyclotomic p-adic triple product L-function. We define a function on Z, by

L,(E,s) :=Ly,(E,u’®—1).
We consider the case where L,(E,s) has a trivial zero at the critical value s = 2. By Remark 8.3 below we
essentially only need to consider the following two cases:

(i) all Ey, F5 and E5 have multiplicative reduction at p such that ayasas = 1.
(ii) E7 has multiplicative reduction at p; E and E5 have good ordinary reduction at p such that e = ayas.

Remark 8.3. Let 3; = pa; '. Then &,(Filt Vg(2)) = 0 if and only if L,((Fil* Vg(2))¥,1)~! = 0 if and only
if one of the following equations holds:

B1B2B3 = p?, B1 B2z = p?, Brazfs = p?, 1825 = p*.

The ordinality hypothesis rules out the first equation. The Ramanujan conjecture forces one or all of F; to
have multiplicative reduction at p. When F; is multiplicative at p, we will have oy € {£1} and as = ajas.

In the above cases (i) and (ii), the trivial zero conjecture predicts that the leading coefficient of the Taylor
expansion of L,(E,s) at s = 2 should be essentially the product of Greenberg’s Z-invariant for E and the
central value L(E,2). Note that the localization of I; at Q¢ is that of A at P,, where P, is the principal
ideal generated by (1 4+ X)u™? — 1, so I; is contained in A[{] with some #;(u* — 1) # 0. In what follows,
we shall replace I; by A[t; '] with some #;(u?> — 1) # 0. Let U C Z, be a neighborhood around 0 such that
(t1tatz)(ust2? — 1) # 0 for any s € U. To introduce Greenberg’s Z-invariants, we let

1 da(s)
ds s=0

a;(s) :=a(p, f;)(w*? —1); b= o (s elU).
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Note that a;(0) = a; by definition. If o; = 1, then —2¢; = logy 4, by [GS93, Theorem 3.18]. According to the

ordpqu
discussion in [Gre94b, §3|, Greenberg’s Z-invariant for the Galois representation (1.1) is given by
2(B) = —8014o03 %n Case (1),
403 in Case (ii).

The non-vanishing of these Z-invariants is known, thanks to the work [BSDGP96]. The aim of this section is
to prove the following:

Theorem 8.4 (Trivial zero conjecture). (1) In Case (i), ords=oL,(E,s) > 3, and
LP(EaS) L(E,Q)
ot ANk A - P (E). -2
(s —2)3 ls=2 »(E) 2450 (E)
(2) In Case (i), ords=oL,(E,s) > 2 and
Ly(E,s) 9 92 _L(E,?2)
—_— =%,(E)(— 1-— .
(S _ 2)2 =2 P( )( by )( Qg ) 247'1'5Q(E)
8.3. Improved p-adic L-functions. We define an analytic function on U3 x Z, C Z;l) by
2s—(z+y+2)
Ly(z,y,2,8) :=c¢p- <N*N4> 1 L}*,(Q)(u””r2 —Lut? -1, v -1, ut? - 1),

which satisfies

(8.1) L,(0,0,0,s) = <N_N4>S/2LP(E,3+2), Ly(z,y,2,8) =¢ep(E) - Ly(z,y,z,x +y+2—s).

To follow the method used in [GS93| (¢f. [BDJ17]), we introduce p-adic L-functions which have only less
variables but have better interpolation properties.

Lemma 8.5 (Improved p-adic L-functions). Suppose that f7 is special at p, i.e. oy = a;(0) = £1.

(1) There exist a two-variable improved p-adic L-function L;ﬂ(:ms) and a one-variable improved p-adic
L-function Ly(s) such that

as(s) ag(s) T T a (s) i
L =(1-———)(1- ———"—L L =(1-————L .
p(@:5,5,9) ( a; (ac)ag(s)) ( al(x)ag(s)) p(@9), p(5:5) ( az(s)a3(s)) b (5)
(2) For any positive integer k with k =2 (mod p — 1) and k — 2 € U, we have the interpolation formula
I'(k = 1)I'(k) . L(%’ﬂfl XTfop X 7Tfs,k)

2k—3 —1)2k+1 —10b Ob b ’
2 (mv/—1) cp Qthz,kas,k

LI0,k—2)=¢&(k-2)-

where my,  is the automorphic representation generated by f; ; = Ff.(uF —1) € Sk(Nip, 1;Q), and

EN(s) = (—an)az(s) as(s) 't (1 — o - az(s) tag(s)'p%)”
(3) If ep(E) = —1, then

T oL it
Li(0,5) =0, T (0,0) = (€2 + £ = ) L1(0), ordicaly(,5) 2 3.
(4) In Case (i), LI(0) = sgscky

ProOOF.  The construction of these improved L-functions are similar to that of Lp (,) except that we need
to replace the As-adic modular form Qg) in §6.5 with improved ones. To do so, we have to go back to §6.1
and modify the p-adic section fp s, used in the construction of the Siegel Eisenstein series Ea (g, fgcs)‘]N) In
the notation of Definition 2.5, for a datum D = (x,w1,ws,w3) of characters of Z; and a Bruhat-Schwartz
function 3 € S(Qp), we modify the definition of Bruhat-Schwartz functions in (2.8) by

uy T3 X2

3
Pp(p1) | |23 w2 21| | = H@'(uz‘)%(ﬂﬁi),
T2 X1 U3 i=1
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where
¢1=¢2=¢3=ipzp7 w2 =3 =1z,.
Define the modified Bruhat-Schwartz functions by
(I)TD = (PD(axm)a (I)g = q)D(HZp)'

Following (2.5), we define the modified p-adic section f3 ; := fos (Xa;agp) for @ € {f,11}. Then the local
degenerate Whittaker functions for these modified p-adic sections are given by

Wa(fh,) = (xw1)(2b23)I=1 (B), We(fH,) = Iz (B),
for B = (b;;) € Sym;(Q,), where
2T = {(bij) € Symgy(Zp) | b11, b2z, bas € pZy} 2l = {(bij) €IV | 2bp5 € Z)}.
With the preparation above we define the power series
GHT.X) = Y (2bas)y 2bas)y FG (X, T.T.T) - 4 65205 € Zo [T, X][av. a2, 5],

B=(b;;)€T; NE}
gtry= > FPOTTT) ¢ dy € 20T a2 a5
BeT‘Fn:ﬂ'

Notation is as in §6.1. For arithmetic points (Q, P) with kg = 2 we have

kp,rA [kp,r,A]
1 Q. P) = coraBint 3 V(7 f1i 3 )ls=0s G (P) = eora Bt 0 (r, F5  )la=o0

with A = (0,0,0) and r = 22 — 1, where we have written

o 2—kp —1 ko-2 —1, kp—2 —1, kp—2
D' := (epw Pieq W T ep wiTE ep W ),

._ 2—kp —1 kp—2 —1 kp—2 1 kp—2
Dif = (epw™™"P ep WP T ep WP T ep WP T,

IDe s N = [kP’/\] ® fDe.s @ fs.N Qernp fsz
As in Proposition 6.8 we can show that
GI (T, X) € SN, w?, Z,[X])®z, 8 (N, w?, Z,[T]) ®z, 17 S™ (N, w?, Z,[T]);
gﬁ (T) € Sord(Nv w2a Zp [Tﬂ) ®Zp[[T]] Sord(Na w2a Zp [Tﬂ) ®Zp[[T]] Sord(Na w2a Zp [Tﬂ)

Choose an element H; in the congruence ideal of f; with H;(u? — 1) # 0. We define the improved p-adic
L-functions LT 7. (2)(X T) and Lg (2)(T) as the first Fourier coefficients of
1
L ® 1y, ® 1y (Trnyn, ® Trnyn, @ Tewyw, (G1)) € ZyX, Tﬂ[ﬁ];

g, @15, @ 15, (Trnyn, @ Ty, @ Toww, (G17)) € Z [[T]HHTH

respectively, where I{Jr = tlHl (X)tQHgtgHg(T) and I‘I]Ur = tlHthHthHg(T). Define

Li(z,8) = cp - (NN T LY o (w2 — 1,02 = 1), Lii(s) =, - (N"N*) T LI

s+2
F(2)( -1).

F,(2 )(

In view of the proof of Lemma 7.1, to prove the interpolation formulae for L;f,(x, s) and L;UL (s), we need
to compute the quantity Z;(fp ;) defined in (2.13) attached to our modified p-adic sections f, ; as well as
a subrepresentation m; of the induced representation I(u;,v;) of GL2(Q,) with p; unramified for ¢ = 1,2, 3.
Applying the computation in Proposition 2.3, we find that whenever yws and yws are unramified,

* * 1 _ — — _
Zp(f'zr),s) = Zp(fD,s) H L<§ —S5X 1“1 1/“”1‘ 1V5_1i>
i=2,3

and that when yw; are unramified for i = 1,2, 3,

* * 1 - — — —
238 = 23 L (5 = sx o g i)
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From the proof of Theorem 7.6 we can deduce the interpolation formulae for the improved L-functions. The
formula for £+ (s) follows from that for Z;(fp s) proved in Proposition 2.6 and Remark 3.5.
Whenever k& > 2, the central sign for L(s g X mp, X mp ) is €5(E). Therefore if €)(E) = —1, then

L1(0,s) = 0 by (2), which implies that 2 Ly 52(0,0) = lim, o L’T’(S %) The second equality of (1) gives the
expression of limg_,q M We write
»(T,Y,2,8) iijy, ( %)j
§=0
If i <r:=ords=2L,(E,s), then
L,(E,s)

(8.2) r =min{j | 4;(0,0,0) # 0}, lim

o (3—72)1 = AZ(O, 0, 0)

Letting y = z = s = 0, we see by (1) that the power series
> AL AT —n2pt
> A;(2,0,0) 5) = (1 —aai(@)™)’Li(x,0)
J=0

has at least a double zero at z = 0. If ¢,(E) = —1, then since Ay, (z,y,z) = 0 for all non-negative integers n
by the functional equation (8.1), we get A1(0,0,0) =0 and r > 3. |

8.4. The proof of Theorem 8.4(1). We discuss Case (i). Then ¢,(E) = —(FE) by Remark 8.1. First
suppose that ¢(E) = 1. The functional equation (8.1) allows us to write

r+y+z T+y+2\3
Lp(%yaZ»S) = A1($7y7z)(8_ #) +A3($7y72)(‘9_ T)

The proof of Lemma 8.5(3) gives 41(0,0,0) = 0. From (8.2) and Lemma 8.5(4) the formula boils down to
A3(0,0,0) = —80142¢3L11(0).

If we denote the degree two term of A;(x,vy,2) by az? + by? + cz? + dzy + eyz + frz, then the degree three
term of Ly(z, s, s, s) is given by

LO(z,5) = {az® + (b+ ¢+ e)s> + (d + flas}(—z/2) + A3(0,0,0)(—x/2).
On the other hand, from Lemma 8.5(1), (3) we find that
L® (z,8) = (b + (b3 — £3)s) - (L + (bo — £3)s)x - iigbxflLL(x, 0)
= (32 — (Lo — 03)%s®)x - (2 + L5 — (1) LIT(0).
Comparing the coefficients of 22s, 252 and 23, we obtain the relations
d+f=0, b+c+e=2l—L3)*(la+0s—)LIT(0), 4da+ A3(0,0,0) = =863 (¢ + €3 — £1)LIT(0).
By symmetry we get
d+e=0, e+ f=0;
a+c+ f=2(01 —l3)*(0y + €3 — £2)L]T(0), a+b+d=2(l — )01 + £ — £3) LIT(0).
From these equations we conclude that d = e = f = 0 and
a={(tr = 02)*(01 + lo — €3) + (br — €3)> (01 + b3 — Lo) — (Lo — €3)? (€2 + L3 — £1)}LIT(0),
A3(0,0,0) = —8(3 (€2 + 3 — 1) LIT(0) — da = —8(14543L1T(0).
Next assume that e(E) = —1. Then ¢,(F) = 1. By (8.1) and Lemma 8.5(1)

ZA?” 509(3)” = (1 arimm) (1 et ) s
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Since L;L(O,()) = 0, every term in the right hand side has degree at least three. In particular, the constant
term Ag(0,0,0) of the left hand side is zero. If we denote the degree two term of Ag(x,y,z) by az? + By? +
~v2% 4+ Exy + nyz + Cxz, then the degree two term of the left hand side is

az® + (B+7+n)s” + (£ + Qus + A2(0,0,0)(z/2)>.

It is zero, and so by symmetry we get

A2(03070):74a7 6+’7+77:07 §+C:0a
A2(0,0,0) = —4p, at+y+¢=0, §+n=0;
A2(0a070):_47a Ot+ﬁ+§:07 77+<:O

We arrive at { =n=(=a = =7 = A2(0,0,0) = 0. Hence ords=oL,(E,s) > 4.

8.5. The proof of Theorem 8.4(2). We discuss Case (ii). Then ¢, (F) = (F) by Remark 8.1. If¢(E) = —1,
then ords—2L,(E,s) > 3 by Lemma 8.5(3), and both sides of the declared identity are zero. We will consider
the case e(E) = 1, i.e. £~ has odd cardinality. Unlike Case (i) we cannot apply Lemma 8.5(3). Our proof
relies on the three-variable p-adic triple product L-function in the balanced case constructed in [Hsil9].

Let D be the definite quaternion algebra over Q of discriminant N~ and SP(N,A) the space of A-adic
modular forms on D* defined in [Hsil9, Definition 4.1]. Let f2 € SP(N, A)[t;!] be a Jacquet-Langlands lift
of f, in the sense of [Hsil9, §4.5]. Since we do not assume Hypothesis (CR,X ™) of [Hsil9, §1.4], we cannot
choose fl- to be a primitive Jacquet-Langlands lift as in [Hsil9, Theorem 4.5]. Nonetheless, f can be chosen
so that fz- (u? — 1) is a non-zero Jacquet-Langlnads lift of f;. Replacing the triple FP = (_f1 7f2 ,f‘3 ) with
the well-chosen test vectors in [Hsil9, Definition 4.8], we can associate to F'¥ the three-variable theta element
O©pp (X1, X2, X3) in loc.cit. Define an analytic function on U3 C ZI3) by

O(x.y.2) = Opn (0™ — L™ — 1w 1),

By the interpolation formula for ©pp in [Hsil9, Theorem 7.1] (see Remark 7.8), we can find an analytic
function H(x,y,z) with H(0,0,0) # 0 such that

x+y+z)

H(w,y,2) - ©(w,y.2)* = Ly (23,2,

To proceed, we introduce two-variable improved theta elements.
Lemma 8.6 (Improved theta elements). There exist analytic functions @%(m,z), @g(%y) such that
©3(0,0) = ~©3(0,0),

Sertan=(1- T ) ol ewwarn = (1- 20 elten)

PrOOF. The idea of the proof is similar to [Hsil9, Proposition 8.3]. We give a sketch of the proof here. For
every integer n, let R, be the Eichler order of level p"N/N~ in D and let Xo(p"N) = D*\D* /RX
D=D®Q and R, = R, ®Z. Through an isomorphism Ry ® Z, ~ Mj(Z,) we define

9p = (3 I) (mod p”)}-

Recall that a;(Q) = a(p, f; o) and that @, € QX is the element with @,, = p and w,, = 1 for £ # p.
For all but finitely many arithmetic points ) with kg = 2, the specialization fo : DX\EX/Ul () — C,

is a p-stabilized form on D* with the same Hecke ecigenvalues with fio and the central character 651

<, where

Ui (p") == {g S fin

QX\Q>< /(1 er"Z)X — ppeo for any sufficiently large n. In particular, fo is a Up-eigenform with eigenvalue
a;(Q). Namely,

(8:3) Upfiale):= Y. fig (g (wog l{) ): 2i(Q)"fol9), g€ D™

beZ,/p"Z,
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In what follows, we shall write (fD,gD,hD) = (f?,fg, f3D). Let Np : D — Q be the reduced norm. Put
Tpn = ( 0 n 1> € GLy(Q,) C D*. By definition,
—w, 0

(84) O©(Q1,Q2,Q3) = ai1(Q1) "az(Q2) "az(Qs3) "

1 2
[a]€Xo(p"N) bEZ,/p"Z, 0 1

0 1
CE(Zp/anp)X

We replace the twisted diagonal cycle A,, in [Hsil9, Definition 4.6] by the improved diagonal cycle

- wr b
ie 5, 5 60 o)
[a]€Xo(Np™) bEZy /P Z)p

We can define the regularized improved diagonal cycle by

Al = lim (U," @ U, " @ Deg(A}),
n—oo
and the improved theta element

O (X1, X3) = (FP)"(AL) (X1, (1 + X1)(1 + X3) — 1, X3) € Z,[ X1, X3][t ).

for t =ty - to((14 X1)(14 X3) — 1) - t5. Put ©i(z, 2) := ©F (w2 — 1, u**2 — 1) for (z,z) € U2. By definition
and (8.3), for all but finitely many arithmetic points (Q1, @3) with kg, = kg, =2

>

O5(Q1,Qs) = a2(Q1Q3) ™" £4,(0)98, ¢, a7y )hg, (a)eq, 0. (Np(a)).
[a]e Xo(Np")

The above expression holds for any n such that p™ is bigger than the conductors of €g, and €g,. Likewise we
can define ©f € Z,[X1, X5] and ©%(x,y) with the interpolation property:

>

O5(Q1, Q2) = a3(Q1Q2) " £, (a7)93,(0)hg, 0, (a)eq.0.(Np(a)).
[a)eXo(Np)

To see the first relation, we note that

03(0,0)=a;" > fP(a)gl (amp)hf (a),

©%(0,0) =a3*
[a]eXo(Np)

Y fi(a)gg (@)hg (amy).

[a]€Xo(Np)

Since fi is a newform that is special at p, £3’(z7,) = (—a1) fe (), and hence 63(0,0)
To prove the last relation, it suffices to verify the following equation

(8.5)

= —0%(0,0).
0(Q1,Q:1Q3,Q3) = <1 - m>@§(leQ3)

for all but finitely many arithmetic poitns (Q1, @3) with kg, = kg, = 2. The formula for @g can be done by

a similar computation, so we leave it to the reader. Let n be a sufficiently large integer. From (8.4), we get
a1(Q1)"a2(Q1Q3)"a3(Q3)"p " vol (R )O(Q1, 91Q3, Q3)
1 —cw,™ 1 0
:/>< . d*a Z fgl (a (O 1p ))gngs(a‘)h’gz (an" (
bxAD c€(Zp/pZp)™
—/ d*a
D*\Dx

0 w—n) >6Q1 (c)teQs (ND(a))
p
1 —w " 1 0

Z fgl (ann (0 C*zi ) )gngs (an")hgs <CL (O wn) >€Q1Q3 (ND (a))
c€(Zp /pnZp) X p
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. . 1 o w, ¢ ! ct 0
by change of variables. From the equations 7, o 1t J=1% 1 o 1) €@ (wp) = eqy(wp) =
P

1 and (8.3), the last integral equals

/DX\EX d*a Z fgl (a (%}TIL i) )gnga (aTP")hDa <a <w017; ?) )6Q1Q3 (ND(a))

c€(Zp/p"2Zp)

=[5 am@ {58 - a8 (« (T 7)) foBastormn, (o (T Y) Jearen o)

a1 (Ql)n /1)><\f)>< dxafgl (a)gg1Q3 (G’Tl)")pin Z h83 (a <‘wog Ii) )teQs (ND(G))

beZ,/p"Z,

— i wn—l b
—au(Qu)"! /D B ACE NG D S h&(a(% 1))eQ1@3<ND<a>>

bE€Zy /pn—1Zy

={(a1(Q1)a3(Q3)a2(Q1Q3)/p)" vol(R)) — (a1(Q1)a3(Qs)/p)" as(Q1Q3)" ! vol(R), 1) }05(Q1, Q3)

az(Q1Q3) - Sxyval
— n n n 1 _ n 1 X A
a1(Q1)"a3(Q3)"a2(Q1Q3) < a(On)as(Qs) ) VO (R;)05(Q1,Q3)
This verifies (8.5). O
Now we return to the proof of Theorem 8.4(2). Write O, for the partial derivative g—?. Put
a=0,(0,0,0), b=0,(0,0,0), c=0.(0,0,0).

Taking derivatives ©(x,y,x + y) with respect to z and y at (0,0) in Lemma 8.6, we have
a+c=(f — 3)03(0,0), b+c = (lr — £3)03(0,0).
Similarly, we have
a+b=({ —£2)04(0,0) = (£s — £1)035(0,0).
These imply that

a=0, b= (£ — £,)03(0,0), ¢ = ({1 — €3)03(0,0).
On the other hand, by the functional equation (8.1) we obtain the Taylor expansion
+y+2\2
Lp($,y7 Z, 8) = H(Qﬁ,y7 Z)@((E,y, 2)2 + A2($7ya Z) : (S - %) + -

By Lemma 8.5(1), we find
(1= arai(x))?Li(x,0) = H(z,0,0)0(z,0,0)* + As(2,0,0) - 2° /4.
From the vanishing of ©,(0,0,0) we deduce that
A5(0,0,0) = 447L(0,0).
Lemma 8.5(2) and (8.2) complete the proof of Theorem 8.4(2).
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