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FOUR-VARIABLE p-ADIC TRIPLE PRODUCT L-FUNCTIONS AND THE TRIVIAL
ZERO CONJECTURE

MING-LUN HSIEH AND SHUNSUKE YAMANA

Abstract. We construct the four-variable primitive p-adic L-functions associated with the triple product
of Hida families and prove the explicit interpolation formulae at all critical values in the balanced range.
Our construction is to carry out the p-adic interpolation of Garrett’s integral representation of triple product
L-functions via the p-adic Rankin-Selberg convolution method. As an application, we obtain the cyclotomic
p-adic L-function for the motive associated with the triple product of elliptic curves and prove the trivial zero
conjecture for this motive.
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1. Introduction

The aim of this paper is to construct the four-variable p-adic triple product L-functions for the triple
product of Hida families of elliptic newforms with explicit interpolation formulae at all critical specializations
in the balanced region. Let p be an odd prime, O a valuation ring finite flat over Zp and I a normal domain
finite flat over the Iwasawa algebra Λ = OJΓK of the topological group Γ = 1 + pZp. Let

F = (f , g,h)

be a triplet of primitive Hida families of tame conductor (N1, N2, N3) and nebentypus (χ1, χ2, χ3) with coef-
ficients in I. Roughly speaking, we construct a four-variable Iwasawa function that interpolates the algebraic
part of critical values of the triple product L-function attached to F at all balanced critical specializations
twisted by Dirichlet characters. Our formulae completely comply with the conjectural form described in
[CPR89], [Coa89a] and [Coa89b]. In order to state our result precisely, we need to introduce some notation
from Hida theory for elliptic modular forms and technical items such as the modified Euler factors at p and
the canonical periods of Hida families in the theory of p-adic L-functions.
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2 MING-LUN HSIEH AND SHUNSUKE YAMANA

1.1. Galois representations attached to Hida families. Given a field F , we denote its separable closure
by F and put GF = Gal(F/F ). If F =

∑∞
n=1 a(n,F)qn ∈ IJqK is a primitive cuspidal Hida family of tame

conductor NF and nebentypus χF , let ρF : GQ → GL2(Frac I) be the associated big Galois representation
such that Tr ρF (Frobℓ) = a(ℓ,F) for primes ℓ ∤ NF , where Frobℓ is the geometric Frobenius at ℓ and VF is
the natural realization of ρF inside the étale cohomology groups of modular curves. Thus VF is a lattice in
(Frac I)2 with the continuous Galois action via ρF , and the GQp

-invariant subspace Fil0 VF := V
Ip
F fixed by

the inertia group Ip at p is free of rank one over I ([Oht00, Corollary, page 558]). A point Q ∈ Spec I(Qp) is

called an arithmetic point if Q|Γ : Γ ↪→ Λ× Q−→Q
×
p is given by Q(x) = xkQϵQ(x) for some integer kQ ≥ 2 and

a finite order character ϵQ : Γ → Q
×
p . Let X+

I be the set of arithmetic points of I. For each arithmetic point
Q ∈ X+

I , the specialization VFQ
:= VF ⊗I,Q Qp is the geometric p-adic Galois representation associated with

the p-stabilized newform FQ =
∑∞

n=1Q(a(n,F))qn.

1.2. Triple product L-functions. We denote by Q∞ the cyclotomic Zp-extension of Q, by ω : GQ →
µp−1 ↪→ Z×

p the Teichmüller character, by εcyc : Gal(Q∞/Q)
∼→ 1 + pZp = Γ the p-adic cyclotomic character

and by ⟨εcyc⟩T : GQ ↠ Gal(Q∞/Q) ↪→ ZpJGal(Q∞/Q)K× the universal cyclotomic character. Let

I3 = I⊗̂OI⊗̂OI, I4 = I3JGal(Q∞/Q)K
be finite extensions of the three and four-variable Iwasawa algebras.

Fix a ∈ Z/(p− 1)Z. The main object of this paper is a construction of the p-adic L-function for the triple
tensor product Galois representation

V = Vf ⊗̂OVg⊗̂OVh, V = V⊗̂Oω
a ⟨εcyc⟩T

of rank eight over I4. If (k1, k2, k3) is a triplet of positive integers, we say (k1, k2, k3) is balanced if k1+k2+k3 >
2k∗ with k∗ := max {k1, k2, k3}. Let Xbal

I3
denote the set of balanced arithmetic points of (X+

I )
3. An integer k

is said to be critical for (k1, k2, k3) if

k∗ ≤ k ≤ k1 + k2 + k3 − k∗ − 2.

We define the weight space Xbal
I4
⊂ Spec I4(Qp) to be the set of balanced critical points of I4 given by

Xbal
I4 = {(Q1, Q2, Q3, P ) ∈ Xbal

I3 × X+
Λ | kP is critical for (kQ1

, kQ2
, kQ3

)}.

For each point (Q,P ) = (Q1, Q2, Q3, P ) ∈ Xbal
I4

, the specialization V(Q,P ) = VQ ⊗ εkP
cycϵPω

a−kP is a p-adic
geometric Galois representation, where VQ = VfQ1

⊗VgQ2
⊗VhQ3

and ϵP is regarded as a Galois character via
ϵP ◦ εcyc.

Next we briefly recall the motivic L-function associated with the specialization V(Q,P ). To the geometric
p-adic Galois representation V(Q,P ), we can associate the Weil-Deligne representation WDℓ(V(Q,P )) of the
Weil-Deligne group of Qℓ over Qp (See [Tat79, (4.2.1)] for ℓ ̸= p and [Fon94, (4.2.3)] for ℓ = p). Fixing an
isomorphism ιp : Qp ≃ C once and for all, we define the motive L-function of V(Q,P ) by the Euler product

L(V(Q,P ), s) =
∏
ℓ<∞

Lℓ(V(Q,P ), s)

of the local L-factors Lℓ(V(Q,P ), s) attached to WDℓ(V(Q,P )) ⊗Qp,ιp
C (cf. [Del79, (1.2.2)], [Tay04, page

85]). On the other hand, we denote by πfQ1
(resp. πgQ2

, πhQ3
) the irreducible unitary cuspidal automorphic

representation of GL2(A) associated with fQ1
(resp. gQ2

,hQ3
) Let L(s, πfQ1

× πgQ2
× πhQ3

⊗ ϵPωa−kP ) be
the automorphic L-function attached to the triple product of πfQ1

, πgQ2
, and πhQ3

⊗ϵPωa−kP , as constructed
by Garrett [Gar87] in the classical setting and by Piatetski-Shapiro and Rallis [PSR87] in the adèlic setting.
The analytic theory of L(s, πfQ1

×πgQ2
×πhQ3

⊗ϵPωa−kP ) such as meromorphic continuation and a functional
equation has been explored extensively in the literatures (cf. [PSR87, Ike89, Ike92]), and thanks to [Ram00,
Theorem 4.4.1], we have

L(s+ kP − wQ/2, πfQ1
× πgQ2

× πhQ3
⊗ ϵPωa−kP ) = ΓV(Q,P )

(s) · L(V(Q,P ), s),

where wQ := kQ1
+ kQ2

+ kQ3
− 3 and ΓV(Q,P )

(s) is the Gamma factor of V(Q,P ) as given by

ΓV(Q,P )
(s) := ΓC(s+ kP )ΓC(s+ 1 + kP − kQ1)ΓC(s+ 1 + kP − kQ2)ΓC(s+ 1 + kP − kQ3).
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Here ΓC(s) = 2(2π)−sΓ(s). Hence we have a good understanding of the analytic properties of the motivic L-
function L(V(Q,P ), s). The rationality of its critical L-values in the balanced region was proved in [Orl87] and
[GH93], where the authors verify that the Deligne’s period for V(Q,P ) is the product of Petersson norms of fQ1

,
gQ2

, hQ3
. In this article we shall investigate the arithmetic of critical values L(V(Q,P ), 0) for (Q,P ) ∈ Xbal

I4

and study the p-adic analytic behavior of its algebraic part viewed as a function on the weight space Xbal
I4

.

1.3. The modified Euler factors at p and ∞. Let GQp
denote the decomposition group at p. Define the

rank four GQp -invariant subspace of V by

Fil+ V := Fil+ V ⊗ ωa ⟨εcyc⟩T ,

where
Fil+ V := Fil0 Vf ⊗ Fil0 Vg ⊗ Vh + Vf ⊗ Fil0 Vg ⊗ Fil0 Vh + Fil0 Vf ⊗ Vg ⊗ Fil0 Vh.

The pair (Fil+ V,Xbal
I4

) satisfies the Panchishkin condition in [Gre94a, page 217] in the sense that for each
arithmetic point (Q,P ) ∈ Xbal

I4
, the Hodge-Tate numbers of Fil+ V(Q,P ) are all positive, while none of the

Hodge-Tate numbers of V(Q,P )/Fil
+ V(Q,P ) is positive. Here the Hodge-Tate number of Qp(1) is one in our

convention. Now we can define the modified p-Euler factor by

Ep(Fil+ V(Q,P )) :=
Lp(Fil

+ V(Q,P ), 0)

ε(WDp(Fil
+ V(Q,P ))) · Lp((Fil

+ V(Q,P ))∨, 1)
· 1

Lp(V(Q,P ), 0)
.

We note that this modified p-Euler factor is precisely the ratio between the factor L(ρ)
p (V(Q,P )) in [Coa89b,

page 109, (18)] and the local L-factor Lp(V(Q,P ), 0).
In the theory of p-adic L-functions, we also need the modified Euler factor E∞(V(Q,P )) at the archimedean

place observed by Deligne. It is defined to be the ratio between the factor L(
√
−1)

∞ (V(Q,P )) in [Coa89b, page
103 (4)] and the Gamma factor ΓV(Q,P )

(0). In our current case it is explicitly given by

E∞(V(Q,P )) = (
√
−1)kQ1

+kQ2
+kQ3

−3.

1.4. Hida’s canonical periods. To give the precise definition of periods for the motive V(Q,P ), we recall
Hida’s canonical period of an I-adic primitive cuspidal Hida family F of tame conductor NF . Let mI be the
maximal ideal of I. We say F is controllable if the following hypothesis holds:

Hypothesis (CR). The residual Galois representation ρ̄F := ρF (mod mI) : GQ → GL2(F̄p) is absolutely
irreducible and is p-distinguished.

Suppose that F is controllable. Then the local component of the universal cuspidal ordinary Hecke algebra
corresponding to F is known to be Gorenstein by [MW86, Prop. 2, §9] and [Wil95, Corollary 2, page 482],
and with this Gorenstein property, Hida proved in [Hid88a, Theorem 0.1] that the congruence module for F is
isomorphic to I/(ηF ) for some non-zero element ηF ∈ I if p > 3. Moreover, for any arithmetic point Q ∈ X+

I ,
the specialization ηFQ

= Q(ηF ) generates the congruence ideal of FQ. We denote by F◦
Q the normalized

newform of weight kQ, conductor NQ = NFp
nQ with nebentypus χQ corresponding to FQ. There is a unique

decomposition χQ = χ′
QχQ,(p), where χ′

Q and χQ,(p) are Dirichlet characters modulo NF and pnQ respectively.
Let αQ = a(p,FQ). Define the modified Euler factor Ep(FQ,Ad) for the adjoint motive of FQ by

Ep(FQ,Ad) = α
−2nQ

Q ×


(1− α−2

Q χQ(p)p
kQ−1)(1− α−2

Q χQ(p)p
kQ−2) if nQ = 0,

−1 if nQ = 1, χQ,(p) = 1 (so kQ = 2),

g(χQ,(p))χQ,(p)(−1) if nQ > 0, χQ,(p) ̸= 1.

Here g(χQ,(p)) is the usual Gauss sum. Fixing the choice of a generator ηF and letting ∥F◦
Q∥2Γ0(NQ) be the

usual Petersson norm of F◦
Q, we define the canonical period ΩFQ

of F at Q by

ΩFQ
:= (−2

√
−1)kQ+1 · ∥F◦

Q∥2Γ0(NQ) ·
Ep(FQ,Ad)

ιp(ηFQ
)
∈ C×.
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By [Hid16, Corollary 6.24, Theorem 6.28], one can show that for each arithmetic point Q, up to a p-adic unit,
the period ΩFQ

is equal to the product of the plus/minus canonical periods Ω(+ ;F◦
Q)Ω(− ;F◦

Q) introduced in
[Hid94, page 488].

1.5. Statement of the main result. We impose the following technical assumption:

(sf) Ni is square-free and χi = ω
ai is a power of the Teichmüller character for i = 1, 2, 3.

Our main result is a construction of the balanced p-adic triple product L-functions:

Theorem A. In addition to (sf), we further suppose that p > 3 and that f , g and h satisfy Hypothesis (CR).
Fix generators (ηf , ηg, ηh) of the congruence ideals of (f , g,h). Then for each a ∈ Z/(p− 1)Z, there exists a
unique element L∗

F ,(a) ∈ I4 such that for each arithmetic point (Q,P ) = (Q1, Q2, Q3, P ) ∈ Xbal
I4

, we have

L∗
F ,(a)(Q,P ) =ΓV(Q,P )

(0) ·
L(V(Q,P ), 0)

ΩfQ1
ΩgQ2

ΩhQ3

· (
√
−1)kQ1

+kQ2
+kQ3

−3 · Ep(Fil+ V(Q,P )).

In the literature, the three weight variable p-adic L-function for the triple product of Hida families in
the balanced case has been extensively studied by Greenberg-Seveso [GS16], the first author [Hsi19] and so
on. These works, based on Ichino’s formula [Ich08], focuses on the p-adic interpolation of central values and
hence the cyclotomic variable is excluded. Our four-variable p-adic L-function L∗

F ,(a) specializes to this three
variable p-adic L-function along the central critical line (see Remark 7.8). The first attempt to construct the
cyclotomic p-adic triple product L-functions was made by Böcherer and Panchishkin [BP06, BP09], where
they constructed one-variable p-adic L-functions associated with three primitive elliptic newforms. Their
construction is not restricted to the ordinary case but the interpolation formula is less complete and the p-
integrality of the p-adic L-function is not discussed. Without the Hypothesis (CR), we construct a canonical
four-variable p-adic triple product L-functions but with denominators (see Corollary 7.9).

1.6. Application to the trivial zero conjecture. Let Ei be a p-ordinary elliptic curve over the rationals
Q of square-free conductor Mi. We write L(E, s) for the degree eight motivic L-function for the triple product

(1.1) VE = H1
ét(E1/Q,Qp)⊗H1

ét(E2/Q,Qp)⊗H1
ét(E3/Q,Qp)

realized in the middle cohomology of the abelian variety E = E1 × E2 × E3 by the Künneth formula. Hence

L(H3
ét(E/Q,Qp), s) = L(E, s)

3∏
i=1

L(Ei, s− 1)2.

Our four-variable p-adic L-function yields a cyclotomic p-adic L-function

Lp(E) ∈ ZpJGal(Q∞/Q)K⊗Qp,

which roughly interpolates the algebraic part of central values L(E⊗χ,2)
Ω with a fixed period Ω for all finite

order characters χ of Gal(Q∞/Q). Define an analytic function Lp(E, s) := εs−2
cyc (Lp(E)) for s ∈ Zp (See

Proposition 8.2 for the precise statement). The Euler-like factor Ep(Fil+ VE(2)) can possibly vanish. In this
case the interpolation formula forces Lp(E, 2) to be zero. Such a zero is called a trivial zero. For example, it
appears if all Ei have split multiplicative reduction at p (see Remark 8.3). In this particular case, the trivial
zero conjecture predicts that the leading coefficient of Lp(E, s) is the product of the L -invariants for Ei and
the algebraic part of the complex central value L(E, 2) (cf. [Gre94b, (25), p. 166] and [Ben11, p. 1579]). Using
the method of Greenberg-Stevens [GS93] and [BDJ17], we establish the trivial zero conjecture for the triple
product of elliptic curves. The following result is a special case of our more general result (see Theorem 8.4).

Theorem B. If E1, E2, E3 are split multiplicative at p, then Lp(E, s) has at least a triple zero at s = 2 and

lim
s→2

Lp(E, s)

(s− 2)3
=

3∏
i=1

Lp(Ei) ·
L(E, 2)

Ω
,

where Lp(Ei) =
logp qEi

ordpqEi
is the L -invariant of Ei with Tate’s p-adic period qEi

attached to Ei.
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In the case of a p-adic L-function Lp(E, s) of an elliptic curve E over Q the trivial zero arises if and only
if E is split multiplicative at p. An analogus formula for L′

p(E, 1) was experimentally discovered in [MTT86]
and proved in [GS93], and for Hilbert modular forms in [Mok09], [Spi14] and [BDJ17]. Our result proves the
first cases of the trivial zero conjecture where multiple trivial zeros are present and the Galois representation
is not of GL(2)-type.

1.7. The construction of L∗
F ,(a). We give a sketch of the construction of L∗

F ,(a). Our method is the com-
bination of Garrett’s integral representation of the triple product L-function, an integrality result of crit-
ical L-values for triple products in [Miz90] and Hida’s p-adic Rankin-Selberg method. We begin with a
constriction of the four-variable p-adic family of the pull-back of Siegel-Eisenstein series. For each point
x = (Q1, Q2, Q3, P ) ∈ Xbal

I4
, we reorder the weights {kQ1

, kQ2
, kQ3

} = {kx, lx,mx} so that kx ≥ lx ≥ mx. For
each ν1, ν2 ∈ {0, 1}, we put

Xbal
(ν1,ν2)

=
{
x ∈ Xbal

I4 | kx ≡ lx + ν1 ≡ mx + ν2 (mod 2)
}
.

Hence we have the partition of the weight space

Xbal
I4 =

⨿
ν1,ν2∈{0,1}

Xbal
(ν1,ν2)

.

Let N = lcm(N1, N2, N3). For each x ∈ Xbal
(ν1,ν2)

, we shall construct a nearly holomorphic Siegel-Eisenstein

series E(ν1,ν2)
x (Z, s) of degree three, weight (kx, kx−ν1, kx−ν2) and level Γ(3)

1 (Np∞) and consider the pull-back
given by

G(ν1,ν2)
x (z1, z2, z3) := eord Hol

(
λ

kx−lx−ν1
2

z2 λ
kx−mx−ν2

2
z3 E(ν1,ν2)

x

(
diag(z1, z2, z3), kP −

wQ + 1

2

))
,

where λz := − 1
2π

√
−1

(Im z)2 ∂
∂z is the weight-lowering differential operator, Hol is the holomorphic projection

and eord is Hida’s ordinary projector. Then we show that G(ν1,ν2)
x is an ordinary cusp form of weight (kx, lx,mx)

on H3
1 the product of three copies of the upper half plane.

The most crucial (and perhaps surprising) point is that the four classes of Siegel-Eisenstein series E
(ν1,ν2)
x

can be constructed so that G(ν1,ν2)
x can be put into a single four-variable Hida family of triple product modular

forms. More precisely, let Sord(N,χ) denote the space of ordinary Λ-adic modular forms of tame level N and
character χ. In the following we will associate to a ∈ Z/(p−1)Z and χ = (χ1, χ2, χ3) an explicit triple product
ordinary Λ-adic form

G(a)χ ∈ Sord(N,χ1,ZpJX1K)⊗̂ZpS
ord(N,χ2,ZpJX2K)⊗̂ZpS

ord(N,χ3,ZpJX3K)⊗̂ZpZpJGal(Q∞/Q)K.
By an explicit calculation of Fourier coefficients of G(ν1,ν2)

x , we prove in Proposition 6.8 that the specialization
G(a)χ (x) at every x ∈ Xbal

I4
is the q-expansion of G(ν1,ν2)

x .
Let T+

3 be the set of positive definite half-integral matrices of size 3. The Siegel series attached to B ∈ T+
3

and a rational prime ℓ is defined by

bℓ(B, s) =
∑

z∈Sym3(Qℓ)/ Sym3(Zℓ)

ψ(− tr(Bz))ν[z]−s,

where ψ is an arbitrarily fixed additive character on Qℓ of order 0 and ν[z] is the product of denominators of
elementary divisors of z. There exists a polynomial FB,ℓ(X) ∈ Z[X] such that

bℓ(T, s) = (1− ℓ−s)(1− ℓ2−2s)FB,ℓ(ℓ
−s).

Let z 7→ [z] denote the inclusion of group-like elements 1 + pZp ↪→ ZpJ1 + pZpK×. Fix a topological generator
u ∈ 1 + pZp and identify ZpJ1 + pZpK with ZpJXK, where X = [u]− 1. Define a character ⟨·⟩ : Z×

p → 1 + pZp

by ⟨x⟩ = xω(x)−1 and write ⟨x⟩X = [⟨x⟩] = (1 + X)logp z/ logp u ∈ ZpJXK. Let Ξp be a set of symmetric
matrices of size 3 over Zp whose off-diagonal entries are p-units but whose diagonal entries are not. Now the
seven-variable formal power series is presented by

G(a)χ =
∑

B=(bij)∈T+
3 ∩Ξp

Q(a)
B (X1, X2, X3, T ) · F (a)

B (X1, X2, X3, T ) · qb111 qb222 qb333 ,
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where Q(a)
B ,F (a)

B ∈ ZpJX1, X2, X3, T K are given by

Q(a)
B (X1, X2, X3, T ) =

ωa(8b23b31b12) ⟨8b23b31b12⟩T
χ1(2b23)χ2(2b31)χ3(2b12) ⟨2b23⟩X1

⟨2b31⟩X2
⟨2b12⟩X3

,

F (a)
B (X1, X2, X3, T ) =

∏
ℓ∤pN

FB,ℓ(⟨ℓ⟩−2
T (ω−2aχ1χ2χ3)(ℓ) ⟨ℓ⟩X1

⟨ℓ⟩X2
⟨ℓ⟩X3

ℓ−4).

Now we apply the p-adic Rankin-Selberg method to define the p-adic L-function. Denote the universal
ordinary cuspidal Hecke algebra by T (N,χ, I). For each ? ∈ {f , g,h} we write 1? ∈ T (N1, χ1, I)⊗I FracI for
the idempotent corresponding to ?. We define

LF ,(a) := the first Fourier coefficient of ηfηgηh(1f ⊗ 1g ⊗ 1h(TrN/N1
⊗TrN/N2

⊗TrN/N3
(G(a)χ )) ∈ I3JT K,

where TrN/Ni
: Sord(N,χi, I) → Sord(Ni, χi, I) is the usual trace map, and then the p-adic triple product

L-function is defined to be L∗
F ,(a) = LF ,(a) · f

−1
χ,a,N1,N2,N3

, where fχ,a,N1,N2,N3
∈ I×4 is a fudge factor which is

essentially a product of epsilon factors at prime-to-p finite places. The p-adic Rankin-Selberg method tells us
that the interpolation formula for the value LF ,(a)(x) at x ∈ Xbal

I4
is roughly given by

lim
s→kP−

wQ+1

2

ηfQ1
ηgQ2

ηhQ3

⟨fQ1
⊗ gQ2

⊗ hQ3 ,E
(ν1,ν2)
x (s)⟩

∥fQ1
∥2∥gQ2

∥2∥hQ3
∥2

(cf. Lemma 7.3), where ⟨ , ⟩ is the Petersson pairing on H3
1 and ∥·∥ is the Petersson norm on H1. The series

E
(ν1,ν2)
x (Z, s) is constructed from a factorizable section of a certain family of induced representations. By

means of the generalization of Garrett’s work, carried out in [PSR87, Ike89] (see Lemma 7.1) the pairing can
be unfolded and written as a product of L

(
s + 1

2 , πfQ1
× πgQ2

× πhQ3
⊗ ϵPωa−kP

)
and the normalized local

zeta integrals at primes dividing pN . It turns out that these local zeta integrals are essentially given by the
modified Euler factor Ep(Fil+ V(Q,P )) at p and the local epsilon factors fχ,a,N1,N2,N3

at primes ℓ|N . In both
calculations the key ingredients are Lemma 2.1 and the local functional equations for GL1 and GL2, by which
we can generalize Proposition 4.2 of [GK92] without brute force calculations (see Remark 3.3).

This paper is organized as follows. In §2, §3 and §4, we make the choices of local datum for Siegel Eisenstein
series E

(ν1,ν2)
x (Z, s) and carry out the explicit computation of local zeta integrals that appear in Garrett’s

integral representation of triple product L-functions. After preparing some notation in Hida theory in §5, we
show that the Fourier expansion of G(ν1,ν2)

x can be p-adically interpolated by the power series G(a)χ in §6. The
key ingredient is Proposition 6.3 about the computation of Fourier coefficients of G(ν1,ν2)

x . In §7, we put all
the local computations in §2, 3, and 4 and prove the main interpolation formulae in Theorem 7.6. Finally, in
§8 we construct some improved p-adic L-functions in Lemmas 8.5 and 8.6 and use them to prove the trivial
zero conjecture for the triple product of elliptic curves in Theorem 8.4.

Notation. The following notations will be used frequently throughout the paper. For an associative ring R
with identity element, we denote by R× the group of all its invertible elements, and by Mm,n(R) the module of
all m×n matrices with entries in R. Put Mn(R) = Mn,n(R) and GLn(R) = Mn(R)

× particularly when we view
the set as a ring. The identity and zero elements of the ring Mn(R) are denoted by 1n and 0n (when n needs to
be stressed) respectively. The transpose of a matrix x is denoted by xt. Let Symn(R) = {z ∈ Mn(R) | zt = z}
be the space of symmetric matrices of size n over R. For any set X we denote by IX the characteristic function
of X. When X is a finite set, we denote by ♯X the number of elements in X. When X is a totally disconnected
locally compact topological space or a smooth real manifold, we write S(X) for the space of Schwartz-Bruhat
functions on X. If x is a real number, then we put ⌈x⌉ = max{i ∈ Z | i ≤ x}.

If R is a commutative ring and G = GL2(R), we denote by ρ the right translation of G on the space
of C-valued functions on G. Thus (ρ(g)f)(g′) = f(g′g). We write 1 : G → C for the constant function
1(g) = 1. For a function f : G → C and a character χ : R× → C×, let f ⊗ χ : G → C denote the function
f ⊗ χ(g) = f(g)χ(det g).

2. Computation of the local zeta integral: the p-adic case

2.1. The local zeta integral. Let Tn be the subgroup of diagonal matrices in GLn, Un the subgroup of
upper triangular unipotent matrices in GLn, Zn the subgroup of scalar matrices in GLn and Bn = TnUn the
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standard Borel subgroup of GLn. The symplectic similitude group of degree n is defined by

GSp2n = {g ∈ GL2n | gJngt = νn(g)Jn, νn(g) ∈ GL1}, Jn =

(
0 −1n

1n 0

)
.

We define the homomorphisms

m : GLn×GL1 → GSp2n, n, n− : Symn → GSp2n

by

m(A, ν) =

(
A 0
0 ν(At)−1

)
, n(z) =

(
1n z
0 1n

)
, n−(z) =

(
1n 0
z 1n

)
.

We write

m(A) = m(A, 1), d(ν) = m(1n, ν).

A maximal parabolic subgroup Pn =MnNn of GSp2n is defined by

Mn = m(GLn×GL1), Nn = n(Symn).

Define algebraic groups of U0 ⊂ U ⊂ H by

H = {(g1, g2, g3) ∈ (GL2)
3 | det g1 = det g2 = det g3},

U = {(n(x1),n(x2),n(x3)) | x1, x2, x3 ∈ M1},
U0 = {(n(x1),n(x2),n(x3)) | x1 + x2 + x3 = 0}.

We define the embedding ι : H ↪→ GSp6 by

ι

((
a1 b1
c1 d1

)
,

(
a2 b2
c2 d2

)
,

(
a3 b3
c3 d3

))
=



a1 b1
a2 b2

a3 b3
c1 d1

c2 d2
c3 d3

 .

We identity Z = Z6 with the center of GSp6. Put

η =



0 0 0 −1 0 0
0 1 0 0 0 0
0 0 1 0 0 0

1 1 1 0 0 0
0 0 0 −1 1 0
0 0 0 −1 0 1

 .

Let F be a local field of characteristic zero. In the nonarchimedean case F contains a ring o of integers
having a single prime ideal p and the absolute value αF = | · | on F is normalized via |ϖ| = q−1 for any
generator ϖ of p, where q denotes the order of the residue field o/p. Fix an additive character ψ on F which
is trivial on o but non-trivial on p−1. When F = R, we define ψ(x) = e2π

√
−1x for x ∈ R.

Let K be a standard maximal compact subgroup of GSp6(F ). For quasi-characters ω̂, χ : F× → C× we let
I3(ω̂, χ) := Ind

GSp6(F )
P3

χ2ω̂ ⊠ χ−3ω̂−1 be the space of all right K-finite functions f on GSp6(F ) which satisfy

f(m(A, λ)n(z)g) = ω̂(λ−2 detA)χ(λ−3(detA)2)|λ−3(detA)2|f(g)

for A ∈ GL3(F ), λ ∈ F×, z ∈ Sym3(F ) and g ∈ GSp6(F ). The group GSp6(F ) acts on I3(ω̂, χ) by right
translation ρ3. It is important to note that for t = diag(a, d) ∈ T2
(2.1) f(ηι(tg1, tg2, tg3)) = ω̂(d)−1χ(ad−1)|ad−1|f(ηι(g1, g2, g3)).

It is well worthy of notice that

(2.2) I3(ω̂, χ)⊗ µ ◦ ν3 = I3(ω̂µ
−2, χµ).
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We call a K-finite function (s, g) 7→ fs(g) on C×GSp6(F ) a holomorphic section of I3(ω̂, χαs
F ) if fs(g) is

holomorphic in s for each g ∈ GSp6(F ) and fs ∈ I3(ω̂, χαs
F ) for each s ∈ C. We associate to a non-degenerate

symmetric matrix B of size 3 the degenerate Whittaker functional

WB : I3(ω̂, χα
s
F )→ C, WB(fs) =

∫
Sym3(F )

fs(J3n(z))ψ(− tr(Bz)) dz.

The integral converges if Re s is sufficiently large and can be continued to an entire function.
Given an irreducible admissible infinite dimensional representation π of GL2(F ), we denote by W (π) the

Whittaker model of π with respect to ψ. Let π1, π2, π3 be a triplet of irreducible admissible infinite dimensional
representations of GL2(F ). We denote the central character of πi by ωi. Set ω̂ = ω1ω2ω3. We associate to a
holomorphic section fs of I(ω̂, χαs

F ) and Whittaker functions Wi ∈ W (πi) the local zeta integral

Z(W1,W2,W3, fs) =

∫
U0Z\H

W1(g1)W2(g2)W3(g3)fs(ηι(g1, g2, g3)) dg1dg2dg3,

which converges absolutely if Re s is sufficiently large.
We define a map ι0 : H ↪→ GSp6 by

ι0(g1, g2, g3) = ηι(g1, g2J1, g3J1).

As a preliminary step, we choose a coordinate system on an open dense subset of U0Z\H.

Lemma 2.1. If (x1, u1, u2, u3, a2, a3) ∈ F 4 ⊕ F×2, then

ι0(n
−(u1)n(x1),m(a2)n

−(u2),m(a3)n
−(u3)) =

(
A B
03 (At)−1

)
J3n(−z),

where

A =

1 a2u1 a3u1
0 a2 0
0 0 a3

 , B =

−u1 0 0
0 0 0
0 0 0

 , z =

−x1 a2 a3
a2 u2 + a22u1 a2a3u1
a3 a2a3u1 u3 + a23u1

 .

Proof. We can prove Lemma 2.1 by the matrix expression of ι0. □

2.2. The unramified case. When πi is unramified, we write W 0
i ∈ W (πi) for the unique Whittaker function

which takes the value 1 on GL2(o). Assume that ω̂ and χ are unramified. Then we define the holomorphic
section f0s (χ) of I3(ω̂, χαs

F ) by the condition that f0s (k, χ) = 1 for k ∈ GSp6(o). Garrett has proved that

Z(W 0
1 ,W

0
2 ,W

0
3 , f

0
s (χ)) =

L
(
s+ 1

2 , π1 × π2 × π3 ⊗ χ
)

L(2s+ 2, χ2ω̂)L(4s+ 2, χ4ω̂2)
.

We associate to a half-integral symmetric matrix B the series defined by

b(B, s) =
∑

z∈Sym3(F )/ Sym3(o)

ψ(− tr(Bz))ν[z]−s,

where ψ is an arbitrarily fixed additive character on F of order 0 and ν[z] = [zo3 + o3 : o3]. If detB ̸= 0, then
there exists a polynomial FB(X) ∈ Z[X] such that

b(B, s) = (1− q−s)(1− q2−2s)FB(q
−s).

The following relation is well-known (cf. [Shi97, Proposition 19.2, page 158]):

(2.3) WB(f
0
s (χ)) =

FB(χ
2ω̂(ϖ)q−2s−2)

L(2s+ 2, χ2ω̂)L(4s+ 2, χ4ω̂2)
.
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2.3. The p-adic case. Let St stand for the Steinberg representation of GL2(F ). For quasi-characters µ, ν of
F× the representation I(µ, ν) is realized on the space of functions f : GL2(F )→ C which satisfy

f

((
a b
0 d

)
g

)
= µ(a)ν(d)

∣∣∣a
d

∣∣∣1/2 f(g)
for a, d ∈ F×, b ∈ F and g ∈ GL2(F ), where GL2(F ) acts by right translation ρ. Hereafter we assume that πi
are not supercuspidal and are infinite dimensional. Then πi is a quotient of a principal series representation
I(µi, νi) with quasi-characters µi, νi. If µiν

−1
i ̸= α−1

F , then πi ≃ I(µi, νi). If µiν
−1
i = α−1

F , then πi ≃
St⊗ µiα

1/2
F . Let W ord

i ∈ W (πi) be the unique Whittaker function characterized by

W ord
i (t(a)) = νi(a)|a|1/2Io(a)

for a ∈ F×, where t(a) = diag(a, 1). Fix a prime element ϖ of o. For each non-negative integer n we put

mn = m(ϖn), tn = J−1
1 mn, W

(n)
i = πi(tn)W

ord
i .

Given a character µ of o×, we define φµ ∈ S(F ) by

φµ(x) = µ(x)Io×(x).

We write c(µ) for the smallest integer n such that µ is trivial on o× ∩ (1 + pn). Define the open compact
subgroup K(g)

0 (pn) of GSp2g(F ) by

K
(g)
0 (pn) =

{(
a b
c d

)
∈ GSp2g(o)

∣∣∣∣ c ∈ Mg(p
n)

}
.

We can define characters µ↑ and µ↓ of K(1)
0 (pn) by

µ↑
((

a b
c d

))
= µ(a), µ↓

((
a b
c d

))
= µ(d),(2.4)

provided that n ≥ c(µ). We define the Fourier transform of Φ ∈ S(Symg(F )) with respect to ψ by

Φ̂(w) =

∫
Symg(F )

Φ(z)ψ(tr(zw)) dz.

Given a Schwartz function Φ ∈ S(Sym3(F )), we can define a section fΦ(χ) of I3(ω̂, χ) by requiring that

(2.5) fΦ(J3n(z), χ) = Φ(z)

for z ∈ Sym3(F ). Lemma 2.1 gives

(2.6) fΦ(ι0(n
−(u1)n(x1),m(a2)n

−(u2),m(a3)n
−(u3)), χ)

= ω̂(a2a3)χ(a2a3)
2|a2a3|2Φ

 x1 −a2 −a3
−a2 −u2 − a22u1 −a2a3u1
−a3 −a2a3u1 −u3 − a23u1

 .

Now we define Φ ∈ S(Sym3(F )) by

(2.7) Φ

u1 x3 x2
x3 u2 x1
x2 x1 u3

 =

3∏
i=1

ϕi(ui)φi(xi),

where we define ϕ1, ϕ2, ϕ3, φ1, φ2, φ3 ∈ S(F ) by

ϕ1 = ϕ2 = ϕ3 = Îp, φ1 = ̂φχµ1ν2ν3
, φ2 = ̂φχν1µ2ν3

, φ3 = ̂φχν1ν2µ3
.

Lemma 2.2. If n ≥ max{1, c(χ), c(µi), c(νi) | i = 1, 2, 3}, then

ρ3(ι(g1, g2, g3))fΦ(χ) = fΦ(χ)

3∏
i=1

µ↑
i (gi)

−1ν↓i (gi)
−1

for g1, g2, g3 ∈ K(1)
0 (p2n) with det g1 = det g2 = det g3.
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Proof. One can easily check that

φ̂µ ∈ S(p−c(µ)), φ̂µ(ax) = µ(a)−1φ̂µ(x), φ̂µ(x+ b) = φ̂µ(x)(2.8)

for a ∈ o×, b ∈ o and x ∈ F . Simply because ϕi = Ip−1 , we see that Φ(z + c) = Φ(z) for c ∈ Sym3(o), which
means that fΦ(χ) is fixed by the action of n(Sym3(o)). Put

χ1 = χµ1ν2ν3, χ2 = χν1µ2ν3, χ3 = χν1ν2µ3.

Since  1
a1

1
a2

1
a3

u1 x2 x3
x2 u2 x1
x3 x1 u3

d1 d2
d3

 =

d1u1

a1

d2x2

a1

d3x3

a1
d1x2

a2

d2u2

a2

d3x1

a2
d1x3

a3

d2x1

a3

d3u3

a3

 ,

if ai, di ∈ o× and λ = a1d1 = a2d2 = a3d3, then by (2.8)

ρ3(ι(diag(a1, d1),diag(a2, d2),diag(a3, d3)))fΦ(χ)

=ω̂

(
d1d2d3
λ2

)
χ

(
(d1d2d3)

2

λ3

)
χ1

(
a2
d3

)
χ2

(
a1
d3

)
χ3

(
a1
d2

)
fΦ(χ)

=ω̂

(
d1d2d3
λ2

)
(µ1ν2ν3)

(
a2
d3

)
(ν1µ2ν3)

(
a1
d3

)
(ν1ν2µ3)

(
a1
d2

)
fΦ(χ)

=ω̂

(
d1d2d3
λ2

)
ω1

(
a2
d3

)
ω2

(
a1
d3

)
ω3

(
a1
d2

)
fΦ(χ)

3∏
i=1

νi

(
ai
di

)

=fΦ(χ)

3∏
i=1

ωi(ai)
−1νi

(
ai
di

)
= fΦ(χ)

3∏
i=1

µi(ai)
−1νi(di)

−1.

Let w ∈ Sym3(p
2n). If fΦ(gn−(w), χ) ̸= 0, then since gn−(w) ∈ P3J3n(z) with z ∈ Sym3(p

−n) and since

n(z)n−(−w) =
(
13 − zw 03

−w (13 − wz)−1

)
n((13 − zw)−1z),

we have g ∈ P3J3n(Sym3(p
−n)). We see by the identity above that

fΦ(J3n(z)n
−(w), χ) = fΦ(J3n((13 + zw)−1z), χ) = fΦ(J3n(z), χ)

for z ∈ Sym3(p
−n) and w ∈ Sym3(p

2n). We conclude that fΦ(χ) is fixed by right translation by n−(Sym3(p
2n)).

The proof is complete by K(1)
0 (pm) = n(o)d(o×)m(o×)n−(pm). □

2.4. The p-adic zeta integral.

Proposition 2.3. If n ≥ max{1, c(χ), c(µi), c(νi) | i = 1, 2, 3}, then

Z(W
(n)
1 ,W

(n)
2 ,W

(n)
3 , fΦ(χ)) = (1 + q−1)−3

3∏
j=1

(
βj
qαj

)n

× (χν1ν2ν3)(−1)γ
(
1

2
, π1 ⊗ χν2ν3,ψ

)−1 ∏
i=2,3

γ

(
1

2
, χν1νiµ5−i,ψ

)−1

,

where αi = µi(ϖ) and βi = νi(ϖ).

Proof. We associate to fi ∈ I(µi, νi) a function W (fi) ∈ W (πi) by

W (g, fi) =

∫
F

fi(J1n(u)g)ψ(−u) du = lim
k→∞

∫
p−k

fi(J1n(u)g)ψ(−u) du.

Here the limit stabilizes and the integral makes sense for any fi ∈ πi. The integral W factors through the
quotient I(µi, νi) ↠ St ⊗ µiα

1/2
F when µiν

−1
i = α−1

F . Let fordi ∈ I(µi, νi) be such that fordi (g) = 0 unless
g ∈ B2J1U2 and such that fordi (J1n(x)) = Io(x) for x ∈ F . One can easily check

W ord
i =W (fordi ).
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For i = 2, 3 we put

f ′i = ρ(mn)f
ord
i ∈ I(µi, νi), W ′

i =W (f ′i).

Recall that mn = diag(ϖn, ϖ−n). Then

Z(W
(n)
1 ,W

(n)
2 ,W

(n)
3 , f) =

∫
U0Z\H

W
(n)
1 (g1)W

′
2(g2)W

′
3(g3)f(ι0(g1, g2, g3)) dg1dg2dg3.

Observe that
W

(n)
1 (g1)W

′
2(g2)W

′
3(g3) =

∫
U0

W1(u0(g1, g2, g3); f
′
2, f

′
3) du0,

where
W1(g1, g2, g3; f

′
2, f

′
3) =W

(n)
1 (g1)f

′
2(J1g2)f

′
3(J1g3).

Substituting this expression, we are led to

Z(W
(n)
1 ,W

(n)
2 ,W

(n)
3 , fΦ(χ)) =

∫
Z\H

W1(g; f
′
2, f

′
3) fΦ(ι0(g), χ) dg.

Define a function F on SL2(F ) by

F(g) =
∫
SL2(F )2

f ′2(J1g2)f
′
3(J1g3)fΦ(ι0(g, g2, g3), χ) dg2dg3.

Let T ′ = m(F×) be the diagonal torus of SL2(F ). Then

Z(W
(n)
1 ,W

(n)
2 ,W

(n)
3 , fΦ(χ)) =

∫
F×

d×a

∫
T ′\ SL2(F )

W
(n)
1 (t(a)g)

∫
SL2(F )2

f ′2(J1t(a)g2)f
′
3(J1t(a)g3)fΦ(ι0(t(a)g, t(a)g2, t(a)g3), χ) dg2dg3dg

=

∫
F×

∫
T ′\ SL2(F )

W
(n)
1 (t(a)g)χ(a)ν2(a)ν3(a)F(g) dgd×a(2.9)

by (2.1). To justify the manipulations we show that the integral∫
F×

∫
SL2(o)

∫
F

|W (n)
1 (t(a)k)χ(a)ν2(a)ν3(a)F(n(x)k)|dxdkd×a

is convergent for Reχ≫ 0. The integral∫
F×
|W (n)

1 (t(a)k)χ(a)ν2(a)ν3(a)|d×a

is absolutely convergent. We frequently use the integration formula∫
SL2(F )

h(g) dg =
ζ(2)

ζ(1)

∫
F

∫
F

∫
F×

h(m(a)n−(u)n(x)) d×adudx

for an integrable function h on SL2(F ). Observe that

F(g) =ζ(2)
2

ζ(1)2

∫
F 2

dx2dx3 f
′
2(J1n(x2))f

′
3(J1n(x3))

∫
F×2

∏
i=2,3

(νiµ
−1
i )(ai)

d×ai
|ai|

×
∫
F 2

fΦ(ι0(g,m(a2)n
−(u2)n(x2),m(a3)n

−(u3)n(x3)), χ) du2du3.

Recall that

t(a) =

(
a 0
0 1

)
, m(a) =

(
a 0
0 a−1

)
, n(x) =

(
1 x
0 1

)
, n−(u) =

(
1 0
u 1

)
.

Observe that
f ′i(J1n(x)) = fordi (J1mnn(xϖ

−2n)) = βn
i α

−n
i qnIp2n(x).

Lemma 2.2 shows that

ρ3(ι(12,n(x2),n(x3))J3)fΦ(χ) = ρ3(J3)fΦ(χ) (x2, x3 ∈ p2n).
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It follows that F(g) equals the product of f ′
2(J1)f

′
3(J1)

q4n(1+q−1)2 and∫
F×2⊕F 2

fΦ(ι0(g,m(a2)n
−(u2),m(a3)n

−(u3)), χ)
∏
i=2,3

νi(ai)d
×ai

µi(ai)|ai|
dui.

In particular, F(n−(u)n(x)) equals the product of f ′
2(J1)f

′
3(J1)

q4n(1+q−1)2 and

∫
F×2⊕F 2

Φ

 x −a2 −a3
−a2 −u2 −a2a3u
−a3 −a2a3u −u3

 ∏
i=2,3

(ω̂χ2νiµ
−1
i )(ai)|ai|d×aidui

=

∫
F×2⊕F 2

φ1(−a2a3u)φ2(−a2)φ3(−a3)ϕ1(x)ϕ3(−u2 − a22u)ϕ2(−u3 − a23u)
∏
i=2,3

(ω̂χ2νiµ
−1
i )(ai)|ai|d×aidui

by (2.6). Its integral over x, u ∈ F converges absolutely if Reχ is large.
Recall the functional equations

γ

(
1

2
, π1 ⊗ χ,ψ

)∫
F×

W1(t(a)g)χ(a)d
×a =

∫
F×

W1(t(a)J
−1
1 g)(χω1)

−1(a)d×a,

γ(s, χ,ψ)

∫
F×

φ(a)χ(a)|a|s d×a =

∫
F×

φ̂(a)χ(a)−1|a|1−s d×a(2.10)

for every W1 ∈ W (π1) and φ ∈ S(F ). It follows from (2.9) that

γ

(
1

2
, π1 ⊗ χν2ν3,ψ

)
Z(W

(n)
1 ,W

(n)
2 ,W

(n)
3 , fΦ(χ))

=

∫
F×

∫
T ′\ SL2(F )

W
(n)
1 (t(a)J−1

1 g)(χν2ν3ω1)(a)
−1F(g) dgd×a

=

∫
F×

∫
F

W
(n)
1 (t(a)J−1

1 n(x))(χν2ν3ω1)(a)
−1Fψ(a, x) dxd×a,(2.11)

where

Fψ(a, x) = (1 + q−1)−1

∫
F

F(n−(u)n(x))ψ(−au) du.

We have seen that

q4n(1 + q−1)3

f ′2(J1)f
′
3(J1)

Fψ(a, x) =
∫
F×2

ω̂(a2a3)χ(a2a3)
2|a2a3|2φ3(−a2)φ2(−a3)

×
∫
F

φ1(−a2a3u)ψ(au)duϕ1(x)
∏
i=2,3

νi(ai)d
×ai

µi(ai)|ai|

∫
F

ϕi(ui) dui

=ϕ1(x)

∫
F×2

φ̂1

(
a

a2a3

) ∏
i=2,3

ϕ̂i(0)(ω̂χ
2νiµ

−1
i )(ai)φ5−i(−ai) d×ai.

If xu ̸= −1, then

J1n(x)n
−(u) = m((1 + ux)−1)n(−(1 + xu)u)J1n((1 + xu)−1x),

which implies that

ρ(n−(u))ford1 = ford1 , π1(n
−(u))W ord

1 =W ord
1

for u ∈ pn. If ϕ1(x) ̸= 0, then since x ∈ p−1,

W
(n)
1 (t(a)J1n(x)) =W ord

1 (t(a)mnn
−(−ϖ2nx)) = q−nβn

1 α
−n
1 ν1(a)|a|1/2Io(aϖ2n).
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We conclude by (2.11) that

γ

(
1

2
, π1 ⊗ χν2ν3,ψ

)
Z(W

(n)
1 ,W

(n)
2 ,W

(n)
3 , fΦ(χ))

=

∫
F×

∫
F

W
(n)
1 (t(a)J−1

1 n(x))(χν2ν3ω1)(a)
−1 f

′
2(J1)f

′
3(J1)

q4n(1 + q−1)3
Fψ(a, x) dxd×a

=

∫
F×

W
(n)
1 (t(a)J−1

1 )(χν2ν3ω1)(a)
−1 f

′
2(J1)f

′
3(J1)

q4n(1 + q−1)3

∫
F

Fψ(a, x) dxd×a

=
f ′2(J1)f

′
3(J1)

q4n(1 + q−1)3
ϕ̂1(0)ϕ̂2(0)ϕ̂3(0)

∫
F×3

W
(n)
1 (t(a)J−1

1 )

(χν2ν3ω1)(a)
φ̂1

(
a

a2a3

)
d×a

∏
i=2,3

(ω̂χ2νiµ
−1
i )(ai)φ5−i(−ai) d×ai.

The last integral is equal to

ω̂(−1)
∫
F×3

W
(n)
1 (t(aa2a3)J1)

(χν2ν3ω1)(a)
φ̂1(a) d

×a
∏
i=2,3

(χνiµ5−i)(ai)φ5−i(ai) d
×ai

=ω̂(−1)W (n)
1 (J1)

∫
F×3

ν1(aa2a3)

(χν2ν3ω1)(a)
|aa2a3|1/2Io(aa1a2ϖ2n)φχµ1ν2ν3(−a) d×a

∏
i=2,3

(χνiµ5−i)(ai)φ5−i(ai) d
×ai

=ω̂(−1)W (n)
1 (J1)(χµ1ν2ν3)(−1)

∏
i=2,3

∫
F×

φ5−i(ai)(χν1νiµ5−i)(ai)|ai|1/2 d×ai.

In the last line we employ the fact that if φ5−i(ai) ̸= 0, then ai ∈ p−n. The proof is now complete by
f ′i(J1) = βn

i α
−n
i qn, W (n)

1 (J1) = βn
1 α

−n
1 q−n and the functional equation (2.10). □

2.5. Degenerate Whittaker functions at p. Let Ξp be a subset of Sym3(F ) which consists of symmetric
matrices whose the diagonal entries belong to p and whose off-diagonal entries belong to 1

2o
×.

Proposition 2.4. Let B = (bij) ∈ Sym3(F ). Put yi = bjk whenever {i, j, k} = {1, 2, 3}. Then

WB(fΦ(χ)) = χ(8y1y2y3)

3∏
i=1

µi(2yi)Io×(2yi)Ip(bii)
∏

j∈{1,2,3}∖{i}

νj(2yi).

In particular, WB(fΦ(χ)) ̸= 0 if and only if B ∈ Ξp.

Proof. Observe that

WB(fΦ(χ)) =

∫
Sym3(F )

fΦ(J3n(z), χ)ψ(− tr(Bz)) dz = Φ̂(−B)(2.12)

for any Φ ∈ S(Sym3(F )). We have

Φ̂

−
b11 y3 y2
y3 b22 y1
y2 y1 b33

 =

3∏
i=1

φ̂i(−2yi)ϕ̂i(−bii) = φχµ1ν2ν3
(2y1)φχν1µ2ν3

(2y2)φχν1ν2µ3
(2y3)

3∏
i=1

Ip(bii)

by definition. □

2.6. Restatements. We rewrite Propositions 2.3 and 2.4 in a form which is suitable for our later discussion.
Suppose that πi is a subrepresentation of I(µi, νi) with µi unramified. Thus ωi = µiνi coincides with νi on
o×. Let

W̆i(diag(a, 1)) = νi(a)
−1|a|1/2Io(a).

Definition 2.5. We associate to the quadruplet of characters of o×

D = (χ, ω1, ω2, ω3)

a holomorphic section fD,s = fΦD (χω̂α
s
F ) of I3(ω̂−1, χω̂αs

F ) by

ΦD

u1 x3 x2
x3 u2 x1
x2 x1 u3

 =

3∏
i=1

Îp(ui)φ̂χωi(xi).
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For each quadruplet (χ0, χ1, χ2, χ3) of characters of o×, valued in a commutative ring R we set

QB(χ0, χ1, χ2, χ3) := χ0(8b12b23b13) · χ1(2b23)χ2(2b13)χ3(2b12)IΞp
(B).

Given a section fs of I3(ω̂−1, χω̂αs
F ), we are interested in the quantity

(2.13) Z∗
p(fs) =

Z(ρ(tn)W̆1, ρ(tn)W̆2, ρ(tn)W̆3, fs)

L
(
s+ 1

2 , π1 × π2 × π3 ⊗ χ
) 3∏

i=1

ζ(1)

ζ(2)

(
ωi(ϖ)q

µi(ϖ)2

)n

.

Proposition 2.6. Notations and assumptions being as above, we have

ρ3(ι(g1, g2, g3))fD,s = fD,s

3∏
i=1

ω↓
i (gi), g1, g2, g3 ∈ K(1)

0 (p2n)

if det g1 = det g2 = det g3 and n ≥ max{1, c(χ), c(ωi)}. Moreover,

WB(fD,s) = QB(D), Z∗
p(fD,s) = χ(−1)Ep

(
s+

1

2
, π1 × π2 × π3 ⊗ χ

)
,

where

Ep(s, π1 × π2 × π3 ⊗ χ)−1 =L(s, π1 × π2 × π3 ⊗ χ)γ(s, π1 ⊗ χµ2µ3,ψ)
∏
i=2,3

γ(s, χµ1µiν5−i,ψ).

Proof. Since ωi coincides with νi on o×, we apply Proposition 2.4 and get the formula for WB(fD,s) by
replacing πi, µi, ωi, νi, χ by π∨

i ≃ πi⊗ω
−1
i , ω−1

i , µ−1
i , ν−1

i , χω̂, respectively. Proposition 2.3 applied to W̆ ord
i

and I3(ω̂−1, χω̂) gives

Z(ρ(tn)W̆1, ρ(tn)W̆2, ρ(tn)W̆3, fD,s) = (1 + q−1)−3
3∏

i=1

(
νi(ϖ)−1

qµi(ϖ)−1

)n

× χ(−1)γ
(
s+

1

2
, π∨

1 ⊗ (χω̂)ν−1
2 ν−1

3 ,ψ

)−1 ∏
i=2,3

γ

(
s+

1

2
, (χω̂)ν−1

1 ν−1
i µ−1

5−i,ψ

)−1

,

from which the formula for Z∗
p(s) readily follows. □

We will use the following lemma to achieve the functional equation of the p-adic L-function in §7.7.

Lemma 2.7. Put χ̆ = χ−1ω̂−1. Then

Ep(1− s, π1 × π2 × π3 ⊗ χ̆) = ω̂(−1)Ep(s, π1 × π2 × π3 ⊗ χ)ε(s, π1 × π2 × π3 ⊗ χ,ψ).

Proof. Since πi ⊗ ω−1
i ≃ π∨

i , we get

Ep(s, π1 × π2 × π3 ⊗ χ̆)−1 =L(s, π∨
1 × π∨

2 × π∨
3 ⊗ χ)γ(s, π∨

1 ⊗ χν2ν3,ψ)
∏
i=2,3

γ(s, χν1νiµ5−i,ψ),

where πi ≃ I(µi, νi). By definition we arrive at

ε(s, π1 × π2 × π3 ⊗ χ,ψ)L(s, π1 × π2 × π3 ⊗ χ)−1Ep (1− s, π1 × π2 × π3 ⊗ χ̆)−1

=γ(s, π1 × π2 × π3 ⊗ χ,ψ)γ(1− s, π∨
1 ⊗ χµ2µ3,ψ)

∏
i=2,3

γ(1− s, χµ1µiν5−i,ψ).

The statement can now be deduced from multiplicativity and the functional equation of gamma factors. □

3. Computation of the local zeta integral: the ramified case

Recall that St denotes the Steinberg representation of GL2(F ). Let πi be either an irreducible unramified
principal series representation or the Steinberg representation. Since

(3.1) Z(W1 ⊗ χ1,W2 ⊗ χ2,W3 ⊗ χ3, f) = Z(W1,W2,W3, f ⊗ (χ1χ2χ3) ◦ ν3)
for characters χ1, χ2, χ3 of F×, where

(Wi ⊗ χi)(gi) =Wi(gi)χi(det gi), (f ⊗ χ ◦ ν3)(g) = f(g)χ(ν3(g)),
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there is no harm in assuming that πi ≃ I(α−ti
F ,αti

F ) with ti ∈ C or πi ≃ St. When πi ≃ I(α−ti
F ,αti

F ), we
denote the unique Whittaker function which takes the value 1 on GL2(o) by W 0

i ∈ W (πi) and let W±
i ∈ W (πi)

be the unique Whittaker function characterized by

W±
i (t(a)) = |a|(±2ti+1)/2Io(a)

for a ∈ F×. When πi ≃ St⊗αsi
F , we define W+

i ∈ W (St⊗αsi
F ) by

W+
i (t(a)) = |a|si+1Io(a)

and set ti = si +
1
2 to be uniform. We define fordi ∈ I(α−ti

F ,αti
F ) as before. Recall that W+

i =W (fordi ). Put

η1 =

(
0 −1
ϖ 0

)
, W±

i = πi(η1)W
±
i , W0

i = πi(η1)W
0
i .

Lemma 3.1. If πi is an irreducible unramified principal series, then

W 0
i = q1/2

W+
i −W

−
i

q−ti − qti
.

Proof. The relation W±
i =W 0

i −q(±2ti−1)/2W0
i implies the stated identity in view of πi(η1)W0

i =W 0
i . □

Fix an unramified character χ = αs
F of F×. We will abbreviate I3(χ) = I3(1, χ). Take Φ = ISym3(o)

and
put h0(χ) = fΦ(χ). Since

P3J3n(Sym3(o)) = P3J3K
(3)
0 (p) = P3K

(3)
0 (p)J3K

(3)
0 (p),

the restriction of the section h0(χ) to GSp6(o) is the characteristic function of K(3)
0 (p)J3K

(3)
0 (p). In particular,

ρ3(k)h
0(χ) = h0(χ)

for k ∈ K(3)
0 (p) (cf. Lemma 2.2).

Lemma 3.2. Assume that π1 ≃ St. Then

Z(W+
1 ,W

+
2 ,W

+
3 , h

0(χ)) = − qs−2

(1 + q−1)3
ζ(s+ 1 + t2 + t3)

∏
i=2,3

ζ(s+ 1 + ti − t5−i).

Remark 3.3. Lemma 3.2 is compatible with the computation [GK92]. Let Φ0(χ) ∈ I3(χ) be the function
whose restriction to GSp6(o) is the characteristic function of K(3)

0 (p). Put η3 = ι(η1, η1, η1). Then

η3K
(3)
0 (p)η−1

3 = K
(3)
0 (p), h0(χ) = q3+3sρ3(η3)Φ

0(χ)

by Lemma 3.1 of [GK92]. We obtain

Z(W+
1 ,W

+
2 ,W

+
3 , h

0(χ)) =q3+3sZ(W+
1 ,W

+
2 ,W

+
3 ,Φ

0).

When π1 ≃ π2 ≃ π3 ≃ St, Proposition 4.2 of [GK92] gives

Z(W+
1 ,W

+
2 ,W

+
3 ,Φ

0) = −(q + 1)−3q−2s−2L

(
s+

1

2
,St× St× St

)
.

Proof. On account of (2.9) we have

Z(W+
1 ,W

+
2 ,W

+
3 , h

0(χ)) =

∫
F×

∫
T ′\ SL2(F )

W+
1 (t(a)g)|a|s+t2+t3F ′(g) dgd×a.

Put f ′′i = πi(t(ϖ))fordi . Since

f ′′i (J1n(x)) = fordi (J1t(ϖ)n(x/ϖ)) = q(1−2ti)/2Ip(x),
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we get

F ′(g) = (1 + q−1)−2

∫
F 2

dx2dx3 f
′′
2 (J1n(x2))f

′′
3 (J1n(x3))

∫
F×2

∏
i=2,3

|ai|2ti
d×ai
|ai|

×
∫
F 2

h0(ι0(g,m(a2)n
−(u2)n(x2),m(a3)n

−(u3)n(x3)), χ) du2du3

=

∫
F×2⊕F 2

h0(ι0(g,m(a2)n
−(u2),m(a3)n

−(u3)), χ)

∏
i=2,3 |ai|2ti−1d×aidui

q1+t2+t3(1 + q−1)2
.

In view of (2.6)

F ′(n−(u)n(x)) =

∫
F×2⊕F 2

Φ

 x −a2 −a3
−a2 −u2 −a2a3u
−a3 −a2a3u −u3

 ∏i=2,3 |ai|1+2s+2tid×aidui

q1+t2+t3(1 + q−1)2

= q−1−t2−t3(1 + q−1)−2Io(x)
∫
o2

Io(a2a3u)
∏
i=2,3

|ai|1+2s+2tid×ai.

Owing to (2.11) we arrive at

γ

(
s+

1

2
, π1 ⊗αt2+t3

F ,ψ

)
Z(W+

1 ,W
+
2 ,W

+
3 , h

0(χ))

=

∫
F×

∫
F

W+
1 (t(a)J−1

1 n(x))|a|−s−t2−t3F ′
ψ(a, x) dxd

×a,

where

F ′
ψ(a, x) = (1 + q−1)−1

∫
F

F ′(n−(u)n(x))ψ(−au) du

= q−1−t2−t3(1 + q−1)−3Io(x)
∫
o2

Io
(

a

a2a3

) ∏
i=2,3

|ai|2s+2tid×ai.

We conclude that

q1+t2+t3(1 + q−1)3γ

(
s+

1

2
, π1 ⊗αt2+t3

F ,ψ

)
Z(W+

1 ,W
+
2 ,W

+
3 , h

0(χ))

=

∫
F×

∫
F

dxd×a
W+

1 (t(a)J−1
1 n(x))

|a|s+t2+t3
Io(x)

∫
o2

Io
(

a

a2a3

) ∏
i=2,3

|ai|2s+2tid×ai

=

∫
F×

d×a
W+

1 (t(a2a3a)J
−1
1 )

|a2a3a|s+t2+t3

∫
o2

Io(a)
∏
i=2,3

|ai|2s+2tid×ai

=

∫
o

d×a
W+

1 (t(a2a3aϖ))

|a|s+t2+t3

∏
i=2,3

∫
o

|ai|s+ti−t5−id×ai

=
ζ
(
1
2 − s+ t1 − t2 − t3

)
q(2t1+1)/2

∏
i=2,3

ζ

(
s+

1

2
+ t1 + ti − t5−i

)
.

Assume that π1 ≃ St. Then t1 = 1
2 and

γ

(
s+

1

2
, π1 ⊗αt2+t3

F ,ψ

)
= −q−s−t2−t3

ζ(1− s− t2 − t3)
ζ(s+ 1 + t2 + t3)

,

from which we complete our proof. □

Proposition 3.4. Let πi be either an unramified principal series representation or the Steinberg representation
twisted by an unramified character. Set Wi = W 0

i in the former case and Wi = W+
i in the latter case. Put
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W̆i =Wi ⊗ ω
−1
i . If not all πi are principal series, then for an unramified character χ of F×

Z(W1,W2,W3, h
0(χ)) = Z(W̆1, W̆2, W̆3, h

0(χω̂))

= −(ω̂2χ4)(ϖ)q(1 + q)−3 L
(
1
2 , π1 × π2 × π3 ⊗ χ

)
ε
(
1
2 , π1 × π2 × π3 ⊗ χ,ψ

) .
Remark 3.5. If π1 and π2 are irreducible unramified principal series representations, then

L(s, π1 × π2 × St) = L

(
s+

1

2
, π1 × π2

)
, ε(s, π1 × π2 × St,ψ) = q−4s+2ω1(ϖ)2ω2(ϖ)2,

L(s, π1 × St× St) = L(s, π1)L(s+ 1, π1), ε(s, π1 × St× St,ψ) = q−4s+2ω1(ϖ)2,

L(s,St× St× St) = ζ

(
s+

3

2

)
ζ

(
s+

1

2

)2

, ε(s,St× St× St,ψ) = −q−(10s−5)/2.

Proof. In view of [Ike89, Lemma 3.1] and (3.1) we may assume that π1 ≃ St and πi is a quotient of
I(α−ti

F ,αti
F ) for i = 2, 3. If all πi are discrete series representations, then since W1 = −W1, the result follows

from Lemma 3.2. Let χ = αs
F and π3 ≃ I(α−t3

F ,αt3
F ). Lemma 3.2 gives

Z(W+
1 ,W

+
2 ,W

±
3 , h

0(χ)) =
qs−2

(1 + q−1)3
L(s+ 1 + t2, π3)ζ(s+ 1− t2 ± t3).

Thanks to Lemma 3.1 we obtain

Z(W+
1 ,W

+
2 ,W

0
3 , h

0(χ))

qs−2L(s+ 1 + t2, π3)
= q1/2

ζ(s+ 1− t2 + t3)− ζ(s+ 1− t2 − t3)
(1 + q−1)3(q−t3 − qt3)

= (1 + q−1)−3q1/2q−s−1+t2L(s+ 1− t2, π3).

If π2 ≃ I(α−t2
F ,αt2

F ), then

Z(W+
1 ,W

+
2 ,W

0
3 , h

0(χ)) = (1 + q−1)−3q(2t2−5)/2L(s+ 1, π2 × π3),

and so again by Lemma 3.1,

Z(W+
1 ,W

0
2 ,W

0
3 , h

0(χ)) = (1 + q−1)−3L(s+ 1, π2 × π3)
qt2−2 − q−t2−2

q−t2 − qt2
= −(1 + q−1)−3q−2L(s+ 1, π2 × π3).

If π2 ≃ St, we obtain the claimed result by letting t2 = 1
2 . □

4. Computation of the local zeta integral: the archimedean case

4.1. Archimedean sections. We define the sign character sgn : R× → {±1} by sgn(x) = x
|x| . Let Sym+

n (R)

denote the set of positive definite symmetric matrices of rank n. The Siegel upper half-space Hn of degree
n consists of complex symmetric matrices of size n with positive definite imaginary part. The Lie group
GSp+n (R) = {g ∈ GSpn(R) | νn(g) > 0} acts on the space Hn by gZ = (AZ +B)(CZ +D)−1, where Z ∈ Hn

and g =

(
A B
C D

)
with matrices A,B,C,D of size n. Let C∞(Hn) be the space of C-valued smooth functions

on the upper half complex plane Hn. For an integer k and f ∈ C∞(Hn) we define

f |kg(Z) = f(gZ)J(g, Z)−k, J(g, Z) = νn(g)
−n/2 det(CZ +D).(4.1)

Put i =
√
−11n. We will identity the compact unitary group U(n) = {u ∈ GLn(C) | ūtu = 1n} with the

fixator {g ∈ Spn(R) | g(i) = i} via the map g 7→ J(g, i).
For 1 ≤ i, j ≤ 3 and u ∈ U(3) we define Hij(u) to be the (i, j)-entry of the matrix utu. By definition, Hij

is a function on O(3)\U(3), and hence we can extend it to a unique function on GSp6(R) such that

Hij(n(z)m(A, ν)u) = Hij(u) (z ∈ Sym3(R), A ∈ GL3(R), ν ∈ R×, u ∈ U(3)).

A parity type is a triplet λ = (λ1, λ2, λ3) of integers which belongs to one of the following triplets

λ ∈ {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 2)} .
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Fix a parity type λ and a character χ∞ of R×. Put

Hλ :=


1 if λ = (0, 0, 0),

H23 if λ = (0, 1, 1),

H12 if λ = (1, 0, 1),

H12H23 if λ = (1, 1, 2).

For each integer k we define f [k,λ]∞,s ∈ I3(sgnk−λ1 , χ∞ sgnk−λ1 αs
R) by

f [k,λ]s,∞ (g) := Hλ(g)χ∞(ν3(g)) · J(g, i)−k+λ1 |J(g, i)|k−λ1−2s−2
.

Since

Hij(gι(κθ1 , κθ2 , κθ3)) = e
√
−1(θi+θj)Hij(g), κθ =

(
cos θ sin θ
− sin θ cos θ

)
,

we have

(4.2) f [k,λ]s,∞ (gι(κθ1 , κθ2 , κθ3)) = f [k,λ]s,∞ (g)e
√
−1{kθ1+(k−λ2)θ2+(k−λ3)θ3}.

4.2. Archimedean degenerate Whittaker functions. For a positive integer m we put

Γm(s) = πm(m−1)/4
m−1∏
j=0

Γ

(
s− j

2

)
.

If h is positive definite and α, β ∈ C, then the integral

ω(h;α, β) =
det(h)β

Γ3(β)

∫
Sym+

3 (R)

e− tr(uh) det(u+ 13)
α−2(detu)β−2 du

is absolutely convergent for Reβ > 2 and can be continued to a holomorphic function on C×C by Theorem
3.1 of [Shi82]. It is convenient to introduce the function ω⋆(h;α, β) given by

(4.3)
ω⋆(h;α, β) := det(4πh)α−2 · ω(4πh;α, β)

=
1

Γ3(β)

∫
Sym+

3 (R)

e− tr(u) det(u+ 4πh)α−2(detu)β−2 du.

It follows from this expression that if α ∈ Z and α ≥ 2, then ω⋆(h;α, β) is a polynomial function in h of degree
at most α− 2 and makes sense for an arbitrary symmetric matrix h.

Lemma 4.1. For x ∈ Sym3(R) we have

H23(J3n(x)) = 2
√
−1(x11x23 − x12x13 +

√
−1x23)/ det(x+ i),

H12(J3n(x)) = 2
√
−1(x12x33 − x23x13 +

√
−1x12)/ det(x+ i).

Proof. The Iwasawa decomposition of J3n(x) can be written as

J3n(x) =

(
zt ∗
0 z−1

)(
zx −z
z zx

)
, z ∈ GL3(R)

with ztz = (13 + x2)−1. Let u = z(x− i) ∈ U(3). Then utu = (x− i)(x+ i)−1. We denote the adjugate of a
matrix A ∈ M3(R) by adj(A). Since A · adj(A) = (detA)13, we have

utu = det(x+ i)−1(x− i)adj(x+ i) = −2
√
−1 det(x+ i)−1adj(x+ i) + 13.

By definition we find that

H23(J3n(x)) = H23(u) = det(x+ i)−1 · 2
√
−1 det

(
x11 +

√
−1 x12

x13 x23

)
= det(x+ i)−1 · 2

√
−1(x11x23 − x12x13 +

√
−1x23).

One can compute H12(J3n(x)) in the same way. □
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Definition 4.2. We associate to a parity type λ the differential operator Dλ on T = (Tij) ∈ Sym3(R) by

D(0,1,1) :=
1

2π2
√
−1
{∂13∂12 − ∂23(∂11 − 4π)}, D(0,0,0) = id,

D(1,0,1) :=
1

2π2
√
−1
{∂12∂33 − ∂23∂13}, D(1,1,2) := D(0,1,1)D(1,0,1).

Here

∂ij :=
∂

∂Tij
·

{
1 if i = j,
1
2 if i ̸= j.

Definition 4.3. For each parity type λ and an integer λ2 ≤ r ≤ k − 2 we put M = k − r − 2 and define

KM
Dλ

(T ;u) := Dλ{det(4πT + u)M},

ωM
Dλ

(T, s) :=
1

Γ3(s)

∫
Sym+

3 (R)

e− tr(u)KM
Dλ

(T ;u)(detu)s−2 du = Dλω
⋆(T ;M + 2, s).

Lemma 4.4. Let A ∈ GL3(R)+ and B ∈ Sym3(Q) with detB ̸= 0. If B is positive definite, then

lim
s7→ k−λ1

2 −r−1

WB(m(A), f [k,λ]s,∞ ) = C
[k,r,λ]
1 e−2π tr(AtBA)

ωM
Dλ

(AtBA;λ2 − r)
(detA)k−λ1−2r−4

,

where

C
[k,r,λ]
1 = (

√
−1)k−λ2

23(3+2r−k−λ2)π6

Γ3(k − r)
.

If B is not positive definite, then for any integer 0 ≤ r < k − 1,

lim
s→ k−λ1

2 −r−1

WB(m(A), f [k,λ]s,∞ ) = 0.

Proof. For each parity type λ we define another differential operator Dλ on Sym3(R) by

D(0,1,1) :=
1

2π2
√
−1
{∂13∂12 − ∂23(∂11 − 2π)}, D(0,0,0) := id,

D(1,0,1) :=
1

2π2
√
−1
{∂12(∂33 + 2π)− ∂23∂13}, D(1,1,2) := D(0,1,1)D(1,0,1).

It should be remarked that by Lemma 4.1

Dλ(e
−2π

√
−1 tr(Tx)) = det(x+ i)λ1 det(x− i)λ2Hλ(J3n(x))e

−2π
√
−1 tr(Tx).

Recall that
WB(m(A), f [k,λ]s,∞ ) = (detA)−2s−2WAtBA(16, f

[k,λ]
s,∞ ),

which reduces our computation to the case A = 13. We see that

WB(16, f
[k,λ]
s,∞ ) =

∫
Sym3(R)

det(x+ i)−α0 det(x− i)−β0Hλ(J3n(x))e
−2π

√
−1 tr(Bx) dx

=Dλ(ξ(13, T ;α0 + λ1, β0 + λ2))|T=B

with α0 = s+ 1 + k−λ1

2 and β0 = s+ 1− k−λ1

2 . On the other hand, for any h ∈ Sym3(R), we have

ξ(13, h;α, β) = (
√
−1)3(β−α) (2π)

6e−2π tr(h)

23Γ3(α)Γ3(β)

∫
u>0, u>−2πh

e−2 tr(u) det(u+ 2πh)α−2(detu)β−2 du

by [Shi82, (1.29)]. If h is positive definite, then the last integral equals 23(2−α−β)ω⋆(h;α, β) · Γ3(β). Observe
that for every polynomial P on Sym3(R)

Dλ(e
−2π tr(T )P (T )) = e−2π tr(T )DλP (T ).

This proves the case where B is positive definite. If the signature of B is (3−q, q), then Theorem 4.2 of [Shi82]
gives that a holomorphic function ω̃(α, β) such that

ξ(13, B;α, β) =
Γp

(
β − q

2

)
Γq

(
α− p

2

)
Γ3(α)Γ3(β)

· ω̃(α, β).
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Thus ξ(13, B; k − r,−r) = 0 for 0 ≤ r ≤ k − 2 unless B is positive definite. □

4.3. The constant term of WB(m(diag(
√
y1,
√
y2,
√
y3)), f

[k,λ]
s,∞ ) as a polynomial of y−1

1 . Given y =

diag(y1, y2, y3) ∈ R3
+, we put A = diag(

√
y1,
√
y2,
√
y3) and define

W
[k,r,λ]
B (y) := (y1y2y3)

r−k+2√y1λ1
√
y2

λ1+λ2
√
y3

2λ1+λ2 · ωM
Dλ

(AtBA, λ2 − r).

Now we write

ω⋆(T ;M + 2, s) =
∑

0≤j1,j2,j3≤M

cj1j2j3T
j3
12T

j1
23T

j2
13 , cj1j2j3 ∈ C[T11, T22, T33],

where T = (Tij) ∈ Sym+
3 (R). Since

ω⋆(εtTε;M + 2, s) = ω⋆(T ;M + 2, s), ε = diag(−1, 1, 1)

in view of the expression (4.3), we get cj1j2j3 = (−1)j2+j3cj1j2j3 . Thus cj1j2j3 = 0 unless j2 ≡ j3 (mod 2). By
symmetry we conclude that cj1j2j3 = 0 unless j1 ≡ j2 ≡ j3 (mod 2). Moreover, we can write

Tλ1
23 T

λ2
12 T

λ1+λ2
13 ω⋆

Dλ
(T, s) =

∑
0≤j1,j2,j3≤M, j1≡j2≡j3 (mod 2)

aj1j2j3T
j3
12T

j1
23T

j2
13 , aj1j2j3 ∈ C[T11, T22, T33].

Thus we can write

(4.4) W
[k,r,λ]
B (diag(y1, y2, y3)) =

∑
0≤a,b,c≤M

Q
[k,λ]
a,b,c(B, r)y

−a
1 y−b

2 y−c
3 .

We shall determine the coefficient Q[k,λ]
0,b,c(B, r) of W[k,r,λ]

B (y) for matrices B with zero diagonal entries

B =

 0 b3 b2
b3 0 b1
b2 b1 0

 .

Let Y be the matrix with variables Y1, Y2, Y3 given by

Y =

 0
√
Y1Y2

√
Y1Y3√

Y1Y2 0
√
Y2Y3√

Y1Y3
√
Y2Y3 0

 .

For two functions f, g : R+ → C and c ∈ R we say that f(y) = g(y) + o(yc) if limy→∞
f(y)−g(y)

yc = 0.

Lemma 4.5. The polynomial KM
Dλ

( Y
4π ;u

)
∈ C[

√
Y1,
√
Y2,
√
Y3, u] in Definition 4.3 has the form

KM
Dλ

((4π)−1Y;u) = C
[k,r,λ]
2 cλ(Y2, Y3;u) · Y

M−λ1
2

1 + o(Y
M−λ1

2
1 )

with C [k,r,λ]
2 ∈ C and cλ(Y2, Y3;u) ∈ C[

√
Y2,
√
Y3, u] give by

C
[k,r,λ]
2 =

(2M + λ1)!

(2M)!
· 23(λ1+λ2)−λ1M !

(
√
−1)λ2−λ1(M − λ1 − λ2)!

,

cλ(Y2, Y3;u) =
(
−u22Y3 − u33Y2 + 2Y2Y3 + 2u23

√
Y2Y3

)M−λ1−λ2

·
√
Y2

λ1+λ2
√
Y3

λ2

.

Proof. This is proved by a direct computation. Note that

∂11 det(T + u) =(T22 + u22)(T33 + u33)− (T23 + u23)
2,

∂12 det(T + u) =− (T12 + u12)(T33 + u33) + (T23 + u23)(T13 + u13),

∂13 det(T + u) =− (T13 + u13)(T22 + u22) + (T12 + u12)(T23 + u23),

∂23 det(T + u) =− (T23 + u23)(T11 + u11) + (T12 + u12)(T13 + u13),

∂33 det(T + u) =(T11 + u11)(T22 + u22)− (T12 + u12)
2.

Put

∆ = det(T + u), R = (−u22Y3 − u33Y2 + 2Y2Y3 + 2u23
√
Y2Y3)Y1.
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Since ∆|T=Y = R+ o(Y1), we have

KM
D(0,1,1)

((4π)−1Y;u)

=(2π2
√
−1)−1 · (4π)2{∂13∂12 − ∂23(∂11 − 1)}∆M |T=Y

≡− 8
√
−1[M(M − 1)RM−2(∂13∆∂12∆− ∂23∆∂11∆) +MRM−1{∂13∂12 − ∂23(∂11 − 1)}∆]|T=Y

≡− 8
√
−1MRM−1∂23∆|T=Y

≡− 8
√
−1MRM−1

√
Y2Y3Y1 (mod o(YM

1 )),

which verifies the case λ = (0, 1, 1). When λ = (1, 0, 1), we have

KM
D(1,0,1)

((4π)−1Y;u)

≡− 8
√
−1{M(M − 1)RM−2(∂12∆∂33∆− ∂13∆∂23∆) +MRM−1(∂12∂33∆− ∂13∂23∆)}|T=Y

≡− 8
√
−1
{
M(M − 1)RM−2(−R

√
Y1Y2) +MRM−1

(
−3

2

√
Y1Y2

)}
≡4
√
−1M(2M + 1)RM−1

√
Y1Y2 (mod o(Y

M− 1
2

1 ))

as claimed. Since
D(0,1,1)∆

M |T=Y = −8
√
−1M∆M−1T12T13|T=Y + o(YM

1 ),

we have

KM
D(1,1,2)

((4π)−1Y;u) ≡32M(M − 1)(2M − 1)RM−2
√
Y1Y2Y1

√
Y2Y3

− 64M(M − 1)∆M−2(T13∂33∆− T12∂23∆)|T=Y (mod o(Y
M− 1

2
1 )),

which proves the case λ = (1, 1, 2). □

Lemma 4.6. Let F (T ) be a polynomial in T = (Tij) ∈ Sym3(R). Then we have∫
Sym+

3 (R)

e− tr(u)F (u)
(detu)s−2

Γ3(s)
du = F (−∂ij)(detT )−s|T=13

.

Proof. If T is positive definite and Re s > 2, then∫
Sym+

3 (R)

e− tr(Tu) (detu)
s−2

Γ3(s)
du = (detT )−s

by [Shi81, (1.14)]. The declared formula follows immediately from the fact that

F (−∂ij)(e− tr(Tu)) = F (u)e− tr(Tu). □

Now let k ≥ l ≥ m be a set of balanced integers. We say that (k, l,m) has the parity type λ if

λ1, λ2 ∈ {0, 1}, λ1 ≡ l −m (mod 2), λ2 ≡ k − l (mod 2), λ3 = λ1 + λ2.

Lemma 4.7. Let λ be the parity type of k ≥ l ≥ m and r an integer such that k − l+m+λ1

2 ≤ r ≤ l+m
2 − 2.

Put

M = k − r − 2, b =
1

2
(k − l − λ2), c =

1

2
(k −m− λ3), n =M +

1

2
(l +m− λ1).

Then we have
Q

[k,λ]
0,b,c(B, r) = w0,b,c · (b1b2b3)nb−k

1 b−l
2 b−m

3 ,

where

w0,b,c = (4π)3M−b−c−2λ1−λ22M+λ1+2λ2−b−c (
√
−1)λ1−λ2(2M + λ1)!M !

(2M)!(M − λ1 − λ2 − b− c)!
(r − λ2)!

b!c!(r − λ2 − b− c)!
.
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Proof. Substitute Yi = 4π b1b2b3
b2i

yi into the matrix Y. Then Y = 4πAtBA and

W
[k,r,λ]
B (y) =

∑
a,b,c

Q
[k,λ]
a,b,c(B, r)(4π)

a+b+cY −a
1 Y −b

2 Y −c
3 · bb+c−a

1 ba+c−b
2 ba+b−c

3 .

On the other hand,

W
[k,r,λ]
B (y) =

(
(4π)3b1b2b3
Y1Y2Y3

)M √
Y1

λ1
√
Y2

λ1+λ2
√
Y3

2λ1+λ2

(4π)2λ1+λ2bλ1+λ2
1 bλ1

2

ω⋆
Dλ

((4π)−1Y, λ2 − r)

by definition. The equations above give a complex number w0,b,c such that

Q
[k,λ]
0,b,c(B, r) = w0,b,c · (b1b2b3)nb−k

1 b−l
2 b−m

3 .

Our task is to determine w0,b,c. It is the coefficient of YM−λ1−λ2−b
2 YM−λ1−λ2−c

3 in the polynomial

(4π)3M−b−c−2λ1−λ2

√
Y2

λ1+λ2
√
Y3

λ2

∫
Sym+

3 (R)

e− tr(u)C
[k,r,λ]
2 cλ(Y2, Y3;u)

(detu)s−2

Γ3(s)
du

∣∣∣∣
s=λ2−r

=(4π)3M−b−c−2λ1−λ2C
[k,r,λ]
2

×
∫
Sym+

3 (R)

e− tr(u)
(
−u22Y3 − u33Y2 + 2Y2Y3 + 2u23

√
Y2Y3

)M−λ1−λ2 (detu)s−2

Γ3(s)
du|s=λ2−r

by Lemma 4.5. Put

L =M − λ1 − λ2, r1 = r − λ2.

Notice that b ≤ c by assumption. The coefficient of Y L−b
2 Y L−c

3 in the last integral is given by

b∑
i=0

2L−b−c(−1)b+c · L!
(b− i)!(c− i)!(L− b− c)!(2i)!

∫
Sym+

3 (R)

e− tr(u)ub−i
33 uc−i

22 (2u23)
2i (detu)

s−2

Γ3(s)
du|s=−r1

=

b∑
i=0

2L−b−c · L!22i

(b− i)!(c− i)!(L− b− c)!(2i)!
∂b−i
33 ∂c−i

22 ∂2i23(T22T33 − T 2
23)

r1 |T22=T33=1,T23=0

=

b∑
i=0

2L−b−c · L!22i

(b− i)!(c− i)!(L− b− c)!(2i)!

r1∑
j=0

(
r1
j

)
∂b−i
33 ∂c−i

22 ∂2i23T
r1−j
22 T r1−j

33 (−T 2
23)

j |T22=T33=1,T23=0

=

b∑
i=0

2L−b−c · L!
(b− i)!(c− i)!(L− b− c)!

(
r1
i

)
(−1)i∂b−i

33 ∂c−i
22 (T r1−i

22 T r1−i
33 )|T22=T33=1

=
2L−b−c · L!
(L− b− c)!

b∑
i=0

(
r1
i

)(
r1 − i
b− i

)(
r1 − i
c− i

)
(−1)i

in view of Lemma 4.6. The last summation equals

r1!

(r1 − b)!b!

b∑
i=0

(
b

i

)(
r1 − i
r1 − c

)
(−1)i = r1!

(r1 − b)!b!
·
(

r1 − b
r1 − b− c

)
=

r1!

b!c!(r1 − b− c)!
,

where we can deduce this equality by equating the terms of degree r1 − c of the identity
b∑

i=0

(
b

i

)
(1 +X)r1−i(−1)i = (1 +X)r1

(
1− 1

1 +X

)b

= (1 +X)r1−bXb,

Finally, we see that w0,b,c equals

(4π)3M−b−c−2λ1−λ2C
[k,r,λ]
2

2M−λ1−λ2−b−c · (M − λ1 − λ2)!
(M − λ1 − λ2 − b− c)!

(r − λ2)!
b!c!(r − λ2 − b− c)!

by putting together the above computations, which completes our proof. □
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4.4. The archimedean zeta integral. Let V± be the weight raising/lowering operator given by

V± :=
1

(−8π)

((
1 0
0 −1

)
⊗ 1±

(
0 1
1 0

)
⊗
√
−1
)
∈ Lie(GL2(R))⊗R C.

For each integer k we denote by σk the (limit of) discrete series of GL2(R) of the minimal weight ±k and by
Wk the Whittaker function of σk characterized by

Wk(diag(y, 1)) = yk/2e−2πyIR+(y).

Set W [t]
k = V t

+Wk. It follows from (6.2) below that

(4.5) W
[t]
k (diag(y, 1)) =

t∑
j=0

(−4π)j−t

(
t

j

)
Γ(t+ k)

Γ(j + k)
· y k

2+je−2πyIR+(y).

Fix a triplet (k, l,m) of positive integers such that k ≥ l ≥ m and k < l +m. Put J∞ =

(
1 0
0 −1

)
. Define

Z∞(s) := Z

(
ρ(J∞)Wk, ρ(J∞)W

[
k−l−λ2

2

]
l , ρ(J∞)W

[
k−m−λ3

2

]
m , f [k,λ]s,∞

)
,

where λ is the parity type of (k, l,m). Recall that

L(s, σk × σl × σm) =ΓC

(
s+

k + l +m− 3

2

)
ΓC

(
s+

k − l +m− 1

2

)
× ΓC

(
s+

k + l −m− 1

2

)
ΓC

(
s+

m+ l − k − 1

2

)
.

Put

γ⋆(k,m,l)(s) = (
√
−1)k+2λ2+λ1

Γ
(
s+ k−m−l

2 + 1
)

Γ
(
s− k−λ1

2 + λ2 + 1
) · Γ

(
s+ k+λ1

2

)
Γ
(
s+ k+λ1

2 + 1
) · π3s+1(4π)l+m− k−λ1

2 +λ2

4Γ
(
s+ m+l−k

2

)
Γ(2s+ k)

.

Lemma 4.8. If λ is the parity type of (k, l,m), then

Z∞(s) = (χ∞ω̂∞)(−1) vol(SO(2))3 ·
γ⋆(k,m,l)(s)

25+(k+m+l)
L

(
s+

1

2
, σk × σl × σm

)
.

Proof. For a = (a1, a2, a3) ∈ R3
+ and x ∈ R, we set

z = x+
√
−1(a21 + a22 + a23),

t(a) = diag

((
a1 0
0 a−1

1

)
,

(
a2 0
0 a−1

2

)
,

(
a3 0
0 a−1

3

))
,

u(x) = diag

((
1 x

3

0 1

)
,

(
1 x

3

0 1

)
,

(
1 x

3

0 1

))
.

When x ̸= 0, the Iwasawa decomposition of ηι(u(x)t(a)) can described as follows: Put

P =

 a21 a1a2 a1a3
a1a2 a22 a2a3
a1a3 a2a3 a23

 .

We write ηι(u(x)t(a)) = n(z)m(A)u with z ∈ Sym3(R), A ∈ GL3(R) and u =

(
D −C
C D

)
∈ U(3). Since

D−1C = x−1P , we can choose U ∈ GL3(R) so that

U tU = (x213 + P 2)−1, u =

(
Ux −UP
UP Ux

)
∈ U(3).

Put u = Ux−
√
−1UP . Then utu = (x13 − P

√
−1)(x13 + P

√
−1)−1. By direct computations we get

detA = a1a2a3 |z|−1
, detu =

z̄

|z|
, H23(u) = −2

√
−1a2a3

z
, H12(u) = −2

√
−1a1a2

z
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(see [GK92, (6.7), (6.8)]). Put

b =
1

2
(k − l − λ2), c =

1

2
(k −m− λ3), (s,k, l,m) =

(
s+

λ3
2
, k − λ2, l,m− λ1

)
.

It follows that

f [k,λ]s,∞ (ηι(u(x)t(a)d(−1))) = χ∞(−1)(−1)k−λ1

(
2
√
−1a1a2

z̄

)λ1
(
−2
√
−1a2a3

z

)λ2
(
a1a2a3
|z|

)2s+2(
z

|z|

)k−λ1

= χ∞(−1)2λ1+λ2
√
−1λ2−λ1

(a1a2a3)
2s+2a−λ2

1 a−λ1
3 |z|−2s−2−k(−z)k.

From (4.2) and (4.5) 2Z∞(s)
vol(SO(2))3 equals∫

R

∫
R3

+

Wk(n(x/3)m(a1))W
[b]
l (n(x/3)m(a2))W

[c]
m (n(x/3)m(a3))f

[k,λ]
s,∞ (ηι(u(x)t(a)d(−1))) dx

3∏
j=1

d×aj

|aj |2

=χ∞(−1)2λ1+λ2
√
−1λ2−λ1

(−4π)−b−c
∞∑

A=0

∞∑
B=0

(−4π)A+B

(
b

A

)(
c

B

)
Γ(l + b)

Γ(l +A)

Γ(m+ c)

Γ(m+B)

×
∫
R

∫
R3

+

a2s+k
1 a2s+l+2A

2 a2s+m+2B
3 |z|−2s−2−k

(−z)ke2π
√
−1xe−2π(a2

1+a2
2+a2

3) dx

3∏
j=1

d×aj .

Put α = s+ 1 + k
2 and β = s+ 1− k

2 . The last integral equals

(−2π
√
−1)α(2π

√
−1)β

Γ(α)Γ(β)

∫
R4

+

ak+2s
1 al+2A+2s

2 am+2B+2s
3

(1 + t)α−1tβ−1

e4π(a
2
1+a2

2+a2
3)(1+t)

dt

3∏
j=1

d×aj .

We here use the identity∫
R

e−2π
√
−1x dx

(x+
√
−1y)α(x−

√
−1y)β

=
(−2π

√
−1)α(2π

√
−1)β

Γ(α)Γ(β)

∫
R+

(t+ 1)α−1tβ−1

e2πy(1+2t)
dt

(see [GK92, (6.11)]). The quadruple integral above equals

1

(4π)
k+l+m

2 +3s+A+B

∫
R4

+

ak+2s
1 al+2A+2s

2 am+2B+2s
3 (1 + t)α−1tβ−1

ea
2
1+a2

2+a2
3(1 + t)

k+l+m
2 +3s+A+B

dt

3∏
j=1

d×aj

=
Γ
(
k
2 + s

)
Γ
(
l
2 + s+A

)
Γ
(
m
2 + s+B

)
23(4π)

k+l+m
2 +3s+A+B

∫
R+

(1 + t)α−1tβ−1

(1 + t)
k+l+m

2 +3s+A+B
dt.

Recall that ∫ ∞

0

(1 + t)α−1tβ−1

(1 + t)
k+l+m

2 +3s+A+B
dt =B

(
β, 1− α− β +

k+ l+m

2
+ 3s+A+B

)
=
Γ(β)Γ

(
1− α− β + k+l+m

2 + 3s+A+B
)

Γ
(
1− α+ k+l+m

2 + 3s+A+B
) .

We finally get

Z∞(s) = vol(SO(2))3χ∞(−1)2λ1+2λ2−2−4s−3kπ2−s+
λ2+λ3−3k

2 (−
√
−1)k+λ1(−1)λ2+b+c

×
Γ
(
s+ k

2

)
Γ
(
s+ k

2 + 1
)Γ(l + b)Γ(m+ c)

∑
A,B

(−1)A+B

(
b

A

)(
c

B

)
Γ∞(s;A,B)

Γ(l +A)Γ(m+B)
,

where

Γ∞(s;A,B) =
Γ
(
s+ l

2 +A
)
Γ
(
s+ m

2 +B
)
Γ(s+ k+l+m

2 − 1 +A+B)

Γ(2s+ l+m
2 +A+B)

.
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Lemma 3 of [Orl87] with α = l = l, t = s+ l
2 , β = B + m−l

2 and N = b gives

Γ(l + b)

b∑
A=0

(−1)A
(
b

A

)
Γ
(
s+ l

2 +A
)
Γ(s+ k+l+m

2 − 1 +A+B)

Γ(l +A)Γ(2s+ l+m
2 +A+B)

=(−1)b
Γ
(
s+ l

2

)
Γ
(
s+B + m

2 + l + b− 1
)
Γ
(
s+B + m

2 + b
)
Γ
(
s− l

2 + 1
)

Γ
(
2s+B + m+l

2 + b
)
Γ
(
s+B + m

2

)
Γ
(
s− l

2 − b+ 1
) .

It follows that

Γ(l + b)Γ(m+ c)
∑
A,B

(−1)A+B

(
b

A

)(
c

B

)
Γ∞(s;A,B)

Γ(l +A)Γ(m+B)

=(−1)b
Γ
(
s+ l

2

)
Γ
(
s− l

2 + 1
)

Γ
(
s− l

2 − b+ 1
) Γ(m+ c)

∑
B

(−1)B
(
c

B

)
Γ
(
s+B + m

2 + l + b− 1
)
Γ
(
s+B + m

2 + b
)

Γ
(
2s+B + m+l

2 + b
)
Γ(m+B)

.

Again we apply Lemma 3 of [Orl87] with α = m, t = s+ m
2 + b, β = l−m

2 − b and N = c to obtain

Γ(m+ c)
∑
B

(−1)B
(
c

B

)
Γ
(
s+B + m

2 + l + b− 1
)
Γ
(
s+B + m

2 + b
)

Γ
(
2s+B + m+l

2 + b
)
Γ(m+B)

=(−1)c
Γ
(
s+ m

2 + b
)
Γ
(
s+ l

2 +m+ c− 1
)
Γ
(
s+ l

2 + c
)
Γ
(
s+ m

2 + b−m+ 1
)

Γ
(
2s+ m+l

2 + b+ c
)
Γ
(
s+ l

2

)
Γ
(
s+ m

2 −m+ b− c+ 1
) .

Then we can see that the double summation equals

(−1)b+cΓ
(
s+ m

2 + b
)
Γ
(
s+ l

2 +m+ c− 1
)
Γ
(
s+ l

2 + c
)
Γ
(
s+ c− l

2 + 1
)

Γ
(
s− l

2 − b+ 1
)
Γ
(
2s+ m+l

2 + b+ c
)

=(−1)b+cΓ
(
s+ k−l+m

2

)
Γ
(
s+ k+l+m

2 − 1
)
Γ
(
s+ k−l−m

2 + 1
)
Γ
(
s+ k−m+l

2

)
Γ(2s+ k)

· 1

Γ
(
s− k

2 + 1
) .

The last equality uses b = k−l
2 , m+ c = k+m

2 , s+ c = s+ k−m
2 and 2s+ k+m = 2s+ k +m. □

5. Classical and p-adic modular forms

5.1. Conventions. Besides the standard symbols Z, Q, R, C, Zℓ, Qℓ we denote by R+ the group of strictly
positive real numbers. Fix algebraic closures of Q and Qp, denoting them by Q and Qp. Let A be the ring of
adèles of Q and µn the group of n-th roots of unity in Q. Given a place v of Q, we write Qv for the completion
of Q with respect to v. We shall regard Qv and Q×

v as subgroups of A and A× in a natural way. We denote
by the formal symbol ∞ the real place of Q and do not use ℓ for the infinite place. Let ψQ : A/Q → C×

be the additive character with the archimedean component ψ∞(x) = e2π
√
−1x and ψℓ : Qℓ → C× the local

component of ψQ at ℓ.
Denote by αQv

= | · |v the absolute value on Qv normalized so that αR is the usual absolute value on R,
and |ℓ|ℓ = ℓ−1 if v = ℓ is finite. For a ∈ A×, let av ∈ Q×

v denote the v-component of a. Define the character
αA = Q×\A× → R+ by αA(a) = |a|A =

∏
v |av|v. Recall the local Riemann zeta functions

ζ∞(s) = π−s/2Γ(s/2), ζℓ(s) = (1− ℓ−s)−1.

Define the completed Riemann zeta function ζQ(s) by ζQ(s) =
∏

v ζv(s). In particular, ζQ(2) = π
6 . For each

rational prime ℓ, let vℓ : Q×
ℓ → Z denote the valuation normalized so that vℓ(ℓ) = 1. To avoid possible

confusion, denote by ϖℓ = (ϖℓ,v) ∈ A× the idèle defined by ϖℓ,ℓ = ℓ and ϖℓ,v = 1 if v ̸= ℓ.
If ω : A× → C× is a quasi-character, then we denote by ωv : Q×

v → C× the local component of ω at v. If
χ : (Z/NZ)× → Q

×
is a Dirichlet character modulo N , then we denote the ℓ-exponent of the conductor of χ

by cℓ(χ) ≤ vℓ(N). We can associate to a Dirichlet character χ of conductor N a Hecke character χA, called
the adèlic lift of χ, which is the unique finite order Hecke character χA : Q×R+\A×/(1 +N Ẑ) ∩ Ẑ× → Q

×

of conductor N such that χA(ϖℓ) = χ(ℓ)−1 for any prime number ℓ ∤ N .
Fix an odd prime number p and an isomorphism ιp : Qp ≃ C once and for all.
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Definition 5.1 (Teichmüller and cyclotomic characters). The action of GQ on µp∞ := lim
−→n

µpn gives rise to a

continuous homomorphism εcyc : GQ → Z×
p , called the p-adic cyclotomic character, defined by σ(ζ) = ζεcyc(σ)

for every ζ ∈ µp∞ . The character εcyc splits into the p-adic Teichmüller character ω : GQ ↠ Gal(Q(µp)/Q)→
Z×

p and ⟨·⟩ : GQ ↠ Gal(Q∞/Q)
∼→ 1 + pZp. The character ω sends σ to the unique solution in Z×

p of
ω(σ)p = ω(σ) ≡ εcyc(σ) (mod p). We often regard ω and ⟨·⟩s with s ∈ Zp as characters of Z×

p . We sometimes
identify ω with the Dirichlet character ιp ◦ ω : (Z/pZ)× → C×.

Remark 5.2. (1) Let χ be a Dirichlet character. If χv stands for the restriction of χA to Q×
v , then

χℓ(ℓ) = χ(ℓ)−1 for each prime number ℓ ∤ N . Furthermore, if N is a power of p and b is not divisible
by p, then χp(b) = χ(b).

(2) Let χ be a character of Z×
p of finite order, which can be regard as either a complex character or a

p-adic character via composition with ιp. We view χ as a character of GQ via composition with the
cyclotomic character εcyc. Let Qab =

∪∞
N=1 Q(µN ) be the maximal abelian extension of Q and

recQ : Q×R+\A× ∼−→ Gal(Qab/Q)

the geometrically normalized reciprocity law map, i.e., recQ(ϖℓ)|Q(µp∞ ) = Frobℓ for ℓ ̸= p. Since
χ factors through the quotient Z×

p ↠ (Z/pc(χ)Z)×, we can identify χ with a Dirichlet character of
p-power conductor. Then since χA(ϖℓ) = χ(ℓ)−1 = χ(εcyc(Frobℓ)) for ℓ ̸= p,

χA = χ ◦ εcyc ◦ recQ, χp|Z×
p
= χ.

5.2. Differential operators and nearly holomorphic modular forms. Let GL+
2 (R) be the subgroup of

GL2(R) consisting of matrices with positive determinant and H1 the upper half plane on which GL+
2 (R) acts

via fractional transformation. Define a subgroup of SL2(Z) of finite index

Γ0(N) =

{(
a b
c d

)
∈ GL2(Z)

∣∣∣∣ N |c}.
The Lie group GL+

2 (R) acts on the complex vector space of complex valued functions f on H1 as in (4.1).
The Maass-Shimura differential operators δk and λz on C∞(H1) are given by

δk =
1

2π
√
−1

(
∂

∂z
+

k

2
√
−1y

)
, λz = − 1

2π
√
−1

y2
∂

∂z

with y = Im z ∈ R+. Let χ : (Z/NZ)× → C× be a Dirichlet character, which we extend to a character

χ↓ : Γ0(N) → C× by χ↓
((

a b
c d

))
= χ(d). For a non-negative integer m the space N [m]

k (N,χ) of nearly

holomorphic modular forms of weight k, level N and character χ consists of slowly increasing functions
f ∈ C∞(H1) such that λm+1

z f = 0 and f |kγ = χ↓(γ)f for γ ∈ Γ0(N) (cf. [Hid93, page 314]). Put Nk(N,χ) =∪∞
m=0N

[m]
k (N,χ) (cf. [Hid93, (1a), page 310]). By definition N [0]

k (N,χ) =Mk(N,χ) is the space of elliptic
modular forms of weight k, level N and character χ. Denote the space of elliptic cusp forms in Mk(N,χ) by
Sk(N,χ). Put δmk = δk+2m−2 · · · δk+2δk. If f ∈ Nk(N,χ), then δmk f ∈ Nk+2m(N,χ) (see [Hid93, page 312]).

Define an open compact subgroup of GL2(Ẑ) by

U0(N) =

{
g ∈ GL2(Ẑ)

∣∣∣∣ g ≡ (∗ ∗0 ∗

)
(mod N Ẑ)

}
.

We extend χA to a character χ↓
A of U0(N) by χ↓

A(g) =
∏

ℓ|N χ↓
ℓ (gℓ) (see (2.4) for the definition of χ↓

ℓ ). Let
Ak(N,χ

−1
A ) be the space of functions Φ : GL2(A)→ C such that V m

− Φ = 0 for some m and such that

Φ(zγgκθu) = χA(z)−1Φ(g)e
√
−1kθχ↓

A(u)−1 (z ∈ A×, γ ∈ GL2(Q), θ ∈ R, u ∈ U0(N)).

Definition 5.3 (The adèlic lift). With each nearly holomorphic modular form f ∈ Nk(N,χ) we can associate
a unique automorphic form Φ(f) ∈ Ak(N,χ

−1
A ) defined by the equation

Φ(f)(γg∞u) := (f |kg∞)(
√
−1) · χ↓

A(u)−1
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for γ ∈ GL2(Q), g∞ ∈ GL+
2 (R) and u ∈ U0(N) (cf. [Cas73, §3]). We call Φ(f) the adèlic lift of f . Conversely,

we can recover f from Φ(f) by

f(x+
√
−1y) = y−k/2Φ(f)

((
y x
0 1

))
.

Recall that V± are the operators as defined in §4.4. By definition we have

Φ(δkf) = V+Φ(f), Φ(λzf) = V−Φ(f).

We define the Whittaker coefficient and the constant term of Φ ∈ Ak(N,χ
−1
A ) by

W (g, Φ) =

∫
Q\A

Φ(n(x)g)ψQ(x) dx, a0(g, Φ) =

∫
Q\A

Φ(n(x)g) dx.

5.3. Ordinary I-adic modular forms. For any subring A ⊂ C the space Sk(N,χ;A) consists of elliptic cusp
forms f =

∑∞
n=1 a(n, f)q

n ∈ Sk(N,χ) such that a(n, f) ∈ A for all n. For every subring A ⊂ Qp containing
Z[χ] we define the space of cusp forms over A by

Sk(N,χ;A) = Sk(N,χ;Z[χ])⊗Z[χ] A.

Here we view χ as a p-adic Dirichlet character via ι−1
p .

Definition 5.4 (p-stabilized newforms). We say that a normalized Hecke eigenform f ∈ Sk(Np, χ) is an
(ordinary) p-stabilized newform (with respect to ιp : C ≃ Qp) if f is new outside p and the eigenvalue of Up,
i.e. the p-th Fourier coefficient ιp(a(p, f)), is a p-adic unit. The prime-to-p part N ′ of the conductor of f is
called the tame conductor of f . There is a unique decomposition χ = χ′ωaϵ with a ∈ Z/(p− 1)Z, where χ′ is
a Dirichlet character modulo N ′ and ϵ is a character of 1 + pZp. We call χ′ωa the tame nebentypus of f .

Let f◦ =
∑∞

n=1 a(n, f
◦)qn ∈ Sk(Np, χ) be a primitive Hecke eigenform of conductor Nf◦ . We call f◦

ordinary if ι−1
p (a(p, f◦)) is a p-adic unit. If this is the case, then precisely one of the roots of the polynomial

X2 − a(p, f◦)X + χ(p)pk−1 (call it αp(f)) satisfies |ιp(αp(f))|p = 1. We associate to an ordinary primitive
form f◦ the p-stabilized newform by

(5.1) f(τ) = f◦(τ)− χ(p)pk−1

αp(f)
f◦(pτ) ∈ Sk(Nf◦p, χ),

if Nf◦ and p are coprime, and f = f◦ if p divides Nf◦ .
Let O be the ring of integers of a finite extension of Qp and I a normal domain finite flat over Λ =

OJ1 + pZpK. A point Q ∈ Spec I(Qp), a ring homomorphism Q : I→ Qp, is said to be locally algebraic if the
restriction of Q to 1+ pZp is of the form Q(z) = zkQϵQ(z) with kQ an integer and ϵQ(z) ∈ µp∞ . We shall call
kQ the weight of Q and ϵQ the finite part of Q. Let XI be the set of locally algebraic points Q ∈ Spec I(Qp)

of weight kQ ≥ 1. A point Q ∈ XI is said to be arithmetic if kQ ≥ 2. Let X+
I be the set of arithmetic points,

℘Q = KerQ the prime ideal of I corresponding to Q and O(Q) the image of I under Q.
Let N be a positive integer prime to p and χ : (Z/NpZ)× → O× a Dirichlet character modulo Np. An

I-adic cusp form is a formal power series f(q) =
∑∞

n=1 a(n,f)q
n ∈ IJqK with the following property: there

exists an integer af such that for arithmetic points Q ∈ X+
I with kQ ≥ af , the specialization fQ(q) =∑∞

n=1Q(a(n,f))qn is the Fourier expansion of a cusp form fQ ∈ SkQ
(Npe, χω−kQϵQ;O(Q)). Denote by

S(N,χ, I) the space of I-adic cusp forms of tame level N and (even) branch character χ. This space S(N,χ, I)
is equipped with the action of the Hecke operators Tℓ for ℓ ∤ Np as in [Wil88, page 537] and the operators Uℓ

for ℓ | pN given by Uℓ(
∑

n a(n,f)q
n) =

∑
n a(nℓ,f)q

n.
Hida’s ordinary projector eord is defined by

eord := lim
n→∞

Un!
p .

It has a well-defined action on the space of classical modular forms preserving the cuspidal part as well as on
the space S(N,χ, I) (cf. [Wil88, page 537 and Proposition 1.2.1]). The space Sord(N,χ, I) := eordS(N,χ, I) is
called the space of ordinary I-adic forms with respect to χ. Put

Mord
k (N,χ;A) = eordMk(Np

e, χ;A), Sordk (N,χ;A) = eordSk(Npe, χ;A)
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where e is any integer that is greater than the exponent of the p-primary part of the conductor of χ. A key
result in Hida’s theory for ordinary I-adic cusp forms is that if f ∈ Sord(N,χ, I), then for every arithmetic
point Q ∈ X+

I , we have fQ ∈ SordkQ
(N,χω−kQϵQ;O(Q)). We call f ∈ Sord(N,χ, I) a primitive Hida family if

fQ is a cuspidal p-stabilized newform of tame level N for every arithmetic point Q ∈ X+
I .

6. A p-adic family of pull-backs of Siegel Eisenstein series

6.1. Siegel Eisenstein series. We work in adèlic form, which allows us to assemble Eisenstein series out of
local data. Put Kn = U(n)GSp2n(Ẑ). Fix characters χ, ω̂ of Z×

p of finite order and extend them to Hecke
characters χA, ω̂A : Q×\A× → C× by composition with the quotient map Q×R+\A× ≃ Ẑ× ↠ Z×

p . We
regard χ as either a p-adic character or a complex character via composition with ιp. For each place v we
write χv for the restriction of χA to Q×

v . Our setting means that χp = χ and χℓ(ℓ) = χ(ℓ)−1 for ℓ ̸= p. Let

I3(ω̂
−1
A , χAω̂Aα

s
A) = Ind

GSp6(A)
P3(A) (χ2

Aω̂A ⊠ χ−3
A ω̂−1

A αs
A) ≃ ⊗′

vI3(ω̂
−1
v , χvω̂vα

s
Qv

)

be the global degenerate principal series representation of GSp6(A) on the space of right K3-finite functions
f : GSp6(A)→ C satisfying the transformation laws

f(n(z)m(A, ν)g) = ω̂A(ν−1 detA)χA(ν−3(detA)2)
∣∣ν−3(detA)2

∣∣1+s

A
f(g)

for A ∈ GL3(A), ν ∈ A×, z ∈ Sym3(A) and g ∈ GSp6(A). We define global holomorphic sections of
I3(ω̂

−1
A , χAω̂Aα

s
A) similarly. The Eisenstein series associated to a holomorphic section fs of I3(ω̂−1

A , χAω̂Aα
s
A)

is defined by

EA(g, fs) =
∑

γ∈P3(Q)\GSp6(Q)

fs(γg).

Such series is absolutely convergent for Re s > 1 and can be continued to a meromorphic function in s on the
whole plane.

Let k be an integer and λ a parity type. Fix a square-free integer N which is not divisible by p. We write
ω̂ = ω1ω2ω3 as a product of three characters ω1, ω2, ω3 of Z×

p . Set

D = (χ, ω1, ω2, ω3).

Assume that ω̂∞ = sgnk−λ1 . Now we define a holomorphic section of I3(ω̂−1
v , χvω̂vα

s
Qv

) for v ∤ N :

• In the archimedean case we consider the section f [k,λ]s,∞ defined in §4.1;
• In the p-adic case we consider fD,s,p, where the section fD,s,p of I3(ω̂−1

p , χpω̂pα
s
Qp

) is attached to the
quadruplet D in Definition 2.5;

• If ℓ and Np are coprime, then f0s,ℓ is the section with f0s,ℓ(GSp6(Zℓ)) = 1.

Let fs,N be an arbitrary holomorphic section of
⊗

ℓ|N I3(ω̂
−1
ℓ , χℓω̂ℓα

s
Qℓ

) for the moment. We define the
normalized Siegel Eisenstein series

E⋆
A(g, f

[k,λ]
D,s,N ) = L(∞pN)(2s+ 2, χ2

Aω̂A)L(∞pN)(4s+ 2, χ4
Aω̂

2
A)γ⋆(k,l,m)(s)

−1 · EA(g, f
[k,λ]
D,s,N ),

where γ⋆(k,l,m)(s) is defined in §4.4 and f [k,λ]D,s,N is a global holomorphic section of I3(ω̂−1
A , χAω̂Aα

s
A) defined by

f
[k,λ]
D,s,N (g) = f [k,λ]s,∞ (g∞)fs,N ((gℓ)ℓ|N )fD,s,p(gp)

∏
ℓ∤Np

f0s,ℓ(gℓ).

Since fD,s,p is supported in the big cell P3(Qp)J3P3(Qp), we have the Fourier expansion

EA(g, f
[k,λ]
D,s,N ) =

∑
B∈Sym3(Q)

WB(g, f
[k,λ]
D,s,N )(6.1)

if gp ∈ P3(Qp). Recall that for a holomorphic section fs of I3(ω̂−1
A , χAω̂Aα

s
A)

WB(g, fs) =

∫
Sym3(A)

fs(J3n(z)g)ψQ(− tr(Bz)) dz.
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6.2. The Fourier expansion of the pull-back of Eisenstein series. Recall that

Ξp = {(bij) ∈ Sym3(Zp) | b11, b22, b33 ∈ pZp and b12, b23, b31 ∈ Z×
p }.

Now we evaluate its pull-back at s0 = k−λ1

2 − r − 1. Let E
[k,r,λ]
D,N (fs0,N ) : H3

1 → C be the modular form of
weight (k, k − λ2, k − λ3) defined by

E
[k,r,λ]
D,N (x+ y

√
−1, fs0,N ) := lim

s→s0

E⋆
A

(
ι(n(x1)m(

√
y1),n(x2)m(

√
y2),n(x3)m(

√
y3)), f

[k,λ]
D,s,N

)
√
y1

k√y2k−λ2
√
y3

k−λ3

for y = (y1, y2, y3) ∈ R3
+ and x = (x1, x2, x3) ∈ R3.

Since ωi factors through the quotient Z×
p → (Z/pc(ωi)Z)×, we can view ωi as a Dirichlet character. The

polynomial FB,ℓ is defined in §2.2. We here set QN =
∏

ℓ|N Qℓ. Let Sym+
3 denote the set of positive definite

rational symmetric matrices of rank 3.

Proposition 6.1. Put n = max{1, c(χ), c(ωi)}. The pull-back E
[k,r,λ]
D,N (fs0,N ) is a nearly holomorphic cusp

form on H3
1 of level Γ0(Np

2n)3 and nebentypus (ω−1
1 , ω−1

2 , ω−1
3 ) with Fourier expansion given by

E
[k,r,λ]
D,N (fs0,N ) =

C
[k,r,λ]
1

γ⋆(k,l,m)

(
k−λ1

2 − r − 1
) ∑

B∈Sym+
3 ∩Ξp

W
[k,r,λ]
B (y) · QB(D)aB(χ2ω̂, k − 2r − λ1)b[k,r,λ]B,N qb111 qb222 qb333 ,

where

aB(χ
2ω̂, k − 2r − λ1) :=

∏
ℓ∤Np

FB,ℓ(χℓ(ℓ)
2ω̂ℓ(ℓ)ℓ

2r+λ1−k),

b
[k,r,λ]
B,N := lim

s→ k−λ1
2 −r−1

∫
Sym3(QN )

fs,N (J3n(z))ψQ(− tr(Bz)) dz.

Proof. The level and nebentypus are determined by Proposition 2.6. Note that detB ∈ Z×
p for B ∈ Ξp.

In particular, WB(g, f
[k,λ]
D,s,N ) = 0 unless detB ̸= 0. Lemma 4.4 says that WB(g, f

[k,λ]
D,s,N ) = 0 unless B ∈ T+

3 .
We can derive the Fourier expansion formula from (6.1), recalling that local Whittaker functions

lim
s7→ k−λ1

2 −r−1

WB(m(A), f [k,λ]s,∞ ), WB(16, f
0
s,ℓ), WB(16, fD,s,p)

are computed in (2.3), Proposition 2.6 and Lemma 4.4, respectively. □

6.3. Holomorphic and ordinary projections of E
[k,r,λ]
D,N . Recall that λz is the weight-lowering operator

defined in §5.2. We write Hol for the holomorphic projection. Let T+
3 denote the set of positive definite

symmetric half-integral matrices of rank 3.

Definition 6.2. Define a holomorphic section fs,ℓ of I3(ω̂−1
ℓ , χℓω̂ℓα

s
Qℓ

) by letting fs,ℓ = fΦℓ,s with Φℓ =

ISym3(Zℓ). When fs,N =
⊗

ℓ|N fs,ℓ, we write E
[k,r,λ]
D,N = E

[k,r,λ]
D,N (fs0,N ). If B ∈ Sym+

3 , then b[k,r,λ]B,N = 1 by (2.12).
Proposition 6.1 gives

E
[k,r,λ]
D,N =

C
[k,r,λ]
1

γ⋆(k,l,m)

(
k−λ1

2 − r − 1
) ∑

B∈T+
3 ∩Ξp

W
[k,r,λ]
B (y) · QB(D)aB(χ2ω̂, k − 2r − λ1)qb111 qb222 qb333 .

Proposition 6.3. Let λ be the parity type of (k, l,m) and r an integer which satisfies

k − l +m+ λ1
2

≤ r ≤ l +m

2
− 2.

Put n = k − r − 2 + l+m−λ1

2 . Then eord Hol
(
λ

k−l−λ2
2

z2 λ
k−m−λ3

2
z3 E

[k,r,λ]
D,N

)
has the q-expansion

(−1)k+
m+l+λ1

2 +λ2

∑
B=(bij)∈T+

3 ∩Ξp

QB(χε
n
cyc, ω1ε

−k
cyc, ω2ε

−l
cyc, ω3ε

−m
cyc )aB(χ

2ω̂, k − 2r − λ1)qb111 qb222 qb333 .
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Proof. Put b = k−l−λ2

2 and c = k−m−λ3

2 . If f is a holomorphic function on H1, then

λnz (y
−af) =

{
(4π)−nn!

(
a
n

)
· yn−af if n ≤ a,

0 if n > a.

By (4.4) the difference

λbz2λ
c
z3E

[k,r,λ]
D,N (q)− C [k,r,λ]

1

b!c!

(4π)b+c

∑
B

Q
[k,λ]
0,b,c(B, r)QB(D)aB(χ2ω̂, k − 2r − λ1)qb111 qb222 qb333

belongs to (y−1
1 , y−1

2 , y−1
3 )C[y−1

1 , y−1
2 , y−1

3 ]Jq1, q2, q3K. On the other hand, we can write

λbz2λ
c
z3E

[k,r,λ]
D,N (q) = Hol(λbz2λ

c
z3E

[k,r,λ]
D,N )(q) +

∑
i+j+t≥1

δik−ifi(q1)δ
j
l−jgj(q2)δ

t
m−tht(q3),

where fi, gj and ht are holomorphic modular forms. Equating the constant terms of this identity as a
polynomial in y−1

1 , y−1
2 , y−1

3 and employing the relation

(6.2) δtk =

t∑
a=0

(
t

a

)
Γ(t+ k)

Γ(a+ k)
(−4πy)a−t

(
1

2π
√
−1

∂

∂z

)a

(see [Hid93, (3), page 311]), we see that the holomorphic projection Hol(λbz2λ
c
z3E

[k,r,λ]
D,N )(q) equals

C
[k,r,λ]
1

b! c!

(4π)b+c

∑
B

Q
[k,λ]
0,b,c(B, r)QB(D)aB(χ2ω̂, k − 2r − λ1)qb111 qb222 qb333 −

∑
i+j+t≥1

θifi(q1)θ
jgj(q2)θ

tht(q3).

Here θ stands for the Serre’s operator θ(
∑

i aiq
i) =

∑
i iaiq

i. Since eordθ = 0, the q-expansion of the ordinary
projection eord Hol(λbz2λ

c
z3E

[k,r,λ]
D,N )(q) equals

C
[k,r,λ]
1

b! c!

(4π)b+c

∑
B

cB · qb111 qb222 qb333 ,

where

cB = lim
j→∞

Q
[k,λ]
0,b,c(Bj , r)QBj (D)aBj (χ

2ω̂, k − 2r − λ1), Bj :=

pj!b11 b12 b13
b12 pj!b22 b23
b13 b23 pj!b33

 .

Since pj! → 1 in Zℓ as j →∞ for any rational prime ℓ ̸= p, we get

QBj
(D) = QB(D), lim

j→∞
aBj

(χ2ω̂, k − 2r − λ1) = aB(χ
2ω̂, k − 2r − λ1).

Since Q[k,λ]
0,b,c(B, r) is a polynomial in B, we find that

cB = Q
[k,λ]
0,b,c(B∞, r)QB(D)aB(χ2ω̂, k − 2r − λ1), B∞ =

 0 b12 b13
b12 0 b23
b13 b23 0

 .

Applying Lemma 4.7 to Q[k,λ]
0,b,c(B∞, r), we obtain

cB = w0,b,c · 2−3n+k+l+mQB(χε
n
cyc, ω1ε

−k
cyc, ω2ε

−l
cyc, ω3ε

−m
cyc )aB(χ

2ω̂, k − 2r − λ1)
in view of Definition 2.5 of QB . We thus obtain the lemma by noting the equality

(−1)k+
m+l+λ1

2 +λ2γ⋆(k,l,m)

(
k − λ1

2
− r − 1

)
= C

[k,r,λ]
1 b! c!(4π)−b−c2−3n+k+l+m · w0,b,c.

The constant C [k,r,λ]
1 is defined in Lemma 4.4. The equality can be checked by the following items:

• The power of 2:

3(3 + 2r − k − λ2) + {2(k − r)− 3} − 2b− 2c+ (k + l +m− 3n)

+ (7M − 3b− 3c− 3λ1) = −2− k + 2(l +m) + λ1 + 2λ2.

• The power of π: (6− 2)− b− c+ (3M − b− c− 2λ1 − λ2) = −3r + k + l +m+ λ2 − λ1 − 2.
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□

6.4. The modular forms G[n]
k1,k2,k3

(D).

Definition 6.4. Let (k1, k2, k3) be a triplet of positive integers. Put k∗ = max {k1, k2, k3}. We say that
(k1, k2, k3) is balanced if 2k∗ < k1 + k2 + k3. An integer n is said to be critical for (k1, k2, k3) if

k∗ ≤ n ≤ k1 + k2 + k3 − k∗ − 2.

Definition 6.5. Fix a balanced triplet (k1, k2, k3) of positive integers. Take a permutation σ of {1, 2, 3} so
that k∗ = kσ(1) ≥ kσ(2) ≥ kσ(3). Denote the parity type of (kσ(1), kσ(2), kσ(3)) by δ = (δ1, δ2, δ3). For each
critical integer n for (k1, k2, k3) and quadruplet D = (ϵ0, ϵ1, ϵ2, ϵ3) of finite-order p-adic characters of Z×

p we
define the modular form G

[n]
k1,k2,k3

(D) by

G
[n]
k1,k2,k3

(D) := (−1)k+
m+l+λ1

2 +λ2eord Hol

(
λ

k∗−kσ(2)−δ2

2

zσ(2)
λ

k∗−kσ(3)−δ3

2
zσ(3)

E
[k∗,r,δ]
D

)
,

where r =
⌈
k∗+k1+k2+k3

2

⌉
− n− 2 and D = (ιp ◦ ϵ0, ιp ◦ ϵ1, ιp ◦ ϵ2, ιp ◦ ϵ3).

Corollary 6.6. With notation in Definition 6.5, G[n]
k1,k2,k3

(D) is an ordinary cusp form of weight (k1, k2, k3),
level Γ0(Np

∞)3 and nebentypus (ϵ−1
1 , ϵ−1

2 , ϵ−1
3 ) whose q-expansion at the infinity cusp is given by∑

B=(bij)∈T+
3 ∩Ξp

QB(ϵ0ε
n
cyc, ϵ1ε

−k1
cyc , ϵ2ε

−k2
cyc , ϵ3ε

−k3
cyc )aB(ϵ

2
0ϵ1ϵ2ϵ3, 2n− (k1 + k2 + k3) + 4) · qb111 qb222 qb333 .

Proof. The assertion for the Fourier expansion is a direct consequence of Proposition 6.3 by symmetry.
Lemma 6.7 below implies the cuspidality of G[n]

k1,k2,k3
(D). □

Lemma 6.7. Let f ∈ Mord
k (N,χ;A). Assume that a0(g, Φ(f)) = 0 whenever gp ∈ B2(Qp). Then f ∈

Sordk (N,χ;A).

Proof. Out task is to prove that a0(g, Φ(f)) = 0 for all g ∈ GL2(A). Since

a0(γn(x)diag(a, d)gκθ, Φ(f)) = (ad−1)k/2e
√
−1kθa0(gf , Φ(f))

for γ ∈ B2(Q), x ∈ A, a, d ∈ R+ and θ ∈ R, it suffices to show that a0(g, Φ(f)) = 0 for all g ∈ GL2(Ẑ). Since

GL2(Zp) = n−(pZp)B2(Zp) ⊔ n(Zp)J1B2(Zp),

where J1 =

(
0 −1
1 0

)
, we have only to show that a0(hn−(y), Φ(f)) = a0(hJ1, Φ(f)) = 0 for all h ∈ GL2(Ẑ

(p))

and y ∈ pZp. Recall that the operator Up is defined by

[UpΦ](g, f) = p(k−2)/2
∑

x∈Zp/pZp

Φ

(
g

(
ϖp x
0 1

)
, f

)
.

Recall that ϖp ∈ Q̂× is defined by ϖp,p = p and ϖp,ℓ = 1 for ℓ ̸= p. Since(
1 0
y 1

)(
ϖm

p x
0 1

)
=

(
ϖm

p

1+xy
x

1+xy

0 1

)(
1 0

ϖm
p y 1 + xy

)
∈ B2(Qp)U0(N)

for y ∈ pZp, x ∈ Zp and sufficiently large m, we get

a0(hn
−(y),Um

p f) = p(k−2)m/2
∑

x∈Zp/pZp

Φ

(
h

(
ϖm

p

1+xy
x

1+xy

0 1

)
, f

)
= 0

by assumption. It follows that a0(hn
−(y), f) = lim

n→∞
a0(hn

−(y),Un!
p f) = 0. If x ∈ pnZ×

p with n < m, then(
0 −1
1 0

)(
ϖm

p x
0 1

)
=

(
ϖm−n

p −ϖn
px

−1

0 ϖn
p

)(
ϖn

px
−1 0

ϖm−n
p ϖ−n

p x

)
∈ B2(Qp)n

−(pZp).
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One can therefore see that

a0(hJ1,U
m
p f) = p(k−2)m/2a0(hJ1diag(ϖ

m
p , 1), f) = p(k−1)m/2a0(diag(1, ϖ

−m
(p) )hJ1, f),

from which we conclude that

a0(hJ1, f) = lim
n→∞

p(k−1)n!/2a0(diag(1, ϖ
−n!
(p) )hJ1, f) = 0.

Here ϖ(p) ∈ Ẑ×
p is defined by ϖ(p),p = 1 and ϖ(p),ℓ = p for ℓ ̸= p. □

6.5. The p-adic interpolation of G[n]
k1,k2,k3

(D). We give the construction the p-adic triple L-function in this
subsection. Let u = 1 + p ∈ 1 + pZp be a topological generator. We identify OJGal(Q∞/Q)K with OJXK
where X = [u]− 1 with the group-like element [u] in Λ. Put

Λ = OJGal(Q∞/Q)K, Λ3 = OJX1, X2, X3K, Λ4 = Λ3JT K.
For each ℓ ∤ Np and B ∈ T+

3 , let FB,ℓ(X) ∈ Z[X] be as defined in (2.3). Let αX : Z×
p → ZpJXK× be

the character αX(z) = ⟨z⟩X = (1 +X)logp z/ logp u. Let χ = (χ1, χ2, χ3) be a triplet of O-valued finite-order
characters of Z×

p . For each a ∈ Z/(p− 1)Z we define the formal power series G(a)χ ∈ Λ4Jq1, q2, q3K by

G(a)χ (X1, X2, X3, T ) =
∑

B=(bij)∈T+
3 ∩Ξp

Q(a)
B (X1, X2, X3, T ) · F (a)

B (X1, X2, X3, T ) · qb111 qb222 qb333 ,

where Q(a)
B and F (a)

B ∈ Λ3JT K are power series given by

Q(a)
B (X1, X2, X3, T ) = ω(8b23b31b12)

a ⟨8b23b31b12⟩T χ1(2b23)
−1 ⟨2b23⟩−1

X1
χ2(2b31)

−1 ⟨2b31⟩−1
X2
χ3(2b12)

−1 ⟨2b12⟩−1
X3
,

F (a)
B (X1, X2, X3, T ) =

∏
ℓ∤pN

FB,ℓ(⟨ℓ⟩(a)X1,X2,X3,T
ℓ−2),

where
⟨ℓ⟩(a)X1,X2,X3,T

:= (ω−2aχ1χ2χ3)(ℓ)ℓ
−2 · ⟨ℓ⟩X1

⟨ℓ⟩X2
⟨ℓ⟩X3

⟨ℓ⟩−2
T ∈ Λ×

4 .

Here the set Xbal
Λ4

consists of (Q,P ) = (Q1, Q2, Q3, P ) ∈ (X+
Λ)

3 × XΛ ⊂ SpecΛ4(Qp) such that (kQ1 , kQ2 , kQ3)
is balanced and kP is critical for (kQ1

, kQ2
, kQ3

).

Proposition 6.8. For every (Q,P ) ∈ Xbal
Λ4

, we have

G(a)χ (Q,P ) = G
[kP ]
kQ1

,kQ2
,kQ3

(ϵPω
a−kP , χ−1

1 ϵ−1
Q1
ωkQ1 , χ−1

2 ϵ−1
Q2
ωkQ2 , χ−1

3 ϵ−1
Q3
ωkQ3 ).

In particular, this implies that

G(a)χ ∈ Sord(N,χ1,OJX1K)⊗̂OS
ord(N,χ2,OJX2K)⊗̂OS

ord(N,χ3,OJX3K)⊗̂OOJT K.
Proof. Set χ := ϵPω

a−kP , ωi = χ−1
i ϵ−1

Qi
ωkQi and ω̂ = ω1ω2ω3. One can check that

Q(a)
B (Q,P ) =

(ϵPω
a)(8b12b23b13) ⟨8b12b23b13⟩kP

(χ1ϵQ1)(2b23)(χ2ϵQ2)(2b13)(χ3ϵQ3)(2b12) ⟨2b23⟩
kQ1 ⟨2b31⟩kQ2 ⟨2b12⟩kQ3

= QB(χε
kP
cyc, ω1ε

−kQ1
cyc , ω2ε

−kQ2
cyc , ω3ε

−kQ3
cyc ),

⟨ℓ⟩(a)X1,X2,X3,T
(Q,P ) = (ω−2aχ1χ2χ3)(ℓ)ℓ

−2 · (ϵQ1
ϵQ2

ϵQ3
ϵ−2
P ω2kP−kQ1

−kQ2
−kQ3 )(ℓ)−1ℓkQ1

+kQ2
+kQ3

−2kP

= χ2
ℓ(ℓ) |ℓ|

2kP+2
ω̂ℓ(ℓ) |ℓ|−(kQ1

+kQ2
+kQ3

)
,

F (a)
B (Q,P ) = aB(χ

2ω̂, 2kP − (kQ1
+ kQ2

+ kQ3
) + 4)

(see Definition 2.5 of QB). Recall the convention that χℓ(ℓ) = ιp(χ(ℓ))
−1 and ω̂ℓ(ℓ) = ιp(ω̂(ℓ))

−1 (see Remark
5.2). From Corollary 6.6, we deduce the interpolation formula and that

(6.3) G(a)χ (Q,P ) ∈ SordkQ1
(N,ω−1

1 ;O(Q1))⊗̂OSordkQ2
(N,ω−1

2 ;O(Q2))⊗̂OSordkQ3
(N,ω−1

3 ;O(Q3))⊗̂OO(P ).

By the control theorem for ordinary Λ-adic forms [Hid93, Theorem 3, p.215], for any arithmetic point Q, the
specialization map X 7→ ukQϵQ(u)− 1 yields an isomorphism

Sord(N,χ,OJXK)/(1 +X − ukQϵQ(u)) ≃ SordkQ
(N,χω−kQϵQ;O(Q)).
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Hence, from (6.3) we find that for all P with kP = 2

G(a)χ (X1, X2, X3, P ) ∈ Sord(N,χ1,OJX1K)⊗̂OS
ord(N,χ2,OJX2K)⊗̂OS

ord(N,χ3,OJX3K)⊗O O(P ).

Now we can deduce the second statement from the above equation combined with the argument in [Hid93,
Lemma 1, page 328]. □

7. Four-variable p-adic triple product L-functions

7.1. Measures. We shall normalize the Haar measures dxv on Qv and d×xv on Q×
v as follows: Let dx∞ denote

the usual Lebesgue measure on R and d×x∞ = dx∞
|x∞|∞ . If v = ℓ is finite, then vol(Zℓ,dxℓ) = vol(Z×

ℓ ,d
×xℓ) = 1.

Define the compact subgroups Kv of GL2(Qv) and K′
v of SL2(Qv) by

K∞ = O(2,R), Kℓ = GL2(Zℓ), K′
∞ = SO(2,R), K′

ℓ = SL2(Zℓ).

Let dkv and dk′v be the Haar measures on Kv and K′
v which have total volume 1.

The Haar measure dgv on PGL2(Qv) is given by dgv = |yv|−1
v dxvd

×yvdkv for gv =

(
yv xv
0 1

)
with yv ∈

Q×
v , xv ∈ Qv and kv ∈ Kv. Define the Haar measure dg′v on SL2(Qv) by dg′v = |yv|−2

v dxvd
×yvdk

′
v for

gv = n(xv)m(yv)k
′
v with yv ∈ Q×

v , xv ∈ Qv and k′v ∈ K′
v. The Tamagawa measures dg on PGL2(A) and dg′

on SL2(A) are given by dg = ζQ(2)−1
∏

v dgv and dg′ = ζQ(2)−1
∏

v dg
′
v. Since Z\H ≃ PGL2×SL2×SL2, we

can define the Tamagawa measure on Z\H by dg1dg
′
2dg

′
3, where dg1 is the Tamagawa measure on PGL2(A)

and dg′2 = dg′3 are that on SL2(A). The Tamagawa numbers of PGL2, SL2 and Z\H are 2, 1 and 2, respectively.

7.2. Garrett’s integral representation. Let πi (i = 1, 2, 3) be an irreducible cuspidal automorphic repre-
sentation of GL2(A) generated by an elliptic cusp form of weight ki and nebentypus ω−1

i . Put ω̂ = ω1ω2ω3

and π̆i = πi ⊗ ω
−1
i,A for i = 1, 2, 3. Fix a character χA of A×/Q×R+. For each triplet of cusp forms φi ∈ π̆i

and a holomorphic section fs of I3(ω̂−1
A , χAω̂Aα

s
A) we consider the global zeta integral defined by

Z(φ1, φ2, φ3, EA(fs)) =

∫
Z(A)H(Q)\H(A)

φ1(g1)φ2(g2)φ3(g3)EA(ι(g1, g2, g3), fs) dg1dg2dg3.

The integral converges absolutely for all s away from the poles of the Eisenstein series and is hence meromorphic
in s. Unfolding the Eisenstein series as in [PSR87], we get

Z(φ1, φ2, φ3, EA(fs)) =

∫
Z(A)U0(A)\H(A)

W (g1, φ1)W (g2, φ2)W (g3, φ3)fs(δι(g1, g2, g3)) dg1dg2dg3.

If W (g, φi) =
∏

vWi,v(gv) and fs(g) =
∏

v fs,v(gv) are factorizable, then the integral factors into a product
of local integrals and so by §2.2

Z(φ1, φ2, φ3, EA(fs)) =
ζQ(2)−3L

(
s+ 1

2 , π1 × π2 × π3 ⊗ χA

)
LS(2s+ 2, χ2

Aω̂A)LS(4s+ 2, χ4
Aω̂

2
A)

∏
v∈S

Z(W1,v,W2,v,W3,v, fs,v)

L
(
s+ 1

2 , π1,v × π2,v × π3,v ⊗ χv

) ,
where S is a large enough set of places such that πi,ℓ, Wi,ℓ, χℓ and fs,ℓ are unramified for all ℓ /∈ S. The
complete L-function L(s, π1 × π2 × π3 ⊗ χA) admits meromorphic continuation and a functional equation

L(s, π1 × π2 × π3 ⊗ χA) = ε(s, π1 × π2 × π3 ⊗ χA)L(1− s, π1 × π2 × π3 ⊗ ω̂−1
A χ−1

A ).

By Theorem 2.7 of [Ike92] the L-function L(s, π1 × π2 × π3 ⊗ χA) has a pole if and only if there exists an
imaginary quadratic field E and characters of χi of A×

E/E
× such that χ1χ2χ3χ

E = 1 and such that πi is induced
automorphically from χi, where χE denotes the base change of χ to E. Recall that k∗ = max{k1, k2, k3}. In
particular, if k1 + k2 + k3 ≥ 2k∗ + 2, then L(s, π1 × π2 × π3 ⊗ χA) is holomorphic everywhere. Let us put

J∞ =

(
1 0
0 −1

)
∈ GL2(R), tn =

(
0 p−n

−pn 0

)
∈ GL2(Qp) ↪→ GL2(A).

Let E⋆
A

(
f
[k1,λ]
D,s,N

)
be the Eisenstein series associated with a section fs,N =

⊗
ℓ|N fs,ℓ of

⊗
ℓ|N I3(ω̂

−1
ℓ , χℓω̂ℓα

s
Qℓ

)

as in §6.1.
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Lemma 7.1. Let fi ∈ Ski
(Ni, ω

−1
i ) be an ordinary p-stabilized newform. Put

φi = Φ(fi), φ̆i = φi ⊗ ω−1
i,A, W (φi) =

∏
v

Wi,v, W̆i,v =Wi,v ⊗ ω−1
i,v ,

Let χ be a character of Z×
p of finite order. Put n = {1, c(χ), c(ωi)}. If k1 ≥ k2 ≥ k3 and λ is the parity type

of (k1, k2, k3), then

Z
(
ρ(J∞tn)φ̆1, ρ(J∞tn)V

k1−k2−λ2
2

+ φ̆2, ρ(J∞tn)V
k1−k3−λ3

2
+ φ̆3, E

⋆
A

(
f
[k1,λ]
D,s,N

))
=L(N)

(
s+

1

2
, π1 × π2 × π3 ⊗ χA

)
Ep

(
s+

1

2
, π1,p × π2,p × π3,p ⊗ χp

)
×

3∏
i=1

ζp(2)

ζp(1)

(
αp(fi)

2

pkiωi,p(p)

)n
∏

ℓ|N Z(W̆1,ℓ, W̆2,ℓ, W̆3,ℓ, fs,ℓ)

ζQ(2)325+(k1+k2+k3)

Proof. By Garrett’s integral representation of triple L-functions the left hand side equals

ζQ(2)−3L(∞pN)

(
s+

1

2
, π1 × π2 × π3 ⊗ χA

)
×γ⋆(k1,k2,k3)

(s)−1Z
(
ρ(J∞)W̆1,∞, ρ(J∞)V

k1−k2−λ2
2

+ W̆2,∞, ρ(J∞)V
k1−k3−λ3

2
+ W̆3,∞, f

[k1,λ]
s,∞

)
×Z(ρ(tn)W̆1,p, ρ(tn)W̆2,p, ρ(tn)W̆3,p, fD,s,p)

∏
ℓ|N

Z(W̆1,ℓ, W̆2,ℓ, W̆3,ℓ, fs,ℓ)

in view of Definition 6.2 of E⋆
A

(
f
[k1,λ]
D,s

)
. Since ρ(J∞)W̆i,∞ = ωi(−1)ρ(J∞)Wi,∞, Lemma 4.8 yields

Z
(
ρ(J∞)W̆1,∞, ρ(J∞)V

k1−k2−λ2
2

+ W̆2,∞, ρ(J∞)V
k1−k3−λ3

2
+ W̆3,∞, f

[k1,λ]
s,∞

)
=ω̂∞(−1)Z∞(s) = χ∞(−1)

vol(SO(2))3γ⋆(k1,k2,k3)
(s)

25+(k1+k2+k3)
L

(
s+

1

2
, σk1 × σk2 × σk3 ⊗ χ∞

)
.

Proposition 2.6 calculates the p-adic part:

Z(ρ(tn)W̆1,p, ρ(tn)W̆2,p, ρ(tn)W̆3,p, fD,s,p)

L
(
s+ 1

2 , π1,p × π2,p × π3,p ⊗ χp

) 3∏
i=1

ζp(1)

ζp(2)

(
pkiωi,p(p)

αp(fi)2

)n

=Z∗
p (fD,s,p) = χp(−1)Ep

(
s+

1

2
, π1,p × π2,p × π3,p ⊗ χp

)
.

Since χA is unramified outside p, we have χ∞(−1) = χp(−1). □

7.3. The congruence number. Put ∆ = (Z/NpZ)×. Let ∆̂ be the group of Dirichlet characters modulo
Np. Enlarging O if necessary, we assume that every χ ∈ ∆̂ takes value in O×. Let

Sord(N, I) := ⊕χ∈∆̂S
ord(N,χ, I)

be the space of ordinary I-adic cusp forms of tame level Γ1(N). Let σd denote the usual diamond operator for
d ∈ ∆ acting on Sord(N, I) by σd(f)χ∈∆̂ = (χ(d)f)χ∈∆̂. The ordinary I-adic cuspidal Hecke algebra T(N, I)

is defined as the I-subalgebra of EndI Sord(N, I) generated over I by the Hecke operators Tℓ with ℓ ∤ Np, the
operators Uℓ with ℓ|Np and the diamond operators σd with d ∈ ∆̂. Let Tord

k (N,χ) denote the O-subalgebra
of EndC eordSk(N,χ) generated over O by the operators Tℓ with ℓ ∤ Np and Uℓ with ℓ|Np.

Let f ∈ Sord(N,χ, I) be a primitive Hida family of tame conductor N and character χ. The corresponding
homomorphism λf : T(N, I) → I is defined by λf (Tℓ) = a(ℓ,f) for ℓ ∤ Np, λf (Uℓ) = a(ℓ,f) for ℓ | Np
and λf (σd) = χ(d) for d ∈ ∆. We denote by mf the maximal of T(N, I) containing Kerλf and by Tmf

the localization of T(N, I) at mf . It is the local ring of T(N, I) through which λf factors. Recall that the
congruence ideal C(f) of the morphism λf : Tmf

→ I is defined by

C(f) := λf (AnnTmf
(Kerλf )) ⊂ I.
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It is well-known that Tmf
is a local finite flat Λ-algebra, and there is an algebra direct sum decomposition

λ̃f : Tmf
⊗I Frac I ≃ Frac I⊕B, t 7→ λ̃f (t) = (λf (t), λB(t)),(7.1)

where B is some finite dimensional (Frac I)-algebra ([Hid88b, Corollary 3.7]). Then we have

C(f) = λf (Tmf
∩ λ̃−1

f (Frac I⊕ {0}))

by definition. Now we impose the following hypothesis:

Hypothesis (CR). The residual Galois representation ρf of ρf is absolutely irreducible and p-distinguished.

Under the hypothesis above Tmf
is Gorenstein by [Wil95, Corollary 2, page 482]. With this property of

Tmf
Hida in [Hid88a] proved that the congruence ideal C(f) is generated by a non-zero element ηf ∈ I, called

the congruence number for f . Let 1∗f be the unique element in Tmf
∩ λ̃−1

f (Frac I⊕{0}) such that λf (1∗f ) = ηf .
Then 1f := η−1

f 1∗f is the idempotent in Tmf
⊗IFrac I corresponding to the direct summand Frac I of (7.1) and

1f does not depend on any choice of a generator of C(f). For d ∈ ∆̂ we write ℘Q,χ for the ideal of T(N, I)
generated by ℘Q = KerQ and {σd − χ(d)}d∈∆. A classical result in Hida theory asserts that

T(N, I)/℘Q,χ ≃ Tord
kQ

(Npe, χω−kQϵQ)⊗O O(Q)

(see Theorem 3.4 of [Hid88b]). Moreover, for each arithmetic point Q, it is also shown by Hida that the
specialization ηf (Q) ∈ O(Q) is the congruence number for fQ and

1f := η−1
f 1∗f (mod ℘χ,Q) ∈ Tord

kQ
(Npe, χω−kQϵQ)⊗O FracO(Q)

is the idempotent with λf (1f ) = 1.

Definition 7.2. Let f be a primitive Hida family satisfying (CR). To each choice of the congruence number ηf
we associate Hida’s canonical period Ωf of a p-ordinary newform f of weight k obtained by the specialization
of f defined by

Ωf := η−1
f · (−2

√
−1)k+1∥f◦∥2Γ0(Nf◦ ) · Ep(f,Ad),

where ηf is the specialization of ηf , f◦ the primitive form associated with f , Nf◦ its conductor and Ep(f,Ad)
the modified p-Euler factor attached to the adjoint motive of f (cf. [Hsi19, (3.10)]).

7.4. Hida’s functional. When φ ∈ Ak(N,ωA) and φ′ ∈ Ak(N,ω
−1
A ) are cuspidal, we define the pairing by

⟨ρ(J∞)φ,φ′⟩ =
∫
A× GL2(Q)\GL2(A)

φ(gJ∞)φ′(g) dg.

Let χ be a Dirichlet character and let f ∈ Sk(Nf , χ) be an ordinary p-stabilized newform of level Nf , i.e.,
Upf = αp(f)f with p-unit ι−1

p (αp(f)). Write Nf = Ntp
c with Nt prime to p. For n ≥ c, we define Hida’s

functional Lf on Sk(Ntp
2n, χ;O) by

Lf (F) =
(
ωf,p(p)p

k

αp(f)2

)n−1 ⟨ρ(J∞tn)(φ ⊗ ω−1
A ), Φ(F)⟩

⟨ρ(J∞t1)(φ ⊗ ω−1
A ), φ⟩

,

where ωA denotes the central character of the adèlic lift φ = Φ(f) of f . Note that for F ∈ Sk(Np2n, χ) with
Nt | N ,

Lf (F) = [Γ0(N) : Γ0(Nt)]
−1Lf (TrN/Nt

F).

Lemma 7.3. (1) Lf (f) = 1.
(2) If F0 ∈ Nk+2m(Np2n, χ) with Nt | N , then

Lf (1
∗
f TrN/Nt

eord Hol(λmz F0))

ζQ(2)[SL2(Z) : Γ0(N)]
= (−1)m+1(2

√
−1)k+1 ⟨ρ(J∞tn)(V m

+ φ ⊗ ω−1
A ), Φ(F0)⟩

Ωf

(
αp(f)2

pkωf,p(p)

)n
ζp(2)
ζp(1)

.
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Proof. The first assertion follows from the following formula stated in [Hsi19, Lemma 3.6]:

⟨ρ(J∞tn)(φ ⊗ ω−1
A ), φ⟩ = ωf,∞(−1)⟨ρ(J∞tn)φ⊗ ω−1

A , φ⟩

=
(−1)kζQ(2)−1

[SL2(Z) : Γ0(Nt)]
· ∥f◦∥2Γ0(Nf◦ ) · Ep(f,Ad) · αp(f)

2nζp(2)

pknωf,p(p)nζp(1)

= − ζQ(2)−1

[SL2(Z) : Γ0(Nt)]
· ηfΩf

(2
√
−1)k+1

·
(

αp(f)
2

pkωf,p(p)

)n
ζp(2)

ζp(1)
.

We remark that φ̆ = φ and ω(p) = ωA in the notation of [Hsi19].
To see the second part, we note that as a consequence of strong multiplicity one theorem for elliptic modular

forms, the idempotent 1f = η−1
f 1∗f is generated by the Hecke operators Tℓ with ℓ ∤ Np, which implies that

1f is the adjoint operator of 1φ⊗ω−1
A

with respect to the pairing. We are thus led to Lf (1
∗
fF) = ηfLf (F).

Moreover, Lf (UpF) = αp(f)Lf (F) (cf. the proof of Proposition 2.10 of [Kob13]) and hence

Lf (eordF) = lim
j→∞

Lf (U
j!
p F) = lim

j→∞
αp(f)

j!Lf (F) = Lf (F).

One can easily verify that for ϕ ∈ Φ(Sk(M,χ−1)), F1 ∈ Nk(M,χ) and F2 ∈ Nk+2(M,χ)

⟨ρ(J∞)ϕ, Φ(HolF1)⟩ = ⟨ρ(J∞)ϕ, Φ(F1)⟩, ⟨ρ(J∞)ϕ, Φ(λzF2)⟩ = −⟨ρ(J∞)V+ϕ, Φ(F2)⟩.
The second part is a consequence of these results. □

7.5. The construction of p-adic triple product L-functions. Let

F = (f , g,h) ∈ Sord(N1, χ1, I)× Sord(N2, χ2, I)× Sord(N3, χ3, I)

be a triplet of primitive I-adic Hida families of tame square-free level (N1, N2, N3) and tame characters
(χ1, χ2, χ3), where I is a finite flat domain over Λ = OJΓK. Assuming that all f , g and h satisfy Hypothesis
(CR), we fix a choice of the congruence numbers (ηf , ηg, ηh). Let

1∗
f ∈ T(N1, I), 1∗

g ∈ T(N2, I), 1∗
h ∈ T(N3, I)

be the idempotents multiplied by a fixed choice of congruence numbers (ηf , ηg, ηh) in the Hecke algebras
attached to the newforms (f , g,h). Put

N := lcm(N1, N2, N3), N− := gcd(N1, N2, N3), I3 := I⊗̂OI⊗̂OI.

Definition 7.4. Define the p-adic triple product L-function LF ,(a) in I3JT K by

LF ,(a) := the first Fourier coefficient of 1∗
f ⊗ 1∗

g ⊗ 1∗
h(TrN/N1

⊗TrN/N2
⊗TrN/N3

(G(a)χ )) ∈ I3JT K.
We denote by Vf the associated p-adic Galois representation, and by WDℓ(VfQ

) the representation of the
Weil-Deligne group WQℓ

attached to VfQ
for each prime ℓ. The epsilon factor of V(Q,P ) at ℓ is defined by

εℓ(V(Q,P ), s) = ε(s+ kP − wQ/2,WDℓ(VfQ1
)⊗WDℓ(VgQ2

)⊗WDℓ(VhQ3
)⊗ ωa−kP ϵP ,ψℓ).

By the assumption (sf) and the rigidity of automorphic types of Hida families WDℓ(VfQ1
), WDℓ(VgQ2

),
WDℓ(VhQ3

) are either unramified or the Steinberg representation twisted by an unramified character. More-

over, for ℓ|N1, there is an unramified finite order character ξf ,ℓ : GQℓ
→ Q

×
such that ξ2f ,ℓ = χ−1

1,ℓ and

Vf |GQℓ
≃

(
ξf ,ℓεcyc ⟨εcyc⟩−1/2

I ∗
0 ξf ,ℓ ⟨εcyc⟩−1/2

I

)
.

Define εℓ(f)X1
∈ IJX1K by εℓ(f)X1

= ξf ,ℓ(ℓ)
−1 ⟨ℓ⟩1/2X1

. Then

εℓ((1− kQ1
)/2,WDℓ(VfQ1

), ψℓ) = εℓ(fQ1
).

Let NV = N−N4 be the tame level of V, which independent of the choice of of arithmetic specializations by
the rigidity. We define the I4-adic root number ε(p∞)(V) ∈ I×4 by

(7.2) ε(p∞)(V) =

3∏
i=1

⟨NV⟩Xi
· ω(NV)−aN−1

V ⟨NV⟩−1
T (χ1χ2χ3)(N

2)
∏
ℓ|N−

ξf ,ℓ(ℓ)
−1ξg,ℓ(ℓ)

−1ξh,ℓ(ℓ)
−1.
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Lemma 7.5. Notation being as above, we get

ε(p∞)(V(Q,P )) =
∏
ℓ̸=p

εℓ(V(Q,P ), 0).

Proof. We retain the notation of the proof of Proposition 6.8. Remark 3.5 gives

εℓ(V(Q,P ), 0) = χℓ(ℓ)
4ω̂(ℓ)2ℓ−4kP+2(kQ1

+kQ2
+kQ3

)−4 =
⟨
ℓ2
⟩(a)
X1,X2,X3,T

(Q,P )

if ℓ divides N/N−. Put ξℓ = ξf ,ℓξg,ℓξh,ℓ. If ℓ divides N−, then

εℓ(V(Q,P ), 0) = χℓ(ℓ)
5ξℓ(Frobℓ)

5ℓ5(−2kP+kQ1
+kQ2

+kQ3
−2)/2

= ω(ℓ)−5a(χ1χ2χ3)(ℓ)
2ξf ,ℓ(Frobℓ)(⟨ℓ⟩−5

T ⟨ℓ⟩
5/2
X1
⟨ℓ⟩5/2X2

⟨ℓ⟩5/2X3
)(Q,P )ℓ−5.

We have thus completed our proof. □

7.6. The interpolation formulae. Let V = Vf ⊗̂OVg⊗̂OVh⊗̂Oω
a ⟨εcyc⟩T be the triple tensor product of

I-adic Galois representations associated with primitive Hida families f , g and h twisted by ωa ⟨εcyc⟩T . Define
the rank four GQp

-invariant subspace of V by

Fil+ V = (Fil0 Vf ⊗ Fil0 Vg ⊗ Vh + Fil0 Vf ⊗ Vg ⊗ Fil0 Vh + Vf ⊗ Fil0 Vg ⊗ Fil0 Vh)⊗ ωa ⟨εcyc⟩T .

Recall that wQ = kQ1
+kQ2

+kQ3
−3 and ΓV(Q,P )

(s) = L∞

(
s+kP −

wQ

2 , πfQ1
×πgQ2

×πhQ3

)
. The modified

p-Euler factor Ep(Fil+ V(Q,P )) is defined in the introduction.

Theorem 7.6. Let p > 3. Assume that N := lcm(N1, N2, N3) is square-free and that the conductor of tame
nebentypus χi divides p. Let t denote the number of prime factors of N . If f , g and h satisfy Hypothesis
(CR), then for each arithmetic point (Q,P ) = (Q1, Q2, Q3, P ) ∈ Xbal

I4
we have

LF ,(a)(Q,P ) =ΓV(Q,P )
(0) ·

L(V(Q,P ), 0)

ΩfQ1
ΩgQ2

ΩhQ3

· (
√
−1)kQ1

+kQ2
+kQ3

−3 · Ep(Fil+ V(Q,P )) · fχ,a,N1,N2,N3
(Q,P ),

where fχ,a,N1,N2,N3
∈ I×4 is given by

fχ,a,N1,N2,N3 :=
(−1)t

N

∏
ℓ|N

(⟨ℓ⟩(a)X1,X2,X3,T
)2εℓ(f ⊗ g ⊗ h⊗ ωa ⟨εcyc⟩T )

−1.

Proof. For brevity we write (f1, f2, f3) = (fQ1
, gQ2

,hQ3), (k, l,m) = (kQ1 , kQ2 , kQ3), πi = πfi and Ni =
Nfi . We may assume that k ≥ l ≥ m. Denote the parity type of (k, l,m) by λ. Put

χ = ϵPω
a−kP , ωi = ω

kQiχ−1
i ϵ−1

Qi
, D = (χ, ω−1

1 , ω−1
2 , ω−1

3 ), n = max{1, c(ωi), c(χ)}.

We define the functional Lf1,f2,f3 on

Sk(N1p
2n, ω−1

1 ;O(Q1))⊗O Sl(N2p
2n, ω−1

2 ;O(Q2))⊗O Sm(N3p
2n, ω−1

3 ;O(Q3))

by
Lf1,f2,f3(F1 ⊗F2 ⊗F3) = Lf1(F1)Lf2(F2)Lf3(F3).

Let 1∗f1 be the specialization of 1∗
f at Q1. By definition and the theory of newforms

1∗f1 ⊗ 1∗f2 ⊗ 1∗f3(TrN/N1
⊗TrN/N2

⊗TrN/N3
(G(a)χ (Q,P ))) = LF ,(a)(Q,P ) · f1 ⊗ f2 ⊗ f3.

We apply the functional Lf1,f2,f3 to both the sides to get

LF ,(a)(Q,P ) = Lf1,f2,f3(1
∗
f1 ⊗ 1∗f2 ⊗ 1∗f3(TrN/N1

⊗TrN/N2
⊗TrN/N3

(G(a)χ (Q,P )))),

taking Lemma 7.3(1) into account. Let φi = Φ(fi) and GA(D) = Φ(G(a)χ (Q,P )) be the adèlic lifts. Put
φ̆i = φi ⊗ ω

−1
i,A. In the previous section we verified that

GA(D) = lim
s→−r+

k−λ1
2 −1

(−1)k+
l+m+λ1

2 +λ2eord Hol
((

1⊗ V
k−l−λ2

2
− ⊗ V

k−m−λ3
2

−

)
ι∗E⋆

A

(
f
[k,λ]
D,s,N

))
,
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where r = k − kP + l+m−λ1

2 − 2 (see Proposition 6.8 and Definitions 6.2, 6.5). Lemma 7.3 (2) therefore gives

LF ,(a)(Q,P )

ζQ(2)3[SL2(Z) : Γ0(N)]3
= −(2

√
−1)k+l+m+3 ζp(1)

3

ζp(2)3

3∏
i=1

Ω−1
fi

(
pkQiωi,p(p)

αp(fi)2

)n

× 4 lim
s→kP− k+l+m

2 +1
Z
(
ρ(J∞tn)φ̆1, ρ(J∞tn)V

k−l−λ2
2

+ φ̆2, ρ(J∞tn)V
k−m−λ3

2
+ φ̆3, E

⋆
A

(
f
[k,λ]
D,s,N

))
.

Let W (φi) =
∏

vWi,v be the Whittaker function of φi. Put W̆i,v :=Wi,v⊗ω−1
i,v . Let πi be the automorphic

representation generated by φi. Writing N =
∏

ℓ|N ℓ, we finally get

LF ,(a)(Q,P ) =
L
(
kP − k+l+m−3

2 , π1 × π2 × π3 ⊗ χA

)
(
√
−1)3−(k+l+m)Ωf1Ωf2Ωf3

Ep(Fil+ V ⊗ ϵPωa−kP , kP )
∏
ℓ|N

Z∗
ℓ

by Lemma 7.1, where

Z∗
ℓ = [SL2(Z) : Γ0(ℓ)]

3 lim
s→kP− k+l+m

2 +1

Z(W̆1,ℓ, W̆2,ℓ, W̆3,ℓ, fD,s,ℓ)

L
(
s+ 1

2 , π1,ℓ × π2,ℓ × π3,ℓ ⊗ χℓ

) .
Proposition 3.4 gives

Z∗
ℓ = −ℓ(ω̂2

ℓχ
4
ℓ)(ℓ)|ℓ|4kP−2(k+l+m)+4ε

(
kP −

k + l +m− 3

2
, π1,ℓ × π2,ℓ × π3,ℓ ⊗ χ,ψℓ

)−1

.

By what we have seen in the proof of Proposition 6.8

χ2
ℓ ω̂ℓ(ℓ)ℓ

−2kP+(k+l+m)−2 = ⟨ℓ⟩X1,X2,X3,T
(Q,P ).

This completes the proof. □

Definition 7.7. We normalize p-adic triple product L-function by

L∗
F ,(a) := LF ,(a) · f−1

χ,a,N1,N2,N3
.

Remark 7.8. Provided that p > 3, χ1χ2χ3 = ω2a for some a, a three-variable p-adic L-function Lbal
F ∈ I3

was constructed by a different approach in [Hsi19, Theorem B] such that for each balanced central point
Q = (Q1, Q2, Q3) ∈ Xbal

I3(
Lbal
F (Q)

)2
= ΓVQ

(0) ·
L(V†

Q, 0)

ΩfQ1
ΩgQ2

ΩhQ3

· (
√
−1)kQ1

+kQ2
+kQ3

−3 · Ep(Fil+ V†
Q),

where

V† := V ⊗ ωa ⟨εcyc⟩1/2X1
⟨εcyc⟩1/2X2

⟨εcyc⟩1/2X3
ε−1
cyc,

Fil+ V† = Fil+ V ⊗ ωa ⟨εcyc⟩1/2X1
⟨εcyc⟩1/2X2

⟨εcyc⟩1/2X3
ε−1
cyc.

We remark that detVf = (χ1 ◦ εcyc)−1 ⟨εcyc⟩−1
I εcyc. By the interpolation formulae, we find that

L∗
F ,(a−1)(X1, X2, X3,u

−1{(1 +X1)(1 +X2)(1 +X3)}1/2 − 1) = Lbal
F (X1, X2, X3)

2.

This shows that the compatibility between p-adic L-functions constructed by different methods.

Without Hypothesis (CR) and the assumption p > 3, our method yields the construction of the p-adic
L-function with denominators. For each p-stabilized newform f of weight k, define the modified period by

Ω♭
f := (−2

√
−1)k+1 · ∥f◦∥2Γ0(Nf◦ ) · Ep(f,Ad).

By definition, Ω♭
f · ηf is equal to Hida’s canonical period Ωf up to p-adic units.

Corollary 7.9. Let p > 2. There exists an element

L∗∗
F ,(a) ∈ I4 ⊗I3 (Frac I⊗ Frac I⊗ Frac I)

such that
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• for any H1,H2 and H3 in the congruence ideals of f , g and h,

H1H2H3 · L∗∗
F ,(a) ∈ I4;

• for each balanced critical (Q,P ) = (Q1, Q2, Q3, P ) ∈ Xbal
I4

,

L∗∗
F ,(a)(Q,P ) =

ΓV(Q,P )
(0)L(V(Q,P ), 0)

Ω♭
fQ1

Ω♭
gQ2

Ω♭
hQ3

· (
√
−1)kQ1

+kQ2
+kQ3

−3 · Ep(Fil+ V(Q,P )),

Proof. For any H1,H2 and H3 in the congruence ideals of f , g and h, we let LH ∈ I3JT K be the first
Fourier coefficient of

H11f ⊗H21g ⊗H31h

(
TrN/N1

⊗TrN/N2
⊗TrN/N3

(G(a)χ )
)
∈ I3JT KJq1, q2, q3K.

Then L∗∗
F ,(a) := LH · (H1H2H3)

−1 · f−1
χ,a,N1,N2,N3

enjoys the desired properties. □

This p-adic L-function L∗∗
F ,(a) is more canonical in the sense that it does not depend on any particular choice

of generators of the congruence ideal of f , g and h.

7.7. The functional equation. Recall that we have fixed the topological generator u = 1+p of Γ = 1+pZp

as in §6.5.

Proposition 7.10. Assume that χ1χ2χ3 = ωa0 . Then

L∗
F ,(a)(X1, X2, X3, T ) = (−ε(p∞)(V)) · L∗

F ,(a0−a−2)

(
X1, X2, X3,

(1 +X1)(1 +X2)(1 +X3)

u2(1 + T )
− 1

)
.

Proof. Recall that χ = ϵPω
a−kP and ωi = χ−1

i ϵ−1
Qi
ωkQi . Put

kP̆ = kQ1 + kQ2 + kQ3 − kP − 2, ϵP̆ = ϵ−1
P ϵQ1

ϵQ2
ϵQ3

, χ̆ = ϵP̆ω
a0−a−2−kP̆ = χ−1ω−1

1 ω−1
2 ω−1

3 .

Thus the left hand side specialized at (Q, P̆ ) equals

L∗
F ,(a0−a−2)(Q, P̆ ) =

L(1− s0, π∨
1 × π∨

2 × π∨
3 ⊗ χ−1

A )

(
√
−1)3−(kQ1

+kQ2
+kQ3

)Ωf1Ωf2Ωf3

Ep (1− s0, π1,p × π2,p × π3,p ⊗ χp) ,

where s0 = kP −
kQ1

+kQ2
+kQ3

−3

2 = 1−
(
kP̆ −

kQ1
+kQ2

+kQ3
−3

2

)
.

Since (kQ1
, kQ2

, kQ3
) is balanced, we know that

ε(s, π1,∞ × π2,∞ × π3,∞ ⊗ χ∞) = (−1)kQ1
+kQ2

+kQ3
+1 = −ω̂∞(−1) = −ω̂p(−1).

By the global functional equation we get

L∗
F ,(a0−a−2)(Q, P̆ ) =

L(s0, π1 × π2 × π3 ⊗ χA)

(
√
−1)3−(kQ1

+kQ2
+kQ3

)Ωf1Ωf2Ωf3

· −Ep (s0, π1,p × π2,p × π3,p ⊗ χ̆p)∏
ℓ̸=p ε(s0, π1,ℓ × π2,ℓ × π3,ℓ ⊗ χℓ,ψℓ)

in view of Lemma 2.7. □

8. The trivial zero for the triple product of elliptic curves

8.1. The cyclotomic p-adic triple product L-functions for elliptic curves. Let E = E1 ×E2 ×E3 be
the triple fiber product of rational elliptic curves Ei of square-free conductor Mi for i = 1, 2, 3. We denote
the prime p-part of Mi by Ni. Recall the rank eight p-adic Galois representation VE defined in (1.1). We
write L(E ⊗ χ, s) for the complex L-series attached to VE twisted by a Dirichlet character χ. Let M (resp.
N) and M− (resp. N−) be the least common multiple and the greatest common divisor of M1,M2,M3 (resp.
N1, N2, N3).

Remark 8.1. Let Σ− be the set of prime factors ℓ of M− such that aℓ(E1)aℓ(E2)aℓ(E3) = 1. From Remark
3.5, ε(E) = −(−1)#Σ−

is the sign in the functional equation for L(s,E). From the formula (7.2) for the p-adic
root number the p-adic sign εp(E) = −ε(p∞)(VE(2)) differs from ε(E) if and only if p ∈ Σ−.
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Let f◦i =
∑∞

n=1 an(Ei)q
n ∈ S2(Mi, 1;Z) be the primitive Hecke eigenform associated with the p-adic Galois

representation H1
ét(Ei/Q,Qp) by Wiles’ modularity theorem. Hereafter, we assume that Ei has either good

ordinary reduction or multiplicative reduction at p. Let fi ∈ S2(pMi, 1;Zp) be the p-stabilization of f◦i (see
(5.1)). If p and Mi are coprime, then αi = αp(fi) ∈ Z×

p denotes the p-adic unit root of the Hecke polynomial
X2 − ap(Ei)X + p while if p divides Mi, then αi = ap(Ei). Define a period and a fudge factor by

Ω(E) =

3∏
i=1

Λ(1, Ei,Ad), cp =

3∏
i=1

Ep(fi,Ad),

where Λ(s,Ei,Ad) denotes the complete adjoint L-function for fi
Let Ti = T(Ni,Λ) be the big cuspidal ordinary Hecke algebra over Λ = ZpJXK with X = [u] − 1. Each

fi induces a surjective homomorphism λfi : Ti ↠ Zp. Let mi be the maximal ideal of Ti containing kerλfi
and Ii = (Ti)mi

be the localization at mi. Let f i =
∑∞

n=1 a(n,f i)q
n ∈ S(Ni,ω

2, Ii) be the primitive Hida
family of tame level Ni such that fi is the specialization f i,Qo

i
at some arithmetic point Qo

i with kQo
i
= 2 and

ϵQo
i
= 1. Now we consider the four-variable p-adic L-function L∗∗

F ,(2) in Corollary 7.9 with F = (f1,f2,f3)

and a = 2. Define the cyclotomic p-adic L-function by

Lp(E, T ) := cp · L∗∗
F ,(2)(Q

o
1, Q

o
2, Q

o
3,u

2(1 + T )− 1) ∈ ZpJGal(Q∞/Q)K⊗Qp.

Proposition 8.2. The element Lp(E) ∈ ZpJGal(Q∞/Q)K⊗Qp satisfies the following interpolation property

χ̂(Lp(E)) =
L(E ⊗ χ̂, 2)
24π5Ω(E)

Ep(Fil+ VE ⊗ χ̂)

for all finite-order characters χ̂ of Gal(Q∞/Q). Moreover, it satisfies the functional equation

Lp(E, T ) = εp(E)
⟨
N−N4

⟩−1

T
Lp(E, (1 + T )−1 − 1).

Proof. Define (Qo, P ) = (Qo
1, Q

o
2, Q

o
3, P ) ∈ Xbal

I4
with Qo

i as above, kP = 2 and ϵP = χ̂. Then V(Qo,P ) =

VE(2)⊗ χ̂ and χ̂(Lp(E)) = cp ·L∗∗
F ,(2)(Q

o, P ). The assertions follows from Corollary 7.9, Proposition 7.10 and
the equation 22∥f◦i ∥ = Λ(1, Ei,Ad) ([Hsi19, (2.18)]). □

8.2. The trivial zero conjecture for the triple product of elliptic curves. We prove the trivial zero
conjecture for the cyclotomic p-adic triple product L-function. We define a function on Zp by

Lp(E, s) := Lp(E,u
s − 1).

We consider the case where Lp(E, s) has a trivial zero at the critical value s = 2. By Remark 8.3 below we
essentially only need to consider the following two cases:

(i) all E1, E2 and E3 have multiplicative reduction at p such that α1α2α3 = 1.
(ii) E1 has multiplicative reduction at p; E2 and E3 have good ordinary reduction at p such that α2 = α1α3.

Remark 8.3. Let βi = pα−1
i . Then Ep(Fil+ VE(2)) = 0 if and only if Lp((Fil

+ VE(2))
∨, 1)−1 = 0 if and only

if one of the following equations holds:

β1β2β3 = p2, β1β2α3 = p2, β1α2β3 = p2, α1β2β3 = p2.

The ordinality hypothesis rules out the first equation. The Ramanujan conjecture forces one or all of Ei to
have multiplicative reduction at p. When E1 is multiplicative at p, we will have α1 ∈ {±1} and α2 = α1α3.

In the above cases (i) and (ii), the trivial zero conjecture predicts that the leading coefficient of the Taylor
expansion of Lp(E, s) at s = 2 should be essentially the product of Greenberg’s L -invariant for E and the
central value L(E, 2). Note that the localization of Ii at Qo

i is that of Λ at P2, where P2 is the principal
ideal generated by (1 + X)u−2 − 1, so Ii is contained in Λ[ 1ti ] with some ti(u2 − 1) ̸= 0. In what follows,
we shall replace Ii by Λ[t−1

i ] with some ti(u2 − 1) ̸= 0. Let U ⊂ Zp be a neighborhood around 0 such that
(t1t2t3)(u

s+2 − 1) ̸= 0 for any s ∈ U . To introduce Greenberg’s L -invariants, we let

ai(s) := a(p,f i)(u
s+2 − 1); ℓi := α−1

i ·
dai(s)

ds

∣∣∣
s=0

(s ∈ U).
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Note that ai(0) = αi by definition. If αi = 1, then −2ℓi =
logp qEi

ordpqEi
by [GS93, Theorem 3.18]. According to the

discussion in [Gre94b, §3], Greenberg’s L -invariant for the Galois representation (1.1) is given by

Lp(E) :=

{
−8ℓ1ℓ2ℓ3 in Case (i);
4ℓ21 in Case (ii).

The non-vanishing of these L -invariants is known, thanks to the work [BSDGP96]. The aim of this section is
to prove the following:

Theorem 8.4 (Trivial zero conjecture). (1) In Case (i), ords=2Lp(E, s) ≥ 3, and

Lp(E, s)

(s− 2)3

∣∣∣
s=2

= Lp(E) · L(E, 2)

24π5Ω(E)
.

(2) In Case (ii), ords=2Lp(E, s) ≥ 2 and

Lp(E, s)

(s− 2)2

∣∣∣
s=2

= Lp(E)(−pα−2
2 )(1− α−2

2 )2 · L(E, 2)

24π5Ω(E)
.

8.3. Improved p-adic L-functions. We define an analytic function on U3 × Zp ⊂ Z4
p by

Lp(x, y, z, s) := cp ·
⟨
N−N4

⟩ 2s−(x+y+z)
4 L∗∗

F ,(2)(u
x+2 − 1,uy+2 − 1,uz+2 − 1,us+2 − 1),

which satisfies

Lp(0, 0, 0, s) =
⟨
N−N4

⟩s/2
Lp(E, s+ 2), Lp(x, y, z, s) = εp(E) · Lp(x, y, z, x+ y + z − s).(8.1)

To follow the method used in [GS93] (cf. [BDJ17]), we introduce p-adic L-functions which have only less
variables but have better interpolation properties.

Lemma 8.5 (Improved p-adic L-functions). Suppose that f◦1 is special at p, i.e. α1 = a1(0) = ±1.
(1) There exist a two-variable improved p-adic L-function L†

p(x, s) and a one-variable improved p-adic
L-function L††

p (s) such that

Lp(x, s, s, s) =
(
1− a2(s)

a1(x)a3(s)

)(
1− a3(s)

a1(x)a2(s)

)
L†
p(x, s), L†

p(s, s) =
(
1− a1(s)

a2(s)a3(s)

)
L††
p (s).

(2) For any positive integer k with k ≡ 2 (mod p− 1) and k − 2 ∈ U , we have the interpolation formula

L†
p(0, k − 2) = E†(k − 2) · Γ(k − 1)Γ(k)

22k−3(π
√
−1)2k+1

·
L
(
1
2 , πf1 × πf2,k

× πf3,k

)
c−1
p Ω♭

f1
Ω♭
f2,k

Ω♭
f3,k

,

where πf i,k
is the automorphic representation generated by f i,k = f i(u

k − 1) ∈ Sk(Nip, 1;Q), and

E†(s) = (−α1)a2(s)
−1a3(s)

−1ps+1(1− α1 · a2(s)−1a3(s)
−1ps)2.

(3) If εp(E) = −1, then

L†
p(0, s) = 0,

∂L†
p

∂x
(0, 0) = (ℓ2 + ℓ3 − ℓ1)L††

p (0), ords=2Lp(E, s) ≥ 3.

(4) In Case (i), L††
p (0) = L(E,2)

24π5Ω(E) .

Proof. The construction of these improved L-functions are similar to that of LF ,(a) except that we need
to replace the Λ4-adic modular form G(a)χ in §6.5 with improved ones. To do so, we have to go back to §6.1
and modify the p-adic section fD,s,p used in the construction of the Siegel Eisenstein series EA(g, f

[k,λ]
D,s,N ). In

the notation of Definition 2.5, for a datum D = (χ, ω1, ω2, ω3) of characters of Z×
p and a Bruhat-Schwartz

function φ3 ∈ S(Qp), we modify the definition of Bruhat-Schwartz functions in (2.8) by

ΦD(φ1)

u1 x3 x2
x3 u2 x1
x2 x1 u3

 =

3∏
i=1

ϕi(ui)φi(xi),
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where

ϕ1 = ϕ2 = ϕ3 = ÎpZp
, φ2 = φ3 = IZp

.

Define the modified Bruhat-Schwartz functions by

Φ†
D = ΦD(φ̂χω1

), Φ††
D = ΦD(IZp

).

Following (2.5), we define the modified p-adic section f•D,s := fΦ•
D
(χω̂αs

Qp
) for • ∈ {†, ††}. Then the local

degenerate Whittaker functions for these modified p-adic sections are given by

WB(f
†
D,s) = (χω1)(2b23)IΞ†

p
(B), WB(f

††
D,s) = IΞ††

p
(B),

for B = (bij) ∈ Sym3(Qp), where

Ξ††
p := {(bij) ∈ Sym3(Zp) | b11, b22, b33 ∈ pZp} , Ξ†

p :=
{
(bij) ∈ Ξ††

p | 2b23 ∈ Z×
p

}
.

With the preparation above we define the power series

G†(T,X) =
∑

B=(bij)∈T+
3 ∩Ξ†

p

⟨2b23⟩T ⟨2b23⟩
−1
X F

(2)
B (X,T, T, T ) · qb111 qb222 qb333 ∈ ZpJT,XKJq1, q2, q3K,

G††(T ) =
∑

B∈T+
3 ∩Ξ††

p

F (2)
B (T, T, T, T ) · qb111 qb222 qb333 ∈ ZpJT KJq1, q2, q3K.

Notation is as in §6.1. For arithmetic points (Q,P ) with kQ = 2 we have

G†(Q,P ) = eordE
[kP ,r,λ]

D†,N
(τ, f†D†,s,N

)|s=0, G††(P ) = eordE
[kP ,r,λ]

D††,N
(τ, f††D††,s,N

)|s=0

with λ = (0, 0, 0) and r = kP

2 − 1, where we have written

D† := (ϵPω
2−kP , ϵ−1

Q ωkQ−2, ϵ−1
P ωkP−2, ϵ−1

P ωkP−2),

D†† := (ϵPω
2−kP , ϵ−1

P ωkP−2, ϵ−1
P ωkP−2, ϵ−1

P ωkP−2),

f•D•,s,N := f [kP ,λ]
s,∞ ⊗ f•D•,s ⊗ fs,N ⊗ℓ∤Np f

0
s,ℓ.

As in Proposition 6.8 we can show that

G†(T,X) ∈ Sord(N,ω2,ZpJXK)⊗̂Zp
Sord(N,ω2,ZpJT K)⊗ZpJT K Sord(N,ω2,ZpJT K);

G††(T ) ∈ Sord(N,ω2,ZpJT K)⊗ZpJT K Sord(N,ω2,ZpJT K)⊗ZpJT K Sord(N,ω2,ZpJT K).
Choose an element Hi in the congruence ideal of f i with Hi(u

2 − 1) ̸= 0. We define the improved p-adic
L-functions L†

F ,(2)(X,T ) and L††
F ,(2)(T ) as the first Fourier coefficients of

1f1
⊗ 1f2

⊗ 1f3
(TrN/N1

⊗TrN/N2
⊗TrN/N3

(G†)) ∈ ZpJX,T K[ 1

H† ];

1f1
⊗ 1f2

⊗ 1f3
(TrN/N1

⊗TrN/N2
⊗TrN/N3

(G††)) ∈ ZpJT K[ 1

H†† ]

respectively, where H† = t1H1(X)t2H2t3H3(T ) and H†† = t1H1t2H2t3H3(T ). Define

L†
p(x, s) := cp ·

⟨
N−N4

⟩−x
4 L†

F ,(2)(u
x+2 − 1,us+2 − 1), L††

p (s) := cp ·
⟨
N−N4

⟩−s
4 L††

F ,(2)(u
s+2 − 1).

In view of the proof of Lemma 7.1, to prove the interpolation formulae for L†
p(x, s) and L††

p (s), we need
to compute the quantity Z∗

p (f
•
D,s) defined in (2.13) attached to our modified p-adic sections f•D,s as well as

a subrepresentation πi of the induced representation I(µi, νi) of GL2(Qp) with µi unramified for i = 1, 2, 3.
Applying the computation in Proposition 2.3, we find that whenever χω2 and χω3 are unramified,

Z∗
p (f

†
D,s) = Z∗

p (fD,s)
∏
i=2,3

L
(1
2
− s, χ−1µ−1

1 µ−1
i ν−1

5−i

)
and that when χωi are unramified for i = 1, 2, 3,

Z∗
p (f

††
D,s) = Z∗

p (f
†
D,s)L

(1
2
− s, χ−1ν−1

1 µ−1
2 µ−1

3

)
.
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From the proof of Theorem 7.6 we can deduce the interpolation formulae for the improved L-functions. The
formula for E+(s) follows from that for Z∗

p (fD,s) proved in Proposition 2.6 and Remark 3.5.
Whenever k > 2, the central sign for L(s, πf1 × πf2,k

× πf3,k
) is εp(E). Therefore if εp(E) = −1, then

L†
p(0, s) = 0 by (2), which implies that ∂L†

p

∂x (0, 0) = lims→0
L†

p(s,s)

s . The second equality of (1) gives the

expression of lims→0
L†

p(s,s)

s . We write

Lp(x, y, z, s) =

∞∑
j=0

Aj(x, y, z)
(
s− x+ y + z

2

)j
.

If i ≤ r := ords=2Lp(E, s), then

r = min{j | Aj(0, 0, 0) ̸= 0}, lim
s→2

Lp(E, s)

(s− 2)i
= Ai(0, 0, 0).(8.2)

Letting y = z = s = 0, we see by (1) that the power series
∞∑
j=0

Aj(x, 0, 0)
(
− x

2

)j
= (1− α1a1(x)

−1)2L†
p(x, 0)

has at least a double zero at x = 0. If εp(E) = −1, then since A2n(x, y, z) = 0 for all non-negative integers n
by the functional equation (8.1), we get A1(0, 0, 0) = 0 and r ≥ 3. □

8.4. The proof of Theorem 8.4(1). We discuss Case (i). Then εp(E) = −ε(E) by Remark 8.1. First
suppose that ε(E) = 1. The functional equation (8.1) allows us to write

Lp(x, y, z, s) = A1(x, y, z)
(
s− x+ y + z

2

)
+A3(x, y, z)

(
s− x+ y + z

2

)3
+ · · ·

The proof of Lemma 8.5(3) gives A1(0, 0, 0) = 0. From (8.2) and Lemma 8.5(4) the formula boils down to

A3(0, 0, 0) = −8ℓ1ℓ2ℓ3L††
p (0).

If we denote the degree two term of A1(x, y, z) by ax2 + by2 + cz2 + dxy+ eyz+ fxz, then the degree three
term of Lp(x, s, s, s) is given by

L(3)(x, s) = {ax2 + (b+ c+ e)s2 + (d+ f)xs}(−x/2) +A3(0, 0, 0)(−x/2)3.

On the other hand, from Lemma 8.5(1), (3) we find that

L(3)(x, s) = (ℓ1x+ (ℓ3 − ℓ2)s) · (ℓ1x+ (ℓ2 − ℓ3)s)x · lim
x→0

x−1L†
p(x, 0)

= (ℓ21x
2 − (ℓ2 − ℓ3)2s2)x · (ℓ2 + ℓ3 − ℓ1)L††

p (0).

Comparing the coefficients of x2s, xs2 and x3, we obtain the relations

d+ f = 0, b+ c+ e = 2(ℓ2 − ℓ3)2(ℓ2 + ℓ3 − ℓ1)L††
p (0), 4a+A3(0, 0, 0) = −8ℓ21(ℓ2 + ℓ3 − ℓ1)L††

p (0).

By symmetry we get

d+ e = 0, e+ f = 0;

a+ c+ f = 2(ℓ1 − ℓ3)2(ℓ1 + ℓ3 − ℓ2)L††
p (0), a+ b+ d = 2(ℓ1 − ℓ2)2(ℓ1 + ℓ2 − ℓ3)L††

p (0).

From these equations we conclude that d = e = f = 0 and

a = {(ℓ1 − ℓ2)2(ℓ1 + ℓ2 − ℓ3) + (ℓ1 − ℓ3)2(ℓ1 + ℓ3 − ℓ2)− (ℓ2 − ℓ3)2(ℓ2 + ℓ3 − ℓ1)}L††
p (0),

A3(0, 0, 0) = −8ℓ21(ℓ2 + ℓ3 − ℓ1)L††
p (0)− 4a = −8ℓ1ℓ2ℓ3L††

p (0).

Next assume that ε(E) = −1. Then εp(E) = 1. By (8.1) and Lemma 8.5(1)
∞∑

n=0

A2n(x, s, s)
(s
2

)2n
=

(
1− a2(s)

a1(x)a3(s)

)(
1− a3(s)

a1(x)a2(s)

)
L†
p(x, s).
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Since L†
p(0, 0) = 0, every term in the right hand side has degree at least three. In particular, the constant

term A0(0, 0, 0) of the left hand side is zero. If we denote the degree two term of A0(x, y, z) by αx2 + βy2 +
γz2 + ξxy + ηyz + ζxz, then the degree two term of the left hand side is

αx2 + (β + γ + η)s2 + (ξ + ζ)xs+A2(0, 0, 0)(x/2)
2.

It is zero, and so by symmetry we get

A2(0, 0, 0) = −4α, β + γ + η = 0, ξ + ζ = 0;

A2(0, 0, 0) = −4β, α+ γ + ζ = 0, ξ + η = 0;

A2(0, 0, 0) = −4γ, α+ β + ξ = 0, η + ζ = 0.

We arrive at ξ = η = ζ = α = β = γ = A2(0, 0, 0) = 0. Hence ords=2Lp(E, s) ≥ 4.

8.5. The proof of Theorem 8.4(2). We discuss Case (ii). Then εp(E) = ε(E) by Remark 8.1. If ε(E) = −1,
then ords=2Lp(E, s) ≥ 3 by Lemma 8.5(3), and both sides of the declared identity are zero. We will consider
the case ε(E) = 1, i.e. Σ− has odd cardinality. Unlike Case (i) we cannot apply Lemma 8.5(3). Our proof
relies on the three-variable p-adic triple product L-function in the balanced case constructed in [Hsi19].

Let D be the definite quaternion algebra over Q of discriminant N− and SD(N,Λ) the space of Λ-adic
modular forms on D× defined in [Hsi19, Definition 4.1]. Let fD

i ∈ SD(N,Λ)[t−1
i ] be a Jacquet-Langlands lift

of f i in the sense of [Hsi19, §4.5]. Since we do not assume Hypothesis (CR,Σ−) of [Hsi19, §1.4], we cannot
choose fD

i to be a primitive Jacquet-Langlands lift as in [Hsi19, Theorem 4.5]. Nonetheless, fD
i can be chosen

so that fD
i (u2 − 1) is a non-zero Jacquet-Langlnads lift of fi. Replacing the triple FD = (fD

1 ,f
D
2 ,f

D
3 ) with

the well-chosen test vectors in [Hsi19, Definition 4.8], we can associate to FD the three-variable theta element
ΘFD (X1, X2, X3) in loc.cit. Define an analytic function on U3 ⊂ Z3

p by

Θ(x, y, z) = ΘFD (ux+2 − 1,uy+2 − 1,uz+2 − 1).

By the interpolation formula for ΘFD in [Hsi19, Theorem 7.1] (see Remark 7.8), we can find an analytic
function H(x, y, z) with H(0, 0, 0) ̸= 0 such that

H(x, y, z) ·Θ(x, y, z)2 = Lp

(
x, y, z,

x+ y + z

2

)
.

To proceed, we introduce two-variable improved theta elements.

Lemma 8.6 (Improved theta elements). There exist analytic functions Θ‡
2(x, z), Θ

‡
3(x, y) such that

Θ‡
2(0, 0) = −Θ

‡
3(0, 0),

Θ(x, x+ z, z) =

(
1− a2(x+ z)

a1(x)a3(z)

)
Θ‡

2(x, z), Θ(x, y, x+ y) =

(
1− a3(x+ y)

a1(x)a2(y)

)
Θ‡

3(x, y).

Proof. The idea of the proof is similar to [Hsi19, Proposition 8.3]. We give a sketch of the proof here. For
every integer n, let Rn be the Eichler order of level pnN/N− in D and let X0(p

nN) = D×\D̂×/R̂×
n , where

D̂ = D ⊗ Q̂ and R̂n = Rn ⊗ Ẑ. Through an isomorphism R0 ⊗ Zp ≃ M2(Zp) we define

U1(p
n) :=

{
g ∈ R̂n

∣∣∣∣ gp ≡ (∗ ∗0 1

)
(mod pn)

}
.

Recall that ai(Q) = a(p,f i,Q) and that ϖp ∈ Q̂× is the element with ϖp,p = p and ϖp,ℓ = 1 for ℓ ̸= p.
For all but finitely many arithmetic points Q with kQ = 2, the specialization fD

i,Q : D×\D̂×/U1(p
n) → Cp

is a p-stabilized form on D̂× with the same Hecke eigenvalues with f i,Q and the central character ϵ−1
Q :

Q×\Q̂×/(1+ pnẐ)× → µp∞ for any sufficiently large n. In particular, fD
i,Q is a Up-eigenform with eigenvalue

ai(Q). Namely,

(8.3) Upf
D
i,Q(g) :=

∑
b∈Zp/pnZp

fD
i,Q

(
g

(
ϖn

p b
0 1

))
= ai(Q)nfD

i,Q(g), g ∈ D̂×.
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In what follows, we shall write (fD, gD,hD) = (fD
1 ,f

D
2 ,f

D
3 ). Let ND : D → Q be the reduced norm. Put

τpn =

(
0 1
−ϖn

p 0

)
∈ GL2(Qp) ⊂ D̂×. By definition,

(8.4) Θ(Q1, Q2, Q3) = a1(Q1)
−na2(Q2)

−na3(Q3)
−n∑

[a]∈X0(pnN)

∑
b∈Zp/p

nZp

c∈(Zp/p
nZp)

×

fD
Q1

(
a

(
ϖn

p b
0 1

))
gDQ2

(
a

(
ϖn

p b+ c
0 1

))
hD
Q3

(aτpn)ϵ
1
2

Q1Q2Q
−1
3

(c)ϵ
1
2

Q1Q2Q3
(ND(a)).

We replace the twisted diagonal cycle ∆n in [Hsi19, Definition 4.6] by the improved diagonal cycle

∆‡
n :=

∑
[a]∈X0(Npn)

∑
b∈Zp/pnZp

[(
a

(
ϖn

p b
0 1

)
, aτpn , a

)]
.

We can define the regularized improved diagonal cycle by

∆‡
∞ := lim←−

n→∞
(U−n

p ⊗U−n
p ⊗ 1)eE(∆

‡
n),

and the improved theta element

Θ‡
2(X1, X3) := (FD)∗(∆‡

∞)(X1, (1 +X1)(1 +X3)− 1, X3) ∈ ZpJX1, X3K[t−1].

for t = t1 · t2((1 +X1)(1 +X3)− 1) · t3. Put Θ‡
2(x, z) := Θ‡

2(u
x+2 − 1,uz+2 − 1) for (x, z) ∈ U2. By definition

and (8.3), for all but finitely many arithmetic points (Q1, Q3) with kQ1
= kQ3

= 2

Θ‡
2(Q1, Q3) = a2(Q1Q3)

−n
∑

[a]∈X0(Npn)

fD
Q1

(a)gDQ1Q3
(aτpn)hD

Q3
(a)ϵQ1Q3

(ND(a)).

The above expression holds for any n such that pn is bigger than the conductors of ϵQ1 and ϵQ2 . Likewise we
can define Θ‡

3 ∈ ZpJX1, X2K and Θ‡
3(x, y) with the interpolation property:

Θ‡
3(Q1, Q2) = a3(Q1Q2)

−n
∑

[a]∈X0(Npn)

fD
Q1

(aτpn)gDQ2
(a)hD

Q1Q2
(a)ϵQ1Q2(ND(a)).

To see the first relation, we note that

Θ‡
2(0, 0) =α

−1
2

∑
[a]∈X0(Np)

fD
0 (a)gD0 (aτp)h

D
0 (a), Θ‡

3(0, 0) =α
−1
3

∑
[a]∈X0(Np)

fD
0 (a)gD0 (a)hD

0 (aτp).

Since fD
0 is a newform that is special at p, fD

0 (xτp) = (−α1)f
D
0 (x), and hence Θ‡

2(0, 0) = −Θ
‡
3(0, 0).

To prove the last relation, it suffices to verify the following equation

Θ(Q1, Q1Q3, Q3) =

(
1− a2(Q1Q3)

a1(Q1)a3(Q3)

)
Θ‡

2(Q1, Q3)(8.5)

for all but finitely many arithmetic poitns (Q1, Q3) with kQ1
= kQ3

= 2. The formula for Θ‡
3 can be done by

a similar computation, so we leave it to the reader. Let n be a sufficiently large integer. From (8.4), we get

a1(Q1)
na2(Q1Q3)

na3(Q3)
np−n vol(R̂×

n )Θ(Q1, Q1Q3, Q3)

=

∫
D×\D̂×

d×a
∑

c∈(Zp/pnZp)×

fD
Q1

(
a

(
1 −cϖ−n

p

0 1

))
gDQ1Q3

(a)hD
Q3

(
aτpn

(
1 0
0 ϖ−n

p

))
ϵQ1

(c)ϵQ1Q3
(ND(a))

=

∫
D×\D̂×

d×a
∑

c∈(Zp/pnZp)×

fD
Q1

(
aτpn

(
1 −ϖ−n

p

0 c−1

))
gDQ1Q3

(aτpn)hD
Q3

(
a

(
1 0
0 ϖ−n

p

))
ϵQ1Q3(ND(a))
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by change of variables. From the equations τpn

(
1 −ϖ−n

p

0 c−1

)
=

(
ϖn

p c−1

0 1

)(
c−1 0
−ϖn

p 1

)
, ϵQ1

(ϖp) = ϵQ3
(ϖp) =

1 and (8.3), the last integral equals∫
D×\D̂×

d×a
∑

c∈(Zp/pnZp)×

fD
Q1

(
a

(
ϖn

p c
0 1

))
gDQ1Q3

(aτpn)hD
Q3

(
a

(
ϖn

p 0
0 1

))
ϵQ1Q3

(ND(a))

=

∫
D×\D̂×

d×aa1(Q1)
n ·
{
fD
Q1

(a)− a1(Q1)
−1fD

Q1

(
a

(
ϖp 0
0 1

))}
gDQ1Q3

(aτpn)hD
Q3

(
a

(
ϖn

p 0
0 1

))
ϵQ1Q3

(ND(a))

=a1(Q1)
n

∫
D×\D̂×

d×afD
Q1

(a)gDQ1Q3
(aτpn)p−n

∑
b∈Zp/pnZp

hD
Q3

(
a

(
ϖn

p b
0 1

))
ϵQ1Q3(ND(a))

− a1(Q1)
n−1

∫
D×\D̂×

d×afD
Q1

(a)gDQ1Q3
(aτpn+1)p−(n−1)

∑
b∈Zp/pn−1Zp

hD
Q3

(
a

(
ϖn−1

p b
0 1

))
ϵQ1Q3

(ND(a))

={(a1(Q1)a3(Q3)a2(Q1Q3)/p)
n vol(R̂×

n )− (a1(Q1)a3(Q3)/p)
n−1a2(Q1Q3)

n+1 vol(R̂×
n+1)}Θ

‡
2(Q1, Q3)

=a1(Q1)
na3(Q3)

na2(Q1Q3)
n

(
1− a2(Q1Q3)

a1(Q1)a3(Q3)

)
p−n vol(R̂×

n )Θ
‡
2(Q1, Q3).

This verifies (8.5). □

Now we return to the proof of Theorem 8.4(2). Write Θx for the partial derivative ∂Θ
∂x . Put

a = Θx(0, 0, 0), b = Θy(0, 0, 0), c = Θz(0, 0, 0).

Taking derivatives Θ(x, y, x+ y) with respect to x and y at (0, 0) in Lemma 8.6, we have

a+ c = (ℓ1 − ℓ3)Θ‡
3(0, 0), b+ c = (ℓ2 − ℓ3)Θ‡

3(0, 0).

Similarly, we have

a+ b = (ℓ1 − ℓ2)Θ‡
2(0, 0) = (ℓ2 − ℓ1)Θ‡

3(0, 0).

These imply that

a = 0, b = (ℓ2 − ℓ1)Θ‡
3(0, 0), c = (ℓ1 − ℓ3)Θ‡

3(0, 0).

On the other hand, by the functional equation (8.1) we obtain the Taylor expansion

Lp(x, y, z, s) = H(x, y, z)Θ(x, y, z)2 +A2(x, y, z) ·
(
s− x+ y + z

2

)2
+ · · · .

By Lemma 8.5(1), we find

(1− α1a1(x)
−1)2L†

p(x, 0) = H(x, 0, 0)Θ(x, 0, 0)2 +A2(x, 0, 0) · x2/4.
From the vanishing of Θx(0, 0, 0) we deduce that

A2(0, 0, 0) = 4ℓ21L
†
p(0, 0).

Lemma 8.5(2) and (8.2) complete the proof of Theorem 8.4(2).
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