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BESSEL PERIODS AND ANTICYCLOTOMIC p-ADIC

SPINOR L-FUNCTIONS

MING-LUN HSIEH AND SHUNSUKE YAMANA

Abstract. We construct the anticyclotomic p-adic L-function that in-
terpolates a square root of central values of twisted spinor L-functions
of a quadratic base change of a Siegel cusp form of genus 2 with respect
to a paramodular group of square-free level, assuming the Böcherer con-
jecture for the central L-values with anticyclotomic twists.
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1. Introduction

The purpose of this article is to carry out the first step towards the ana-
lytic side of anticyclotomic Iwasawa theory for Siegel cusp forms by gener-
alizing the works [3, 7, 19] for elliptic cusp forms. Namely, we construct an-
ticyclotomic p-adic L-functions for scalar valued Siegel cusp forms of genus
two and weight greater than one with respect to paramodular groups of
square-free level and establish the explicit interpolation formulae.

1.1. Anticyclotomic Iwasawa main conjecture. Let π ≃ ⊗′vπv be a
unitary irreducible cuspidal automorphic representation of PGSp4(A) gen-
erated by a scalar valued degree two Siegel cuspidal Hecke eigenform f of
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weight κ ≥ 2, where A denotes the rational adèle ring. Let S be the set
of ramified places of the representation π. Fix a prime number p /∈ S and
embeddings ι∞ : Q̄ ↪→ C and ιp : Q̄ ↪→ Cp. Let E/Qp be a finite exten-
sion containing Hecke eigenvalues of f . Thanks to the work of many people
(Chai-Faltings, Laumon, Shimura, Taylor and Weissauer), there exists a geo-
metric p-adic Galois representation ρf,p : Gal(Q̄/Q) → GSp4(E) such that
ρf,p is unramified outside S ∪ {p} and

det(14 − ι∞ι
−1
p ρf,p(Frobℓ)ℓ

−s)−1 = L

(
s− κ+

3

2
,Spn(πℓ)

)
for ℓ /∈ S ∪ {p} at least if κ > 2, where Frobℓ is the geometric Frobeninus
and the right-hand side is the spinor L-factor of πℓ. See [24] and [36] for
the complete result. Denote by εcyc the p-adic cyclotomic character. We are
interested in the central critical twist

ρ∗f,p := ρf,p ⊗ εκ−1cyc : Gal(Q̄/Q) → GSp4(E).

Let Vf = E4 be the representation space of ρ∗f,p. Then Vf is self-dual in

the sense that V ∨f (1) ≃ Vf . We further assume the Vf satisfies the follow-

ing Panchishkin condition: there exists a rank two Gal(Q̄p/Qp)-invariant
subspace Fil+p Vf of Vf such that Fil+p Vf has positive Hodge-Tate weights

(κ−1, 1) while the quotient Vf/Fil
+
p Vf has non-positive Hodge-Tate weights

(0, 2 − κ)1. Let oE be the ring of integers of E. We shall fix a Gal(Q̄/Q)-
stable oE-lattice Tf ⊂ Vf once and for all. Let Af = Vf/Tf and let Fil+p Af
be the image of Fil+p Vf in Af . For any algebraic extension L over Q, we
consider the (minimal) Selmer group defined by

Sel(Af/L) := ker

{
H1(L,Af ) →

∏
v∤p

H1(Lv, Af )×
∏
p|p

H1(Lp, Af/Fil
+
p Af )

}
.

Let K be an imaginary quadratic field of discriminant −∆K < 0 with
integer ring oK and adèle ring AK . Denote by Kab the maximal abelian
extension over K and by K∞ the composition of all the Zp-extensions of
K. Take the decomposition Gal(K∞/K) ≃ Γ+ ⊕ Γ− so that the non-trivial
element of Gal(K/Q) acts on Γ± ≃ Zp by ±1. Let K±∞ be the subfield of K∞
with Gal(K±∞) = Γ±. The Zp-extension K−∞/K is called anticyclotomic. We
consider Iwasawa theory for f over K−∞. On the algebraic side, one considers
the Pontryagin dual Sel(Af/K

−
∞)∨ of the Selmer group Sel(Af/K

−
∞), which

is known to be a finitely generated oEJΓ−K-module. On the analytic side,
one expects the existence of the p-adic L-function Lp(f/K

−
∞) ∈ oEJΓ−K

attached to f which interpolates the central values of L-functions associated
with ρf,p twisted by characters of Γ−, and then one could make the following
anticyclotomic Iwasawa main conjecture for Siegel cusp forms.

1Here Qp(1) has Hodge-Tate weight 1 in our convention.
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Conjecture 1.1. The characteristic ideal charoEJΓ−KSel(Af/K−∞)∨ is gen-

erated by Lp(f/K
−
∞).

The main result of this paper is the construction of Lp(f/K∞) when f is
a paramodular newform of square-free level. Actually, we will construct a
square root Θf of the anticyclotomic p-adic L-function.

1.2. Paramodular Siegel cusp forms. The paramodular group of level
N is defined by

K(N) = Sp4(Q) ∩


Z Z N−1Z Z
NZ Z Z Z
NZ NZ Z NZ
NZ Z Z Z

 .

This subgroup is a good analogue of the congruence subgroup Γ0(N) under-
lying the newform theory for GL2 (cf. [29]). Put

Symg = {z ∈ Mg | tz = z}, Hg = {Z ∈ Symg(C) | ℑZ > 0}.
Throughout this paper we require N to be square-free. Let π be an irre-
ducible cuspidal automorphic representation of PGSp4(A) generated by a
paramodular Siegel cuspidal Hecke eigenform

f(Z) =
∑
B

cB(f)e
2π
√
−1tr(BZ), Z ∈ H2.

of genus 2 and weight κ with respect to K(N). For each prime ℓ ∤ N we
write tℓ,1 and tℓ,2 for the respective eigenvalues of the Hecke operators

ℓκ−3[K(N)diag[1, 1, ℓ, ℓ]K(N)], ℓ2(κ−3)[K(N)diag[1, ℓ, ℓ2, ℓ]K(N)]

acting on f . Let

Qℓ(X) = 1− t1,ℓX + (ℓt2,ℓ + (ℓ3 + ℓ)ℓ2κ−6)X2 − ℓ2κ−3t1,ℓX
3 + ℓ4κ−6X4

be the Hecke polynomial of f at ℓ. Then we have

Qℓ(ℓ
−s) = L

(
s− κ+

3

2
,Spn(πℓ)

)
.

We write Spn(π) for the strong lift of π to an automorphic representation
of GL4(A) and Spn(π)K for the base change of Spn(π) to GL4(AK). We
consider its L-function twisted by Hecke characters ν

L(s,Spn(π)K ⊗ ν) =
∏
ℓ

L(s,Spn(πℓ)Kℓ
⊗ νℓ).

When ℓ does not divide N and the conductor of ν, the local L-factor is
given as follows: If ℓ = l is inert in K, then

L(s,Spn(πℓ)Kℓ
⊗ νℓ) = Qℓ(λlℓ

3/2−κ−s)Qℓ(−λlℓ3/2−κ−s),
where λ2l = νℓ(l), if ℓ = l2 is ramified in K, then

L(s,Spn(πℓ)Kℓ
⊗ νℓ) = Qℓ(λlℓ

3/2−κ−s),
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where λl = νℓ(l), and if ℓ = l1l2 is split in K, then

L(s,Spn(πℓ)Kℓ
⊗ νℓ) = Qℓ(λl1ℓ

3/2−κ−s)Qℓ(λl2ℓ
3/2−κ−s).

where λli = νℓ(li) for i = 1, 2. The L-factors at prime factors of N are given
in (4.5). It is conjectured that there is a bijection between isogeny classes of
abelian surfaces A/Q of conductor N with EndQA = Z and such cusp forms
f with rational eigenvalues, up to scalar multiplication (see [39, 5]). In this
case Tf is the Tate module lim

←−
A[pn] and the generalized BSD conjecture

predicts that the vanishing order of L(s,Spn(π)K ⊗ ν) at the center s =
1
2 coincides the dimension dimC(A(K

−
∞) ⊗ C)ν of the ν-eigenspace of the

Mordell-Weil group of A for an anticyclotomic character ν of Γ−.

1.3. Hypotheses. The imaginary quadratic field K uniquely determines a
factorization N = N+N− with N+ divisible only by primes that are split
in K and N− divisible only by primes that are inert or ramified in K. We
assume the following Heegner hypothesis:

(Heeg) N− is the product of an even number of primes.

Then there is an indefinite quaternion algebra D that is ramified precisely
at the prime factors of N−. We consider the following inner form of GSp4:

GUD2 =

{
g ∈ GL2(D)

∣∣∣∣ g(0 1
1 0

)
tḡ = λ(g)

(
0 1
1 0

)}
,

where ·̄ denotes the main involution of D. Suppose that πℓ is generic for all
primes ℓ. When ρ is a discrete series representation of GL2(Qq), we write
ρD for its Jacquet-Langlands lift to D×(Qq). We define the representation

πD ≃ ⊗′vπDv of PGUD2 (A) by πDv ≃ πv for v ∤ N− and by πDq ≃ ρDq ⋊ σq for

prime factors q of N−, where we write πq ≃ ρq ⋊σq. When N− ̸= 1, we will
assume the following hypothesis on the Jacquet-Langlands correspondence
between PGSp4 and PGUD2 :

(JL) The representation πD occurs in the space of cusp forms on PGUD2 (A)
with multiplicity one.

Since PGSp4 and PGUD2 are isomorphic to special orthogonal groups,
Arthur’s project will establish this hypothesis.

We construct the anticyclotomic p-adic L-function attached to π over K
with explicit evaluation formula for anticyclotomic characters of finite order.
The key ingredient of our construction is the Böcherer conjecture [4], which
is a special case of the refined Gross-Prasad conjecture formulated by Yifeng
Liu [25] in full generality (cf. Conjecture 9.1 below):

(Böch) For every anticyclotomic Hecke character ν : K×C×A×\A×K → C×
of p-power conductor and every nonzero cusp form ϕ = ⊗vϕv ∈ πD

|Bν
S(ϕ)|2

(ϕ, ϕ)
= ξQ(2)ξQ(4)

Λ
(
1
2 , Spn(π)K ⊗ ν

)
2sπΛ(1, π, ad)

∏
v

α♮S,νv(ϕv, ϕv)

(ϕv, ϕv)
,
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where sπ = 2 or 1 according as π is endoscopic or not.

The Bessel period Bν
S is defined in Section 9 and α♮S,νv is a normalized

local Bessel integral. If N− = 1, then S is a positive definite half-integral
symmetric matrix of size 2 with determinant ∆K

4 and the hypothesis (Böch)
relates the central L-values of π to a square of the Bessel period defined by

Bν
S(ϕ) =

∫
K×A×\A×K

∫
ϕ

((
t tz
0 (det t) tt−1

))
e(tr(Sz))ν(t) dzdt,

where z is integrated over symmetric matrices of size 2 over A/Q, e de-
notes the standard additive character on A/Q and K× is identified with the
subgroup {t ∈ GL2(Q) | ttSt = (det t)S}.

The Hecke polynomial Qp(X) at p can be factorized into

Qp(X) = (1− αPX)(1− βPX)(1− p2κ−3α−1P X)(1− p2κ−3β−1P X)

such that

0 ≤ ordp(ιp(αP)) ≤ ordp(ιp(βP)) ≤ κ− 3

2
.

Let αQ := p2−καPβP . In view of [34, Théorème 1], the Panchishkin hypoth-
esis is equivalent to the the following Klingen p-ordinary hypothesis:

ordp(ιp(αQ)) = 0.(Q)

1.4. Main theorem. Let recK : K×\A×K → Gal(Kab/K) denote the geo-

metrically normalized reciprocity law map. Put wK = ♯o×K . To each char-
acter ν̂ : Γ− → Q̄×p we associate a Hecke character

ν = ι∞ ◦ ι−1p ◦ ν̂ ◦ recK : A×K/K
×A× → C×.

A character ν as above is usually referred to be anticyclotomic in the sense
that ν is trivial on A×. We write c(ν) for the smallest non-negative integer
n such that νp is trivial on o×Kp

∩ (1+pnoKp
). Fix a decomposition N+oK =

N+
0 N

+
0 . For each prime factor ℓ of N we write ϵℓ(f) = ε

(
1
2 ,Spn(πℓ)

)
for the

eigenvalue of the Atkin-Lehner involution at ℓ. Put ϵN−(f) =
∏
ℓ|N− ϵℓ(f).

Theorem 1.2. Assume the hypotheses (Heeg), (JL), (Böch) and (Q) are
true for π, K, p and ν. Suppose that all the nonarchimedean components
πℓ are generic. Then there exist an element Θf ∈ oEJΓ−K and an explicitly
given complex number Ωπ,N− ∈ C× such that for every finite-order character

ν̂ : Γ− → Q̄×p we have the following interpolation formula:

ν̂(Θf )
2 =

Λ
(
1
2 ,Spn(π)K ⊗ ν

)
Ωπ,N−

· e(πp, νp)2 · ν−1(N+
0 ) · α

6
P

× 22κ−3−sπ · w2
K∆κ−1

K ϵN−(f) ·N−1
∏

ℓ|(N−,∆K)

(1− ϵℓ(f)),

where e(πp, νp) is the p-adic multiplier defined by

e(πp, νp) = (pκ−1α−1Q )c(ν),(c(ν) > 0)
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e(πp, νp) =
2∏
i=1

(1− α−1P λpip
κ−2)(1− β−1P λpip

κ−2),(c(ν) = 0, p = p1p2)

e(πp, νp) = (1− α−2P p2κ−4)(1− β−2P p2κ−4),(c(ν) = 0, p = p)

e(πp, νp) = (1− α−1P λpp
κ−2)(1− β−1P λpp

κ−2).(c(ν) = 0, p = p2)

Remark 1.3. (1) The complex number Ωπ,N− is given in Definition 10.13.

If N− = 1, then it is given by

Ωπ,1 =
Λ(1, π, ad)

⟨f, f⟩K(N)
, ⟨f, f⟩K(N) =

∫
K(N)\H2

|f(Z)|2(detY )κ−3dZ.

Here f is normalized so that all the Fourier coefficients of f are real
and contained in E via ιp : Q̄p ≃ C and some Fourier coefficient of
f is non-vanishing modulo the maximal ideal of oE .

(2) Assume that ϵℓ(f) = −1 for every prime factor ℓ of (DK , N
−).

Then ε
(
1
2 ,Spn(π)K ⊗ ν

)
= (−1)t(N

−), where t(N−) is the number
of prime factors of N−. In particular, if (Heeg) is not true, then
L
(
1
2 , Spn(π)K ⊗ ν

)
= 0.

(3) We will construct the element Θf ∈ EJΓ−K with the interpolation
property without (Q) more generally for Hilbert-Siegel cusp forms.

(4) Furusawa and Morimoto [12, 13] have proved the hypothesis (Böch),
provided κ > 2, ν is trivial and π is tempered. Since π is not a Saito-
Kurokawa lift, Theorem 5 of [21] combined with [36] shows that π is
tempered at least if κ > 2 and N is odd. The extension to nontrivial
characters of A×K/K

×A× is current in progress by them.
(5) If ν has infinite order, then so does ν∞ and so by Theorem 3.10 of

[28] Bν
S(ϕ) = α♮S,ν∞(φ,φ

′) = 0 for all ϕ ∈ πD and φ,φ′ ∈ πD∞.

(6) The modified Euler factor e(πp, νp) is compatible with the conjec-
tural shape of p-adic L-functions due to Coates and Perrin-Riou. In-
deed, let M be the motive over Q associated with ρf,p|Gal(K̄/K) ⊗ ν.

Then e(πp, νp)
2 is the ratio between L(ρ)

p (M) defined in [8, (18),
p. 109] and Lp(M) = L

(
1
2 , Spn(πp)Kp ⊗ νp

)
.

1.5. Construction of Θf . We sketch the construction of the theta ele-
ment Θf in the special case N− = 1. Define K(N, p) to be the subgroup
which consists of matrices (bij) ∈ K(N) such that b21, b31, b32, b34, b41, b42 are
divisible by p. We define Hecke operators on Sκ(K(N, p)) by

[UPp h](Z) =
∑
B

cpB(h)e
2π
√
−1ptr(BZ),

[UQp h](Z) =

p∑
x=1

∑
B

c tup(x)Bup(x)(h)e
2π
√
−1tr(BZ),

where B runs over positive definite symmetric half-integral matrices of size

2 and up(x) =

(
p x
0 1

)
. We define the p-stabilization f ‡ ∈ Sκ(K(N, p)) of f
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with respect to αQ and αP by

f ‡ = α−3P α−1Q (UQp −pκ−1αPβ−1P )(UPp −p2κ−3α−1P )(UPp −p2κ−3β−1P )(UPp −βP)f.

This form f ‡ is an eigenform of the operators UQp and UPp with eigenvalues
αQ and αP , respectively.

Thus N = N+ and D = M2(Q). We begin with some notation. Let

R =

(
Z Z

pN+Z Z

)
be the standard Eichler order of level pN in D. The

group R× acts on the set Ψ ∈ Hom(K,D) by Ψ · r 7→ r−1Ψr. Let

CM(K,D) := Hom(K,D)/R×

be the set ofR×-conjugacy classes of field homomorphisms fromK toD. For
Ψ ∈ Hom(K,D), denote by [Ψ] the R×-conjugacy class of Ψ in CM(K,D).
For a positive integer c, letOc be the order ofK of conductor c andKc the as-
sociated ring class field. The conductor of a homomorphism Ψ ∈ Hom(K,D)
is the unique positive integer c such that Ψ−1(R) = Oc. Let CM(Oc, R) be
the set of R×-conjugacy classes of homomorphisms Ψ ∈ Hom(K,D) of con-
ductor c, which we call the set of CM points of conductor c.

The Galois group Gc := Gal(Kc/K) acts on CM(Oc,R) in the following
manner ([16, p.133]): for σ ∈ Gc and [Ψ] ∈ CM(Oc,R), write σ = recK(a) for

some a ∈ K̂× and decompose Ψ(a) = γ ·u for some u ∈ R̂× and γ ∈ GL2(Q)
with det γ > 0 by strong approximation. The action [Ψ]σ is defined by

[Ψ]σ := [γ−1Ψγ].

To each Ψ ∈ Hom(K,D) of conductor c, we associate a unique half-integral
symmetric positive definite matrix SΨ defined by

±SΨ =

(
0 1
−1 0

)
·Ψ(c

√
−∆K/2).

Thus [Ψ] 7→ [SΨ] gives a map from CM(Oc,R) to R×-conjugacy classes of
primitive half-integral symmetric positive definite matrices. For each non-
negative integer n, we will choose special CM points [Ψn] ∈ CM(Opn , R) of

conductor pn, and define the n-th theta element Θ̃n ∈ oE [Gpn ] by

Θ̃n = α−nQ

∑
σ∈Gpn

cSΨσ
n
(f ‡) · σ.

The fact that f ‡ is an UQp -eigenform allows us to make a good choice of CM

points {[Ψn]}∞n=1 such that Θ̃n is norm-compatible, i.e.

Π n+1
n (Θ̃n+1) = Θ̃n

under the quotient map Π n+1
n : Gpn+1 → Gpn , and hence we obtain the

element Θ̃∞ := lim
←−
n

Θ̃n ∈ oEJGal(Kp∞/K)K. The theta element Θf is defined

by Θf = Π
Kp∞

K−∞
(Θ̃∞) via the quotient map Π

Kp∞

K−∞
: Gal(Kp∞/K) → Γ−. For

each anticyclotomic character ν of conductor pn, the interpolation ν̂(Θf ) is
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essentially the global Bessel period of f ‡ with respect to Sn and ν, and the
square of the global Bessel period is a product of the central L-value and
local Bessel integrals by the hypothesis (Böch).

1.6. The outline of the proof. We will construct a GSp4(Qv)-equivariant
isomorphism Mv : πv ≃ π∨v . Choose an element J ∈ GL2(Q) which satisfies
tJSJ = S and detJ = −1. Then

[ϕv ⊗ ϕ′v 7→ α♮S,νv(ϕv,Mv(πv(t(J))ϕ
′
v))] ∈ HomRS×RS

(πv ⊠ πv, ν
S
v ⊠ νSv ),

where we put t(J) = diag[J,− tJ−1] and define the character νSv of RS =
K×v ⋊Sym2(Qv) by ν

S
v (t, z) = νv(t)ev(tr(Sz)). The hypothesis (Böch) relates

the square Bν
S(ϕ)

2 to the product of the central L-value and

α♮S,νv(ϕ
0
v,Mv(πv(t(J))ϕ

0
v)).

Our main task is to compute this local factor for a nice test vector ϕ0v ∈ πv.
If v ̸= p and both πv and νv are unramified, then ϕ0v is an unramified vector
and the Bessel integral has been calculated in [25, 9]. If v divides N+,
then ϕ0v is a paramodular new vector of πv and its Bessel period will be
computed in §4.2. The quaternion case is discussed in §5.3. If v = ∞, then
ϕ0∞ is a lowest weight vector and the computation is done in §5.4. When
κ > 2, the archimedean Bessel integral has been computed in [9] by a method
suggested by Kazuki Morimoto. Our computation is different and includes
the case κ = 2. When v = p, we construct an ordinary projector e0ord,p in

Section 7 and compute the Bessel integral of e0ord,pϕ
0
p in Section 8. To that

end, we will construct a local Bessel period B
W,πp
S,νp

∈ HomRS
(πp, ν

S
p ) so that

B
W,πp
S,νp

(e0ord,pϕ
0
p) is computable. By uniqueness we are led to a functional

equation and a factorization

B
W,π∨p
S,νp

◦Mp = c(πp, νp)B
W,πp
S,νp

, α♮S,νp = c′(πp, νp)B
W,πp
S,νp

⊗B
W,π∨p

−S,ν−1
p
.

We determine the proportionality constants in Propositions 3.4, 6.5 and 6.6.
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2. The basic setting

2.1. Notation. Besides the standard symbols Z, Q, R, C, Zp, Qp we denote
by N the set of positive integers, by R×+ the group of strictly positive real

numbers and by Cp = Q̂p the completion of an algebraic closure of the p-adic
field Qp. If x is a real number, then we put [x] = max{i ∈ Z | i ≤ x}. For
any finite set A we denote by ♯A the number of elements in A. For any set X
we denote by 1lX the characteristic function of X. When G is a topological
group, we write G◦ for its connected component of the identity. When G is
locally compact and abelian, we denote the group of quasi-characters of G
by Ω(G) and the subgroup of unitary characters of G by Ω1(G).

Let F be a local field of characteristic zero with normalized absolute value
ωF = | · |F . We often simply write |x| = |x|F and ω(x) = ωF (x) for x ∈ F× if
its meaning is clear from the context without possible confusion. The group
Ω(F×)◦ (resp. Ω1(F×)◦) consists of homomorphisms of the form ωsF with

s ∈ C (resp. s ∈
√
−1R). Let σ ∈ Ω(F×). Define ℜσ as the unique real

number such that σω−ℜσF ∈ Ω1(F×).
Let F be nonarchimedean. We denote the integer ring of F by oF , the

maximal ideal of oF by p and the order of the residue field oF /p by q and
the different of F by dF . Fix a prime element ϖ of oF . When σ ∈ Ω(F×)◦,
we put L(s, σ) = 1

1−σ(ϖ)q−s . Otherwise we put L(s, σ) = 1. We extend | · |F
to fractional ideals of oF by |ϖi|F = q−i. Fix a generator dF of dF and a
nontrivial additive character ψ on F . Put ζ(s) = ζF (s) =

1
1−q−s . In our later

discussion we mostly let ψ be trivial on oF but not trivial on p−1. When
the residual characteristic of F is p, we define the character ψF of F by

ψF (x) = e−2π
√
−1y with y ∈ Q such that TrF/Qp

(x)− y ∈ Zp. Let dx be the

self-dual Haar measure on F with respect to the pairing (x, y) 7→ ψF (xy).

This measure gives oF the volume |dF |1/2. The Haar measure d×x of F× is
normalized by d×x = ζ(1) dx

|x|F . When K is a quadratic étale algebra over

F , let dt be the quotient measure of the Haar measures of K× and F×.
For an admissible representation (π, V ) of a reductive group G over F we

will write π∨ for its contragredient representation. We occasionally identify
the space V with π itself when there is no danger of confusion. When
G = GLn(F ) and µ ∈ Ω(F×), we define a representation π on the same
space Vπ by (π⊗µ)(g) = µ(det g)π(g). When Π is an irreducible admissible
representation of GLn(F ), we write ΠK for its base change to GLn(K)
and write L(s,Π) for its Godement-Jacquet L-factor. Given an irreducible
admissible representation π of GSp4(F ), we denote its transfer to GL4(F ) by
Spn(π) and its adjoint L-factor by L(s, π, ad). When π is not supercuspidal,
these L-parameter and degree 10 L-factor are explicitly computed in Table
A.7 of [29] and [2], respectively.

2.2. Quaternion unitary groups. For any ring R we denote by Mi,j(R)
the set of i × j-matrices with entries in R and write Mg(R) in place of
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Mg,g(R). The group of all invertible elements of Mg(R) and the set of
symmetric matrices of size g with entries in R are denoted by GLg(R)
and Symg(R), respectively. We sometimes write R× = GL1(R). The sub-
group Bg(R) consists of upper triangular matrices in GLg(R). For matrices
B ∈ Symg(R) and G ∈ Mg,m(R) we use the abbreviation B[G] = tGBG,

where tG is the transpose of G. If A1, . . . , Ar are square matrices, then
diag[A1, . . . , Ar] denotes the matrix with A1, . . . , Ar in the diagonal blocks
and 0 in all other blocks. Let 1g be the identity matrix of degree g. When
G is a reductive algebraic group and Z is its center, we write PG for the
adjoint group G/Z.

Let D be a quaternion algebra over a field F . We denote by x 7→ x̄
the main involution of D and by tĀ the conjugate transpose of a matrix
A ∈ Mn(D). Let NDF (x) = xx̄ and TrDF (x) = x+ x̄ denote the reduced norm
and the reduced trace of x ∈ D. PutD− = {z ∈ D | z̄ = −z}. We frequently
regard D as an algebraic variety over F and consider the algebraic group
GUD2 which associates to any F -algebra R the group

GUD2 (R) =

{
h ∈ GL2(D ⊗F R)

∣∣∣∣ h(0 1
1 0

)
t̄h = λ(h)

(
0 1
1 0

)
, λ(h) ∈ R×

}
,

where λ is called the similitude character of GUD2 . We define homomor-
phisms m, t : D× → GUD2 , n : D− → GUD2 and d : F× → GUD2 by

m(A) =

(
A 0
0 Ā−1

)
, t(A) =

(
A 0
0 A

)
, n(z) =

(
1 z
0 1

)
, d(λ) =

(
1 0
0 λ

)
and denote the parabolic subgroup of GUD2 with a Levi factor d(F×)m(D×)
and the unipotent radical n(D−) by P.

Fix S ∈ D− with d0 = S2 ̸= 0. Put K = F + FS ⊂ D. We choose an
element J ∈ D− such that JtJ−1 = t̄ for t ∈ K. Then K ≃ F (

√
d0) and

D = K +KJ. Let RS = t(K×)n(D−) ≃ K× ⋉D− be a subgroup of P.
Let GSp2g be the symplectic similitude group of rank g defined by

GSp2g = {h ∈ GL2g | hJg th = λg(h)Jg, λg(h) ∈ GL1}, Jg =

(
0 1g

−1g 0

)
.

Put UD2 = kerλ and Spg = kerλg. We define the homomorphisms

m : GLg ×GL1 → GSp2g, n : Symg → GSp2g

similarly by

m(A, λ) =

(
A 0
0 λ tA−1

)
, n(z) =

(
1g z
0 1g

)
.

We write

m(A) = m(A, 1), t(A) = m(A, detA), d(λ) = m(1g, λ).

Define a maximal parabolic subgroup Pg = MgNg of GSp2g by

Mg = {m(A, λ) | A ∈ GLg, λ ∈ GL1}, Ng = {n(z) | z ∈ Symg}
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and a Borel subgroup of GSp2g by

Bg = {m(A, λ)n(z) | A ∈ Bg, λ ∈ GL1, z ∈ Symg}.
Note that

PGSp2 ≃ SO(2, 1), PGSp4 ≃ SO(3, 2), PGUD2 ≃ SO(4, 1), B1 ≃ B2.

We write Ug and Ug for the unipotent radicals of Bg and Bg, respectively.
We include the case in which D is the matrix algebra M2(F ). In this case

GUD2 ≃ GSp4, D− ≃ Sym2, P ≃ P2.

2.3. Abstract Bessel integrals for GUD2 . Let F be a local field and (π, V )
an irreducible admissible representation of PGUD2 (F ). Since π ≃ π∨, we
have a GUD2 (F )-invariant bilinear perfect pairing b : V × V → C. Given a
pair ϕ1, ϕ2 ∈ V , we define the matrix coefficient Φϕ1,ϕ2 : GUD2 (F ) → C by

Φϕ1,ϕ2(g) = ΦJ
ϕ1,ϕ2(g) = b(π(g)ϕ1, π(m(J,−1))ϕ2).

Definition 2.1. Let U be a unipotent algebraic group over a p-adic field F
and f a smooth function on U(F ). We say that f has a stable integral over
U(F ) if there is a compact open subgroup U of U(F ) such that for any open
compact subgroup U ′ containing U∫

U ′
f(z) dz =

∫
U
f(z) dz.

In this case we write
∫ st
U(F ) f(z) dz =

∫
U f(z) dz.

We associate to S ∈ D− and Λ the character ΛS of RS by ΛS(t(t)n(z)) =
Λ(t)ψ(TrDF (Sz)). By [22, 25, 10] the following stable integral of a matrix
coefficient exists for each t ∈ K×:

Bψ
S (ϕ1, ϕ2, t) =

∫ st

D−

Φϕ1,ϕ2(n(z)t(t))ψ(Tr
D
F (Sz)) dz.

Definition 2.2 (abstract Bessel integrals relative to S and Λ). We define

BΛ
S (ϕ1, ϕ2) =

∫
F×\K×

∫ st

D−

Φϕ1,ϕ2(n(z)t(t))ψ(Tr
D
F (Sz))Λ(t)

−1 dzdt

for Λ ∈ Ω(F×\K×) and ϕ1, ϕ2 ∈ V whenever the integral above converges.

When π is tempered and Λ is unitary, the iterated integral on the right-
hand side converges. We give a direct proof for representations of our interest
in Lemma 3.3 below. We know that

dimCHomRS
(π,ΛS) ≤ 1

by Corollary 15.3 of [14]. It is important to note that

HomRS×RS
(π ⊠ π,ΛS ⊠ ΛS) = CBΛ

S ,

i.e., BΛ
S is a basis vector of this zero or one-dimensional spaces.
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Remark 2.3. When π is not square-integrable, the Bessel integral may di-
verge and is defined via regularization. Yifeng Liu [25] has constructed a
regularization of the archimedean Bessel integral in general. In §5.4 we will
regularize the Bessel integrals of matrix coefficients of lowest weight repre-
sentations of GSp4(R) of scalar weight via a different way.

When D = M2(F ), we associate to S ∈ Sym2(F ) with detS ̸= 0 the
Bessel integral BΛ

S in a similar manner.

Remark 2.4. Let A ∈ GL2(F ), λ ∈ F× and t ∈ T . Put

S′ = λ−1S[A], T ′ = A−1TA, t′ = A−1tA, J′ = A−1JA.

We define Λ′ ∈ Ω(T ′) by Λ′(t′) = Λ(At′A−1). Since

ΦJ
π(m(A,λ))ϕ1,π(m(A,λ))ϕ2

(n(z)t(t)) = ΦJ′
ϕ1,ϕ2(n(λA

−1z tA−1)t(t′)),

it follows that

BΛ
S (π(m(A, λ))ϕ1, π(m(A, λ))ϕ2, t) = |λ|−3| detA|3BΛ

S′(ϕ1, ϕ2, t
′).

In particular, if we define the additive character ψλ by ψλ(x) = ψ(λx), then

Bψ
S (π(d(λ))ϕ1, π(d(λ))ϕ2, t) = |λ|−3Bψλ−1

S (ϕ1, ϕ2, t),

BΛ
S (π(m(A, λ))ϕ1, π(m(A, λ))ϕ2) = |λ|−3|detA|3BΛ′

S′ (ϕ1, ϕ2).

3. Local Bessel integrals for GSp4

3.1. Explicit Bessel integrals. Fix S =

(
a0

b0
2

b0
2 c0

)
∈ Sym2(F ). Assume

that detS ̸= 0. Put

d0 = −4 detS = b20 − 4a0c0,

K = KS = F (
√
d0),

T = TS = {A ∈ GL2(F ) | tASA = (detA)S}.

We denote the nontrivial automorphism of K over F by t 7→ t̄. Put
Tr(t) = TrKF (t) = t+ t̄ and N(t) = NKF (t) = tt̄ for t ∈ K. We write r for the
maximal order of K and τK/F : F× → {±1} for the character of F× whose

kernel is N(K×). One can verify that

T =

{(
x− y b02 −yc0
ya0 x+ y b02

) ∣∣∣∣ x, y ∈ F, x2 − d0
4
y2 ̸= 0

}
.

We identify T with K× via the map

x+
y

2

√
d0 7→

(
x− y b02 −yc0
ya0 x+ y b02

)
.

We regard characters of K× as those of T .
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Let π0 be an irreducible admissible unitary infinite dimensional represen-
tation of PGL2(F ). It possesses a Whittaker model, i.e., there is a functional

0 ̸= W ∈ HomU2(π0, ψ) = HomGL2(F )(π0, Ind
GL2(F )
U2

ψ),

which is unique up to scalar multiple. LetW(π0, ψ) be the space of functions
of the form Wf (g) = W(π0(g)f) with f ∈ π0. We sometimes identify Vπ
with W(π0, ψ). Since π0 ≃ π∨0 , we can define the GL2(F )-invariant pairing

bW : π0 × π0 → C, bW(f, f ′) =

∫
F×

Wf (t(a))Wf ′(t(−a)) d×a.

For σ ∈ Ω(F×) we consider the induced representation

π = I(π0, σ) := Ind
GSp4(F )
P2

(π0 ⊗ σ−1)⊠ σ = π0 ⊗ σ−1 ⋊ σ.

It is noteworthy that π has trivial central character and can be viewed as a
representation of PGSp4(F ) ≃ SO(2, 3).

We normalize the Haar measure dz on Sym2(F ) so that Sym2(oF ) has
volume 1. Choose a right invariant measure dg on P2\GSp4(F ) such that

(3.1)

∫
P2\GSp4(F )

f(g) dg =

∫
Sym2(F )

f(wsn(z)) dz

for all f ∈ Ind
GSp4(F )
P2

δ
1/2
P2

. We associate to any GL2(F )-invariant pairing

B : π0 × π0 → C

the GSp4(F )-invariant pairing B♯ : I(π0, σ)× I(π0, σ
−1) → C by

(3.2) B♯(ϕ, ϕ′) =
∫
P2\GSp4(F )

B(ϕ(g), ϕ′(g)) dg.

We use b♯W to identify I(π0, σ
−1) with the contragredient representation π∨.

We shall study the Bessel integral for the representations of the form
I(π0, σ), and in addition, we will explicitly factorize it into a product of two
appropriate local Bessel periods when K is split or π0 is a principal series

representation. In what follows, we fix D′ ∈ oF and put θ = D′+
√
d0

2 ∈ r.
Fix an element J ∈ GL2(F ) such that tJ = Jt̄ for t ∈ T . There is no loss of
generality by letting

S =

(
1 −Tr(θ)

2

−Tr(θ)
2 N(θ)

)
, J =

(
−1 Tr(θ)
0 1

)
(3.3)

thanks to Remark 2.4. The embedding ι : K ↪→ M2(F ) attached to this S
is

t = aθ + b 7→ ι(t) =

(
b+ aTr(θ) −aN(θ)

a b

)
(a, b ∈ F ).(3.4)

We introduce the intertwining operator

M(π0, σ) : I(π0, σ) → I(π0, σ
−1),
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defined for ℜσ ≪ 0 by the convergent integral

[M(π0, σ)ϕ](g) =

∫
Sym2(F )

ϕ(J2n(z)g) dz,

and by meromorphic continuation otherwise. A normalized intertwining
operator is defined by setting

M∗(π0, σ) = γ(0, π0 ⊗ σ−1, ψ)γ(0, σ−2, ψ)M(π0, σ).

The character ψS : Sym2(F ) → C× is defined by ψS(n(z)) := ψ(tr(Sz)).

Definition 3.1 (explicit Bessel integrals relative to S and Λ). We define

JWS,Λ ∈ HomRS×RS
(I(π0, σ)⊠ I(π0, σ

−1),ΛS ⊠ ΛS)

as in Definition 2.2 by the integral

JWS,Λ(ϕ, ϕ
′) =

∫
F×\K×

∫ st

Sym2(F )
b♯W(π(t(t)n(z))ϕ, π∨(t(J))ϕ′)ψS(z)Λ(t)dzdt

for ϕ ∈ I(π0, σ) and ϕ
′ ∈ I(π0, σ

−1). Furthermore we define

BWS,Λ ∈ HomRS×RS
(I(π0, σ)⊠ I(π0, σ),Λ

S ⊠ ΛS)

by

BWS,Λ(ϕ1, ϕ2) := JWS,Λ(ϕ1,M
∗(π0, σ)ϕ2), ϕ1, ϕ2 ∈ I(π0, σ).

Clearly, Definition 3.1 is independent of the choice of J.

3.2. Bessel periods. We have introduced the symmetric matrix S in (3.3).
Define matrices ς ∈ GL2(F ) and S

′ ∈ Sym2(F ) by

ς =

(
1 −θ
−1 θ

)
, S′ =

(
0 −1

2
−1

2 0

)
Then

ις(t) := ςtς−1 = diag[t, t], tςS′ς = S.

If K/F is not split, then we set

ς = 12, S′ = S, ις = ι.

Fix a ψ-Whittaker functional W on π0. In order to investigate the Bessel
integral JWS,Λ we will explicitly construct toric and Bessel periods

TWΛ ∈ HomςT ς−1(π0,Λ), BW,σ
S′,Λ ∈ HomRS′ (I(π0, σ),ΛS′).

We define the toric period of f ∈ π0 by

TWΛ (f) =

∫
F×\K×

W(π0(ις(t))f)Λ(t)
−1 dt.

This integral is absolutely convergent and gives rise to a nonzero K×-
invariant functional on π0 for any unitary generic representation π0.
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Let ws be the Weyl element given by

(3.5) ws =


0 1
−1 0

0 −1
1 0

 = m

((
1 0
0 −1

))
s2s1s2 ∈ GSp4(F ).

It is important to note that

wst(A) = t(A)ws.

Definition 3.2. We define the Bessel period of ϕ ∈ I(π0, σ) by

BW,σ
S′,Λ(ϕ) =

∫
F×\K×

∫ st

Sym2(F )
W(ϕ(wsn(z)t(ις(t))))ψS′(−z)Λ(t)−1 dzdt.

For i ∈ N we put

Symi
2 =

{(
x y
y w

) ∣∣∣∣ x,w ∈ F, y ∈ p−i
}
.

Lemma 3.3. Assume that K/F is split. Write Λ = (Λ0,Λ
−1
0 ). Let ϕ ∈ π.

Take i ∈ N such that π(k)ϕ = ϕ for elements k ∈ I which satisfy k − 14 ∈
M4(p

i). Suppose that ψ has order 0. If ℜσ < 1
2 , then the double integral∫

F×

∫
Symi

2

W(ϕ(wsn(z)t(diag[a, 1])))ψS′(−z)Λ0(a)
−1 dzd×a

is absolutely convergent and equal to BW,σ
S′,Λ(ϕ).

Proof. Conjugating ϕ by d(λ) with λ ∈ 1 + pi and making a change of

variables, we see that BW,σ
S′,Λ(ϕ) is equal to∫

F×

∫ st

F 3

W
(
ϕ

(
wsn

((
x y
y w

))
t(diag[a, 1])

))
ψ(λy)Λ0(a)

−1 dxdydwda.

Integrating both sides of this equality over λ ∈ 1 + pi, we get∫
F×

∫
p−i

∫ st

F 2

W
(
ϕ

(
wsn

((
x y
y w

))
t(diag[a, 1])

))
ψ(y)

Λ0(a)
dxdwdyd×a.

The set Symi
2 is stable under the action of elements diag[a, 1]. It suffices to

check that the double integral∫
F 2

∫
F×

∣∣∣∣W (
ϕ

(
t(diag[a, 1])wsn

((
x y
y w

)))) ∣∣∣∣ d×adxdw
is convergent for every y ∈ p−i.

Observe that

n(z) =

(
12
z−1 12

)(
z

z−1

)(
12

−12

)(
12
z−1 12

)
.
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Since wst(A)w
−1
s = t(A), we get

(3.6) wsn(z) ∈ N2Z2d(det z)t(z)ws

(
12

−12

)(
12
z−1 12

)
.

Let z =

(
x y
y w

)
. The inner integral converges as π0 is unitary and generic.

Clearly, it depends only on x+pi and w+pi. We may therefore assume that
x,w /∈ pi+1. If x /∈ p−3i, then since ordx < −3i, ord y ≥ −i and ordw ≤ i,

cz = −z−1 = −(det z)−1
(
w −y
−y x

)
∈
(
p3i+1 p2i+1

p2i+1 p−i

)
,

c′z = diag[x−1, w−1]z =

(
1 y

x
y
w 1

)
∈
(

1 p2i+1

p−2i 1

)
and hence

|W(ϕ(t(diag[a, 1])wsn(z)))| = |xw|ℜσ−3/2F |W(ϕ(t(diag[ax,w]c′z)wsn(cz)J2))|
where there is a compact set Ki of GL2(F ) such that c′z ∈ Ki. Put

Ci = sup
c∈Sym2(p

−i), c′∈Ki

∫
F×

|W(ϕ(t(diag[a, 1]c′)wsn(c)J2))|d×a.

We therefore conclude that∫
F\p−3i

∫
F

∫
F×

∣∣∣∣W (
ϕ

(
t(diag[a, 1])wsn

((
x y
y w

)))) ∣∣∣∣ d×adwdx
≤Ci

∞∑
n=3i

∞∑
m=−i

q(n+m)(2ℜσ−1)/2.

The last summation clearly converges. □

It is easy to see that BW,σ
S′,Λ is RS′-invariant and

(3.7) BW,σ
S′,Λ(ϕ) = lim

i→∞

∫
Symi

2

TWΛ (ϕ(wsn(z)))ψS′(−z) dz.

3.3. Factorization of JWS,Λ.

Proposition 3.4. If K/F is split, then

JWS,Λ(ϕ, ϕ
′) = Λ0(−1)BW,σ

S′,Λ(π(m(ς))ϕ)BW,σ−1

−S′,Λ−1(π
∨(m(ς)t(J))ϕ′)

for any ϕ ∈ π = I(π0, σ) and ϕ
′ ∈ π∨ = I(π0, σ

−1).

Proof. For our choice of the measure dg on P2\GSp4(F ) we have∫ st

Sym2(F )
B♯(π(n(z))ϕ1, π∨(t(J))ϕ2)ψS(−z) dz

=

∫ st

Sym2(F )

∫
Sym2(F )

B(ϕ1(wsn(z′ + z)), ϕ2(wsn(z
′)t(J)))ψS(−z) dz′dz
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(see (3.1) and (3.2)). Set ϕ′1 = π(m(ς))ϕ1 and ϕ′2 = π∨(m(ς)t(J))ϕ2. Take
sufficiently large i. Then the right hand side is equal to∫

Symi
2

∫
Symi

2

B(ϕ′1(wsn(z1)), ϕ′2(wsn(−z2)))ψS′(−z1 − z2) dz1dz2

(see the proof of Lemma 3.3). The triple integral∫
F×\K×

∫
Symi

2

∫
Symi

2

|bW(π0(ις(t))ϕ
′
1(wsn(z1)), π0(J)ϕ

′
2(wsn(z2)))|dz1dz2dt

=

2∏
j=1

∫
Symi

2

∫
F×

|W(π0(diag[a, 1])ϕ
′′
j (wsn(zj)))|dadzj

is convergent in view of Lemma 3.3, which justifies our formal manipulation.
Here we put ϕ′′1 = ϕ′1 and ϕ′′2 = π0(J)ϕ

′
2.

Now we have the identity∫ st

Sym2(F )
b♯W(π(t(t)n(z))ϕ1, π

∨(t(J))ϕ2)ψS(−z) dz

=

∫
Symi

2

∫
Symi

2

bW(π0(ις(t))ϕ
′
1(wsn(z1)), ϕ

′
2(wsn(z2)))ψS′(−z1 + z2) dz1dz2.

Integrating over t ∈ F×\K× and changing the order of integration, we get

JWS,Λ(ϕ1, ϕ2) =

∫
Symi

2

∫
Symi

2

dz1dz2 ψS′(z2 − z1)

×
∫
F×\K×

bW(π0(ις(t))ϕ
′
1(wsn(z1)), ϕ

′
2(wsn(z2))) dt.

Put f ′1 = ϕ′1(wsn(z1)) and f
′
2 = ϕ′2(wsn(z2)). Then the inner integral equals∫

F×

∫
F×

Wf ′1
(t(ba))Wf ′2

(t(−b))Λ0(a)
−1 d×bd×a = Λ0(−1)TWΛ (f ′1)T

W
Λ−1(f

′
2).

We conclude that Λ0(−1)JWS,Λ(ϕ1, ϕ2) is equal to∫
Symi

2

∫
Symi

2

TWΛ (ϕ′1(wsn(z1)))T
W
Λ−1(ϕ

′
2(wsn(z2)))ψS′(−z1 + z2) dz1dz2,

which completes our proof by (3.7). □
Remark 3.5. Let K/F be split. Then TWΛ (f) = Z

(
Wf ⊗Λ−10 , 12

)
is the zeta

integral for π0 ⊗ Λ−10 . Since ςJς−1 =

(
0 1
1 0

)
, for every f ∈ π0

TWΛ−1(π0(ςJς
−1)f) = Λ0(−1)γ

(
1

2
, π0 ⊗ Λ−10 , ψ

)
TWΛ (π0(diag[−1, 1])f)

by the functional equation in Hecke’s theory and hence

BW,σ
S′,Λ−1(π(m(ςJς−1))ϕ) =

BW,σ
S′,Λ(π(m(diag[−1, 1]))ϕ)

Λ0(−1)γ
(
1
2 , π0 ⊗ Λ0, ψ

) , ϕ ∈ π = I(π0, σ).
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4. Explicit calculations of Bessel integrals I: new vectors

Let π be an irreducible admissible representation of the form I(π0, σ),
where π0 is an irreducible unramified unitary principal series representation
of PGL2(F ) or the Steinberg representation twisted by an unramifiend qua-
dratic character of F× and σ ∈ Ω(F×)◦. Let ϕσ ∈ π be a new vector, i.e.,
ϕσ is a spherical vector in the former case and ϕσ is a paramodular vector
in the latter case. Our task in Sections 4, 5 and 8 is to compute

BΛ
S(H) :=

BS
Λ(Hϕσ,Hϕσ)

b(ϕσ, ϕσ)
=

BWS,Λ(Hϕσ,Hϕσ)

b♯W(ϕσ,M∗(π0, σ)ϕσ)

for some Hecke operator H on GSp4(F ), where B
Λ
S and BWS,Λ are the Bessel

integrals defined in Definitions 2.2 and 3.1. Since there exists a constant
m(π0, σ) such that

M∗(π0, σ)ϕσ = m(π0, σ)ϕσ−1 ,

it follows from Proposition 3.4 that

BΛ
S(π(m(ς−1))) = Λ0(−1)

BW,σ
S′,Λ(ϕσ)B

W,σ−1

−S′,Λ−1(π
∨(t(ςJς−1))ϕσ−1)

b♯W(ϕσ, ϕσ−1)
.(4.1)

Remark 4.1. Proposition 6.9 below gives

m(π0, σ) = γ

(
1

2
, σ−1K Λ, ψK

)
BW,σ
S′,Λ(ϕσ)

BW,σ−1

S′,Λ (ϕσ−1)
.

4.1. The unramified case. The ratio
JWS,Λ(ϕσ ,ϕσ−1 )

b♯W (ϕσ ,ϕσ−1 )
has been computed by

Liu in Theorem 2.2 of [25] for split or unramified extensions K of F , and

extended to ramified extensions in [9]. Since BΛ
S(Id) =

JWS,Λ(ϕσ ,ϕσ−1 )

b♯W (ϕσ ,ϕσ−1 )
, we

obtain the following result:

Theorem 4.2 ([25, 9]). Assume the following conditions

• both π and Λ are unramified, unitary and generic;
• a0, b0 ∈ oF ; c0 ∈ o×F ; −4 detS generates dF ; ψ has order 0;
• When the residual characteristic of F is 2, we suppose that F = Q2;

If ϕ0 ∈ V is GSp4(oF )-invariant, then

BΛ
S(Id) =

|dK |1/2K ζ(2)ζ(4)L
(
1
2 ,Spn(π)K ⊗ Λ

)
|dF |1/2L(1, τK/F )L(1, π, ad)

.

4.2. The paramodular case. The paramodular group K(p) is the sub-
group of k ∈ GSp4(F ) such that λ(k) is in o×F and

(4.2) k ∈


oF oF p−1 oF
p oF oF oF
p p oF p
p oF oF oF

 .
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Proposition 5.1.2 of [29] gives the Iwasawa decomposition relative to K(p)

GSp4(F ) = P2(F )K(p).

Define the Iwahori subgroup of GL2(oF ) by

I =

{
A ∈ GL2(oF )

∣∣∣∣ A ≡
(
∗ ∗
0 ∗

)
(mod p)

}
.

Given µ ∈ Ω(F×), we denote by I1(µ) = µ× µ−1 the principal series repre-

sentation of PGL2(F ). We write St ⊂ I1(ω
1/2
F ) for the Steinberg representa-

tion. As is well-known, its subspace of I-invariant vectors is one-dimensional.
Take σ ∈ Ω1(F×)◦ and an unramified quadratic character ε of F×. Let

π0 ≃ St⊗ ε, π ≃ I(π0, σ).

Put µ = εω
1/2
F . Then

π0 ⊂ I1(µ), π ⊂ I(I1(µ), σ).

Remark 4.3. The representations I(St ⊗ ε, σ) are called type IIa in [29].
Their minimal paramodular level is p by Table A.13 of [29], namely, the

K(p)-invariant subspace πK(p) is one-dimensional. They are the only generic
representations of paramodular level p by Table A.1 of [29]. If a tempered
representation of PGSp4(F ) has paramodular level p, then it is of type IIa
with σ ∈ Ω1(F×).

Let fπ0 ∈ πI0 be such that

Wfπ0
(t(a)) = ε(a)|a|F 1loF (a).

The Iwasawa decomposition allows us to define ϕσ ∈ πK(p) by

ϕσ(n(z)d(λ)t(A)k) = σ(λ)|λ|−3/2F fπ0(A)

for z ∈ Sym2(F ), λ ∈ F×, A ∈ GL2(F ) and k ∈ K(p).
Since π has no Bessel model relative to the trivial character of K× if K/F

is the unramified quadratic extension, we assume that K = Fe1 ⊕ Fe2 is

split and let S′ = −
(
0 1

2
1
2 0

)
throughout this subsection. Let Λ = (Λ0,Λ

−1
0 )

be an unramified character of K× = F× × F×. Put

γ = σ(ϖ), ϵ = −ε(ϖ), δ = Λ0(ϖ).

Define a function T′ : PGL2(F ) → C by

T′(A) = TΛ(π0(t(A))fπ0).

Observe that for A ∈ GL2(F ), a, b ∈ F× and k ∈ I

T′(Aη0) = ϵT′(A), T′(diag[a, b]Ak) = Λ0(ab
−1)T′(A).(4.3)

In particular, the value T′(n(x)) depends only on o×Fx+ oF . We will write

T ′(m) = T′(n(ϖ−m))
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for non-negative integers m. For x, y, w ∈ F we put

T(x, y, w) = TΛ

(
ϕσ

(
wsn

((
x y
y w

))))
.

Recall the Bessel period

Bσ
S′,Λ(ϕ) =

∫
Sym2(F )

TΛ(ϕ(wsn(z)))ψS′(−z) dz.

Conjugating ϕσ by d(λ) with λ ∈ o×F , we get

Bσ
S′,Λ(ϕσ) =

∫
F 3

T(x, y, w)ψ(−λy) dxdydz

by a change of variables. Choosing λ = 1 + u with u ∈ p and integrating
both sides of this equality over u ∈ p, we see that

Bσ
S′,Λ(ϕσ) =

∫
p−1

∫
F 2

T(x, y, w)ψ(−y) dxdwdy.

We define the function v : F → N ∪ {0} via

qv(x) = [xoF + oF : oF ].

Lemma 4.4. Let z =

(
x y
y w

)
∈ Sym2(F ). Assume that the following

conditions are satisfied:

• v(y) ≤ 1.
• When v(y) = 0, we suppose that x /∈ oF and w /∈ p.
• When v(y) = 1 and v(w) = 0, we suppose that if v(x) ≥ 3, then
w ∈ o×F , while if v(x) ≤ 2, then w = 0.

• When v(y) = 1 and v(x) ≤ 1, we suppose that if v(w) ≥ 2, then
v(x) = 1, while if v(w) ≤ 1, then x = 0.

Then z ∈ GL2(F ) and

wsn(z) ∈ N2Z2d(det z)t(zJ1)K(p).

Remark 4.5. Let a, b, c ∈ F . Since

(4.4) T(a+ p−1, b+ oF , c+ oF ) = T(a, b, c),

if v(b) ≤ 1, then we can find a triplet x, y, w ∈ F which satisfies the condi-
tions above and such that T(a, b, c) = T(x, y, w).

Proof. Note that

z−1 = (det z)−1
(
w −y
−y x

)
∈
(
p p
p oF

)
by assumption. Now the lemma follows from (3.6). □
Lemma 4.6. If v(y) ≤ 1, then the value T(x, y, w) depends only on v(x),
v(y) and v(w). We may therefore write

T(x, y, w) = Tv(y)(v(x),v(w)).
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(1) If i ≥ 1, then

T0(i, j) = ϵγ−i−jq−3(i+j)/2δj−i+1T ′(0).

(2) If i ≥ 2 and j ≥ 1, then

T1(i, j) = ϵγ−i−jq−3(i+j)/2δj−i+1T ′(0).

(3) If i ≥ 2, then

T1(i, 0) = γ−iq−3i/2δ2−iT ′(1), T1(1, 0) = γ−2q−3T ′(0).

(4) If j ≥ 1, then

T1(1, j) = ϵγ−j−1q−3(j+1)/2δjT ′(1).

Proof. In view of Remark 4.5 we may assume that x, y, w satisfy the as-
sumptions of Lemma 4.4. Then

T(x, y, w) = σ(det z)| det z|−3/2T′(zJ1)

= ϵσ(det z)| det z|−3/2T′(zdiag[ϖ, 1])
by (4.3). If y = 0 or if v(x) ≥ 2 and v(w) ≥ 1, then since

zdiag[ϖ, 1] =

(
ϖx y
ϖy w

)
= diag[ϖx,w]

(
1 y

ϖx
ϖy
w 1

)
∈ diag[ϖx,w]I,

we get

T(x, y, w) = ϵσ(det z)| det z|−3/2Λ0(ϖxw
−1)T′(12).

If v(x) ≤ 1 or v(w) = 0, then we can use (4.4) to verify that T(x, y, w)
depends only on v(x), v(y) and v(w) by conjugating ϕσ by t(diag[u, 1]),
t(diag[1, v]) and d(λ) with u, v, λ ∈ o×F . We have proved (1) and (2).

Next we shall prove (3). Let j = 0. If i ≥ 3, then since(
ϖ1−i ϖ−1

1 1

)
=

(
ϖ−1 −ϖ1−i ϖ1−i

0 1

)(
0 1
1 0

)(
1 1
0 1

)
,

we get

T(ϖ−i, ϖ−1, 1) =
ϵδ1−i

γiq3i/2
T′
((

1 1
0 1

)(
0 1
1 0

))
=

δ1−i

γiq3i/2
T′
((

ϖ 1
0 1

))
.

We can easily prove the case i = 1 as T(ϖ−1, ϖ−1, 0) = T(0, ϖ−1, 0). Since(
ϖ−2 ϖ−1

ϖ−1 0

)(
0 1
1 0

)
=

(
ϖ−1 ϖ−2

0 ϖ−1

)
,

we get T(ϖ−2, ϖ−1, 0) = γ−2q−3T′(n(ϖ−1)).
If j ≥ 2, then we can prove (4) by observing that(

1 ϖ−1

1 ϖ−j

)
=

(
1 ϖ−1

0 ϖ−j

)(
1−ϖj−1 0

ϖj 1

)
.

From the computation(
0 ϖ−1

1 ϖ−1

)
=

(
1 ϖ−1

0 ϖ−1

)(
−1 0
ϖ 1

)
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we can deduce the remaining case i = j = 1. □

Now we are led to

Bσ
S′,Λ(ϕσ) =

∫
p−1

∫
F 2

Tv(y)(v(x),v(w))ψ(y) dxdwdy

=

∞∑
i=1

∞∑
j=0

qi+j(1− q−1)min{1,i−1}+min{1,j}(T0(i, j)−T1(i, j)).

If i ≥ 2 and j ≥ 1, then T0(i, j) = T1(i, j) by Lemma 4.6(1), (2). Hence

Bσ
S′,Λ(ϕσ) =q(T0(1, 0)−T1(1, 0))

+ (1− q−1)

∞∑
i=2

qi(T0(i, 0)−T1(i, 0))

+ (1− q−1)
∞∑
j=1

qj+1(T0(1, j)−T1(1, j))

=q(T0(1, 0)−T1(1, 0)) + (1− q−1)(I0 + J0) + I1 + J1,

where

I0 =
∞∑
i=2

qiT0(i, 0), I1 = −(1− q−1)
∞∑
i=2

qiT1(i, 0),

J0 =
∞∑
j=1

qj+1T0(1, j), J1 = −(1− q−1)
∞∑
j=1

qj+1T1(1, j).

Lemma 4.6(1) gives

I0 =
∞∑
i=2

qiϵγ−iq−3i/2δ−i+1T ′(0) =
ϵγ−2q−1δ−1

1− γ−1δ−1q−1/2
T ′(0),

J0 =

∞∑
j=1

qj+1ϵγ−1−jq−3(1+j)/2δjT ′(0) =
ϵγ−2q−1δ

1− γ−1δq−1/2
T ′(0).

Lemma 4.6(3) gives

I1 = −(1− q−1)

∞∑
i=2

qiγ−iq−3i/2δ2−iT ′(1) = −γ
−2q−1(1− q−1)

1− γ−1δ−1q−1/2
T ′(1).

Lemma 4.6(4) gives

J1 = −(1− q−1)
∞∑
j=1

qj+1ϵ
δjT ′(1)

γj+1q3(j+1)/2
= −ϵγ

−2q−1δ(1− q−1)

1− γ−1δq−1/2
T ′(1).

Proposition 4.7. If m ≥ 1, then

T ′(m) = (1 + ϵδ)
(−ϵδ−1)m

qm(1− q−1)
T ′(0), T ′(0) = L(1, εΛ−10 ).
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Proof. Since π0 has no GL2(oF )-invariant vector,∑
x∈oF /p

T′
(
A

(
1 0
x 1

))
= −T′(AJ1) = −ϵT′(Adiag[ϖ, 1])

by (4.3). Observe that

n(y)

(
1 0
x 1

)
=

(
1 + yx y
x 1

)
=

(
−x−1 1 + yx
0 x

)(
0 1
1 0

)(
1 x−1

0 1

)
for x ∈ o×F . If m ≥ 2, then we get

T′(n(ϖ1−m))+ϵ(q−1)T′(n(ϖ1−m)diag[ϖ, 1]) = −ϵT′(n(ϖ1−m)diag[ϖ, 1]),

letting A = n(y) and y = ϖ1−m. It follows that

T ′(m) = −q−1ϵδ−1T ′(m− 1) = · · · = (−q−1ϵδ−1)m−1T ′(1).
Letting y = 0, we get

T′
((

1 0
x 1

))
= ϵT′(n(−x)diag[ϖ, 1]) = ϵδT′(n(ϖ−1)) = ϵδT ′(1)

for every x ∈ o×F . We obtain

T ′(1) = −(1 + ϵδ−1)(q − 1)−1T ′(0).

Since Wfπ0
(diag[a, 1]) = ε(a)|a|F 1loF (a), one can easily compute T ′(0).

□
Proposition 4.8.

Bσ
S′,Λ(ϕσ) = ϵγ−1q−1/2

L
(
1
2 , σ
−1
K Λ

)
L
(
3
2 , εσ

)
L(1, σ−2)

L(1, εΛ−10 ).

Proof. Proposition 4.7 gives

I1 = −γ
−2q−1(1− q−1)

1− γ−1δ−1q−1/2
(1 + ϵδ)

−ϵδ−1

q(1− q−1)
T ′(0) =

γ−2q−2(1 + ϵδ−1)

1− γ−1δ−1q−1/2
T ′(0),

J1 = −ϵγ
−2q−1δ(1− q−1)

1− γ−1δq−1/2
(1 + ϵδ)

−ϵδ−1

q(1− q−1)
T ′(0) =

γ−2q−2(1 + ϵδ)

1− γ−1δq−1/2
T ′(0).

Now we have

I :=
(1− q−1)I0 + I1

T ′(0)
= (1− q−1)

ϵγ−2q−1δ−1

1− γ−1δ−1q−1/2
+
γ−2q−2(1 + ϵδ−1)

1− γ−1δ−1q−1/2

=
ϵγ−2q−1δ−1 + γ−2q−2

1− γ−1δ−1q−1/2
,

J :=
(1− q−1)J0 + J1

T ′(0)
=
ϵγ−2q−1δ + γ−2q−2

1− γ−1δq−1/2
.

By Lemma 4.6(1), (3) we have

q
T0(1, 0)−T1(1, 0)

T ′(0)
+ J = ϵγ−1q−1/2 − γ−2q−2 +

ϵγ−2q−1δ + γ−2q−2

1− γ−1δq−1/2
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=
ϵγ−1q−1/2 + δγ−3q−5/2

1− γ−1δq−1/2
.

We conclude that

Bσ
S′,Λ(ϕσ)

T ′(0)
=
ϵγ−2q−1δ−1 + γ−2q−2

1− γ−1δ−1q−1/2
+
ϵγ−1q−1/2 + δγ−3q−5/2

1− γ−1δq−1/2

= ϵγ−1q−1/2
(1 + ϵγ−1q−3/2)(1− γ−2q−1)

(1− γ−1δ−1q−1/2)(1− γ−1δq−1/2)
.

The proof is complete by Proposition 4.7. □

We use the Iwasawa decomposition to define ϕpa ∈ I(Id, 1) by

ϕpa(d(λ)t(A)n(z)k) = |λ|−3/2,

where λ ∈ F×, A ∈ GL2(F ), z ∈ Sym2(F ) and k ∈ K(p). The elements

ϕw ∈ I(I1(ω
−1/2
F ), 1) are defined in Section 7 below. The pairing q : I(Id, 1)×

I(Id, 1) → C will be defined in (5.2).

Lemma 4.9. We have

ϕpa = ϕ14 + ϕs1 + ϕs2 + ϕs1s2 + q−3/2(ϕs2s1 + ϕs1s2s1 + ϕ† + ϕs2s1s2),

q(ϕpa, ϕpa) = q−2ζ(1)2ζ(2)−2.

Proof. Since s2 ∈ K(p), it is clear that

ϕpa(14) = ϕpa(s1) = ϕpa(s2) = ϕpa(s1s2) = 1,

ϕpa(s2s1) = ϕpa(s1s2s1) = ϕpa(s2s1s2) = ϕpa(s1s2s1s2).

Since m(diag[ϖ−1, 1])s1s2s1s2 ∈ K(p), we get ϕpa(s1s2s1s2) = q−3/2. The
Iwasawa decomposition relative to GSp4(oF ) gives

q(ϕpa, ϕpa) =

∫
GSp4(oF )

ϕpa(k)2 dk =
∑
w∈W

ϕpa(w)2vol(IwI).

Clearly, vol(IwI) = qwvol(I) (see Definition 2.1). Since vol(Is1s2s1s2I) +
vol(Is2s1s2I) = 1 for our choice of the measure, vol(I) = q−4(1+ q−1)−1 and

q(ϕpa, ϕpa) = (1 + q−1)−1
∑
w∈W

ϕpa(w)2q−4qw

= (1 + q−1)−1{q−4 + 2q−3 + q−2 + q−3(q−2 + 2q−1 + 1)},

which proves the second identity. □

Proposition 4.10. Let σ,Λ0 ∈ Ω1(F×)◦. Fix a quadratic unramified char-
acter ε : F× → {±1}. Put π = I(St⊗ ε, σ). Then

BΛ
S(π(m(ς−1))) = −εq(1+q−2)Λ0(ϖ)−1

|dK |1/2K ζ(2)ζ(4)L
(
1
2 , Spn(π)K ⊗ Λ

)
|dF |1/2L(1, τK/F )L(1, π, ad)

.



25

Proof. We know that

L(s,Spn(π)K ⊗ Λ) = L(s, σ−1K Λ)L(s, σKΛ)L(s, ω
1/2
K εKΛ),(4.5)

L(s, π, ad) = ζ(s)ζ(s+ 1)L(s, σ−2)L(s, σ2)L(s, ω
1/2
F εσ)L(s, ω

1/2
F εσ−1)

(see [29, Table A.8] and [2, (13)]). We also remark that

ε(1/2,St⊗ εΛ−10 ) = Λ0(ϖ)−1(−ε),

(cf. [7, Lemma 3.1, Proposition 3.8]). By (4.1) and Remark 3.5

b♯W(ϕσ, ϕσ−1)BΛ
S(π(m(ς−1))) = γ

(
1

2
,St⊗ εΛ−10 , ψ

)
Bσ
S′,Λ(ϕσ)B

σ−1

S′,Λ(ϕσ−1).

By Proposition 4.8 the right hand side is equal to

L(1, εΛ0)

L(1, εΛ−10 )
(−ε)Λ0(ϖ)−1

L
(
1
2 , σ
−1
K Λ

)
L
(
1
2 , σKΛ

)
L(1, εΛ−10 )2

qL
(
3
2 , εσ

)
L(1, σ−2)L

(
3
2 , εσ

−1
)
L(1, σ2)

=(−ε)Λ0(ϖ)−1ζ(1)ζ(2)
L
(
1
2 , Spn(π)K ⊗ Λ

)
qL(1, π, ad)

.

Since Wϕσ(t(diag[a, 1])) = ε(a)|a|F 1loF (a) for a ∈ F×, we have

bW(π(g)ϕσ, π
∨(g)ϕσ−1) = ζ(2)ϕpa(g)2

and hence b♯W(ϕσ, ϕσ−1) = ζ(2)q(ϕpa, ϕpa) = q−2ζ(1)2ζ(2)−1. □

5. Explicit calculations of Bessel integrals II: degenerate
vectors

5.1. Degenerate principal series. Let D be a quaternion algebra over a
local field F of characteristic zero. We retain the notation in Section 2. Fix
a quadratic character ε of F×. For σ ∈ Ω(F×) we consider the normalized
induced representation π = I(ε ◦ NDF , σ), which is realized on the space of

smooth functions ϕ : GUD2 (F ) → C satisfying

ϕ(d(λ)t(A)n(z)g) = σ(λ)|λ|−3/2ε(NDF (A))ϕ(g)

for A ∈ D×, z ∈ D−, λ ∈ F× and g ∈ GUD2 (F ).
In the p-adic case we fix a maximal compact subring oD of D and set

K = GUD2 (F )∩GL2(oD). In the archimedean case we fix a maximal compact
subgroup K of GUD2 (F ). For g ∈ GUD2 (F ) the quantity |a(g)| is defined by
setting |a(g)| = |λ|−1F , where we write g = pk with p = d(λ)t(A)n(z) ∈ P
and k ∈ K. For ϕ ∈ π and s ∈ C we define ϕ(s) ∈ I(ε ◦ NDF , σω

s
F ) by

ϕ(s)(g) = ϕ(g)|a(g)|−s. We define the intertwining operator

M(ε ◦NDF , σ) : I(ε ◦NDF , σ) → I(ε ◦NDF , σ−1)

by

[M(ε ◦NDF , σ)ϕ](g) = lim
s→0

∫
D−

ϕ(s)
((

0 1
1 0

)
n(z)g

)
dz.
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The integral converges for ℜs+ ℜσ < −3
2 and admits meromorphic contin-

uation to whole s-plane.

5.2. Degenerate Whittaker model. Fix S ∈ D−. Put

d0 = −NDF (2S), K = F (
√
d0).

We identify K with the subalgebra F + FS of D. Put

RS = {t(t)n(z) | z ∈ D−, t ∈ K×}.

We define an additive character ψS on D− by ψS(z) = ψ(TrDF (Sz)) and
associate a character ΛS of RS by ΛS(t(t)n(z)) = Λ(t)ψS(z) to a character
Λ of F×\K×. The integral

B
σωs

F
S (ϕ(s)) =

∫
D−

ϕ(s)
((

0 1
1 0

)
n(z)

)
ψS(z) dz

is absolutely convergent for ℜs + ℜσ < −3
2 and makes sense for all s by

an entire analytic continuation. In the nonarchimedean case the integral
stabilizes. The reader who are interested in the archimedean case can consult
[35]. One can easily see that

(5.1) Bσ
S ◦ π(t(t)) = ε(NKF (t))Bσ

S

for t ∈ K×. Thus Bσ
S is a Bessel functional on π relative to S and εK .

We introduce the GUD2 (F )-invariant pairing

q : I(ε ◦NDF , σ)× I(ε ◦NDF , σ−1) → C

by

q(ϕ1, ϕ2) =

∫
P\GUD

2 (F )
ϕ1(g)ϕ2(g) dg(5.2)

=

∫
D−

ϕ1

((
0 1
1 0

)
n(z)

)
ϕ2

((
0 1
1 0

)
n(z)

)
dz

for ϕ1 ∈ I(ε ◦NDF , σ) and ϕ2 ∈ I(ε ◦NDF , σ−1). Define the Bessel integral by

JS(ϕ1, ϕ2) =

∫
D−

q(π(n(z))ϕ1, π(d(−1))ϕ2)ψS(z) dz

:= lim
s→0

σ(−1)

∫ 2

D−

ϕ
(s)
1

((
0 1
1 0

)
n(z − z′)

)
ϕ
(s)
2

((
0 1
1 0

)
n(z′)

)
dz′ψS(z)dz.

The double integral absolutely converges for ℜs ≪ 0 and can be continued
as an entire function to the whole complex plane. We have the factorization

(5.3) JS(ϕ, ϕ
′) = Bσ

S(ϕ)B
σ−1

−S (π∨(d(−1))ϕ′).

It follows that

JS ∈ HomRS×RS
(I(ε ◦NDF , σ)⊠ I(ε ◦NDF , σ−1), εSK ⊠ εSK).
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If I(ε ◦NDF , σ) has a new vector ϕσ, then we have a functional equation

M(ε ◦NDF , σ)ϕσ = c(ε, σ)ϕσ−1

with factor c(ε, σ) of proportionality. We set

BS(ϕ, ϕ
′) = JS(ϕ,M(ε ◦NDF , σ)ϕ′).

Then

(5.4)
BS(ϕσ, ϕσ)

q(ϕσ,M(ε ◦NDF , σ)ϕσ)
=

Bσ
S(ϕσ)B

σ−1

−S (π∨(d(−1))ϕσ−1)

q(ϕσ, ϕσ−1)
.

5.3. The quaternion case. Let D be a quaternion division algebra over a
p-adic field F of characteristic 0. We denote by oD the maximal compact
subring of D and by P the maximal proper two-sided ideal of oD. Put
o−D = oD ∩D−. Define a maximal compact subgroup K(P) of GUD2 (F ) by

(5.5) K(P) =

{(
α β
γ δ

)
∈ GUD2 (F )

∣∣∣∣ α, δ ∈ oD, β ∈ P−1, γ ∈ P

}
.

Then GUD2 (F ) = PK(P).
Let σ = ωsF be an unramified character of F× and ε = ωtF an unramified

quadratic character of F×. Put π = I(ε ◦NDF , σ). We define its L-factors as
those of I(ε ◦ St, σ). It follows from [2] that

L
(
1
2 , Spn(π)K ⊗ εK

)
L(1, π, ad)

=
L
(
1
2 , (σ

−1ε)K
)
L
(
1
2 , (σε)K

)
L(1, τK/F )

ζ(2)L(1, σ−2)L(1, σ2)L
(
3
2 , εσ

−1
)
L
(
3
2 , εσ

) .
For g ∈ GUD2 (F ) the quantity |α(g)| is defined via

|α(d(λ)m(A)n(z)k)| = |NDF (A)|F ,
where λ ∈ F×, A ∈ D×, z ∈ D− and k ∈ K(P). We define ϕσ ∈ π by

ϕσ(g) = |λ(g)|(2s−3)/2F |α(g)|(−2s+2t+3)/2.

Proposition 5.1 (Hirai [18]). Let S ∈ o−D and K = F +FS. Take the Haar
measure dz on D− which gives D− ∩P the volume 1.

(1) If ϖ−1S /∈ o−D, then

Bσ
S(ϕσ) =

q3/2(εσ)(ϖ)−1L
(
1
2 , (εσ

−1)K
)

L(1, σ−2)L
(
3
2 , εσ

−1
) .

(2) q(ϕσ, ϕσ−1) = ζ(2)ζ(4)−1.

Proof. Put K(P)′ = d(ϖ)−1K(P)d(ϖ). Observe that

K(P)′ =

{(
α β
γ δ

)
∈ GUD2 (F )

∣∣∣∣ α, δ ∈ oD, β ∈ P, γ ∈ P−1
}
.

Define the function Ap : GUD2 (F ) → C by Ap(g) = |α(gd(ϖ)−1)|. Set

αp(η, x) =

∫
D−

Ap

((
0 1
1 0

)
n(z)

)(2x+3)/2

ψη(z) dz
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for η ∈ ϖ−1o−D and x ∈ C. Put

ϕ′σ = π(d(ϖ)−1)ϕσ, S′ = ϖ−1S.

By a change of variables we have

Bσ
S(ϕσ) =

∫
D−

ϕ′σ

((
0 1
1 0

)
n(z)d(ϖ)

)
ψS(z) dz

= q(2s−3)/2 · q3Bσ
S′(ϕ

′
σ)

= q(2s+3)/2 · q(2s−3)/2αp(S
′, t− s).

Theorem 2.3 of [18] explicitly computes αp(η, s). By the assumption on S′

αp(S
′, s) = q(2s+3)/2 ζK

(
s+ 1

2

)
ζ(2s+ 1)ζ(s+ 3

2

) .
We remind the reader that the measure in [18] gives P∩D− volume 1. The
second part follows from the obvious equality q(ϕσ, ϕσ−1) = q−3αp

(
0, 32
)
. □

Now we have the following conclusion by (5.4) and Proposition 5.1.

Corollary 5.2.

BS(ϕσ, ϕσ)

q(ϕσ,M(ε ◦NDF , σ)ϕσ)
= q3(1− q−2)

ζ(4)L
(
1
2 ,Spn(π)K ⊗ εK

)
ζ(2)L(1, τK/F )L(1, π, ad)

.

5.4. The archimedean case. We discuss the case in which F = R and
K = C. Put ζF (s) = π−s/2Γ

(
s
2

)
. We define the character of C by e(z) =

e2π
√
−1z for z ∈ C. Its restriction to F is denoted by ψF . The measure dx on

R is the Lebesgue measure and d×x = dx
|x|R . Let dz be the standard measure

on Sym2(R) defined by viewing Sym2(R) as R3 in an obvious fashion.
Denote by Symg(R)+ the set of positive definite symmetric matrices of

rank g over R. Let

GSp2g(R)◦ = {h ∈ GSp2g | λ(h) > 0}

be the identity component of the real reductive group GSp2g(R). We can
define the action of the connected component GSp2g(R)◦ on the space

Hg = {Z ∈ Symg(C) | ℑZ ∈ Symg(R)+}

and the automorphy factor on GSp2g(R)◦ × Hg by

hZ = (AZ +B)(CZ +D)−1, j(h,Z) = (deth)−1/2 det(CZ +D)

for Z ∈ Hg and h =

(
A B
C D

)
∈ GSp2g(R)◦ with matrices A,B,C,D of size

g. Put ig =
√
−11g. Define the maximal compact subgroup of GSp2g(R)◦

by

Un = {h ∈ GSp2g(R)◦ | h(ig) = ig}.
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Definition 5.3. For each positive integer κ we denote the lowest weight

representation of GSp2g(R)◦ with lowest Ug-type k 7→ j(k, ig)
−κ by D

(g)
κ

and the highest weight representation with highest Ug-type k 7→ j(k, ig)
κ

by D
(g)
−κ. The direct sum D

(g)
κ = D

(g)
κ ⊕ D

(g)
−κ extends to an irreducible

representation of GSp2g(R).

Remark 5.4. If S ∈ Sym2(R) is positive or negative definite, then Theorem

3.10 of [28] says that D
(2)
κ admits a Bessel model relative to (Λ, S) if and

only if Λ is trivial. This fact is compatible with our observations in the
previous subsection.

To simplify notation, we set

J(m) = I(sgnm ◦ det, ω(3−2m)/2
R ), N(m) =M(sgnm ◦ det, ω(3−2m)/2

R )

for m ∈ Z. As is well-known, D(2)
±κ are subrepresentations of the degenerate

principal series J(κ) which is here viewed as a representation of GSp4(R)◦.
The representation D

(2)
κ (resp. D

(2)
−κ) is generated by the function ϕκ(h) =

j(h, i2)
−κ (resp. ϕ−κ(h) = j(h, i2)

−κ
). These functions ϕ±κ are extended

uniquely to elements of J(κ). Since ϕκ(hd(−1)) = ϕ−κ(h), we can view D
(2)
κ

as a subrepresentation of J(κ).

Put φκ = ϕ
(2κ−3)
κ ∈ J(3− κ) and Bs

S = B
ωs
R
S . Observe that

B
(2s+3−2κ)/2
S (ϕ(s)κ ) =

∫
Sym2(R)

ϕ(s)κ (J2n(z))e(−tr(Sz)) dz

=

∫
Sym2(R)

|det(z + i2)|s det(z + i2)
−κe(−tr(Sz)) dz

= ξ
(
12, S;κ− s

2
,−s

2

)
.

The confluent hypergeometric function ξ(Y, S;α, β) is extensively studied in
[32]. By Lemma 3.1 of [37] the operator

M(sgnκ ◦ det, ω−sR )

L(−s− 1
2 , sgn

κ
)
Γ (−s)

is entire. In particular, M(sgnκ ◦ det, ω−sR ) is holomorphic at s = κ − 3
2 .

Letting S = 0, s = 2κ− 3 + t and t→ 0, we get

N(3− κ)φκ = lim
t→0

ξ

(
12, 0;

3− t

2
,
3− t

2
− κ

)
ϕ(−t)κ

= lim
t→0

(−1)κ2−1(2π)3
Γ2
(
3
2 − t− κ

)
Γ2
(
3−t
2

)
Γ2
(
3−t
2 − κ

)22κ+2t−3ϕκ

= (−1)κ4−1(2π)3Γ2(3/2)
−122κ−3ϕκ = 2−1(−4)κπ2ϕκ

by (1.31) of [32], where Γ2(s) =
√
πΓ (s)Γ

(
s − 1

2

)
. We write D(2)

κ for the

subrepresentation of J(3 − κ) generated by φκ. It has the module D
(2)
κ



30 MING-LUN HSIEH AND SHUNSUKE YAMANA

as a quotient. The quotient map D(2)
κ ↠ D

(2)
κ is realized by the operator

N(3− κ). Since J(3− κ) is multiplicity free even as a representation of U2,

any GSp4(R)-invariant pairing D(2)
κ ×D(2)

κ → C factors through the quotient

map. We construct a GSp4(R)-invariant pairing r : D
(2)
κ ×D

(2)
κ → C in the

following way: for ϕ, ϕ′ ∈ D
(2)
κ we set

r(ϕ, ϕ′) = q(φ, ϕ′),

where we take φ ∈ D(2)
κ so that N(3− κ)φ = ϕ.

Definition 5.5 (Bessel integrals for D
(2)
κ ). We define

Aκ
S(ϕ, ϕ

′) =

∫
Sym2(R)

r(D(2)
κ (n(z))ϕ,D(2)

κ (d(−1))ϕ′)e(tr(Sz)) dz

for κ ∈ N, S ∈ Sym2(R)+ and ϕ, ϕ′ ∈ D
(2)
κ .

Remark 5.6. We make the integral above meaningful by analytic continua-

tion (see the previous subsection). If κ ≥ 2, then D
(2)
κ is a discrete series

and this integral converges absolutely by Proposition 3.15 of [25].

Proposition 5.7. For every positive integer κ and S ∈ Sym2(R)+ we have

Aκ
S(ϕκ, ϕκ)

r(ϕκ, D
(2)
κ (d(−1))ϕκ)

= 24κ−2(2π)2κ−1
(detS)(2κ−3)/2

Γ (2κ− 1)
e−4πtr(S).

Proof. In view of (5.3) we arrive at

Aκ
S(ϕ, ϕ

′) =

∫
Sym2(R)

q(D(2)
κ (n(z))φ,D(2)

κ (d(−1))ϕ′)e(tr(Sz)) dz

= B
(2κ−3)/2
S (φ)B

(3−2κ)/2
−S (D(2)

κ (d(−1))ϕ′).

Let ϕ = ϕ′ = ϕκ and φ = 2(−4)−κπ−2φκ. Then

r(ϕκ, D
(2)
κ (d(−1))ϕκ) = 2(−4)−κπ−2q(φκ, D

(2)
κ (d(−1))ϕκ)

= 2(−4)−κπ−2
∫
Sym2(R)

φκ(J2n(z))ϕ−κ(J2n(z)) dz

= 2(−4)−κπ−2ξ

(
12, 0;

3

2
,
3

2

)
= 2(−4)−κ.

From (4.34.K) and (4.35.K) of [32]

B
(3−2κ)/2
S (ϕκ) = ξ(i2, S;κ, 0) = (−1)κ4π(4κ−1)/2

(4 detS)(2κ−3)/2

Γ (κ)Γ
(
κ− 1

2

) e−2πtr(S),
B

(2κ−3)/2
S (φκ) = ξ

(
i2, S;

3

2
,
3

2
− κ

)
= (−4)κπ2e−2πtr(S).
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We get B
(2κ−3)/2
S (φ) = 2e−2πtr(S) and conclude that

Aκ
S(ϕκ, ϕκ)

r(ϕκ, D
(2)
κ (d(−1))ϕκ)

= 2−1(−4)κB
(2κ−3)/2
S (φ)B

(3−2κ)/2
−S (D(2)

κ (d(−1))ϕκ)

= 2−1(−4)κ2e−2πtr(S)B
(3−2κ)/2
S (ϕκ),

which completes our proof. □

6. Bessel periods on principal series representations

6.1. Tate’s local zeta integral. Let us recall Tate’s theory for local factors
of quasi-characters of the multiplicative group of a local field L. Denote by
S(L) the space of Bruhat-Schwartz functions on L. Fix a non-trivial additive
character ψL of L. Tate’s local zeta integral is defined by

Z(Φ, σ) =

∫
L×

Φ(x)σ(x) d×x

for σ ∈ Ω(L×) and Φ ∈ S(L). The gamma factor

γ(s, σ, ψL) = ε(s, σ, ψL)
L(1− s, σ−1)

L(s, σ)

is defined as the proportionality constant of the functional equation

Z(Φ̂, σ−1ω1−s
L ) = γ(s, σ, ψL)Z(Φ, σωsL),

where

Φ̂(y) =

∫
L
Φ(x)ψL(yx) dx

is the Fourier transform with respect to ψL. We repeatedly use the equation

(6.1) γ(s, σ, ψL)γ(1− s, σ−1, ψL) = σ(−1),

Define the additive character ψK on K by ψK(x) = ψ(TrKF (ℸ−1x)), where

ℸ =

{
e1 − e2 if K = Fe1 ⊕ Fe2 is split,

θ − θ if K is not split.

6.2. Principal series representations. Let χ1, χ2, σ ∈ Ω(F×) be such
that χ1χ2 = σ−2. We consider the principal series representation

π = I2(χ) = χ1 × χ2 ⋊ σ := Ind
GSp4(F )
B2 χ,

where the character χ of B2 is defined by

χ(m(diag[a, d], λ)u) = χ1(a)χ2(d)σ(λ) (a, d, λ ∈ F×, u ∈ U2(F )).

The induction is always normalized, i.e., the space V of π consists of C-
valued functions on GSp4(F ) with the transformation property

ϕ(m(diag[a, d], λ)ug) = χ1(a)χ2(d)σ(λ)|a|2|d||λ|−3/2ϕ(g).
If χ1 and χ2 are unitary, then π is irreducible by Lemma 3.2 of [30].
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Then π is equivalent to the induced representation I(π0, σ), where we put
π0 = I1(χ1σ). A ψ-Whittaker functional W on I1(χ1σ) is constructed by
the Jacquet integral

Wf (g) = W(π(g)f) :=

∫ st

F
f(J1n(x)g)ψ(−x) dx.

We define the GL2(F )-invariant pairing bW : π0 × π∨0 → C by

bW(f, f ′) =

∫
F×

Wf (diag[a, 1])Wf ′(diag[−a, 1]) da

and identify π∨ with I(π∨0 , σ
−1) ≃ χ−11 × χ−12 ⋊ σ−1 via the pairing

b♯W(ϕ, ϕ′) =

∫
Sym2(F )

bW(ϕ(wsn(z)), ϕ
′(wsn(z))) dz.

For a Weyl element w of GSp4(F ) we define χw ∈ Ω(T2) by χw(t) =
χ(w−1tw) and define the intertwining operator Mw(χ) : I2(χ) → I2(χ

w) by
the integral

[Mw(χ)ϕ](g) =

∫
U2∩wU2w−1\U2

ϕ(w−1ug)du.

This integral is absolutely convergent if χ lies in some open set, and can be
meromorphically continued to all χ. Let Σ+ be the set of positive roots of
GSp4. For each α ∈ Σ, let Gα be the derived group of the centralizer in
GSp4 of the kernel of α. Then Gα has relative semi-simple rank one. Letting
ια : SL2 → Gα be the relevant homomorphism, we define χα ∈ Ω(F×) by
χα(a) = χ(ια(diag[a, a

−1])) for a ∈ F×. Now we define the normalized
intertwining operator

M∗w(χ) =
∏

α∈Σ+, αw /∈Σ+

γ(0, χα, ψ) ·Mw(χ).

For example,

M∗w†(χ) = γ(0, χ1χ
−1
2 , ψ)γ(0, χ1χ2, ψ)γ(0, χ1, ψ)γ(0, χ2, ψ)Mw†(χ),

M∗ws
(χ) = γ(0, χ1χ2, ψ)γ(0, χ1, ψ)γ(0, χ2, ψ)Mws(χ).

6.3. Toric periods on principal series representations. Let π0 = I1(µ).
We define the toric period of f ∈ I1(µ) in the split case by

Tµ
Λ(f) =

∫
F×

f(גdiag[a, 1])Λ0(a)
−1d×a, ג =

(
0 −1
1 1

)
,

where we have written Λ = (Λ0,Λ
−1
0 ), and in the non-split case by

Tµ
Λ(f) =

∫
F×\K×

f(ι(t))Λ(t)−1 dt

otherwise. The former integral is convergent if ℜµ > −1
2 .
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Lemma 6.1. If K/F is split, then for f ∈ I1(µ)

Tµ
Λ = γ

(
1

2
, µ−1Λ−10 , ψ

)
TW

Λ (f).

Proof. For each Φ = Φ1 ⊗ Φ2 ∈ S(F ⊕ F ) we define the Godement section
f = fΦµ as in (6.2). The left hand side equals∫

F×
µ(a)|a|1/2F

∫
F×

Φ

(
(0, b)

(
0 −1
a 1

))
µ(b)2|b|FΛ0(a)

−1 d×bd×a

= Z(Φ1, µΛ
−1
0 ω

1/2
F )Z(Φ2, µΛ0ω

1/2
F ).

The right hand side equals the product of γ
(
1
2 , µ
−1Λ−10 , ψ

)
and∫

F×

∫ st

F
µ(a)|a|1/2F

∫
F×

Φ

(
(0, b)

(
0 −1
a x

))
µ(b)2|b|F

ψ(−x)
Λ0(a)

d×bdxd×a

= Z(Φ1, µΛ
−1
0 ω

1/2
F )Z(Φ̂2, µ

−1Λ−10 ω
1/2
F )(µΛ0)(−1).

The lemma follows from the functional equation for Tate’s local integral. □

We associate to Λ ∈ Ω1(F×\K×) the toric integral

PΛ ∈ HomK××K×(I1(µ)⊠ I1(µ
−1),Λ⊠ Λ)

by the convergent integral

PΛ(f, f
′) = L(1, τK/F )

∫
F×\K×

bW(π0(t)f, π0(J)f
′)Λ−1(t) dt.

The normalized intertwining operator M(µ1, µ2) : I(µ1, µ2) → I(µ2, µ1)
is defined by the integral

[M(µ1, µ2)f ](g) := γ(0, µ1µ
−1
2 , ψ)

∫
F
f(J1n(x)g) dx

if ℜ(µ1µ−12 ) > 1, and by meromorphic continuation otherwise. To simplify
notation, we will write M(σ) = M(σ, σ−1).

Lemma 6.2.

Tσ−1

Λ ◦M(σ) = γ

(
1

2
, σKΛ, ψK

)
Tσ

Λ.

Proof. Since W(M(σ)f) = W(f) for the choice of a normalization of the
intertwining operator, if K/F is split, then Lemma 6.1 gives

Tσ−1

Λ ◦M(σ) =
γ
(
1
2 , σΛ

−1
0 , ψ

)
γ
(
1
2 , σ
−1Λ−10 , ψ

)Tσ
Λ = γ

(
1

2
, σKΛ, ψK

)
Tσ

Λ.

Let K be a field. To each Φ ∈ S(F ⊕F ) we associate the Godement section

(6.2) fΦσ (g) = σ(det g)| det g|1/2F

∫
F×

Φ((0, b)g)σ(b)2|b|F d×b ∈ I1(σ).
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We shall identify Φ with a Bruhat-Schwartz function on K in such a way
that Φ(aθ + b) = Φ(a, b). Define the Fourier transforms of Φ by

Φ̂(z) =

∫
K
Φ(x)ψK(xz) dx, Φ̃(z) =

∫
K
Φ(x)ψK(xz) dx.

The proof of Lemma 14.7.1 of [20] tells us that

(6.3) M(σ)fΦσ = f Φ̃σ−1 .

Notice that ψK((aθ + b)(xθ̄ + y)) = ψ(ay − bx).
Observe that

Tσ
Λ(f

Φ
σ ) =

∫
F×\K×

∫
F×

Φ(bt)
σ(b2tt)|b2tt|1/2F

Λ(t)
d×bd×t = Z(Φ, σKΛ−1ω

1/2
K ).

We define Φτ ∈ S(K) by Φτ (x) = Φ(x̄). Since Φ̃(z) = Φ̂τ (−z) and Λ(−t̄) =
Λ(t)−1 for t ∈ K×, the lemma follows again from (6.3) and the functional
equation for GL1(K). □

6.4. Factorizations. Given ϕ ∈ π = I2(χ) and ϕ
′ ∈ I2(χ

−1), we define

JΛ
S (ϕ, ϕ

′) =

∫
F×\K×

∫ st

Sym2(F )
b♯W(π(n(z)t(t))ϕ, ϕ′)ΛS(n(z)t(t))) dtdz.

Put χ1 = µσ−1 and χ2 = µ−1σ−1. Then I(π0, σ) is equivalent to I2(χ).
Let π′0 be a generic irreducible subrepresentation of I1(µ). Since Tµ

Λ is

necessarily proportional to TWΛ on π′0 by uniqueness, Lemma 3.3 allows us
to define the Bessel period Bχ

S′,Λ ∈ HomRS′ (I(π
′
0, σ),ΛS′) by

Bχ
S′,Λ(ϕ) = lim

i→∞

∫
Symi

2

Tµ
Λ(ϕ(wsn(z)))ψS′(−z) dz.

If K is a field, then the pairing

I1(µ)⊗ I1(µ
−1) ∋ f ⊗ f ′ 7→

∫
F×\K×

f(c)f ′(c) dc

is also GL2(F )-invariant as GL2(F ) = B1K
×.

Lemma 6.3. If K/F is not split, then for f ∈ I1(µ) and f
′ ∈ I1(µ

−1)

bW(f, f ′) = µ(−1)
|dF |1/2ζ(1)

|dK |1/2L(1, τK/F )

∫
F×\K×

f(c)f ′(c) dc.

Proof. Define f †µ ∈ I1(µ) by f
†
µ(B1) = 0 and f †µ(J1n(z)) = 1loF (z). Then

W
f†µ
(diag[a, 1]) = µ(a)−1|a|1/21loF (a)

and hence bW(hµ , f
†
µ−1) = µ(−1)ζ(1). Since

(6.4) ι(x) =

(
x+Tr(θ) −N(θ)

1 x

)
=

(
N(x+ θ) x+Tr(θ)

0 1

)
J1n(x),
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we have

f †µ(ι(x+ θ)) = µK(x+ θ)|x+ θ|1/2K 1loF (x)

for x ∈ F . Since f †µ(F×) = 0,∫
F×\K×

f †µ(c)f
†
µ−1(c) dc =

|dK |1/2

|dF |1/2

∫
F×

(f †µf
†
µ−1)(ι(x+ θ))

L(1, τK/F )

|x+ θ|K
dx

The identity therefore holds if f = f †µ and f ′ = f †
µ−1 . Since the GL2(F )-

invariant pairings must be proportional, it holds in general. □

Proposition 6.4. For f ∈ I1(µ) and f
′ ∈ I1(µ

−1)

PΛ(f, f
′) = µ(−1)ζ(1)|dF |1/2|dK |−1/2Tµ

Λ(π0(ς)f)T
µ−1

Λ−1(π0(ςJ)f
′).

Proof. Set h = π0(ς)f and h′ = π0(ςJ)f
′. In the split case we have

ζ(1)−1PΛ(f, f
′) =

∫
F×\K×

bW(π0(ις(t))h, h
′)Λ(t)−1 d×t

=

∫
F×

∫
F×

Wh(t(ba))Wh′(t(−b))Λ0(a)
−1 d×bd×a.

Lemma 6.1 now proves the declared identity.
Next we shall prove the non-split case. Lemma 6.3 gives

PΛ(f, f
′) =µ(−1)ζ(1)

|dF |1/2

|dK |1/2

∫
F×\K×

∫
F×\K×

f(ct)f ′(cJ)Λ(t)−1 dcdt.

The double integral above is clearly equal to Tµ
Λ(f)T

µ−1

Λ−1(π0(J)f
′). □

Proposition 6.5. For ϕ ∈ I2(χ) and ϕ
′ ∈ I2(χ

−1)

JΛ
S (ϕ, ϕ

′) =
µ(−1)ζ(1)|dF |1/2

L(1, τK/F )|dK |1/2
Bχ
S′,Λ(π(m(ς))ϕ)Bχ−1

−S′,Λ−1(π(m(ς)t(J))ϕ′).

Proof. One can prove Proposition 6.5 in the same way as in the proof of
Proposition 3.4, using Proposition 6.4. □

6.5. Functional equations for Bχ
S,Λ. Our goal is to prove the following

functional equation:

Proposition 6.6.

Bχ−1

S′,Λ ◦M∗w†(χ) = γ

(
1

2
, µKΛ, ψK

)
γ

(
1

2
, σ−1K Λ, ψK

)
Bχ
S′,Λ.

By uniqueness we arrive at a functional equation

Bχw

S′,Λ ◦M∗w(χ) = c(w,χ,Λ, ψ)Bχ
S′,Λ.

When both χ and Λ are unramified, the factor c(w,χ,Λ, ψ) and Lemma 6.2
were calculated in [6]. We will generalize these results to ramified characters.
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Proposition 6.7.

c(s1, χ,Λ, ψ) =γ

(
1

2
, (χ1σ)KΛ, ψK

)
, c(s2, χ,Λ, ψ) =1.

Proof. Let ϕ ∈ I2(χ). From the expression

Bχs1

S′,Λ(M
∗
s1(χ)ϕ) = lim

i→∞

∫
Symi

2

T
(χ1σ)−1

Λ (M(χ1σ)ϕ(wsn(z)))ψS′(−z) dz.

We deduce the assertion for s1 from Lemma 6.2.
To prove the assertion for s2, we consider the following embedding

ι : GL2 → GSp4, ι

((
a b
c d

))
=


ad− bc

a b
1

c d


and the subgroup U ′′2 of N2 given by

U ′′2 =

{
n

((
0 y
y w

)) ∣∣∣∣ y, w ∈ F

}
Then ι(J1) = s2, and we can write a unique expression

wsnt(t) = ι(J1n(x))g
′, g′ = s2wsu

′′t(t), u′′ ∈ U ′′2 .

Put Bχ
S,Λ = Bχ

S′,Λ◦π(m(ς)) with π = I2(χ). Recall that the upper left entry

of S is 1. If ℜσ > −1
2 , then Bχs2

S,Λ(M
∗
s2(χ)ϕ) is equal to∫

F×\K×

∫
U ′′2

∫
F
[M∗s2(χ)ϕ](ι(J1n(x))g

′)ψ(−x) dxψS(u′′)Λ−1(t) du′′dt.

Note that χs2 = (χ1, χ
−1
2 , χ2σ). We define the function f : GL2(F ) → C via

f(A) = ϕ(ι(A)g′). Clearly,

f ∈ I(σ−1, χ1σ), [M∗s2(χ)ϕ](ι(A)g
′) = [M(σ−1, χ1σ)f ](A).

Since W(M(σ−1, χ1σ)h) = W(h) for any h ∈ I(σ−1, χ1σ), we find that

Bχs2

S,Λ(M
∗
s2(χ)ϕ)

=

∫
F×\K×

∫
U ′′2

∫
F
ϕ(ι(J1n(x))g

′)ψ(−x)dxψS(u′′)Λ(t) du′′dt = Bσ
S,Λ(ϕ),

which proves the assertion for s2. □

Now we will prove Proposition 6.6. Observe that

χs2 = (χ1, χ
−1
2 , χ2σ), χs1s2 = (χ−12 , χ1, χ2σ), χs2s1s2 = (χ−12 , χ−11 , σ−1)

and χs1s2s1s2 = χ−1. Proposition 6.7 gives

c(w†, χ,Λ, ψ)

=c(s1, χ
s2s1s2 ,Λ, ψ)c(s2, χ

s1s2 ,Λ, ψ)c(s1, χ
s2 ,Λ, ψ)c(s2, χ,Λ, ψ)
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=γ

(
1

2
, (χ2σ)

−1
K Λ, ψK

)
· 1 · γ

(
1

2
, (χ1χ2σ)KΛ, ψK

)
· 1.

6.6. Local coefficients. The factor c(w,χ,Λ, ψ) is an analogue of the local
coefficients for Bessel models instead of Whittaker models and have been
studied in [10] in more general situations. We will discuss a functional

equation for the Bessel periods BW,σ
S′,Λ introduced in Definition 3.2, which is

of interest in its own right. This result is not used in our later discussion
and the reader can skip the rest of this section and continue reading from
the next section onwards.

Conjecture 6.8. Let π0 be an irreducible admissible unitary generic rep-
resentation of PGL2(F ) and σ ∈ Ω(F×). Then

BW,σ−1

S′,Λ ◦M∗(π0, σ) = γ

(
1

2
, σ−1K Λ, ψK

)
BW,σ
S′,Λ.

We will prove this conjecture, provided that π0 is not supercuspidal. One
will be able to prove the supercuspidal case by the global method.

Proposition 6.9. Conjecture 6.8 is true if π0 is not supercuspidal and −1
2 <

ℜσ < 1
2 .

Proof. By uniqueness the Bessel period admits a functional equation

BW,σ−1

S′,Λ ◦M∗(π0, σ) = c(π0, σ,Λ, ψ)B
W,σ
S′,Λ.

Take µ ∈ Ω(F×) with ℜµ > −1
2 such that π0 is equivalent to the (unique)

irreducible subrepresentation of the principal series representation I1(µ) of
GL2(F ). Since χws = (χ−12 , χ−11 , σ−1), we have I2(χ

ws) = I(π0, σ
−1). The

restriction of M∗ws
(χ) to I(π0, σ) agrees with the normalized intertwining

operator M∗(π0, σ), and consequently

c(π0, σ,Λ, ψ) = c(ws, χ,Λ, ψ).

Since c(π0, σω
s
F , ψ) is a meromorphic function in s, it suffices to prove

the equality for σ in a general position. We may therefore suppose that
γ(s, σΛ−10 , ψ) and γ(s, σ−1χ−11 Λ−10 , ψ) have no pole or zero at s = 1

2 . Then

c(ws, χ,Λ, ψ) = 1 · c(s1, χs2 ,Λ, ψ) · 1 = γ

(
1

2
, σ−1K Λ, ψK

)
by Proposition 6.7. □

7. The Iwahori Hecke algebras and the ordinary projector e0ord

We introduce the ordinary projector on principal series representations of
GSp4(F ). Define the Iwahori subgroup of GSp4(oF ) by

I =

g ∈ GSp4(oF )

∣∣∣∣∣∣∣∣ g ≡


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ 0
0 0 ∗ ∗

 (mod p)

 .
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We define elements of GSp4(F ) by

δ1 = diag[ϖ, 1, ϖ−1, 1], δ2 = diag[−ϖ,−ϖ, 1, 1],

w† =

(
0 12

−12 0

)
, s1 = m

((
0 1
1 0

))
,

s2 =


1

1
1

−1

 , η =


0 0 0 1
0 0 1 0
0 ϖ 0 0
ϖ 0 0 0

 , s0 =


− 1
ϖ

1
ϖ

1

 .

Observe that

w† = s1s2s1s2, η = s2s1s2δ2, s0 = ηs2η
−1, ηs1η

−1 = s1.

Let (π, V ) be an admissible representation of GSp4(F ). For an open
compact subgroup K of GSp4(F ) the subspace V K = {ϕ ∈ V | π(k)ϕ = ϕ}
consists of K-invariant vectors.

Definition 7.1 (Hecke operators). Given g ∈ GSp4(F ), we write IgI =⊔
u∈Ig ugI and define the operator [IgI] on V I by

[IgI]v =
∑
u∈Ig

π(ug)v.

Put qg = [I : I ∩ gIg−1] = ♯Ig. Define the Hecke operators by

UQ = [Iδ1I], UP = [Iδ2I].

Let D be the diagonal torus of Sp4 and Ñ the normalizer of D(F ) in

Sp4(F ). The Weyl group W = Ñ/D(F ) has 8 elements and is generated by
the images of s1, s2. We may view W as a subgroup of Sp4(oF ) and will not
distinguish in notation between the matrices s1, s2 and their images in W .
The affine Weyl group W̃ = Ñ/D(oF ) is generated by the images of s0, s1
and s2. The length ℓ(w) of w ∈ W̃ is defined as the minimum number of
uses of s0, s1 and s2 required to express w. If ℓ(ww′) = ℓ(w)ℓ(w′), then

qww′ = qwqw′ , [Iww′I] = [IwI][Iw′I].(7.1)

Let χ1, χ2, σ ∈ Ω1(F×)◦ be such that χ1χ2 = σ−2. We consider the
unramified principal series representation

π = χ1 × χ2 ⋊ σ = Ind
GSp4(F )
B2 χ,

which is irreducible by Lemma 3.2 of [30]. Put

α = χ1(ϖ), β = χ2(ϖ), γ = σ(ϖ), α0 = αγ.

The space V I has the basis {ϕw}w∈W , where ϕw is the unique I-invariant
vector of V such that ϕw(w) = 1 and ϕw(w

′) = 0 for w ̸= w′ ∈ W . We will
primarily be interested in ϕ† = ϕw† = ϕs1s2s1s2 . It is convenient to order the
basis as follows:

ϕ14 , ϕs1 , ϕs2 , ϕs2s1 , ϕs1s2s1 , ϕs1s2 , ϕs1s2s1s2 , ϕs2s1s2 .
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With respect to this basis the actions of [IsiI] and [IηI] on V I are given by

[Is1I] =



0 q
1 q − 1

0 q
1 q − 1

q − 1 1
q 0

q − 1 1
q 0


,

[Is2I] =



0 0 q 0 0 0 0 0
0 0 0 0 0 q 0 0
1 0 q − 1 0 0 0 0 0
0 0 0 0 0 0 0 q
0 0 0 0 0 0 q 0
0 1 0 0 0 q − 1 0 0
0 0 0 0 1 0 q − 1 0
0 0 0 1 0 0 0 q − 1


,

[IηI] =



γq3/2

γq3/2

βγq1/2

βγq1/2
αγ

q1/2
αγ

q1/2
αβγ

q3/2
αβγ

q3/2


.

thanks to Lemma 2.1.12 of [31]. We have [Is0I] = [IηI][Is2I][IηI]−1. Let

ϕ0χ = ϕ14 + ϕs1 + ϕs2 + ϕs2s1 + ϕs1s2s1 + ϕs1s2 + ϕ† + ϕs2s1s2

be the unique element of π that takes the value 1 on GSp4(oF ).

Definition 7.2 ((α−1, γ)-stabilizations). Introduce the ordinary projector

e0ord :=
α

γ3q13/2
(UQ − q2/β)(UP − q3/2/γ)(UP − q3/2γα)(UP − q3/2γβ)

(cf. [27]). Define stabilizations of ϕ0χ by

ϕ‡ = e0ordϕ
0
χ,

ϕ♭ = q−15/2γ−1α3(UP − q3/2γβ)(UQ − q2α)(UQ − q2β)(UQ − q2β−1)ϕ0χ.

Remark 7.3. The operators UQ and UP are commutative.

Proposition 7.4. (1) The support of ϕ† is contained in B2w†U2(oF ).

(2) ϕ† is an eigenform for both UQ and UP , i.e.,

UQϕ† = q2α−1ϕ†, UPϕ† = q3/2γϕ†.

(3) ϕ‡ and ϕ♭ are eigenforms for both UQ and UP . Moreover,

ϕ‡ = (1− αq−1)(1− βq−1)(1− γ2α2q−1)(1− γ−2q−1)ϕ†, ϕ♭ = (α+ 1)ϕ‡.

Remark 7.5. One can partially deduce (2) from (1), namely,

[IδiI]ϕ† = ([IδiI]ϕ†)(w†)ϕ†.

2The matrix for [Is1I] in Lemma 2.1.1 of [31] contains a typo.
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Let g ∈ GSp4(F ) be such that ([IδiI]ϕ†)(g) ̸= 0. There exists u ∈ I such
that ϕ†(guδi) ̸= 0. We have guδi ∈ B2w†U2(oF ) in view of (1). Since

δiU2(oF )δ
−1
i ⊂ U2(oF ), we get g ∈ B2w†I = B2w†U2(oF ).

Proof. Put

Ū2 = w†U2w
−1
† , Ū2(p) = {u ∈ Ū2(oF ) | u ≡ 14 (mod p)}.

Thanks to the Iwahori factorization I = Ū2(p)B2(oF ) = B2(oF )Ū2(p), we get

B2Iw†I = B2Ū2(p)w†I = B2w†I = B2w†Ū2(p)B2(oF ) = B2w†U2(oF ).

To prove (2), one can show that

UQ = [Is1I][Is2I][Is1I][Is0I], UP = [Is2I][Is1I][Is2I][IηI],

using (7.1). By direct computations the matrix representation of UQ is

q2α 0 0 0 0 0 0 0
αq(q − 1) q2β 0 0 0 0 0 0

0 0 q2α 0 0 0 0 0

0 q(q − 1)(β + 1) αq(q − 1) q2

β 0 0 0 0

(α + 1)(q − 1) (q − 1)2 α(q − 1)2 q2−q
β

q2

α βq(q − 1) 0 0

0 0 αq(q − 1) 0 0 q2β 0 0
α
q (q − 1)2 β(q − 1) (q − 1){α(q − 1 + 1

q ) + 1} 0 0 (q − 1)2(β + 1) q2

α
q2−q

β

α(q − 1) 0 α(q − 1)2 0 0 q(q − 1)(β + 1) 0 q2

β

and the matrix representation of UP is given by

q3/2

γ 0 0 0 0 0 0 0

0 q3/2

γ 0 0 0 0 0 0

q1/2(q−1)
γ 0 γαq3/2 0 0 0 0 0

0
q1/2(q−1)

γ 0 γαq3/2 0 0 0 0

q−1

γq1/2
(q−1)2

γq1/2
0 γαq1/2(q − 1) γβq3/2 0 0 0

0
q1/2(q−1)

γ
q1/2(q−1)

γβ 0 0 γβq3/2 0 0
(q−1)2

γq3/2
(q3−2q2+2q−1)

γq3/2
γα(q−1)

q1/2
γα(q−1)2

q1/2
γβq1/2(q − 1) 0 γq3/2 0

q−1

γq1/2
(q−1)2

γq1/2
0 γαq1/2(q − 1) 0

q1/2(q−1)
γα 0 γq3/2

From these we can prove (2) and observe that both ϕ‡ and ϕ♭ are multiples
of ϕ†. By a brute force calculation one can show that

αγ−3q−13/2(UQ − q2β−1)(UP − q3/2γ−1)(UP − q3/2γα)(UP − q3/2γβ)e0

=(1− αq−1)(1− βq−1)(1− γ2α2q−1)(1− γ−2q−1)e7,

where e0 =
t(1, 1, 1, 1, 1, 1, 1, 1) and e7 =

t(0, 0, 0, 0, 0, 0, 1, 0). □

8. Explicit calculations of Bessel integrals III: ordinary
vectors

Let µ, σ ∈ Ω(F×)◦. Put π0 = I1(µ) and χ = (µσ−1, µ−1σ−1, σ). Let
π = I(π0, σ) = I2(χ) be an irreducible unramified unitary principal series
representation of PGSp4(F ). Recall that ϕ‡ = e0ordϕ

0
χ is the p-stabilization
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of the spherical section ϕ0χ in I2(χ) obtained by the ordinary projector e0ord
in Definition 7.2. Let Λ ∈ Ω(F×\K×).

Definition 8.1. When Λ is trivial on r×, set c(Λ) = 0. Otherwise we put

c(Λ) = max{s ∈ N | Λ is trivial on 1 + psr}.

For any given positive integer n we put

ξ(n) := m(ς
(n)
p ), ς

(n)
p :=



(
θ −1

1 0

)(
ϖn 0

0 1

)
if K = F ⊕ F ,(

0 1

ϖn 0

)
otherwise,

Set n = max{1, c(Λ)}. Our task in this section is to compute

BΛ
S(π(ξ

(n))e0ord) =
JΛ
S (π(ξ

(n))e0ordϕ
0
χ,M

∗
w†
(χ)π(ξ(n))e0ordϕ

0
χ)

b♯W(ϕ0χ,M
∗
w†
(χ)ϕ0χ)

,

where we use the pairing b♯W to define JΛ
S . Recall the unique section ϕ† ∈

I2(χ) supported in B2w†N2(oF ) with ϕ†(w†) = 1. Since (ς(n))−1Jς(n) ∈ I,
the following result readily follows upon combining Propositions 6.5 and 6.6:

L(1, τK/F )
JΛ
S (π(ξ

(n))ϕ†,M∗w†(χ)π(ξ
(n))ϕ†)

ζ(1)γ
(
1
2 , µKΛ, ψK

)
γ
(
1
2 , σ
−1
K Λ, ψK

)(8.1)

=|dF |1/2|dK |−1/2Bχ
S′,Λ(π(m(ςς(n)))ϕ†)Bχ

−S′,Λ−1(π(m(ςς(n)))ϕ†).

We retain the notation in the previous section. Put

α = µ(ϖ), γ = σ(ϖ).

In the split case we write Λ = (Λ0,Λ
−1
0 ). Set

π0 ≃ I1(µ), χ = (µσ−1, µ−1σ−1, σ), π = I2(χ) ≃ I(π0, σ).

Definition 8.2. Define the modified p-Euler factor

e(π,Λ) =
αc(Λ)

L
(
1
2 , (χ1σ)KΛ

)
L
(
1
2 , σ
−1
K Λ

) .
Recall the element f †µ ∈ I1(µ) defined in the proof of Lemma 6.3.

Lemma 8.3. We have

Tµ
Λ(π0(ςς

(n)
p )f †µ) =

|dK |1/2K L(1, τK/F )

|dF |1/2(αγ)nqn/2
×

{
Λ0(−1) if K = F ⊕ F ,

1 otherwise.
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Proof. Note that

ςς
(n)
p =



(
ℸϖn −1

0 1

)
if K/F is split,(

0 1

ϖn 0

)
if K/F is non-split.

Since W
f†µ
(diag[a, 1]) = µ(a)−1|a|1/21loF (a), if K/F is split, then

TΛ(π0(ςς
(n)
p )f †µ)

γ
(
1
2 , µ
−1Λ−10 , ψ

) =

∫
F×

W†
µ−1

((
a 0
0 1

)(
ℸϖn −1
0 1

))
Λ0(a)

−1d×a

=

∫
F×

ψ(−a)|aϖn|1/2µ(aϖn)−11loF (aϖ
n)Λ0(a)

−1 d×a

=Z(Φ,Λ−10 µ−1ω
1/2
F )Λ0(ϖ)n,

where Φ(x) = ψ
(
− x
ϖn

)
1loF (x). Since Φ̂(x) = 1lϖ−n+oF , we obtain

Z(Φ,Λ−10 µ−1ω
1/2
F ) =

Z(Φ̂,Λ0µω
1/2
F )

γ
(
1
2 ,Λ

−1
0 µ−1, ψ

) =
(αγ)−nΛ0(ϖ)−nqn/2

γ
(
1
2 ,Λ

−1
0 µ−1, ψ

) vol(ϖ−n+oF ).

Observe that vol(ϖ−n + oF ) = vol(1 + pn) = q−nζ(1).
Next we assume K to be a field. Since

K× = F×(1 + oF θ)
⊔
F×(p+ θ),

we use the formula∫
F×\K×

f(t)dt =

∫
oF

f(ι(1 + yθ)) d′y +

∫
p
f(ι(y + θ))

d′y

|y + θ|K
,

where d′y is the Haar measure on F giving oF the volume L(1, τK/F )
|dK |

1/2
K

|dF |1/2
.

Since f †µ(ι(y + θ)ς
(n)
p ) = 0 by (6.4),

Tµ
Λ(π0(ς

(n)
p f †µ) =

∫
oF

f †µ

((
1 + yTr(θ) −yN(θ)

y 1

)(
0 1
ϖn 0

))
Λ(1 + yθ) d′y

=

∫
oF

f †µ

((
N(1 + yθ) ∗

0 ϖn

)(
0 1
1 ϖ−ny

))
Λ(1 + yθ) d′y

= µ(ϖ)−nqn/2
∫
oF

1loF (ϖ
−ny) d′y.

This finishes the proof. □

Lemma 8.4. We have

Bχ
S,Λ(π(m(ς)ξ(n))ϕ†) = γnq−3n/2Tµ

Λ(π0(ςς
(n)
p )f †µ).
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Proof. For any ϕ ∈ π we have

[π(m(ς)ξ(n))ϕ](wsn(z)) = γnq3n/2π0(ςς
(n)
p )ϕ(wsn(ς

(n)−1
p ς−1z tς−1 tς

(n)−1
p )).

Since S[ςς
(n)
p ] ∈ Sym2(oF ) and since ϕ†(t(A)wsn(z)) = f †µ(A)1lSym2(oF )(z)

by definition, we find the first identity by (3.7). Remark 3.5 and Lemma 8.3
give the second identity. □

The main result of this section is the following explicit formula for the
Bessel integral of ordinary vectors.

Proposition 8.5. Let n = max{1, c(Λ)} and α = χ1(ϖ). Then

BΛ
S(π(m(ξ(n))e0ord)

L(1, τK/F )ζ(2)ζ(4)
=

|dK |1/2K L(12 ,Spn(π)K ⊗ Λ)

|dF |1/2L(1, ad, π)
e(π,Λ)2α−2nq−4n.

Proof. It is proved in Proposition 7.4 (2) that

e0ordϕ
0
χ =d(χ)−1ϕ†, d(χ) =L(1, χ1)L(1, χ2)L(1, (χ1σ)

2)L(1, σ−2).

Put ϕ′ = π(ξ(n))ϕ†. By Lemmas 8.3, 8.4 and (8.1)

L(1, τK/F )J
Λ
S (ϕ

′,M∗w†(χ)ϕ
′)

ζ(1)γ
(
1
2 , µKΛ, ψK

)
γ
(
1
2 , σ
−1
K Λ, ψK

) = γ2nq−3n
|dK |1/2K L(1, τK/F )

2

|dF |1/2(αγ)2nqn
.

Since

γ

(
1

2
, σ−1K Λ, ψK

)
= γ−2c(Λ)

L
(
1
2 , σKΛ−1

)
L
(
1
2 , σ
−1
K Λ

) ,
γ

(
1

2
, µKΛ, ψK

)
= (αγ)2c(Λ)

L
(
1
2 , µ
−1
K Λ−1

)
L
(
1
2 , µKΛ

)
by the definition of the gamma factors, we get

JΛ
S (ϕ

′,M∗w†(χ)ϕ
′)

ζ(1)L(1, τK/F )
=

|dK |1/2K

|dF |1/2
α2c(Λ)−2nq−4n

L
(
1
2 , σKΛ−1

)
L
(
1
2 , µ
−1
K Λ−1

)
L
(
1
2 , σ
−1
K Λ

)
L
(
1
2 , µKΛ

)
= |dF |−1/2|dK |1/2K L(1/2, Spn(π)K ⊗ Λ)e(π,Λ)2α−2nq−4n.

In view of (9) of [1] we have

M∗w†(χ)ϕ
0
χ =

L(1, π, ad)

ζ(1)2d(χ)2
ϕ0χ−1 .

Let f0µ be a unique section of I1(µ) such that f0µ(GL2(oF )) = 1. Then

W(f0µ) = L(1, µ2)−1, bW(f0µ, f
0
µ−1) =

ζ(1)L(1, ad, π0)

ζ(2)L(1, µ2)L(1, µ−2)
=
ζ(1)2

ζ(2)
.

Since ϕ0χ(t(A)ws) = f0µ(A), we have

b♯W(ϕ0χ, ϕ
0
χ−1) =

ζ(1)2

ζ(2)

∫
Sym2(F )

|a(wsn(z))|−3 dz =
ζ(1)3

ζ(2)ζ(4)
.
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We conclude that

d(χ)2bW(ϕ0χ,M
∗
w†
(χ)ϕ0χ) = L(1, π, ad)ζ(1)ζ(2)−1ζ(4)−1.

From these our proof is complete. □

9. Global Bessel periods for GUD2

9.1. Notation. If L is a number field, then oL is the ring of integers of
L, AL is the adèle ring of L and L∞ = L ⊗Q R is the infinite part of AL.
When L = Q, we suppress the subscript L. Let Z̄ be the ring of algebraic

integers of Q̄, Z̄ℓ the ℓ-adic completion of Z̄ in Cℓ = Q̂ℓ and Ẑ =
∏
ℓ Zℓ the

finite completion of Z. Given an abelian group M , we put M̂ = M ⊗Z Ẑ.
In particular, AL = L∞ ⊕ L̂. Let e =

∏
v ev denote the standard additive

character of A/Q such that ev(x) = e2π
√
−1x for x ∈ R and v ∈ Σ. Set

ψL = e ◦ TrLQ. When G is a reductive algebraic group over L, we denote by
Acusp(G) the space of cusp forms on G(AL). For an adèle point g ∈ G(AL)
we denote its projections to G(L̂), G(L∞) and G(Lv) by gf , g∞ and gv,
respectively. We fix once and for all an embedding ι∞ : Q̄ ↪→ C and an
isomorphism ȷℓ : C ≃ Cℓ for each rational prime ℓ. Let ιℓ = ȷℓ ◦ ι∞ be their
composition. We regard L as a subfield of C (resp. Cℓ) via ι∞ (resp. ιℓ)
and Hom(L, Q̄) = Hom(L,Cℓ).

Let F be a totally real number field of degree d and K a totally imaginary
quadratic extension of F . We denote by ∆F (resp. ∆K) the discriminant of
F (resp. K), by dF =

∏
l dFl

the different of F , by DK
F the relative different

of K/F and by τK/F the quadratic Hecke character of A× corresponding to

K/F . Fix a square free ideal N = N+N− of oF such that every prime factor
of N+ (resp. N−) is split (resp. not split) in oK . Fix a decomposition

N+oK = N+
0 N

+
0 .

Suppose that the number of prime factors of N− is even. Then there exists
a totally indefinite quaternion algebra D over F of discriminant N−, i.e., D
is a central simple algebra of dimension 4 over F such that Dv := D ⊗v Fv
is a division algebra if and only if v divides N−. Put

NDQ = NFQ ◦NDF , TrDQ = TrFQ ◦ TrDF , N = ♯(oF /N), N− = ♯(oF /N
−).

Once and for all we fix a prime p of F , which does not divide N, CM type

Σ of K and a finite idèle dF = (dFl
) ∈ F̂× such that dFl

is a generator of
the local different dFl

for each finite prime l. We identify Σ with the set of
real places of F . Fix a maximal order oD of D. For any finite prime p we
set oDp = oD ⊗oF oFp . If p divides N−, then we write Pp for the maximal
ideal of oDp . We choose an element θ ∈ K such that

• ℑτ(θ) > 0 for every τ ∈ Σ;
• {1, θ} is an oFl

-basis of oKl
for every prime l dividing pDK

F N;
• θ is a uniformizer of oKl

for every prime l ramified in K.
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We regard K as a subalgebra of D. Put S = Sθ :=
1
2(θ − θ̄) ∈ D−(F ).

Recall that J1 =

(
0 1
−1 0

)
. Put J⋆ = diag[12, J1]. For v ∤ N− we fix an

isomorphism iv : M2(Fv) ≃ Dv by which we identity M2m(Fv) with Mm(Dv).
Since i−1v (x̄) = J−11

ti−1v (x)J1 for x ∈ Dv, we arrive at

J⋆GUD2 (Fv)J
−1
⋆ = GSp4(Fv), J1D−(Fv) = Sym2(Fv).

We identify

(
TrKF (θ) −NKF (θ)

1 0

)
with θ. Then

J1Sθ =

(
1 −TrKF (θ)

2

−TrKF (θ)
2 NKF (θ)

)
.

We always take the adèlic measure dg on PGUD2 (AF ) to be the Tamagawa
measure. We define the bilinear pairing by

⟨ϕ, ϕ′⟩ =
∫
PGUD

2 (F )\PGUD
2 (AF )

ϕ(g)ϕ′(gτ∞) dg,

where τ∞ =
∏
v∈Σ τv with τv = d(−1) ∈ GUD2 (Fv).

Let π ≃ ⊗′vπv be an irreducible admissible representation of PGUD2 (AF )
which is realized on a subspace V of Acusp(PGUD2 ). The space Acusp(PGSp4)
satisfies multiplicity one thanks to the work of Arthur. It is conjectured
in general that Acusp(PGUD2 ) satisfies multiplicity one, which we assume.
Then since πv ≃ π∨v for every v, we have V = V̄ := {ϕ̄ | ϕ ∈ V }. Thus the
restriction of the pairing ⟨ , ⟩ to V × V is nondegenerate.

Let dz denote the Tamagawa measure on D−(AF ). When l and N− are
coprime, we take the Haar measure dzl on D−(Fl) so that the measure of
D−(Fl)∩ oDl

is 1. For each prime factor q of N− we take the Haar measure
dzq on D−(Fq) so that the measure of D−(Fq)∩Pq is 1. For v ∈ Σ we define
the Haar measure dzv on D−(Fv) by identifying D−(Fv) ≃ Sym2(Fv) with
F 3
v with respect to the standard basis. Then by Lemma 2.1 of [38]

(9.1) dz = ∆
−3/2
F (N−)−2

∏
v

dzv.

Fix a Hecke character Λ ∈ Ω1(K×A×F \A
×
K). Let dt be the invariant measure

on K×A×F \A
×
K normalized to have total volume 2Λ(1, τK/F ), where

Λ(s, τK/F ) = π−d(s+1)/2Γ ((s+ 1)/2)dL(s, τK/F )

is the complete Hecke L-function of τK/F .
We define the Sth Fourier coefficient and the Bessel period relative to S

and Λ of a cusp form ϕ ∈ Acusp(PGUD2 ) by

WS(ϕ, g) =

∫
D−(F )\D−(AF )

ϕ(n(z)g)ψF (τ(Sz)) dz,
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BΛ
S (ϕ, g) =

∫
K×A×F \A

×
K

WS(ϕ, t(t)g)Λ(t)
−1 dt.

Here e is the identity element in GUD2 (AF ). We will write BΛ
S (ϕ) = BΛ

S (ϕ, e).

9.2. The refined Gross-Prasad conjecture for the Bessel periods.
For each place v we normalize the local Bessel integrals by

BΛv
S = c(πv,Λv)

−1BΛv
S , c(πv,Λv) = ζFv(2)ζFv(4)

L
(
1
2 , Spn(πv)Kv ⊗ Λv

)
L(1, τKv/Fv

)L(1, πv, ad)
.

We denote the complete Dedekind zeta function of F by ξF (s), the com-
plete adjoint L-function of π by Λ(s, π, ad) and the complete Godement-
Jacquet L-function of an automorphic representation Π of a general linear
group by Λ(s,Π). Recall that sπ = 2 or sπ = 1 according as π is endoscopic
or not. A special case of [25, Conjecture 2.5] is stated as follows:

Conjecture 9.1 (Yifeng Liu). Assume that πv is generic for almost all v.
If ϕ = ⊗vϕv, ϕ

′ = ⊗vϕ
′
v ∈ V satisfy ⟨ϕ, ϕ′⟩ ̸= 0, then

BΛ
S (ϕ)B

Λ
S (ϕ

′)

⟨ϕ, ϕ′⟩
= ξF (2)ξF (4)

Λ
(
1
2 , Spn(π)K ⊗ Λ

)
(N−)2∆

3/2
F 2sπΛ(1, π, ad)

∏
v

BΛv
S (ϕv, ϕ

′
v)

⟨ϕv, ϕ′v⟩v
.

Remark 9.2. (1) One can easily see that Conjecture 9.1 is equivalent to
the hypothesis (Böch).

(2) It is easily seen that dt =
∏
v dtv. Thus CG0 = 1 and Bπ0(φ0, φ̄0) =

2Λ(1, τK/F ) in the notation of [25].
(3) Furusawa and Morimoto [12, 13] have demonstrated Conjecture 9.1,

provided that π is tempered, πv is square-integrable for every v ∈ Σ,
Λ is the trivial character and the special Bessel period B1

S is not
zero on V . More generally, they proved the conjecture for such
representations of SO(2n+1) and the trivial character of SO(2). In
the course of the proof they verified that π has the weak lift Spn(π)
to GL2n(AF ) and obtain L(s, π, ad) to be the symmetric square L-
function of Spn(π), which is holomorphic and nonzero at s = 1, for
the exterior square L-function of Spn(π) has a pole at s = 1.

9.3. A central value formula. Let κ ∈ NΣ be a tuple of d natural numbers
indexed by Σ. We define the action of GUD2 (F∞)◦ on the space

H∗2 := {Z ∈ M2(F ⊗Q C) | t(ZJ−11 ) = ZJ−11 , ℑ(ZJ−11 ) > 0}

and the automorphy factor Jκ : GUD2 (F∞)◦ × H∗2 → C× by

hZ = (hvZv)v∈Σ , hvZv = (avZv + bv)(cvZv + dv)
−1,

Jκ(h,Z) =
∏
v∈Σ

j(hv, Zv)
κv , j(hv, Zv) = NDv

Fv
(cvZv + dv)/N

Dv
Fv

(hv)
1/2,



47

where we write hv =

(
av bv
cv dv

)
. Let i =

√
−1J1 ∈ H∗2. Put

UΣ2 = {g ∈ UD2 (F∞) | g(i) = i}.

The open compact subgroup K(l) (resp. K(Pl)) of GUD2 (Fl) is defined in
(4.2) (resp. (5.5)). The paramodular subgroup of level N is defined by

KD(N) =
∏
l|N+

J−1⋆ K(l)J⋆ ×
∏
l|N−

K(Pl)×
∏
l∤N

J−1⋆ GSp4(oFl
)J⋆.

From now on let π be an irreducible cuspidal automorphic representation of

PGUD2 (AF ) whose archimedean component is ⊗v∈ΣD
(2)
κv and such that πl is

generic for each finite prime l. Let Vκ(π,N) denote the subspace of V on
which the group UΣ2 ×KD(N) acts by the character k 7→ Jκ(k∞, i)

−1.

Definition 9.3. For ϕ, ϕ′ ∈ Vκ(π,N) we normalize the pairing by

⟨ϕ, ϕ′⟩KD(N) = ⟨ϕ, ϕ′⟩
∏
l|N+

(q2l + 1)
∏
l|N−

(q2l − 1).

Suppose that dimVκ(π,N) = 1. Fix 0 ̸= ϕπ = ⊗vϕ
0
v ∈ Vκ(π,N). Put

ϵl(π) = ε

(
1

2
, Spn(πl)

)
, ϵN+(π) =

∏
l|N+

ϵl(π).

Take χ1, χ2, σ ∈ Ω(F×p )◦ so that πp ≃ χ1 × χ2 ⋊ σ. Put αp = χ1(ϖp) and

γp = σ(ϖp). Define the (α−1p , γp)-stabilization of ϕπ by

e0ord,pϕπ = (⊗v ̸=pϕ
0
v)⊗ e0ord,pϕ

0
p,

where the ordinary projector e0ord,p is defined in Definition 7.2 with respect

to (α−1p , γp). For a ∈ F×∞ put aκ =
∏
v∈Σ |a|κvFv

. For l ∤ N we take θl ∈ Kl

and Al ∈ GL2(Fl) so that oKl
= oFl

+ oFl
θl and J1Sθl = (J1Sθ)[Al]. Recall

ς =

(
1 −θ̄
−1 θ

)
.

Definition 9.4. For each positive integer n we define ς
(n)
p ∈ GL2(Fp) by

ς
(n)
p =

(
ϑ −1
1 0

)(
ϖn

p 0
0 1

)
,

where ϑ = θ if p splits in K and ϑ = 0 otherwise, and define

ζ(n) = m
(
ip

(
ς
(n)
p

)) ∏
l|N+

m(ς−1)
∏
l∤N

m(il(Al))
∏
l

d(dFl
) ∈ GUD2 (F̂ ).

Theorem 9.5. We suppose that Λl is unramified for every prime l distinct
from p. Put n = max{1, c(Λp)}. Assume that π and Λ satisfy Conjecture
9.1. Assume that Fl = Q2 if l ̸= p and 2 is divisible by l. Then
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BΛ
S (e

0
ord,pϕπ, ζ

(n))2

⟨ϕπ, ϕπ⟩KD(N)e
4π
√
−1TrDQ (Si)

=
∆2
F ξF (2)ξF (4)N

D
F (4S)

κ[oK : oF + θoF ]
−3

ϵN+(π)Λ(N+
0 )2

2d+sπ∆
1/2
K NDQ (Sθ)

3/2

×e(πp,Λp)
2

α2n
p q4np

L(1, τKp/Fp
)2
Λ
(
1
2 ,Spn(π)K ⊗ Λ

)
NΛ(1, π, ad)

∏
l|N−∩DK

F , l=l2K

(1−ϵl(π)Λ(lK)),

where e(πp,Λp) is the p-adic multiplier

e(πp,Λp) = α
c(Λp)
p · L

(
1

2
, (χ1σ)KpΛp

)−1
L

(
1

2
, σ−1Kp

Λp

)−1
.

Proof. Put BΛl
S (H) =

BΛl
S (H)

c(πl,Λl)
, where BΛl

S is defined with respect to an addi-

tive character of order 0. It should be remarked that when Fl is of residual
characteristic ℓ, we have defined BΛl

S with respect to the additive character

eℓ ◦ TrFl
Qℓ

on Fv. Taking Remark 2.4 into account, we have

BΛl
Sθ
(πl(m(Al, dFl

))Hϕl, πl(m(Al, dFl
))Hϕl) = |dFl

|−3| detAl|3BΛl
Sθl

(H).

Since
∏

l | detAl|−1Fl
= [oK : oF + θoF ], it follows from Conjecture 9.1 that

BΛ
S (ϕ

‡
π, ξ(n))2

⟨ϕπ, ϕπ⟩
= ξF (2)ξF (4)

D
3/2
F Λ

(
1
2 ,Spn(π)K ⊗ Λ

)
[oK : oF + θoF ]3(N−)22sπΛ(1, π, ad)

BΛp

Sθp
(e0ord)

×
∏
v∈Σ

BΛv
S (ϕ0v, ϕ

0
v)

r(ϕ0v, πv(d(−1))ϕ0v)

∏
l|N+

BΛl
S (πl(m(ς−1)))

∏
l∤pN+

BΛl
Sθl

(Id).

Taking Remark 2.4 into account, we deduce from Theorem 4.2 that

BΛl
Sθl

(Id) = |dKl
|1/2Kl

|dFl
|−1/2

if l and pN are coprime. If l divides N−, then by Corollary 5.2 and (5.1)

BΛl
S (Id) =

|dKl
|1/2Kl

|dFl
|1/2

q3l (1− q−2l )×

{
1 if Kl/Fl is unramified,

1− εl(π)Λ(lK) if l = l2K is ramified.

If N+ is divisible by l, then Proposition 4.10 gives

BΛl
S (m(ς−1)) = εl(π)Λ(ϖl)

−1|dKl
|1/2Kl

|dFl
|−1/2ql(1 + q−2l ).

Since the measure dtv gives F×v \K×v the volume 2, Proposition 5.7 gives

BΛv
Sθ

(ϕ0v, ϕ
0
v)

r(ϕ0v, πv(d(−1))ϕ0v)
= 24κv−2NDv

Fv
(Sθ)

(2κv−3)/2e4π
√
−1TrDQ (Si)

for v ∈ Σ in view of c(πv,Λv) =
(2π)2κv

Γ (2κv−1)π . Proposition 8.5 gives

BΛp

Sθp
(πp(m(ξ(n))e0ord,p) = |dK |1/2K |dF |−1/2L(1, τKp/Fp

)2e(πp,Λp)
2α−2np q−4n.

Upon combining these calculations we obtain Theorem 9.5. □
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10. Theta elements and p-adic L-functions

10.1. Quaterinionic modular forms. Let

D+
− := {S ∈ D−(F ) | J1S > 0 for every v ∈ Σ}.

Given B ∈ D+
−, we define a function W

(κ)
B : GUD2 (F∞)◦ → C by

(10.1) W
(κ)
B (h) = e2π

√
−1TrDQ (Bh(i))Jκ(h, i)

−1.

Definition 10.1 (adèlic quaternioic cusp forms). Let K be an open compact

subgroup of GUD2 (F̂ ). A quaternionic cusp form of weight κ and level K is
a C-valued function ϕ on GUD2 (F )\GUD2 (AF )/K which satisfies

ϕ(zhk) = ϕ(h)Jκ(k, i)
−1

for every k ∈ UΣ2 and z ∈ A× and admits a Fourier expansion of the form

ϕ(h) =
∑
B∈D+

−

WB(ϕ, h) =
∑
B∈D+

−

wB(ϕ, hf )W
(κ)
B (h∞)

for h ∈ GUD2 (F∞)◦GUD2 (F̂ ), where wB(ϕ,−) : hf 7→ wB(ϕ, hf ) is a locally

constant C-valued function on GUD2 (F̂ ).

We denote the space of adèlic quaternionic cusp forms of weight κ and level
K by A 0

κ (K). The space A 0
κ (K) is contained in the subspace of Acusp(PGUD2 )

which consists of right K-invariant cuspidal automorphic forms with scalar

K-type k 7→ Jκ(k, i)
−1 (cf. [1]). The finite adèle group PGUD2 (F̂ ) acts on

the space A 0
κ =

∪
KA 0

κ (K) by right translation. If an irreducible cuspidal

automorphic representation of PGUD2 (AF ) has the lowest weight represen-
tation with minimal K-type k 7→ Jκ(k, i)

±1 as its archimedean component,
then its non-archimedean component appears in the decomposition of A 0

κ .

10.2. Theta elements. Let (π, V ) be an irreducible cuspidal automorphic

representation of PGUD2 (AF ) such that πv ≃ D
(2)
κv for v ∈ Σ, such that πl is

generic for every finite prime l and such that dimVκ(π,N) = 1. Fix a basis
vector ϕπ = ⊗vϕ

0
v ∈ Vκ(π,N). Let Opn = oF + pnoK be the order of oK

of conductor pn and Gn = K×\K̂×/Ô×pn its Picard group. We identify Gn
with the Galois group of the ring class field Kpn of conductor pn over K via

geometrically normalized reciprocity law. Denote by [ · ]n : K̂× → Gn the
natural projection map. Define

xn : K̂× → GUD2 (F̂ ), xn(t) = t(t)ζ(n).

Definition 10.2. Let αQ = qκ−1p α−1p . Define the nth theta element by

ΘS
n(ϕπ) = α−nQ

∑
[a]n∈Gn

qκnp wS(e
0
ord,pϕπ, xn(a))[a]n ∈ C[Gn].

The sequence {ΘS
n(ϕπ)}n satisfies the following compatibility condition:
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Lemma 10.3. Let Πn+1
n : Gn+1 ↠ Gn be the natural quotient map. Then

Πn+1
n (ΘS

n+1(ϕπ)) = ΘS
n(ϕπ).

Proof. For n′ > n, let Kn′
n be the kernel of the quotient map Gn′ ↠ Gn.

Recall that

(10.2) UQp ϕ =
∑

x∈oF /p

∑
y∈oF /p

∑
z∈oF /p2

πp

(
n

((
z y
y 0

))
m

((
ϖp x
0 1

)))
ϕ.

Since UQp ϕ
‡
π = q2pα

−1
p ϕ‡π, we have∑

x∈oF /p

wS

(
ϕ‡π, t(a)ζ

(n)m

((
ϖp x
0 1

)))
= q−1p α−1p wS

(
ϕ‡π, t(a)ζ

(n)
)
.

Observing that

(ς
(n)
p )−1(1 +ϖn

p xθ)ς
(n)
p =



(
1 +ϖn

p xθ −x
0 1 +ϖn

p xθ̄

)
if p splits in K,(

1 −x
ϖn

p xN(θ) 1 +ϖn
p xTr(θ)

)
otherwise,

we get∑
x∈oF /p

wS

(
ϕ‡π, t(a(1 +ϖn

p xθ))ζ
(n+1)

)
= q−1p α−1p wS

(
ϕ‡π, t(a)ζ

(n)
)
.

The left hand side is
∑

u∈Kn+1
n

wS

(
ϕ‡π, xn+1(au)

)
in view of the description

Kn′
n = [Ô×pn ]n′ = {[1 +ϖn

p xθ]n′ | x ∈ oF /p
n′−n}.

The proof is complete by Definition 10.2. □
Put G∞ = lim

←−
n

Gn. Lemma 10.3 enables us to define

ΘS(ϕπ) := {ΘS
n(ϕπ)}n ∈ lim

←−
n

CJGnK.
Assuming that c(Λl) = 0 for l ̸= p, we will write c(Λ) = c(Λp). When
n ≥ c(Λ), we can view Λ as a character of Gn and extend it linearly to a
function Λ : C[Gn] → C. Let WK be the group of roots of unity in K and
wK its order. Put QK = [o×K :WKo×F ] ∈ {1, 2}.

Proposition 10.4. Assume that π and Λ satisfy Conjecture 9.1. Assume
that Fl = Q2 if l ̸= p and 2 is divisible by l. If n ≥ 1 and n ≥ c(Λ), then

Λ(ΘS
n(ϕπ))

2

⟨ϕπ, ϕπ⟩KD(N)
=Q2

Kw
2
K

∆F∆
1/2
K NDF (4S)

κ

24d+2+sπNDQ (S)
3/2

ξF (2)ξF (4)
Λ
(
1
2 ,Spn(π)K ⊗ Λ

)
NΛ(1, π, ad)

× e(πp,Λp)
2ϵN+(π)

[oK : oF + θoF ]3Λ(N
+
0 )

∏
l|N−∩DK

F , l=l2K

(1− ϵl(π)Λ(lK)).
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Proof. We may assume that n = max{1, c(Λ)} by Lemma 10.3. Denote

by vol(Ô×pn) the volume of the image of K×∞Ô×pn in K×A×F \A
×
K with respect

to the measure dt. Remark 9.2(2) together with the class number formula
gives

vol(Ô×pn) = vol(ô×K)L(1, τKp/Fp
)q−np = 2d+1Q−1K w−1K

√
∆F∆

−1
K L(1, τKp/Fp

)q−np .

Since W
(κ)
S (t(t)g) =W

(κ)
S (g) for t ∈ K×∞ by (10.1),

BΛ
S

(
ϕ‡π, ζ

(n)
)
=

(detS)κ/2

e2π
√
−1TrDQ (Si)

∫
K×F̂×\K̂×

wS

(
ϕ‡π, t(t)ζ

(n)
)
Λ(t)−1 dt

= e−2π
√
−1TrDQ (Si)vol(Ô×pn)q−np α−np Λ(ΘS

n(ϕπ)).

Theorem 9.5 gives the declared formula. □

10.3. Classical quaternionic cusp froms. Hereafter let F = Q. Thus

N = N = N+N−, K = Q(
√

−∆K), KD(N) = KD(N) ∩UD2 (Q).

It is important to note that

D×(A) = D× ·D×◦∞ R̂×, GUD2 (A) = GUD2 (Q)GUD2 (R)◦KD(N).(10.3)

We associate to h∞ ∈ UD2 (R) and a function f : H∗2 → C another function

f |κh∞ : H∗2 → C, f |κh∞(Z) = f(h∞Z)Jκ(h∞, Z)
−1.

Symbolically, we will abbreviate qB = e2π
√
−1TrD∞⊗C

C (BZ) for B ∈ D+
−.

Definition 10.5 (classical quaternionic cusp forms). A quaternionic cusp
form of weight κ with respect to a discontinuous subgroup K ⊂ UD2 (Q) is a
holomorphic function f on H∗2 which satisfies f |κγ = f for every γ ∈ K and
admits for every β ∈ UD2 (Q) a Fourier expansion of the form

f |κβ(Z) =
∑
B∈D+

−

cB(f |κβ)qB.

Let Sκ(K,C) stand for the space of such cusp forms.

Let K be an open compact subgroup of GUD2 (Q̂). Set K = UD2 (Q)∩K. If

GUD2 (A) = GUD2 (Q)GUD2 (R)K,

then we can associate to each f ∈ Sκ(K,C) a unique ϕf ∈ A 0
κ (K) such that

f(Z) = ϕf (h∞)Jκ(h∞, i) (h∞ ∈ GUD2 (R)◦, h∞(i) = Z).

We shall call ϕf the adèlic lift of f . By definition wB(ϕf , e) = cB(f). Let
Ip be the standard Iwahori subgroup in GSp4(Zp) in Section 7. Put

KD(N, p) = {g ∈ KD(N) | gp ∈ Ip}, KD(N, p) = KD(N, p) ∩UD2 (Q).
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Recall that Iℓ is the Iwahori subgroup of GL2(Zℓ). Let R be an Eichler
order of level N+ in oD. We identify Rℓ = R⊗Z Zℓ with M2(Zℓ) or Iℓ via iℓ
according to whether ℓ ∤ N or ℓ|N+. Put

R⊥ = {x ∈ D | TrDQ (xy) ∈ Z for all y ∈ R},

R̆− = {x ∈ D− | TrDQ (xy) ∈ Z for all y ∈ R⊥ ∩D−}.

Observe that if N+ is divisible by ℓ, then

J−1⋆ K(ℓ)J⋆ =

{(
a b
c d

) ∣∣∣∣ a, d ∈ Rℓ, b ∈ R⊥ℓ , c ∈ ℓR⊥ℓ

}
.

It follows that

KD(N) =

{(
a b
c d

) ∣∣∣∣ a, d ∈ R, b ∈ R⊥, c ∈ NR⊥
}
.

Thus the Fourier coefficients of cusp forms in the spaces Sκ(KD(N),C) and
Sκ(KD(N, p),C) are indexed by R̆+

− = R̆− ∩D+
−.

The operators UPp and UQp on the space A 0
κ (KD(N, p)) are defined in

Definition 7.1. We define the operators UPp and UQp on Sκ(KD(N, p),C) by

[UPp f ](Z) = pκ−3 · [UPp ϕf ](h∞) · Jκ(h∞, i),
[UQp f ](Z) = pκ−3 · [UQp ϕf ](h∞) · Jκ(h∞, i),

where f ∈ Sκ(KD(N, p),C) and h∞ ∈ GUD2 (R)◦ with h∞(i) = Z.

Proposition 10.6. Let f ∈ Sκ(KD(N, p),C). Then

[UPp f ](Z) =
∑
B∈R̆+

−

cpB(f)q
pB, [UQp f ](Z) =

p∑
x=1

∑
B∈R̆+

−

cγ̄xBγx(f)q
B,

where γx ∈ D× is such that γx ∈ ip

((
p x
0 1

))
D×◦∞ R̂×.

Proof. The first formula is easy to prove. We see by (10.2) and (10.1) that

[UQp ϕ](h∞) =

p∑
x=1

∑
X∈R−/γxR−γ̄x

ϕ

((
γ−1x 0
0 γ̄x

)
∞

(
1 X
0 1

)
∞
h∞

)

=p−κ
p∑

x=1

∑
B∈R̆+

−

∑
X∈R−/γxR−γ̄x

cB(f)e
2π
√
−1TrDQ (Bγ−1

x (Z+X)γ̄−1
x )

=p−κ
p∑

x=1

∑
B∈R̆+

−

cB(f)q
γ̄−1
x Bγ−1

x
∑

X∈R−/γxR−γ̄x

e2π
√
−1TrDQ (γ̄−1

x Bγ−1
x X)

where R− = R ∩D−. Note that∑
X∈R−/γxR−γ̄x

e2π
√
−1TrDQ (γ̄−1

x Bγ−1
x X) =

{
#(R−/γxR−γ̄x) if B ∈ γ̄xR̆−γx,

0 otherwise.
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On the other hand,

R−/γxR−γ̄x ≃ Sym2(Zp)/
(
p 0
x 1

)
Sym2(Zp)

(
p x
0 1

)
.

We find that #(R/γxRγ̄x) = p3. □
Definition 10.7. For each subring A ⊂ C the space Sκ(K, A) consists of
cusp forms f ∈ Sκ(K,C) such that cB(f) ∈ A for every B ∈ D+

−.

The following result follows from Proposition 10.6 immediately.

Corollary 10.8. UQp and UPp stabilize Sκ(KD(N, p), A) for any A.

Lemma 10.9. If f ∈ Sκ(KD(N, p), A), then for every B ∈ D+
− and t ∈ K̂×

pnκwB(ϕf , xn(t)) ∈ A.

Proof. Let R ⊂ R be the Eichler order of level pN+. Given t ∈ K̂×, we use

(10.3) to write tς
(n)
p = γfu with γ ∈ D×(Q), NDQ (γ) > 0 and u ∈ R̂×. Then

t(γf )
−1xn(t)d(p

n) ∈ KD(N, p). Let h∞ ∈ GUD2 (R)◦. Put Z = h∞(i). Then

ϕf (h∞xn(t)) = ϕf

((
γ−1

pnγ−1

)
∞

· h∞
)

=
f(p−nγ−1Zγ)

Jκ

((
γ−1 0
0 pnγ−1

)
, Z

) = p−nκf(p−nγ−1Zγ).

Thus pnκwB(ϕf , xn(t)) = wpnγ−1Bγ(ϕf , e) = cpnγ−1Bγ(f) ∈ A. □
10.4. Anticyclotomic p-adic L-functions. Let f ∈ Sκ(KD(N),C) be a
Hecke eigenform and π an irreducible cuspidal automorphic representation
of PGUD2 (A) generated by the associated adèlic lift ϕπ := ϕf ∈ A 0

κ (KD(N)).
Denote the ring of integers of the Hecke field of π by oπ. We may further
assume that f belongs to Sκ(KD(N), oπ) (cf. [11, Proposition 1.8 on p. 146]
or [23]). Since ϕπ equals π(τ∞)ϕπ up to scalar by the multiplicity one, we
may assume that ϕπ = π(τ∞)ϕπ.

Let {αp, α−1p γ−2p , γp} be the Satake parameters of πp. Put

αP = pκ−3/2γp, βP = pκ−3/2γ−1p α−1p ,

αQ = p2−καPβP = pκ−1α−1p , βQ = pκ−1αPβ
−1
P = pκ−1αpγ

2
p .

Definition 10.10. Let

f ‡ := α−3P α−1Q · (UQp − βQ)(U
P
p − p2κ−3α−1P )(UPp − p2κ−3β−1P )(UPp − βP)f.

Let ordp : Q
×
p ↠ Q×+ denote the normalized additive valuation. From now

on we assume one of the parameters of πp to satisfy

(Q) ordp ιp(αQ) = 0.

It is convenient to suppose that another parameter satisfies

(P) ordp ιp(αP) = 0.
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Remark 10.11. (1) The condition (Q) + (P) is referred to as the p-
ordinary assumption relative to the Borel subgroup B2.

(2) The eigenvalues of UQp are αQ, βQ, p
2κ−2α−1Q , p2κ−2β−1Q and those of

UPp are αP , βP , p
2κ−3α−1P , p2κ−3β−1P by the proof of Proposition 7.4.

(3) The eigenvalue of f ‡ for UQp is a p-adic unit if and only if (Q) holds.

(4) The eigenvalue of f ‡ for UPp is a p-adic unit if and only if (P) holds.

Lemma 10.12. If πp satisfies (Q) and A contains oπ and eigenvalues of

UPp and UQp , then α
3
P · f ‡ ∈ Sκ(KD(N, p), A).

Proof. Remark 10.11(2) and Corollary 10.8 imply that

βQ, βP , p
2κ−3α−1P , p2κ−3β−1P ∈ Z̄,

and the lemma follows from (Q) and Definition 10.10. □

Let Γ− be the maximal Zp-free quotient group of G∞ and ∆ the torsion
subgroup of G∞. We have an exact sequence

1 → ∆ → G∞ → Γ− → 1.

Fix a noncanonical isomorphism G∞ ≃ ∆ × Γ− once and for all. If n ≥ 1,
then the map ∆ → G∞ → Gn is injective and hence

Gn ≃ ∆× Γ−n , Γ− ↠ Γ−n = Gn/∆.

Let χ : ∆ → Q̄× be a branch character. Define the χ-branch of ΘS
n(ϕπ) by

ΘS
n(ϕπ, χ) = χ(ΘS

n(ϕπ)) ∈ C[Γ−n ].

Enlarge oπ to a ring A so that A contains values of χ and eigenvalues of UPp
and UQp . By Lemma 10.9, ΘS

n(ϕπ, χ) belongs to A[Γ
−
n ], and hence

ΘS(ϕπ, χ) := lim
←−
n

ΘS
n(ϕπ, χ) ∈ AJΓ−∞K.

Definition 10.13 (periods). We normalize f ∈ Sκ(KD(N), oπ) so that not
all the Fourier coefficients vanish modulo the maximal ideal of the comple-
tion of oπ with respect to ιp. Define a period Ωπ,N− of π by

Ωπ,N− := Λ(1, π, ad)/⟨f, f⟩KD(N),

where we define the Petersson norm of f by

⟨f, f⟩KD(N) :=

∫
KD(N)\H∗2

|f(Z)|2 (detY )κ−3dXdY.

Proposition 10.14. Let N = N+N− be a square-free integer. Then

vol(KD(N)\H∗2) = 2ξQ(2)ξQ(4)
∏
q|N+

(q2 + 1)
∏
ℓ|N−

(ℓ2 − 1).

Let f ∈ Sκ(KD(N),C). Then

⟨f, f⟩KD(N) = ξQ(2)ξQ(4)⟨ϕπ, ϕπ⟩KD(N).
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Proof. Recall that a motive M of Artin-Tate type is attached to UD2 in
Section 1 of [17] and a canonical Haar measure |ωv| on UD2 (Qv) is defined
in Section 4 of [17]. For each rational prime q, let µq be the Haar measure
Lq(M

∨(1))|ωq| on UD2 (Qq). Let µ∞ be Euler-Poincaré measure on UD2 (R).
Then µ = ⊗vµv defines a Haar measure on UD2 (A). Since the Tamagawa
number of UD2 is 1, we have

(10.4)

∫
UD

2 (Q)\UD
2 (A)

µ = L∞(M)/c(Sp4(R))

by Theorem 9.9 of [17], where c(Sp4(R)) is a cohomological invariant at-
tached to the real symplectic group of rank 2.

Let H = D2 be a left D-vector space with Hermitian form

⟨(x, y), (x′, y′)⟩ = xȳ′ + yx̄′.

Let L = oD ⊕ ŏD be a maximal lattice in H(Q), where

ŏD = {x ∈ D(Q) | TrDQ (xy) ∈ oD for every y ∈ oD}.

Put Lq = L⊗Z Zq. Define an open compact subgroup K(L) of UD2 (Q̂) by

K(L) =
∏
q

K(Lq), K(Lq) = {g ∈ GUD2 (Qq) | Lqg = Lq}.

Then K(L) ≃ KD(N
−). By the strong approximation property of UD2

U2(Q)\UD2 (A) ≃ (K\H∗2)×UΣ2 ×K

for any open compact subgroup K =
∏
q Kq of UD2 (Q̂), where we put K =

K ∩UD2 (Q). Now we see from (10.4) that

vol(K\H∗2)vol(UΣ2 )
∏
q

µq(Kq) = L∞(M)/c(Sp4(R)).

Taking Lemma 3.3.3 of [29] into account, we get

vol(KD(N)\H∗2)
vol(KD(N−)\H∗2)

=
∏
q|N+

(q2 + 1).

Proposition 9.3 of [15] says that µq(K(Lq)) = 1 or q2−1 according to whether
D is split over Qq or not. It is well-known that

vol(Sp4(Z)\H2) = 2ξQ(2)ξQ(4).

Combining these results, we obtain the first equality. Proposition 3.1 of [9]
combined with this equality and Definition 9.3 gives the second identity. □

Take θ so that oK = Z+ Zθ. Recall the decomposition N+oK = N+
0 N

+
0 .

Theorem 10.15. Let A be a subring of Q̄p which contains oπ, values of χ
and eigenvalues of UPp and UQp . If πp satisfies (Q), then

α3
P ·ΘS(ϕπ, χ) ∈ AJG∞K.
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Let ν̂ : Γ− → Q̄×p be a p-adic character of finite order. Then

ν̂(ΘS(ϕπ, χ))
2

⟨f, f⟩KD(N)
=w2

K22κ−3∆κ−1
K e(πp, χpνp)

2Λ
(
1
2 , Spn(π)K ⊗ χν

)
N2sπΛ(1, π, ad)

× ϵN+(π)(χν)(N+
0 )
−1

∏
ℓ|(N−,∆K), ℓ=l2K

(1− ϵl(π)(χν)(lK)).

Proof. By Definitions 7.2 and 10.10, α3
P ·e0ord,pϕπ is the adèlic lift of α3

P ·f ‡.
In view of Lemmas 10.9 and 10.12, we conclude that

α3
P · pnκwS(e

0
ord,pϕπ, xn(t)) ∈ A

for every t ∈ K̂× and nonnegative integers n. Since F = Q, we have QK = 1.
We have detS = ∆K

4 for our choice of θ. We finally get the stated formula
by Propositions 10.4 and 10.14. □
10.5. Reformulation in terms of optimal embeddings. We explain
theta elements in Definition 10.2 agrees with the one given in the intro-
duction. When O is an order of o, an embedding ι : O ↪→ R is said to
be optimal if ι(K) ∩ R = ι(O). Fix an optimal embedding Ψ : oK ↪→ R.
Recall that R ⊂ R is the Eichler order of level pN+. For any positive in-

teger n, write ς
(n)
p ∈ γnR̂× for some γn ∈ D×. Then one verifies directly

that the embedding Ψn ∈ Hom(K,D) defined by Ψn(x) = γ−1n Ψ(x)γn is an
embedding from Opn to R of conductor pn, namely an optimal embedding
in Hom(Opn ,R). For σ ∈ Gal(Kpn/K), write σ = recK(t)|Kpn

for some

t ∈ K̂×. Write Ψn(t) ∈ γR̂×. By definition,

xn(t) = ι(t)ς(n)p ∈ γnΨn(t)γ
−1
n ς(n)p ∈ γnγR̂×.

On the other hand, according to the recipe of the Galois action on Ψn,

SΨσ
n
= γ−1Ψn(p

n
√
−∆K/2)γ = pn(γnγ)

−1SΨγnγ.

By Lemma 10.9, we find that

pnκwSΨ
(xn(t), f

‡) = cpn(γnγ)−1SΨγnγ(f
‡) = cSσ

Ψn
(f ‡).

This shows that the theta element ΘS
n(ϕπ, 1) with S = SΨ agrees with the

one described in the introduction.
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