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LAGRANGIAN GEOMETRY OF THE GAUSS IMAGES
OF ISOPARAMETRIC HYPERSURFACES IN SPHERES

REIKO MIYAOKA AND YOSHIHIRO OHNITA

Abstract. The Gauss images of isoparametric hypersufaces of
the standard sphere Sn+1 provide a rich class of compact minimal
Lagrangian submanifolds embedded in the complex hyperquadric
Qn(C). This is a survey article based on our joint work [17] to
study the Hamiltonian non-displaceability and related properties
of such Lagrangian submanifolds.

1. Introduction

This is a survey article based on our joint work [17]. The aim of
our work is to build a bridge between the symplectic geometry and
the submanifold theory. Here by symplectic geometry, we mean the
Floer theory for Lagrangian intersections, and by submanifold theory,
isoparametric hypersurface theory. The isoparametric hypersurface has
been well-investigated in submanifold theory and it has several nice
structures and properties not only in differential geometry but also from
the viewpoint of differential topology, Lie theory, partial differential
equations, integrable systems and mathematical physics.

The Floer theory has been well-developed, but not much is known
in concrete cases. The Gauss images (the images of the Gauss map)
of isoparametric hypersurfaces in the standard sphere Sn+1 supply a
rich class of compact minimal Lagrangian submanifolds embedded in
the complex hyperquadric Qn(C). When n = 1 such a Gauss image
is nothing but a great circle of the standard 2-sphere. We study the
Lagrangian intersection theory on this class.
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For a Lagrangian submanifold L of a symplectic manifold (M,ω),
consider a Hamiltonian diffeomorphism φ of M with transverse inter-
section L ∩ φ(L). To give a lower bound of the number ♯(L ∩ φ(L)) of
intersection points is an important and difficult problem, which is the
so-called Arnold inequality. Floer has invented the Floer (co)homology
to solve this problem. In this artcle a symplectic manifold, which we
are concerned with, is the complex hyperquadrics

Qn(C) := {[z] ∈ CP n+1 | z20 + z21 + · · ·+ z2n+1 = 0} ⊂ CP n+1

or the real Grassmann manifolds of oriented 2-planes

G̃r2(Rn+2) (⊂ ∧2Rn+2)

:= { [W ] | oriented 2-dimensional vector subspaces of Rn+2 }
which are identified through the diffeomorphism

G̃r2(Rn+2) ∋ [W ] = a ∧ b ←→ [a+
√
−1b] ∈ Qn(C)

where {a,b} is an orthonormal basis of [W ] compatible with its orien-
tation. This manifold has the homogeneous space expression

Qn(C) ∼= G̃r2(Rn+2) ∼= SO(n+ 2)/SO(2)× SO(n)

which is a compact Hermitian symmetric space of rank 2. Our La-
grangian submanifolds in Qn(C) is the image of the Gauss map of an
oriented hypersurface immersed in the unit standard sphere Sn+1 =
Sn+1(1)

Nn ↪→ Sn+1 ⊂ Rn+2,

where the Gauss map is defined by

G : Nn ∋ p 7−→ x(p) ∧ n(p) = [x(p) +
√
−1n(p)] ∈ Qn(C),

for the position vector x of points on Nn and the unit normal vector
field n of Nn in Sn+1(1). We remark the following properties (cf. [34],
[19]):

Proposition 1.1. The Gauss map G of N is a Lagrangian immersion.

Proposition 1.2 ([19]). A deformation of Nn in Sn+1 gives a Hamil-
tonian deformation of G. Conversely a small Hamiltonian deformation
of G is given by a deformation of Nn in Sn+1(1).

In this article we consider isoprametric hypersurfaces of Sn+1 as ori-
ented hypersurfaces N .

This article is organized as follows: In Section 2 we recall the fun-
damental theory of isoparametric hypersurfaces in the standard sphere
and the properties of the Gauss images of such isoparametric hypersur-
faces as Lagrangian submanifolds in complex hyperquadrics. In Section



GAUSS IMAGES OF ISOPARAMETRIC HYPERSURFACES 3

3 we review some fundamental materials from symplectic geometry and
Morse homology. In Section 4 we briefly explain Floer’s theory of La-
grangian intersection and in Section 5 we mention the generalization
of Floer homology by Y.G.Oh to monotone Lagrangian submanifolds.
In Section 6 we explain our results of [17] which discuss the Floer ho-
mology of the Gauss images of isoparametric hypersurfaces and study
their Hamiltonian non-displaceability. In Section 7 we give the strategy
of our proof and remark some related results. In Section 8 we men-
tion a relation of our work to the FOOO theory and Z.Z.Tang’s result
determining the existence of spin structures on the Gauss images of
isoparametric hypersurfaces. In Section 9 we provide some open prob-
lems and conjecture.

2. Isoparametric hypersurfaces in spheres

Isoparametric hypersurfaces have its origin in the geometric optics in
the early 20th century in Italy (Somigliana, Segre, Levi-Civita). They
are wave fronts developing according to the Huygens principle.

Let M be a Riemannian manifold with the Levi-Civita connection
∇ and the Laplace operator ∆

Definition. A C2 function f : M → R is called an isoparametric
function when f satisfies

(1) |∇f |2 = p(f)
(2) ∆f = q(f)

for some functions p, q on R. A regular level set of an isoparametric
function is called an isoparametric hypersurface.

Here, (1) means that the level sets are mutually parallel, and under this
condition, (2) means that each level set has constant mean curvature.

Theorem 2.1 ([3]). (1) An isoparametric hypersurface N in the
space forms Rn+1, Sn+1 and Hn+1 is a hypersurface with con-
stant principal curvatures, and the converse also holds.

(2) An isoparametric hypersurface in Rn+1 or Hn+1 is either to-
tally umbilic or a tube over a totally geodesic submanifold. The
number g of distinct principal curvatures is either 1 or 2.

(3) In Sn+1, there happen more examples.

In fact, let κ1 > · · · > κg be the principal curvatures of N in Sn+1 and
denote by m1, . . . ,mg their multiplicities, respectively.

Theorem 2.2 ([25]). (1) g ∈ {1, 2, 3, 4, 6} andmi = mi+2 (imod g).
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(2) N is given as a level set in Sn+1 of the so-called Cartan-Münzner
polynomial F on Rn+2 of degree g, which is a real homogeneous
polynomial of degree g satisfying two PDE’s:{

|∇F |2 = g2r2g−2

∆F = crg−2

where c =
(m2 −m1)g

2

2
, r = |x| for x ∈ Rn+2, and ∇ and ∆

are Euclidean operators.

Thus, any isoparametric hypersurface in the standard sphere is alge-
braic. Among the level sets, there always exist two lower dimensional
level sets, called the focal submanifolds and denoted by N±.

A submanifold of Sn+1 or Qn(C) is called homogeneous if it is given
as an orbit under a Lie subgroup of the isometry group SO(n+ 2).

Example 2.3 :

• Principal orbits of the isotropy representations of Riemannian
symmetric pairs (U,K) of rank 2. These exhaust all homoge-
neous isoparametric hypersurfaces in spheres ([15], [35]).
• Algebraic construction of Cartan-Münzner polynomials by rep-
resentations of Clifford algebras in the case g = 4 ([33], [11]).
These are called of OT-FKM type, among which there exist
infinitely many non-homogeneous isoparametric hypersurfaces.

2.1. Classification of isoparametric hypersurfaces. The Classifi-
cation of isoparametric hypersurfaces in spheres has been completed as
follows (2019) :

g = 1: Nn = Sn, hyperspheres
g = 2 : Nn = Sm1(r1)× Sm2(r2), Clifford hypersurfaces

(n = m1 +m2, 1 ≤ m1 ≤ m2 ≤ n− 1, r21 + r22 = 1)

g = 3: Nn = SO(3)
Z2+Z2

, SU(3)
T 2 , Sp(3)

Sp(1)3
, F4

Spin(8)
, Cartan hypersurfaces ([3]).

g = 4: Nn is either homogeneous or OT-FKM type ([4], [5],[6],[7]).

g = 6: (m1,m2) = (1, 1): Nn = SO(4)
Z2+Z2

([10]).

(m1,m2) = (2, 2) : Nn = G2

T 2 ([23], [24]).

2.2. Cohomology of isoparametric hypersurfaceNn. Let N± be
the focal submanifolds of Nn. Here let the ring of coefficients be

R =

{
Z if N+ and N− are both orientable,

Z2 otherwise.

Let µ = m1 +m2.
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Theorem 2.4 ([25]).

Hq(N±, R) =


R for q ≡ 0 (mod µ), 0 < q < n

R for q ≡ m∓1 (mod µ), 0 < q < n

0 otherwise.

Furthermore,

Hq(N,R) =

{
R for q = 0 or n

Hq(N+)⊕Hq(N−) for 1 ≤ q ≤ n− 1.

2.3. Gauss images of isoparametric hypersurfaces. We shall con-
sider an isoparametric hypersurface N in Sn+1 as an oriented hyper-
surface, and consider its Gauss map

G : N ∋ p 7−→ [x(p) +
√
−1n(p)] ∈ G̃r2(Rn+2) ∼= Qn(C).

Proposition 2.5 ([34], [19], [29]). Suppose that N is an isoparametric
hypersurface of Sn+1(1). Then the following properties hold:

(1) The Gauss map of N

G : N −→ G̃r2(Rn+2) ∼= Qn(C)

is a minimal Lagrangian immersion into Qn(C).
(2) Moreover the Gauss image L = G(N) is a compact minimal

Lagrangian submanifold embedded in Qn(C) and the Gauss map
gives a covering map onto the Gauss image

G : N 7−→ L = G(N) ∼= N/Zg

with the covering transformation group Zg.
(3) Nn ⊂ Sn+1 is homogeneous if and only if the Gauss image

L = G(Nn) is homogeneous.

(4)
2n

g
is even (resp. odd) if and only if its Gauss image L = G(Nn)

is orientable (resp. non-orientable).

Some problems such as classification of homogeneous Lagrangian
submanifolds, Hamiltonian stability and so on were studied in [19],
[20], [21], [22] for the Gauss images of isoparametric hypersurfaces.

Here we refer

Proposition 2.6 ([8], [32]). Let (M,ω, J, g) be an Einstein-Kähler
manifold of Einstein constant > 0. Then any compact minimal La-
grangian submanifold L of M is monotone.
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The definition of the monotonicity for Lagrangian submanifolds is
given in Section 5. By this result we see that the Gauss image of an
isoparametric hypersurface is always a monotone Lagranagian subman-
ifold of Qn(C).

Now we discuss the intersection theory of those minimal Lagrangian
submanifolds L = G(N) in Qn(C).

3. A review of symplectic geometry

Let (M2n, ω) be a symplectic manifold, namely, ω is a non-degenerate
closed 2-form on M . Let ι : L → M be a Lagrangian submanifold,
namely, dimL = n and ι∗ω = 0.

Example 3.1 :

(1) For any manifolds X, the cotangent vector bundle T ∗X is a
symplectic manifold with canonical coordinate system (x, ξ),
and ωT ∗M =

∑
dxi ∧ dξi. The zero section L = X and each

fiber L = π−1(x) (x ∈ X) both are Lagrangian submanifolds of
T ∗X.

(2) Any Kähler manifold and so any oriented Riemannian surface
are symplectic manifolds. On such surfaces, any curve is a
Lagrangian submanifold.

3.1. Weinstein neighborhood. A Lagrangian submanifold L in (M,ω)
is also a Lagrangian submanifold of T ∗L as the zero section at the
same time. It is well-known that there exist a tubular neighborhood
(W (L), ω|W (L)) of L inM and a tubular neighborhood (U(0L), ω

T ∗L|U(0L))
of the zero section 0L in T ∗L, which are symplectomorphic to each
other.

Definition. We call W (L) a Weinstein neighborhood of L in M .

3.2. Hamiltonian diffeomorphisms. In the following, let (M,ω) be
a closed (i.e. compact without boundary) symplectic manifold.

Definition.

(1) {ϕH
t }t∈[0,1] is called a Hamiltonian isotopy of M , when for a

time dependent Hamiltonian function H : [0, 1] ×M → R, ϕH
t

is a Hamiltonian flow associated with XHt ,

dϕH
t (p)

dt
= (XHt)p, ϕH

0 (p) = p (∀p ∈M),

where XHt is the Hamiltonian vector field corresponding to Ht

defined by dHt = ω( , XHt).
(2) The time 1 map φ = ϕH

1 is called a Hamiltonian diffeomorphism
of M .
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Denote the Hamiltonian diffeomorphism group of (M,ω) by

Ham(M,ω) := {Hamiltonian diffeomorphisms of M}
⊂ Sym0(M,ω) = {symplectomorphisms isotopic to the identity map}.
Sometimes we call φ ∈ Ham(M,ω) a Hamiltonian isotopy or a Hamil-
tonian deformation. Any φ ∈ Ham(M,ω) maps Lagrangian submani-
folds to Lagrangian submanifolds.

Question. If L is a closed embedded Lagrangian submanifold of M ,
does it hold the inequality

#(L ∩ φ(L)) ≥ SB(L,Z2)(=sum of the Betti numbers of L)?

In general, this FAILS as a large isometry φ for a small circle L in
S2 gives a counter-example. On the other hand, a great circle of S2

satisfies it. Therefore, the Lagrangian intersection is considered as not
only a topological matter, but also a symplectic matter.

3.3. Lagrangian graph. A simple case: For any manifold Ln and
f ∈ C∞(L), Lf = {(x, (df)x)} ⊂ T ∗L is a Lagrangian submanifold,
because df = fidx

i and so ωT ∗L|Lf
=

∑
dxi ∧ dfi =

∑
dxi ∧ fijdxj = 0.

Definition. Lf is called a Lagrangian graph in T ∗L.

Since L ∩ Lf = {(x, 0)} ∩ Lf is nothing but the critical point set of
f , when L is closed and f is a Morse function, the Morse inequality
implies the Arnold inequality

♯(L ∩ Lf ) ≥ SB(L,Z2).

Let L be a Lagrangian submanifold of a symplectic manifold (M,ω).
When φ ∈Ham(M,ω) is small, φ(L) ⊂ W (L) where W (L) is the We-
instein neighborhood. However in general φ(L) outgrows W (L).

Now the Floer theory plays an important role. This is a Morse theory
on infinite dimensional spaces. Let us briefly review the Morse theory
on finite dimensional manifold.

Let M be a closed manifold and f ∈ C∞(M) be a Morse-Smale
function. Let

Crit(f) := {critical points of f}
and

Critk(f) := {critical points of f of index k}.
Define the Morse complex by a vector space over Z2 with a grading

Cf
∗ :=

n⊕
k=0

Cf
k , where Cf

k :=
⊕

x∈Critk(f)

Z2x.
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For p, q ∈ Crit(f) =
∪n

k=0 Critk(f), define

M(p, q) :={
γ(s) : R→M | dγ

ds
= −gradf, lim

s→−∞
γ(s) = p, lim

s→∞
γ(s) = q

}
/ ∼,

where ∼ is a parameter shift s 7→ s+ a.
The Morse boundary operator ∂f : Cf

k → Cf
k−1 is defined by

∂fp =
∑

q∈Ck−1

♯M(p, q)q,

for each p ∈ Cf
k , where the number of elements ♯M(p, q) is counted

modulo 2. Then ∂f ◦ ∂f = 0, and so the Morse homology H(Cf
∗ , ∂

f ) =
Ker ∂f

Im ∂f
is defined and it is isomorphic to H(M,Z2). The Morse ho-

mology over the coefficient Z2 is elementary. The Morse homology is
usually constructed over the coefficient Z, under the setup together
with the orientations.

4. Floer homology of Lagrangian intersection

Let L ⊂ (M,ω) be a closed Lagrangian submanifold, and φ = ϕ1 ∈
Ham(M,ω). We suppose that

[C]

∫
D

v∗ω = 0 for all smooth v : (D2, ∂D2)→ (M,L).

Fix a base point x0 ∈ L. Set

Ω := {z : [0, 1]→M | z(0) ∈ L, z(1) ∈ φ(L), isotopic to ϕt(x0)}.
and define a 1-form on Ω as

αz(ξ) :=

∫ 1

0

ωz(t)(ż(t), ξ(t))dt.

Then we observe that α is closed.

Theorem 4.1 ([12]). Under the condition [C], the following hold:

(1) There exists a functional A locally defined on Ω such that α =
dA.

(2) z ∈ Ω is a critical point of A if and only if ż(t) = 0, namely, z is
a constant path z(t) = x ∈ L∩φ(L). Moreover, a critical point
z of A is non-degenerate if and only if L and φ(L) transversally
intersect at z,

(3) For J = {Jt}0≤t≤1, a time-dependent family of almost complex
structures on M compatible with ω, we have

(gradA)z(t) = (Jt)z(t)ż(t) (t ∈ [0, 1]).
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Definition. For p, q ∈ L ∩ φ(L), define the moduli space

M(p, q) :={
u : R× [0, 1]→M | ∂u

∂s
= −gradA, lim

s→−∞
u = p, lim

s→∞
u = q

}
/ ∼

Each element u ∈M(p, q) is called a J-holomorphic strip. In fact, if we
put u(s, t) = zs(t), then it satisfies a kind of Cauchy-Riemann equation

∂u(s, t)

∂s
+ Jt

∂u(s, t)

∂t
= 0.

Suppose that the intersection L ∩ φ(L) is transversal. Then the
following properties of the moduli spaceM(p, q) hold:

Theorem 4.2 ([37], [12]). Under the condition [C], the following hold:

(1) For a generic J = {Jt}0≤t≤1, the Maslov-Viterbo index µu(p, q) ∈
Z is defined for each p, q ∈ L ∩ φ(L) and each u ∈ M(p, q), so
that a neighborhood around u in the moduli space M(p, q) is a
(µu(p, q)− 1)-dimensional smooth manifold.

(2) The 0-dimensional componentM0(p, q) ofM(p, q) is compact.

(3) The boundary ∂M1(p, q) of the 1-dimensional componentM1(p, q)
ofM(p, q) is given by∪

r∈L∩φ(L)

M0(p, r)×M0(r, q).

Define the Floer complex by a vector space over Z2

CF (L,φ) :=
⊕

p∈L∩φ(L)

Z2 p,

and the Floer boundary operator ∂J : CF (L,φ)→ CF (L,φ) by

∂Jp =
∑

q∈L∩Φ(L)

♯M0(p, q) q,

where the number of elements ♯M0(p, q) is counted modulo 2. Com-
bining this with (3), we obtain ∂J ◦ ∂J = 0, and the Floer homology is
a vector space over Z2 defined by

HF (L) :=
Ker∂J
Im∂J

.

By definition it obviously holds the inequality

#(L ∩ φ(L)) ≥ rankZ2HF (L).
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Choose a base intersection point x0 ∈ L ∩ φ(L). Using the Maslov-
Viterbo index µu(x, x0), and minimal Maslov number ΣL (see the next
section for the definition), one can define a Z/ΣL-grading on the Floer
complex CF as

CF (L,φ) =

ΣL−1⊕
i=0

CFi mod ΣL
(L,φ, x0).

and then ∂J : CFi mod ΣL
(L,φ, x0)→ CFi−1 mod ΣL

(L,φ, x0). Hence we
have a Z/ΣL-grading on the Floer homology

HF (L) =

ΣL−1⊕
i=0

HFi mod ΣL
(L,φ, x0).

Theorem 4.3 ([12]). Under the condition [C], the following hold:

(1) HF (L) is well-defined and independent of the choice of Ht and
generic Jt. In particular, HF (L) is invariant under any Hamil-
tonian diffeomorphism and its Z/ΣL-grading is also preserved
under any Hamiltonian diffeomorphism.

(2) If π2(M,L) = 0, then HF (L) ∼= H∗(L,Z2).

5. Generalization of Floer homology by Y.G.Oh

Y.G. Oh weakened the condition [C] to monotone Lagrangian sub-
manifolds, and showed that all results in Section 4 except for Theorem
4.3 (2) hold.

Definition. A group homomorphism Iω : π2(M,L)→ R is defined by

Iω(A) =

∫
D

u∗ω

for each smooth map u : (D, ∂D)→ (M,L) with [u] = A ∈ π2(M,L).
On the other hand, another group homomorphism Iµ,L : π2(M,L)→

Z is defined by

Iµ,L(A) = µ(ũ),

where set ũ := u|∂D : S1 → Λ(Cn), Λ(Cn) is the Lagrangian Grassmann
manifold consisting of all Lagrangian vector subspaces of Cn, and µ ∈
H1(Λ(Cn),Z) ∼= Z is the Maslov class of Λ(Cn).

Definition. The positive generator ΣL of the image of Iµ,L is called
the minimum Maslov number of L. When Iµ,L = 0, we define ΣL = 0.

Definition. L is said to be monotone if there exists λ > 0 such that

Iµ,L = λIω.
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Theorem 5.1 ([26], [27], [28]). When L is monotone and has minimal
Maslov number ΣL ≥ 2, the homology HF (L) := H∗(CF (L), ∂J) is
well-defined for a generic choice of (H, J). This is called the Floer ho-
mology of L with Z2-coefficient, and this is invariant under the Hamil-
tonian isotopies of L.

Suppose that L is monotone and ΣL ≥ 2. We consider a Morse-Smale
function f on L so that a Hamiltonian isotopy ϕt(L) = (d(tf))L (t ∈
[0, 1]) is contained in a Weinstein neighborhood of L identified with a
tubular neighborhood of the zero section of T ∗L. In such a setting,
L∩ϕ1(L) coincides with Crit(f) (see Subsection 3.3). We may assume
that a base intersection point x0 is a unique relative minimum point
of f on L. Then we know that the Maslov-Viterbo index µu(x, x0)
coincide with the Morse index of f at a critical point x and we have

CFi mod ΣL
(L, ϕ1, x0) =

⊕
k∈Z, k≡i mod ΣL

Cf
k .

Set CFk := Cf
k . Moreover the Floer boundary operator can be decom-

posed as

∂J = ∂0 + ∂1 + · · ·+ ∂ν, ∂l : C
f
∗ → Cf

∗−1+lΣL
,

where ∂0 is the Morse boundary operator and the other ∂j (j = 1, · · · , ν)

makes indices jump, where ν :=

[
dimL+ 1

ΣL

]
. By this decomposition

of the Floer boundary operator, the spectral sequence for the Floer
homology were constructed by Oh [28] and Biran [2]. The calculation
of HF (L) is easier if ν is small, but more difficult if ν is large.

Remark 5.2 : When ΣL = 2, the bubbling of J-holomorphic strips
may occur, and the calculation becomes difficult.

The Gauss image L = G(N) of an isoparametric hypersurface N is a
monotone Lagrangian submanifold in Qn(C), and so we can apply Oh’s
argument to it.

Definition.

(1) When there exists φ ∈Ham(M,ω) such that L ∩ φ(L) = ∅, we
say L is Hamiltonian displaceable.

(2) When L ∩ φ(L) ̸= ∅ for any φ ∈ Ham(M,ω), we say L is
Hamiltonian non-displaceable.

Since the Floer homology is generated by intersection points, it is
obvious that if L ⊂ (M,ω) is Hamiltonian displaceable, then we have
HF (L) = 0.
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6. Results

Let N be an isoparametric hypersurface with g distinct principal
curvatures, and set L = G(N) ⊂ Qn(C) as its Gauss image. First the
following proposition is known and elementary in submanifold theory:

Proposition 6.1. g = 1 or 2 if and only if L = G(N) is a real form,
(equivalently, a totally geodesic Lagrangian submanifold) of Qn(C).

(1) g = 1 (N = Sn) ⇒ L = Sn ⊂ Qn(C) is a real form of Qn(C).
(2) g = 2 (N = Sk×Sn−k, 1 ≤ k ≤ n−1)⇒ L = (Sk×Sn−k)/Z2 ⊂

Qn(C) (1 ≤ k ≤ n− 1) are real forms of Qn(C).

Proposition 6.2 ([28], [18]). In these cases, HF (L) ∼= H∗(L,Z2) ̸= 0
and thus L is Hamiltonian non-displaceable.

Question. How about the case g > 2?

As for the minimal Maslov number ΣL of the Gauss image L = G(N)
of an isoparametric hypersurface, it holds

Lemma 6.3 ([21], [29]).

ΣL =
2n

g
=

{
m1 +m2 if g is even,
2m if g is odd,

(see Theorem 2.2 (1)).

Now for g > 2, we state our main result.

Main Theorem ([17]).

[1] g = 3 ⇒ L = G(N) is a Z2-homology sphere.

If m = mi ≥ 2, ⇒ HF (L) ∼= H∗(L,Z2), and in particular,

L is Hamiltonian non-displaceable, and

#(L ∩ φ(L)) ≥ SB(L,Z2) = 2.

[2] g = 4 and 2 ≤ m1 ≤ m2 ⇒ L is Hamiltonian non-displaceable.

[3] g = 6 and m = mi = 2 ⇒ L is Hamiltonian non-displaceable.

Remark 6.4 : We need ΣL ≥ 3 for the proof which restricts mi ≥ 2.
In our case, ΣL = 2 is taken only when m1 = m2 = 1. Including these,
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the remaining cases are

(g, n,m1,m2) = (3, 3, 1, 1), N = SO(3)
Z2+Z2

,

(g, n,m1,m2) = (4, 2k + 2, 1, k), N = SO(2)×SO(k+2)
Z2×SO(k)

,

(k ≥ 1,ΣL = k + 1),

(g, n,m1,m2) = (6, 6, 1, 1), N = SO(4)
Z2+Z2

.

It is known that all isoparametric hypersurfaces of such (g, n,m1.m2)
are homogeneous.

7. Strategy of the proof

The (co)homology H(N : Z2) of an isoparametric hypersurface N is
determined by Münzner (in Subsection 2.2). On the other hand, the
Gauss map G : N → Qn(C) is a covering map onto N/Zg = L.

Now we use Damian’s lifted Floer homology HF L̄(L) for a covering
map L̄→ L ([9]). This is also shown to be invariant under Hamiltonian
isotopies of L. We apply it to L̄ = N in our case. For the proof of
[2] and [3] of Main Theorem, supposing that HFN(L) = 0, we show
by Damian’s spectral sequence that Hk(N ;Z2) = 0 holds for certain
k, which contradicts Münzner’s result stated in Subsection 2.2. In this
way, we conclude

HFN(L) ̸= 0 and so L ∩ φ(L) ≠ ∅, L is Hamiltonian non-displaceable.

We give a little more details below.
Let L be a compact monotone Lagrangian submanifold embedded

in a compact symplectic manifold M with minimal Maslov number
ΣL ≥ 3. Suppose that L̄ → L is a covering map. For Λ = Z2[T, T

−1],
let Λi ⊂ Λ be the subspace of homogeneous elements of degree i.

Proposition 7.1 ([9]). There exists a spectral sequence {Ep,q
r , dr} sat-

isfying the following properties:

(1) Ep,q
0 = CF L̄

p+q−pΣL
⊗ ΛpΣL, d0 = [∂L̄

0 ]⊗ 1.

(2) Ep,q
1 = Hp+q−pΣL

(L̄,Z2)⊗ ΛpΣL, d1 = [∂L̄
1 ]⊗ T−ΣL, where

[∂L̄
1 ] : Hp+q−pΣL

(L̄;Z2)→ Hp+q−1−(p−1)ΣL
(L̄;Z2)

is induced by ∂L̄
1 .

(3) For any r ≥ 1, Ep,q
r = V p,q

r ⊗ΛpΣL with dr = δr ⊗ T−rΣL, where
V p,q
r is a vector space over Z2 and δr : V p,q

r → V p−r,q+r−1
r is a
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homomorphism defined for every p, q and satisfies δr ◦ δr = 0.
More precisely,

V p,q
r+1 =

Ker(δr : V
p,q
r → V p−r,q+r−1

r )

Im(δr : V
p+r,q−r+1
r → V p,q

r )

V p,q
0 = CF L̄

p+q−pΣL
, V p,q

1 = Hp+q−pΣL
(L̄;Z2), δ1 = [∂L̄

1 ]

(4) Ep,q
r collapses at (ν + 1)-step and for any p ∈ Z, ⊕q∈ZE

p,q
∞
∼=

HF L̄(L), where ν =

[
dimL+ 1

ΣL

]
.

Back to the Gauss image, ν =

[
dimL+ 1

ΣL

]
=

[
(n+ 1)g

2n

]
implies:

Lemma 7.2. For a Gauss image Ln = G(Nn) ⊂ Qn(C), g ≥ 3 and
any p, q ∈ Z, we have

(1) Ep,q
2 = Ep,q

∞ if and only if g = 3 and (m1,m2) = (2, 2), (4, 4), (8, 8).
(2) Ep,q

3 = Ep,q
∞ if and only if g = 3, (m1,m2) = (1, 1) or g = 4.

(3) Ep,q
4 = Ep,q

∞ if and only if g = 6, (m1,m2) = (1, 1) or (2, 2).

Using these, we give a sketch of the proof for g = 4. The case g = 6
is similarly obtained although a bit longer.

When g = 4, suppose HF L̄(L) = 0. Then by Lemma 7.2 (2) we have
0 = E0,q

3 and so it follows from Proposition 7.1 (3) that

V 2,q−1
2 → V 0,q

2 → V −2,q+1
2 is exact.

Since

V 2,q−1
2 =

Ker([∂L̄
1 ] : Hq+1−2ΣL

(L̄;Z2)→ Hq−ΣL
(L̄;Z2))

Im([∂L̄
1 ] : Hq+2−3ΣL

(L̄;Z2)→ Hq+1−2ΣL
(L̄;Z2))

,

V −2,q+1
2 =

Ker([∂L̄
1 ] : Hq−1+2ΣL

(L̄;Z2)→ Hq−2+3ΣL
(L̄;Z2))

Im([∂L̄
1 ] : Hq+ΣL

(L̄;Z2)→ Hq−1+2ΣL
(L̄;Z2))

,

V 2,q−1
2 = V −2,q+1

2 = 0 when 2 ≤ q ≤ n− 2.
Then it follows

0 = V 0,q =
Ker([∂L̄

1 ] : Hq(L̄;Z2)→ Hq−1+ΣL
(L̄;Z2))

Im([∂L̄
1 ] : Hq+1−ΣL

(L̄;Z2)→ Hq(L̄;Z2))

for 2 ≤ q ≤ n− 2. Putting q = ΣL = m1 +m2, we know

H1(L̄;Z2)→ Hm1+m2(L̄;Z2)→ H2(m1+m2)−1(L̄;Z2)
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is exact, but this contradicts Münzner’s result (L̄ = N , see Subsection
2.2)

Hk(N ;Z2) ∼=

 Z2, for k = 0,m1,m2, 2m1 +m2,m1 + 2m2, n,
Z2 ⊕ Z2, for k = m1 +m2,
0, otherwise.

This implies HF L̄(L) ̸= 0, and we conclude that L is Hamiltonian
non-displaceable.

Remark 7.3 : Here in general HF L̄(L) ̸= 0 does not imply
HF (L) ̸= 0 and it is an open problem to determine whetherHF (L) ̸= 0
or not in our case.

We shall mention some results related to Main Theorem. It is also
interesting to study extrinsic topology of the Gauss images of isopara-
metric hypersurfaces in complex hyperquadrics. The following result of
Albers gives a sufficient condition on extrinsic topology for monotone
Lagrangian submanifolds to be Hamiltonian non-displaceable.

Theorem 7.4 ([1]). Let (M2n, ω) be a monotone closed symplectic
manifold. Let L be a monotone compact Lagrangian submanifold of M
with minimal Maslov number ΣL ≥ 3. If L is Hamiltonian displaceable,
then the induced homology homomorphism ι∗ : Hk(L;Z2)→ Hk(M ;Z2)
vanishes for degrees k > dimL+ 1−ΣL and in particular ι∗[L] = 0 in
Hn(M ;Z2).

However it does not give any new information in our cases, as we
observed in [31, Propositions 4.6, 4.8].

Proposition 7.5 ([31]). (1) Assume that M = Qn(C) and Ln =
G(Nn) is the Gauss image of an isoparametric hypersurface Nn

except for the case when g = 1 and n ≥ 2. Then the induced
Z-homology homomorphism

ι∗ : Hk(L;Z) −→ Hk(M ;Z)

and the induced Z2-homology homomorphism

ι∗ : Hk(L;Z2) −→ Hk(M ;Z2)

vanish for degrees dimL > k > dimL + 1 − ΣL. If g = 1 and
n ≥ 2, then for k = 0 > 1 − n = dimL + 1 − ΣL, the corre-
sponding homology homomorphisms do not vanish (and thus L
is Hamiltonian non-displaceable).

(2) The induced Z2-homology homomorphism

ι∗ : Hn(L
n;Z2) −→ Hn(Qn(C);Z2)
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vanishes if Ln = G(Nn) is the Gauss image of an isoparametric
hypersurface Nn in the following list:

g = 1, n is odd.
g = 2, n = m1 +m2, m1 or m2 is odd.

g = 3, (m1,m2) = (1, 1), N3 = SO(3)
Z2+Z2

,

g = 4, (m1,m2) = (1, k), N2k+2 = SO(2)×SO(k+2)
Z2×SO(k)

, (k ≥ 1),

g = 6, (m1,m2) = (1, 1), N6 = SO(4)
Z2+Z2

.

8. Relation to FOOO theory

Fukaya-Oh-Ohta-Ono deeply investigate the Floer theory on La-
grangian intersections ([14]). We note some parts related to our work.

Theorem 8.1 ([14], Theorem H). Let L be a closed Lagrangian sub-
manifold in a closed symplectic manifold M , and let L be spin (or, more
generally, relatively spin). If the natural map H∗(L,Q) → H∗(M,Q)
is injective, then for any Hamiltonian diffeomorphism φ such that L is
transversal to φ(L), it holds

♯(L ∩ φ(L)) ≥
∑
k

rankHk(L,Q).

Because they use the Q-coefficient, it is important to know if the
moduli spaceM(p, q) is orientable or not. Since we used Z2-coefficient,
we needed not to care about that point.

However, it is an interesting question whether the Gauss image L
of an isoparametric hypersurface is spin or not. This is completely
determined by Z.Z.Tang.

Proposition 8.2 ([36]). The existence of a spin structure on its Gauss
image Ln = G(Nn) is as follows:

g (m1,m2) L
1 n spin
2 n: even spin

n: odd not spin
3 m = 1, 2, 4, 8 spin
4 (1, 1) spin

m1 +m2 ≥ 3: odd not relatively spin
otherwise not spin

6 (1, 1) spin
(2, 2) not spin
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From this result, at least when g = 4 and m1 + m2 ≥ 3 is odd,
we cannot apply FOOO’s result with Q coefficient, even if the other
conditions are satisfied.

Although L is spin when (m1,m2) = (1, 1), we do not know yet the
homology H∗(L,Q), nor H∗(L,Q)→ H∗(Qn(C),Q) is injective or not.
Our next task is to consider these problems.

By the way, any isoparametric hypersurface Nn in the standard
sphere Sn+1 is a spin manifold.

9. Open problems and conjecture

Problems.

(1) Determine HF (L) for g = 3, m = 1.
(2) When g = 4 and (m1,m2) = (1, k), is L Hamiltonian non-

displaceable?
(3) When g = 6 and m = 1, is L Hamiltonian non-displaceable?
(4) Determine HF (L) for all the remaining cases.
(5) Consider the Lagrangian intersection for any two L1, L2.

Conjecture by Hajime Ono and IMMO([17]):

In an irreducible Hermitian symmetric space of compact type,
any compact minimal Lagrangian submanifolds are

Hamiltonian non-displaceable.
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Math. Ann. 251 (1980), 57–71, 256 (1981), 215–232.



GAUSS IMAGES OF ISOPARAMETRIC HYPERSURFACES 19

[26] Y.G. Oh, Floer cohomology of Lagrangian intersections and pseudo-
holomorphic discs I, Comm. Pure Appl. Math. 46 (1993), 949–994; Addendum
48 (1995) 1299–1302.

[27] Y.G. Oh, Floer cohomology of Lagrangian intersections and pseudo-
holomorphic discs III, H. Hofer, et al. (Eds.), The Floer Memorial Volume,
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