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GEOMETRY OF HESSENBERG VARIETIES WITH APPLICATIONS TO

NEWTON-OKOUNKOV BODIES

HIRAKU ABE, LAUREN DEDIEU, FEDERICO GALETTO, AND MEGUMI HARADA

Abstract. In this paper, we study the geometry of various Hessenberg varieties in type A, as well as families

thereof, with the additional goal of laying the groundwork for future computations of Newton-Okounkov

bodies of Hessenberg varieties. Our main results are as follows. We find explicit and computationally
convenient generators for the local defining ideals of indecomposable regular nilpotent Hessenberg varieties,

and then show that all regular nilpotent Hessenberg varieties are local complete intersections. We also show
that certain families of Hessenberg varieties, whose generic fibers are regular semisimple Hessenberg varieties

and whose special fiber is a regular nilpotent Hessenberg variety, are flat and have reduced fibres. This result

further allows us to give a computationally effective formula for the degree of a regular nilpotent Hessenberg
variety with respect to a Plücker embedding. Furthermore, we construct certain flags of subvarieties of a

regular nilpotent Hessenberg variety, obtained by intersecting with Schubert varieties, which are suitable

for computing Newton-Okounkov bodies. As an application of our results, we explicitly compute many
Newton-Okounkov bodies of the two-dimensional Peterson variety with respect to Plücker embeddings.
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1. Introduction

In this paper we study Hessenberg varieties of various types and families thereof, with a view towards
applications to the theory of Newton-Okounkov bodies and, more generally, the rather new connections
between the theory of Hessenberg varieties and combinatorics (e.g. [10, 4]). We first provide some background
before listing our concrete results.

Throughout this paper, for simplicity we restrict to Lie type A although we suspect that our discussion
generalizes to other Lie types.

Hessenberg varieties in type A are subvarieties of the full flag variety Flags(Cn) of nested sequences of
linear subspaces in Cn. Their geometry and (equivariant) topology have been studied extensively since the
late 1980s [13, 15, 14]. This subject lies at the intersection of, and makes connections between, many research
areas such as geometric representation theory (see for example [42, 20]), combinatorics (see e.g. [18, 31]), and
algebraic geometry and topology (see e.g. [29, 9, 43, 25, 37, 38, 2]). A special case of Hessenberg varieties
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Key words and phrases. Hessenberg varieties, Peterson varieties, flag varieties, local complete intersections, flat families,

Schubert varieties, Newton-Okounkov bodies, degree.
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called the Peterson variety Petn arises in the study of the quantum cohomology of the flag variety [29, 39],
and more generally, geometric properties and invariants of many different types of Hessenberg varieties
(including in Lie types other than A) have been widely studied. In addition, very recent developments
provide further evidence of deep connections between Hessenberg varieties and combinatorics. Specifically,
Shareshian and Wachs formulated in 2011 a conjecture [41] relating the chromatic quasisymmetric function
of the incomparability graph of a natural unit interval order to an Sn-representation on the cohomology of
the associated regular semisimple Hessenberg variety as defined by Tymoczko [44]. The Shareshian-Wachs
conjecture represents a significant step towards a solution of the famous Stanley-Stembridge conjecture in
combinatorics (concerning e-positivity of certain chromatic polynomials). Recently Brosnan and Chow [10]
proved the Shareshian-Wachs conjecture by showing a remarkable relationship between the Betti numbers of
different Hessenberg varieties; a key ingredient in their approach is a certain family of Hessenberg varieties.

We next briefly introduce the theory of Newton-Okounkov bodies, which was a significant motivation for
the current manuscript. Briefly, this relatively recent theory gives a new method of associating combinatorial
data to geometric objects. Recall that the famous Atiyah-Guillemin-Sternberg and Kirwan convexity theo-
rems link equivariant symplectic and algebraic geometry to the combinatorics of polytopes. In the case of a
toric variety X, the combinatorics of its moment map polytope ∆ fully encodes the geometry of X, but this
fails in the general case. Building on the work of Okounkov [34, 35], Kaveh-Khovanskii [27] and Lazarsfeld-
Mustaţă [30] construct a convex body ∆ in Rn associated to X equipped with the auxiliary data of a divisor
D and a choice of valuation ν on the space of rational functions C(X). The theory of Newton-Okounkov bod-
ies is powerful for several reasons. Firstly, it applies to an arbitrary projective algebraic variety, and secondly,
under a mild hypothesis on the auxiliary data, the construction guarantees that the associated convex body
∆ is maximal-dimensional, as in the classical setting of toric varieties. Hence one interpretation of the results
of Lazarsfeld-Mustata and Kaveh-Khovanskii is that there is a combinatorial object of ‘maximal’ dimension
associated to X, even when X is not a toric variety. This represents a vast expansion of the possible settings
in which combinatorial methods may be used to analyze the geometry of algebraic varieties. There is promise
of a rich theory which interacts with a wide range of inter-related areas: for instance, Kaveh showed in [26]
that the Littelmann-Berenstein-Zelevinsky string polytopes from representation theory, which generalize the
well-known Gelfand-Cetlin polytopes, are examples of ∆. Nevertheless, there are many open questions in
Newton-Okounkov body theory; in particular, relatively few explicit examples of Newton-Okounkov bodies
have been computed thus far. Therefore, it is an interesting problem to compute new concrete examples,
and one of our motivations for this paper was to compute Newton-Okounkov bodies of Hessenberg varieties
and to analyze the relation between the combinatorics of these Newton-Okounkov bodies with the existing
results which relate geometric invariants of Hessenbergs to combinatorics.

We now turn to a description of the main results of this paper. In the first part, we study Hessenberg
varieties and families thereof by studying their local equations. More specifically, we do the following. (For
definitions we refer to Section 2.)

(1) We determine an explicit list of generators for the local defining ideals of indecomposable regular
nilpotent Hessenberg varieties (Proposition 3.5).

(2) We prove that regular nilpotent Hessenberg varieties are local complete intersections (Theorem 4.1).
(3) We prove that certain families of Hessenberg varieties are irreducible, flat over A1 (or P1), and have

reduced fibers (Theorem 5.1).

By exploiting the above, in the second part of the paper we begin to develop a theory of the Newton-Okounkov
bodies of Hessenberg varieties.

(4) We construct families of flags Y• = {Y0 = Hess(N,h) ⊃ Y1 ⊃ · · · ⊃ Yn} of subvarieties in regular
nilpotent Hessenberg varieties arising from intersections with (dual) Schubert varieties; the intersec-
tions are smooth at Yn = {pt}, where n = dimC Hess(N,h) (Theorem 7.4).

(5) We compute the degree of an arbitrary indecomposable regular nilpotent Hessenberg variety with
respect to a Plücker embedding associated to a weight λ = (λ1, λ2, · · · , λn) as a polynomial in the
λi (Theorem 8.3).

(6) We explicitly compute many Newton-Okounkov bodies associated to the Peterson variety in Flags(C3),
a special case of regular nilpotent Hessenberg varieties (Theorems 9.6 and 9.10).

2



Some remarks are in order. Firstly, our results in (1) and (2) generalize a result of Insko-Yong [25] for the case
of Peterson variety and also a result of Insko [24] where he proves that regular nilpotent Hessenberg varieties
are local complete intersections under the hypothesis that the Hessenberg function is strictly increasing.
Secondly, the family we consider in (3) is presumably the one which is meant in the discussion in [5], where
it is also mentioned (without further discussion) that the family is flat. While we do not claim originality,
we record in this paper a proof that the family is flat using standard techniques; the more important claim
in (3) is that the fibres are reduced, and for this we analyze generators of the defining ideal of the family
in a manner similar to (1). Thirdly, the reason for studying the flags of subvarieties in (4) is that well-
behaved such flags are often a crucial ingredient in the construction of Newton-Okounkov bodies, as we
explain further in Section 6. Fourthly, the polynomial mentioned in (5) is called a volume polynomial in [4],
where the authors also show that the natural Poincaré duality algebra associated to this polynomial is in
fact isomorphic to the ordinary cohomology ring of the regular nilpotent Hessenberg variety. Furhtermore,
our computation of the degree in (5) proves useful for the computation of Newton-Okounkov bodies, as we
explain in Section 6. Finally, we view the results of (6) as a first “test case” of a Newton-Okounkov-type
computation for Hessenberg varieties, which illustrate the computational potential of the results of this
paper.

The paper is organized as follows. We briefly recall definitions concerning Hessenberg varieties in Section 2.
In Section 3 we produce a list of generators for the local defining ideals of regular nilpotent Hessenberg
varieties. The results of Section 3 allow us to show in Section 4 that regular nilpotent Hessenberg varieties
are local complete intersections. In Section 5 we study a family of Hessenberg varieties, give a set of generators
for its defining ideals in an argument similar to Section 3, and use these generators to prove that the fibers
of the family are reduced. A brief introduction to the theory of Newton-Okounkov bodies is in Section 6
where, in particular, we make an elementary but nevertheless crucial observation concerning the degree of a
projective variety and its role in the computation of Newton-Okounkov bodies in Section 6.2. In Section 7
we construct a flag of subvarieties in a regular nilpotent Hessenberg variety which has convenient geometric
properties and is very natural from the point of view of Schubert calculus. We give a semi-explicit formula
for the degree of regular nilpotent Hessenberg varieties in Section 8 which links our work to that of [4].
Finally, in Section 9 we utilize everything we have shown thus far to give our first complete computation of
a Newton-Okounkov body of a Hessenberg variety.

Acknowledgements. We are grateful to Mikiya Masuda for his stimulating questions and his support and
encouragement. We also thank Allen Knutson for pointing out to us the significance of the flat family of
regular Hessenberg varieties over the space of regular matrices. The first author was supported in part by
the JSPS Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented
Researchers: “Mathematical Science of Symmetry, Topology and Moduli, Evolution of International Research
Network based on OCAMI.” He is also supported by a JSPS Research Fellowship for Young Scientists
Postdoctoral Fellow: 16J04761. The fourth author was supported by an NSERC Discovery Grant and a
Canada Research Chair (Tier 2) Award. The results of Section 9 are part of the second author’s Ph.D. thesis
[12]. Part of the research for this paper was carried out at the Fields Institute; the authors would like to
thank the institute for its hospitality.

2. Preliminaries: Hessenberg varieties

In this section we recall some basic definitions used in the study of Hessenberg varieties. Since detailed
exposition is available in the literature [43, 14] we keep discussion brief.

Throughout this paper, for simplicity we restrict attention to Lie type A, i.e. to the case G = GLn(C).
We expect that analogous results will hold for more general Lie types but leave this open for future work.

By the flag variety we mean the homogeneous space GLn(C)/B, where B denotes the subgroup of upper-
triangular matrices. This homogeneous space may also be identified with the space of nested sequences of
linear subspaces of Cn, i.e.

(2.1) Flags(Cn) := {V• = ({0} ⊆ V1 ⊆ V2 ⊆ · · ·Vn−1 ⊆ Vn = Cn) | dimC(Vi) = i} ∼= GLn(C)/B;

the identification with GLn(C)/B takes a coset MB, for M ∈ GLn(C), to the flag V• with Vi defined as the
span of the leftmost i columns of M .
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We use the notation
[n] := {1, 2, . . . , n}.

A Hessenberg function is a function h : [n]→ [n] satisfying h(i) > i for all 1 6 i 6 n and h(i+ 1) > h(i)
for all 1 6 i < n. We frequently denote a Hessenberg function by listing its values in sequence, h =
(h(1), h(2), . . . , h(n) = n). To a Hessenberg function h we associate a subspace of gln(C) (the vector space
of n× n complex matrices) defined as

(2.2) H(h) := {(ai,j)i,j∈[n] ∈ gln(C) | ai,j = 0 if i > h(j)},
which we call the Hessenberg subspaceH(h). It is sometime useful to visualize this space as a configuration
of boxes on a square grid of size n×n whose shaded boxes correspond to the ai,j with no condition imposed
in the right-hand side of (2.2) (see Figure 2.1).

Figure 2.1. The picture of H(h) for h = (3, 3, 4, 5, 6, 6).

We can now define the central object of study.

Definition 2.1. Let A : Cn → Cn be a linear operator and h : [n] → [n] a Hessenberg function. The
Hessenberg variety associated to A and h is defined to be

Hess(A, h) := {V• ∈ Flags(Cn) | AVi ⊆ Vh(i), ∀i}.
Equivalently, under the identification (2.1) and viewing A as an element in gln(C),

(2.3) Hess(A, h) = {MB ∈ GLn(C)/B |M−1AM ∈ H(h)}.
In particular, any Hessenberg variety Hess(A, h) is, by definition, an algebraic subset of the flag variety

Flags(Cn). It is straightforward to see that Hess(A, h) and Hess(gAg−1, h) are isomorphic ∀g ∈ GLn(C), so
we frequently assume without loss of generality that A is in standard Jordan canonical form with respect to
the standard basis on Cn.

In this manuscript we discuss two important special cases of Hessenberg varieties: the regular nilpotent
Hessenberg varieties and the regular semisimple Hessenberg varieties.

Definition 2.2. A Hessenberg variety Hess(A, h) is called regular nilpotent if A is a principal nilpotent
operator. Equivalently, the Jordan canonical form of A has a single Jordan block with eigenvalue zero, i.e.,
up to a change of basis A is of the form: 

0 1
0 1

. . .
. . .

0 1
0


For the remainder of this paper we let N denote the matrix (operator) above.

Regular nilpotent Hessenberg varieties are known to be irreducible [5, Lemma 7.1], and they are the
subject of Sections 3 and 4 of this paper. When we study families of Hessenberg varieties in Section 5, the
following type will also become relevant.

Definition 2.3. A Hessenberg variety Hess(A, h) is called regular semisimple if A is a semisimple operator
with distinct eigenvalues. Equivalently, there is a basis of Cn with respect to which A is diagonal with pairwise
distinct entries along the diagonal.
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We will need the following terminology from [16, Definition 4.4].

Definition 2.4. Let h : [n] → [n] be a Hessenberg function. If h(j) > j + 1 for j ∈ {1, 2, . . . , n − 1}, then
we say that h is indecomposable.

Finally, we give the definition of a special case of a regular nilpotent Hessenberg variety which is studied
in more detail in Section 9.

Definition 2.5. When h is of the form h(j) = j + 1 for j ∈ {1, 2, . . . , n − 1}, the corresponding regular
nilpotent Hessenberg variety is called a Peterson variety.

The regular semisimple Hessenberg variety for the same Hessenberg function h(j) = j + 1 for j ∈
{1, 2, . . . , n− 1} is isomorphic to the toric variety associated to the root system of type An−1 [14].

3. The defining ideals of regular nilpotent Hessenberg varieties

As mentioned in the Introduction, in this paper we are interested in the geometry and associated invariants
of regular nilpotent Hessenberg varieties Hess(N,h). In order to make the arguments in the later sections,
it will be convenient for us to have explicit lists of (local) generators for the defining ideals of Hess(N,h),
considered as subvarieties of Flags(Cn). It is quite easy, as we shall see below, to produce an explicit list
of polynomials which cut out Hess(N,h) set-theoretically; the issue which we must address is whether the
ideal that these polynomials generate is radical, or whether the relevant quotient ring is reduced. The main
content of this section, recorded in Proposition 3.5, is to show that in fact the quotient rings associated to
our lists of polynomials are reduced and thus we have found generators for the defining ideals of our varieties.

To prove Proposition 3.5 we proceed in steps. A regular nilpotent Hessenberg variety Hess(N,h) is defined
as a subvariety of Flags(Cn). As a scheme, it is well-known that Flags(Cn) can be covered by affine coordinate
patches, each isomorphic to An(n−1)/2, as we now very briefly recount. Let

U :=


M =


1
? 1
...

...
. . .

? ? . . . 1
? ? · · · ? 1



∣∣∣∣∣∣∣∣∣∣∣
M is lower-triangular

with 1’s along the diagonal


∼= An(n−1)/2 ⊆ Mat(n× n,C).

Then the map U → Flags(Cn) ∼= GLn(C)/B given by M ∈ U 7→ MB ∈ GLn(C)/B, is an open embedding.
By slight abuse of notation we denote also by U its image in Flags(Cn); again it is well-known that the set of
translates {Nw := wU} of U by the permutations w ∈ Sn (identified with their associated permutation ma-

trices), along with the open embeddings Ψw : U ∼= An(n−1)/2
∼=−→ Nw ⊆ Flags(Cn) sending M 7→ wMB, form

an open cover of Flags(Cn). The transition functions ϕv,w between these coordinate patches corresponding
to a non-empty intersection Nv ∩ Nw 6= ∅ are also well-known (and straightforward to check directly) to be
realized by right multiplication by an upper-triangular matrix.

Some facts about the transition functions ϕv,w will be used in the technical arguments in what follows,
so we record them in Lemma 3.2 below. To state it precisely we need some terminology. Using the bijection

U ∼= An(n−1)/2
∼=−→ Nw, a point in Nw is uniquely identified with the w-translate of a lower-triangular matrix

with 1’s along the diagonal. Therefore a point in Nw is uniquely determined by a matrix (xi,j) whose entries
are subject to the following relations

xw(j),j = 1, ∀j ∈ [n],

xw(i),j = 0, ∀i, j ∈ [n] : j > i.
(3.1)

Thus the coordinate ring of Nw, denoted by C[xw] from now on, is isomorphic to the quotient of the
polynomial ring C[xi,j ] by the relations (3.1). Observe that C[xw] is isomorphic to a polynomial ring in the
n(n− 1)/2 variables xi,j not covered by the relations (3.1).
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Example 3.1. Let n = 4 and w = (2, 4, 1, 3) ∈ S4 in the standard one-line notation. An element M of
Nw = wU can be written as

wM =


x1,1 x1,2 1 0

1 0 0 0
x3,1 x3,2 x3,3 1
x4,1 1 0 0

 .

Also let ψvw ∈ C[xw] denote the polynomial obtained by taking the product of the leading principal minors
(i.e. the upper-left-(k × k) determinants) of v−1(wM) for M ∈ U where the (i, j)-th matrix entries of M
for i > j are interpreted as the variables in C[xw]. It is not hard to see that Ψ−1w (Nv ∩ Nw) ⊆ U ∼= Nw is
the non-vanishing locus of ψvw. Therefore the coordinate ring of Nv ∩ Nw is isomorphic to the localization
C[xw]ψv

w
.

Lemma 3.2. Let v, w ∈ Sn be such that Nv∩Nw 6= ∅. Then the transition function ϕv,w : Ψ−1w (Nv∩Nw) ⊆
U → Ψ−1v (Nv ∩Nw) ⊆ U is of the form

M 7→MC

where C is an upper-triangular n× n matrix depending on v and w with entries in C[xw]ψv
w

.

Now recall that the definition of the regular nilpotent Hessenberg variety, thought of as a subvariety of
the flag variety, is

(3.2) Hess(N,h) := {MB ∈ Flags(Cn) |M−1NM ∈ H(h)}.
As we have just seen, the affine coordinate charts {Nw}w∈Sn form an open cover of Flags(Cn), so we
immediately obtain an open cover {Nw,h}w∈Sn of Hess(N,h) by defining

(3.3) Nw,h := Nw ∩Hess(N,h) ⊂ Nw ∼= An(n−1)/2.

Thus we now turn our attention to a study of these subvarieties of An(n−1)/2. Set-theoretically, it is easy
to identify a defining set of equations. From (3.2) it follows that the coset MB associated to a matrix
M = (xi,j) lies in Nw,h if and only if it lies in Nw and, in addition,

(3.4) (M−1NM)i,j = 0

for all i, j ∈ [n] with i > h(j). Observe that any matrix of the form wM for M ∈ U satisfies det(wM) = ±1.
This implies that for any w ∈ Sn and any M ∈ U ∼= An(n−1)/2, the matrix entries of the inverse (wM)−1

and hence also of the matrix (wM)−1N(wM) are polynomial expressions in the affine coordinates on U ∼=
An(n−1)/2. We can then make the following definition.

Definition 3.3. Let w ∈ Sn and let i, j ∈ [n] with i > h(j). We define the polynomial fwi,j ∈ C[xw] by

fwi,j :=
(
(wM)−1N(wM)

)
i,j

where here the (k, `)-th matrix entries of M for k > ` are viewed as variables. We also define the ideal

Jw,h := 〈fwi,j | i > h(j)〉 ⊆ C[xw]

to be the ideal in C[xw] generated by the fwi,j .

Example 3.4. Let n = 4 and w = (2, 4, 1, 3) ∈ S4, continued from Example 3.1. Then it is straightforward
to check that

(wM)−1 =


x1,1 x1,2 1 0

1 0 0 0
x3,1 x3,2 x3,3 1
x4,1 1 0 0


−1

=


0 1 0 0
0 −x4,1 0 1
1 −x1,1 + x1,2x4,1 0 −x1,2
−x3,3 y 1 −x3,2 + x1,2x3,3


where y = −x3,1 + x1,1x3,3 + x4,1(x3,2 − x1,2x3,3). So, for example, we have

fw4,1 =
(
(wM)−1N(wM)

)
4,1

= −x3,3 + x3,1(−x3,1 + x1,1x3,3 + x4,1(x3,2 − x1,2x3,3)) + x4,1,

fw4,2 =
(
(wM)−1N(wM)

)
4,1

= −x3,1 + x1,1x3,3 + x4,1(x3,2 − x1,2x3,3) + 1.
(3.5)

So if h = (3, 3, 4, 4), then we have Jw,h = 〈fw4,1, fw4,2〉 with these polynomials.
6



We now state the main result of this section.

Proposition 3.5. Let h : [n]→ [n] be an indecomposable Hessenberg function. For every w ∈ Sn, the ring
C[xw]/Jw,h is the coordinate ring of the subvariety Nw,h = Hess(N,h) ∩Nw of Nw. In particular, the ideal
Jw,h is radical and is the defining ideal of Nw,h.

The necessity of the indecomposability hypothesis can be seen from a small example.

Example 3.6. Let n = 2 and h = (1, 2). We have Jid,h = 〈f id2,1〉 ⊆ C[x2,1] where f id2,1 = −x22,1. Clearly the
ring C[x2,1]/Jid,h is not reduced, so it is not the coordinate ring of Nid,h.

The proof of Proposition 3.5 requires a number of steps, so we first describe the basic ideas. First, it is
immediate from the definition (3.2) that Nw,h = Hess(N,h) ∩ Nw is precisely the vanishing locus of Jw,h.
What is not immediately clear is that Jw,h is radical, or that C[xw]/Jw,h is reduced. In order to see this
on every affine chart Nw, we construct in Lemma 3.7 below a scheme Hess′(N,h) by gluing together the
affine schemes C[xw]/Jw,h in the obvious way, and our goal is then to prove that Hess′(N,h) is the same as
Hess(N,h). The second idea is to focus on a particular affine patch. Specifically, let w0 be the longest element
in Sn, i.e. the full inversion given by w0(i) = n+1− i for all i ∈ [n]. In order to prove Proposition 3.5 we will
first prove, in Lemma 3.8 below, the analogous result on Nw0,h via a direct analysis of the ideal Jw0,h. Once
we know the result for a neighborhood around w0B, the irreducibility of Hess(N,h) and a simple algebraic
argument yields the global result on all of Hess′(N,h) (and hence shows Hess′(N,h) ∼= Hess(N,h)).

We now proceed to implement this overall plan. In order to proceed we need first to complete the
definition of the scheme Hess′(N,h). This is just the usual process of gluing so we shall be brief. The only
technical point to check is that the ideals Jw,h for varying w behave well with respect to the transition
functions discussed in Lemma 3.2 above. This is the content of the next lemma. Note that the transition
function ϕv,w : Ψ−1w (Nv ∩ Nw) → Ψ−1v (Nv ∩ Nw) is algebraic by Lemma 3.2, therefore it corresponds to a
ring homomorphism ϕ∗v,w : C[xv]ψw

v
→ C[xw]ψv

w
.

Lemma 3.7. For w, v ∈ Sn, we have ϕ∗v,w((Jv,h)ψw
v

) = (Jw,h)ψv
w

in the localized ring C[xw]ψv
w

.

Proof. Let wM ∈ Nw,h where M ∈ U . Although not strictly necessary we find it useful to think of fvi,j as
a function on Nv ∩ Nw ⊆ Nv and ϕ∗v,w(fvi,j) as a function on Nw ∩ Nv ⊆ Nw so the notation below reflects
this. For i > h(j), we have

ϕ∗v,w(fvi,j)(vM) = fvi,j(ϕv,w(wM))

= fvi,j(wMC)

= (C−1M−1w−1NwMC)i,j

=

n∑
k=1

n∑
`=1

(C−1)`,k(M−1w−1NwM)k,`C`,j

=
∑
k>i

∑
`6j

(C−1)i,kC`,j(M
−1w−1NwM)k,`.

(3.6)

Note that the last equality follows from C being upper triangular. For indices k and ` appearing in
the last expression in (3.6) we therefore conclude k > i > h(j) > h(`), so k > h(`), and therefore
(M−1w−1NwM)k,` = fwk,`(wM). We deduce that ϕ∗v,w((Jv,h)ψw

v
) ⊆ (Jw,h)ψv

w
. Exchanging the role of w

and v, we get ϕ∗w,v((Jw,h)ψv
w

) ⊆ (Jv,h)ψw
v

. Since ϕ−1w,v = ϕv,w, we obtain (Jw,h)ψv
w

= ϕ∗v,w((Jv,h)ψw
v

). �

We now analyze the affine patch near w0B. This is the most important computation in our argument.

Lemma 3.8. Let h : [n] → [n] be an indecomposable Hessenberg function. Then the ring C[xw0
]/Jw0,h is

isomorphic to a polynomial ring, hence it is reduced.

Remark 3.9. It is already known that the intersection Hess(N,h)∩Nw0
of the variety Hess(N,h) with the

affine coordinate patch around w0 is isomorphic as a variety to a complex affine space ([43] and [37]). The
point of Lemma 3.8 is that Jw0,h is its defining ideal, and that its generators take a particular form.

Before proving the lemma, we give some concrete examples.
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Example 3.10. Let n = 4 and h = (3, 3, 4, 4). The coordinate ring of Nw0 is

C[xw0
] ∼= C[x1,1, x1,2, x1,3, x2,1, x2,2, x3,1],

and a point in Nw0
is determined by a matrix

M =


x1,1 x1,2 x1,3 1
x2,1 x2,2 1 0
x3,1 1 0 0

1 0 0 0

 .

Given the form of M , it is easy to see that its inverse must have the form

M−1 =


0 0 0 1
0 0 1 y3,1
0 1 y2,2 y2,1
1 y1,3 y1,2 y1,1

 .(3.7)

Starting from the matrix equality M−1M = (δi,j), and comparing entries we can obtain expressions for the
yi,j in terms of the xi,j . For example,

y1,3 = −x1,3,
y1,2 = −x1,2 − y1,3x2,2 = −x1,2 + x1,3x2,2.

It is also straightforward to see that each yi,j depends only on the variables xk,` with k > i and ` > j.
Graphically, this says that yi,j depends only on xi,j and variables located to the right or below xi,j in the
matrix M ; for example, y1,2 depends only on the variables contained in the bounded region depicted in
Figure 3.1.

x1,1 x1,2 x1,3 1

x2,1 x2,2 1 0

x3,1 1 0 0

1 0 0 0

Figure 3.1. Variables appearing in the expression of y1,2

Now we describe the generators of Jw0,h = 〈fw0
4,1 , f

w0
4,2〉. We have

M−1NM =


0 0 0 1
0 0 1 y3,1
0 1 y2,2 y2,1
1 y1,3 y1,2 y1,1



x2,1 x2,2 1 0
x3,1 1 0 0

1 0 0 0
0 0 0 0


and from this we get

fw0
4,1 = (M−1NM)4,1 = x2,1 + y1,3x3,1 + y1,2 = x2,1 − x1,3x3,1 − x1,2 + x1,3x2,2,

fw0
4,2 = (M−1NM)4,2 = x2,2 + y1,3 = x2,2 − x1,3.

We deduce that x2,1 and x2,2 are determined by the other variables and conclude that C[xw0 ]/Jw0,h
∼=

C[x1,1, x1,2, x1,3, x3,1] is a polynomial ring and in particular is reduced. It is possible to easily visualize,
using the Hessenberg diagram, the variables which turn out to be dependent on other variables and hence
“vanish” in the quotient C[xw0

]/Jw0,h, as illustrated in Figure 3.2 for this example. Specifically, we can first
cross out any box which is not contained in the Hessenberg diagram for h = (3344); see the left diagram in
Figure 3.2. We then flip the picture upside down (so that, in this case, the boxes in positions (1, 1) and (1, 2)
are now crossed out), and finally shift the entire picture downwards by one row. In this case we end up with
a picture, as in the right-hand diagram in Figure 3.2, with the boxes in positions (2, 1) and (2, 2) crossed
out. Then the variables corresponding to the crossed-out boxes are the ones which vanish in the quotient,
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flip and
lower by 1

x1,1 x1,2 x1,3 1

x2,1 x2,2 1 0

x3,1 1 0 0

1 0 0 0

Figure 3.2. Variables killed in C[xw0 ]/Jw0,h

and in fact (by the computation above) they are dependent on the (non-crossed-out) variables appearing
either below it within the same column, or in a column to its right in a row at most one above it.

Example 3.11. Let n = 5 and h = (3, 4, 4, 5, 5). The diagram in Figure 3.3 predicts that C[xw0
]/Jw0,h

∼=
C[x1,1, x1,2, x1,3, x1,4, x3,2, x4,1]. Indeed the generators of Jw0,h are

fw0
5,1 = x2,1 − x1,2 − x1,3x4,1 + x1,3x3,2 − x1,4x3,1

+ x1,4x2,2 + x1,4x2,3x4,1,−x1,4x2,3x3,2
fw0
5,2 = x2,2 − x1,3 − x1,4x3,2 + x1,4x2,3

fw0
5,3 = x2,3 − x1,4
fw0
4,1 = x3,1 − x2,2 − x2,3x4,1 + x2,3x3,2.

Again, we see that C[xw0
]/Jw0,h is reduced. Following the method outlined in the previous example, we see

that the variables which vanish in the quotient are x2,1, x2,2, x2,3 and x3,1. See Figure 3.3.

flip and
lower by 1

x1,1 x1,2 x1,3 x1,4 1

x2,1 x2,2 x2,3 1 0

x3,1 x3,2 1 0 0

x4,1 1 0 0 0

1 0 0 0 0

Figure 3.3. Variables killed in C[xw0
]/Jw0,h

Proof of Lemma 3.8. Let M = (xi,j) determine a point in Nw0,h. Recall that, as elements of C[xw0
], the

variables xi,j are subject to the following relations:

• xi,n+1−i = 1, ∀i ∈ [n];
• xi,j = 0, ∀i, j ∈ [n] : i > n+ 1− j.

For all i, j ∈ [n], we have (M−1M)n+1−i,j = δn+1−i,j . This equality can be written more explicitly as

(3.8) yi,j +

n−j∑
k=1

yi,n+1−kxk,j = δn+1−i,j ,

where yi,j := (M−1)n+1−i,n+1−j (see (3.7) or (3.9) below for visualizations of this indexing).
For all i, j ∈ [n], the polynomials yi,j have the following properties:

(i) yi,n+1−i = 1;
(ii) yi,j = 0, whenever i > n+ 1− j;
(iii) yi,j is a polynomial in the variables xk,l with k > i and l > j.
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These properties follow from equation (3.8) using an elementary inductive argument. Using properties (i)
and (ii), we deduce that

M−1 =


1

1 yn−1,1

. .
. ...

...
1 . . . y2,2 y2,1

1 y1,n−1 . . . y1,2 y1,1

 .(3.9)

Let us compute the polynomial fw0
n+1−i,j . We have

NM =


0 1

0 1
. . .

. . .

0 1
0




x1,1 x1,2 . . . x1,n−1 1
x2,1 x2,2 . . . 1
...

... . .
.

xn−1,1 1
1

 =



x2,1 x2,2 . . . 1 0
...

... . .
.

. .
.

xn−1,1 1 . .
.

1 0
0

 .

The ideal Jw0,h is generated by the polynomials fw0
n+1−i,j having n+1− i > h(j). With this choice of indices,

we obtain

fw0
n+1−i,j = (M−1NM)n+1−i,j =

n−j∑
k=i

xk+1,jyi,n+1−k.

Since we are dealing with fw0
n+1−i,j for n+ 1− i > h(j), we have n+ 1− i > j by combining with h(j) > j.

Therefore a generator of Jw0,h has the form

(3.10) fw0
n+1−i,j = xi+1,j +

n−j∑
k=i+1

xk+1,jyi,n+1−k.

Namely, the first summand xi+1,j always appears with yi,n+1−i = 1. Now, since h is indecomposable, we
have h(j) > j+ 1. In fact we have i < n− j from the same reasoning as above, so that xi+1,j is a coordinate
function on Nw0

(cf. (3.1)). The variable xk+1,j appearing in the summation has row index k+ 1 > i+ 2. As
for yi,n+1−k, it depends only on variables xp,q with row index p > i and column index q > j+1. This follows
from property (iii) combined with the observation that k 6 n − j implies n + 1 − k > j + 1. We conclude
that the summation appearing in equation (3.10) depends only on variables xp,q with q > j + 1 and p > i,
or q = j and p > i+ 2.

Finally, the above discussion and a simple inductive argument implies that setting fw0
n+1−i,j equal to 0

has the effect of eliminating the variables xi+1,j from the quotient C[xw0
]/Jw0,h and there are no further

relations on the remaining variables. Namely, C[xw0 ]/Jw0,h is isomorphic to the polynomial ring

C[xi,j | 1 6 i, j 6 n− 1, i /∈ {2, 3, . . . , n+ 1− h(j)}],

which in particular is reduced, as was to be shown. It also follows that Jw0,h is radical and is the defining
ideal of Nw0,h in Nw0 . �

Motivated by the above proof of Lemma 3.8, we introduce the following terminology which will be useful
in Section 7: the set {xi,j | 1 6 i, j 6 n− 1, i ∈ {2, 3, . . . , n+ 1− j}} consists of the non-free variables and
the indices (i, j) for 1 6 i, j 6 n− 1, i ∈ {2, 3, . . . , n+ 1− j} give the positions of the non-free variables.
The other variables are the free variables. In particular, observe that x1,1 is always a free variable.

We also record the following fact which follows easily from the above analysis and which we use in Section 7.

Lemma 3.12. Let h : [n]→ [n] be an indecomposable Hessenberg function. Then, for each pair (i, j) with
n− i > j, we have

fw0
n+1−i,j = xi+1,j − g,

where g is a polynomial contained in the ideal of C[xw0 ] generated by {xi,` | j + 1 6 ` 6 n− i}.
10



Proof. Let us denote by Ii,j+1 the ideal mentioned in the claim. From the expression (3.10) of fw0
n+1−i,j , it

suffices to show that yi,` ∈ Ii,` for j + 1 6 ` 6 n − i. We fix arbitrary 1 6 i < n and j < n − i, and prove
this by induction on ` with j + 1 6 ` 6 n− i. Recall from (3.8) with the properties (i) and (ii) that we have

yi,` = −
n−∑̀
k=i

yi,n+1−kxk,` = −xi,` −
n−∑̀
k=i+1

yi,n+1−kxk,`,(3.11)

where the second equality follows from i 6 n− ` and yi,n+1−i = 1. So when ` = n− i, we have

yi,n−i = −xi,n−i ∈ Ii,n−i.

Now, by induction, we assume that yi,p ∈ Ii,p (` + 1 6 p 6 n − i), and we prove that yi,` ∈ Ii,`. Our
polynomial yi,` is described by the rightmost expression of (3.11). There we have xi,` ∈ Ii,`, and also
yi,n+1−k ∈ Ii,n+1−k, by the inductive hypothesis, since ` + 1 6 n + 1 − k 6 n − i. These inequalities also
imply that we have Ii,n+1−k ⊂ Ii,`, and hence we obtain yi,` ∈ Ii,`, as desired. �

Having just proved directly that C[xw0
]/Jw0,h is reduced, the reader may wonder why we do not do the

same for all w ∈ Sn. As the proof of Lemma 3.8 may suggest, the argument works out well for w0 due to
the particular form of the matrices w0M for M ∈ U ; for general w ∈ Sn, it seems to be more complicated
to analyze these ideals directly, as the following simple example illustrates.

Example 3.13. Let n = 4 and h = (3, 3, 4, 4). Let w = (2, 4, 1, 3) ∈ S4 as in Example 3.1 and Example 3.4.
The ideal Jw,h is generated by fw4,1 and fw4,2 described in (3.5). Although one can check computationally
(using, say, Macaulay2 [21]) that this ideal is reduced, it does not seem so straightforward to prove it directly.

Instead of proving reducedness for each w ∈ Sn separately, we resort to a different strategy, the essence of
which is summarized in the following simple and purely algebraic lemma. We will use this also in Section 5
when we deal with the family of Hessenberg varieties. Some readers may be familiar with the general fact
from commutative algebra that a Cohen-Macaulay ring is reduced if and only if it is generically reduced (cf.
[17, Exercise 18.9]). We could also use this fact here, but for our situation the argument is so simple that
we choose to record it.

Lemma 3.14. Let R be a Cohen-Macaulay ring with a unique minimal prime p. Suppose there exists a
prime ideal q ∈ SpecR such that the localization Rq is reduced. Then R is reduced.

Proof. Since R is Cohen-Macaulay, SpecR has no embedded components and the unique minimal prime p
is also the unique associated prime of R [17, Corollary 18.10]. This in turn implies that p is precisely the
set of zero-divisors in R and so the natural map R → Rp is injective (cf. [7, Proposition 4.7]; see also the
discussion in [45, § 5.5]). In particular it suffices to show that Rp is reduced. Since p is the unique minimal
prime, any q ∈ SpecR must contain p, and so by transitivity of localization we have Rp

∼= (Rq)pRq
. Thus if

Rq is reduced for some q, then so is Rp, and we are done. �

In order to apply Lemma 3.14 to our situation we need to know that regular nilpotent Hessenberg varieties
are irreducible (so the relevant coordinate rings have unique minimal primes), but this is already known [5,
Lemma 7.1]. We also need to know that the relevant rings are Cohen-Macaulay. This is the content of the
next lemma. It is worth emphasizing that although we use this result in the case when h is indecomposable,
this lemma is valid for any Hessenberg function h.

Lemma 3.15. Let h : [n] → [n] be a Hessenberg function and w ∈ Sn. Then the ring C[xw]/Jw,h is
Cohen-Macaulay.

Proof. If C[xw]/Jw,h = 0, the statement is obvious. Thus we may assume that C[xw]/Jw,h 6= 0. Observe that
the polynomial ring C[xw] is regular, hence Cohen-Macaulay. By definition, the ideal Jw,h can be generated
by
∑n
i=1(n−h(i)) elements. If we can show that codim(Jw,h) =

∑n
i=1(n−h(i)), then [17, Proposition 18.13]

will imply that C[xw]/Jw,h is Cohen-Macaulay.
By [17, Corollary 13.4], we have

codim(Jw,h) = dim(C[xw])− dim(C[xw]/Jw,h).
11



The definition of C[xw] gives

dim(C[xw]) =

n∑
i=1

(n− i).

On the other hand, we have

dim(C[xw]/Jw,h) = dim(Spec(C[xw]/Jw,h)) = dim(Nw,h).

Since we assumed C[xw]/Jw,h 6= 0, Spec(C[xw]/Jw,h) is non-empty. Therefore Nw,h is a non-empty open
subset of Hess(N,h). By [5, Lemma 7.1], Hess(N,h) is irreducible of dimension

∑n
i=1(h(i) − i), hence we

have

dim(Nw,h) = dim Hess(N,h) =

n∑
i=1

(h(i)− i).

Altogether, we get

codim(Jw,h) =

n∑
i=1

(n− i)−
n∑
i=1

(h(i)− i) =

n∑
i=1

(n− h(i)),

completing the proof of the proposition. �

We can now prove Proposition 3.5.

Proof of Proposition 3.5. Let w ∈ Sn and R = C[xw]/Jw,h. If R is the zero ring, then there is nothing to
prove, so we may assume R 6= 0, or equivalently, Spec(C[xw]/Jw,h) 6= ∅. Note that the set of closed points
in Spec(R) (i.e. the underlying variety of Spec(R)) is homeomorphic to Nw,h; thus R 6= 0 implies Nw,h 6= ∅.
Furthermore, Nw,h is open in Hess(N,h). Since Hess(N,h) is irreducible [5, Lemma 7.1], we deduce that
Nw,h is also irreducible. Therefore Spec(R) is irreducible, hence R has a single minimal prime p (namely,
its nilradical). Moreover, R is Cohen-Macaulay by Lemma 3.15. Since Hess(N,h) is irreducible, any two
nonempty open subsets intersect nontrivially, and in particular, Nw,h ∩ Nw0,h 6= ∅. Since we have seen in
Lemma 3.8 that the coordinate ring of Nw0,h is a polynomial ring, the local ring at any of its closed points
is a regular local ring and in particular is reduced. In other words, there exists a maximal ideal m in R such
that Rm is reduced. The result now follows from Lemma 3.14. �

4. Regular nilpotent Hessenberg varieties are local complete intersections

Having just determined in Section 3 a convenient list of generators for the (local) defining ideals Jw,h
of regular nilpotent Hessenberg varieties, we now apply our knowledge to prove that all regular nilpotent
Hessenberg varieties are local complete intersections. This means that at any closed point of Hess(N,h) the
local ring is a complete intersection (see [17, § 18.5]). We emphasize that, for this result, we do not need to
require h to be indecomposable. Our discussion here generalizes a result of Insko and Yong [25, Corollary
7] for Peterson varieties, as well as a result of Insko [24, Lemma 4.6, Theorem 4.9] that holds for strictly
increasing Hessenberg functions.

The main result of this section is the following.

Theorem 4.1. Let h : [n] → [n] be any Hessenberg function. Then the corresponding regular nilpotent
Hessenberg variety Hess(N,h) is a local complete intersection.

To prove Theorem 4.1 we use a certain ordering on the generators of the ideal Jw,h (see Definition 3.3),
which we illustrate in the following example.

Example 4.2. In Example 3.11, we listed generators fw0
5,1 , f

w0
5,2 , f

w0
5,3 , f

w0
4,1 of the ideal Jw0,h for the case n = 5

and h = (3, 4, 4, 5, 5). These generators can be visualized in terms of the Hessenberg diagram, where fw0
i,j

corresponds to the (i, j)-th box; see the left picture in Figure 4.1. On the right-hand side of Figure 4.1 we
impose an ordering on the relevant boxes, which therefore imposes an order on the generators. We have
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fw0
5,1 f

w0
5,2 f

w0
5,3

fw0
4,1

1 2 3

4

Figure 4.1. Order on the generators of Jw,h

chosen an order so that, for all i ∈ [4], the generators in position 1 through i generate an ideal Jw0,h′ for
some Hessenberg function h′. Indeed, in this example, we have

Jw0,(4,5,5,5,5) = 〈fw0
5,1〉,

Jw0,(4,4,5,5,5) = 〈fw0
5,1 , f

w0
5,2〉,

Jw0,(4,4,4,5,5) = 〈fw0
5,1 , f

w0
5,2 , f

w0
5,3〉,

Jw0,(3,4,4,5,5) = 〈fw0
5,1 , f

w0
5,2 , f

w0
5,3 , f

w0
4,1〉.

For the purposes of our argument below, in general we define an ordering on the generators fwi,j of Jw,h for
any w ∈ Sn and any h by defining fwi,j < fwk,` if and only if i > k or i = k and j < `. Denote the generators
of Jw,h as f1, . . . , fc, listed from the smallest to the largest in the total order just defined. As illustrated
in the example above, it is straightforward to see that this order has the property that any subset of the
generators of the form f1, . . . , fi for 1 6 i 6 c, generates the ideal Jw,h′ for some Hessenberg function h′.

Before launching into the proof we summarize the overall strategy. We treat the indecomposable and
decomposable cases separately. If h is indecomposable, we use the ordering above and also exploit the fact
that Hess(N,h) is irreducible for different values of h. If h is not indecomposable, we do not attempt to
define or analyze its defining ideal using methods similar to the previous section; instead, we simply reduce
to the indecomposable case by treating abstractly its indecomposable pieces.

Proof of Theorem 4.1. Since the claim is local, it is enough to prove the claim for each Nw,h in the affine
cover. We saw in Proposition 3.5 that for any w ∈ Sn, the coordinate ring of Nw,h is isomorphic to
C[xw]/Jw,h. Thus it suffices to show that C[xw]/Jw,h is locally a complete intersection in the sense of [17,
§ 18.5]. Moreover, since localization preserves regular sequences [17, Lemma 18.1], it suffices to prove that
the generators of Jw,h form a regular sequence.

We first prove the claim for the case when the Hessenberg function h is indecomposable. Let c =
codim(Jw,h). As observed in the proof of Lemma 3.15, c is equal to the number of generators fwi,j of
Jw,h. Let f1, . . . , fc be the generators of Jw,h, totally ordered as explained above. We now prove that fi is
not a zero-divisor in the quotient ring C[xw]/〈f1, . . . , fi−1〉 for all i with 1 6 i 6 c. As we have seen above,
there exists a Hessenberg function h′ : [n]→ [n] such that h′(j) > h(j) for j ∈ [n], and Jw,h′ = 〈f1, . . . , fi−1〉.
It follows that h′ is also indecomposable. By Proposition 3.5, C[xw]/Jw,h′ is the coordinate ring of Nw,h′ ,
which is irreducible (since Hess(N,h′) is irreducible). Therefore the ring C[xw]/Jw,h′ is an integral domain.
So fi in C[xw]/〈f1, . . . , fi−1〉 = C[xw]/Jw,h′ is not a zero-divisor.

Now suppose that h is not indecomposable. Then by the definition of indecomposability we must have
h(j) = j for some j ∈ {2, 3, . . . , n−1}. In this case, Hess(N,h) is isomorphic to a product of regular nilpotent
Hessenberg varieties whose Hessenberg functions are indecomposable [16, Theorem 4.5]. By induction, we
can reduce the argument to the case of two factors, i.e. suppose Hess(N,h) ∼= Hess(N ′, h′) × Hess(N ′′, h′′),
where N ′ and N ′′ are regular nilpotent operators of the appropriate size in Jordan canonical form, and h′

and h′′ are indecomposable. Now Hess(N,h) is covered by affine schemes

Spec ((C[xw′ ]/Jw′,h′)⊗C (C[xw′′ ]/Jw′′,h′′)) ,

for permutations w′ and w′′ of the appropriate size. Moreover, we have an isomorphism of C-algebras

(C[xw′ ]/Jw′,h′)⊗C (C[xw′′ ]/Jw′′,h′′) ∼= C[xw′ ,xw′′ ]/(Jw′,h′ + Jw′′,h′′).
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By the first part of the proof, Jw′,h′ and Jw′′,h′′ are generated by regular sequences. Since the two sequences
are in independent sets of variables their union is again regular. Thus we conclude that Jw′,h′ + Jw′′,h′′ is
generated by a regular sequence, as was to be shown. �

Recall that a Noetherian local ring which is a complete intersection is automatically Cohen-Macaulay and
Gorenstein [11, Proposition 3.1.20]. In light of this fact, we obtain the following immediate consequence of
Theorem 4.1.

Corollary 4.3. For any Hessenberg function h, the regular nilpotent Hessenberg variety Hess(N,h) is
Cohen-Macaulay and Gorenstein.

5. Properties of a family of Hessenberg varieties

Let h : [n]→ [n] be a Hessenberg function and let H(h) ⊆ gln(C) be the corresponding Hessenberg space.
The Hessenberg varieties (see Definition 2.1) with Hessenberg function h can be assembled into a family over
gln(C) defined as

(5.1) {(MB,Γ) ∈ GLn(C)/B × gln(C) |M−1ΓM ∈ H(h)} ⊆ Flags(Cn)× gln(C).

We are interested in a smaller family which we define as follows. Throughout the discussion we fix pairwise
distinct complex numbers γ1, γ2, . . . , γn. For t ∈ C, we define

Γt :=


tγ1 1

tγ2 1
. . .

. . .

tγn−1 1
tγn

 .

Viewing C as the complex affine line A1 = A1
C, we define a family over A1 by setting

Xh := {(MB, t) ∈ Flags(Cn)× A1 |M−1ΓtM ∈ H(h)}
which can be viewed as a subfamily of (5.1) via the embedding A1 ↪→ gln(C) by t 7→ Γt, and in particular
there is a canonical projection

(5.2) p : Xh −→ A1, (MB, t) 7−→ t.

This family Xh is presumably the family of Hessenberg varieties mentioned in [5]. In this section, we will
prove the following geometric properties of Xh.

Theorem 5.1. Suppose that h is indecomposable. The morphism p : Xh → A1 is flat, and its scheme-
theoretic fibers over the closed points of A1 are reduced.

As mentioned in the Introduction, an application of this result to the study of Newton-Okounkov bodies
is explained in Section 8.

Remark 5.2. Using the language and techniques of degeneracy loci, it is shown in [5] that regular nilpotent
Hessenberg schemes are reduced, for the special case when the Hessenberg function is of the form h =
(k, n, . . . , n) for some 2 6 k 6 n [5, Theorem 7.6].

Our proof of Theorem 5.1 consists of two parts: flatness (Proposition 5.5) and reducedness (Proposi-
tion 5.10). We begin with flatness. Echoing the remarks in the introduction, we should emphasize that we
do not claim originality for this result and we are recording the proof here only for completeness. In any
event, as is well-known, flatness over A1 is a mild condition, and indeed the proof we give is a straightforward
application of very standard results in e.g. the textbooks of Shafarevich [40] and Hartshorne [23]. There are
other easy ways to prove this as well (see e.g. Remark 5.6).

As introduced above, Xh is a Zariski-closed subset of the algebraic variety Flags(Cn)×A1. We can think
of Flags(Cn) × A1 as an integral scheme in a standard way (cf. for example [23, II, Proposition 2.6]), and
we can also consider Xh as a subscheme of Flags(Cn) × A1 with the reduced induced scheme structure.
Moreover, the morphism of algebraic varieties p : Xh → A1 defined above induces a morphism of schemes
which by slight abuse of notation we also denote by p. We start with the following elementary observation.
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Lemma 5.3. The morphism of schemes p : Xh → A1 is surjective.

Proof. The map of varieties p : Xh → A1 of (5.2) is clearly surjective. The functor from the category of
varieties over C to the category of schemes over C preserves surjectivity, so the statement follows. �

Lemma 5.4. Suppose that h : [n]→ [n] is indecomposable. Then the scheme Xh is irreducible.

Proof. It suffices to show that Xh is irreducible as a variety, as this implies that Xh is irreducible as a scheme.
Thus, all spaces appearing in this proof should be interpreted as varieties.

We begin by constructing a projective version of the family Xh. For [t : s] ∈ P1, set

Γt,s :=


tγ1 s

tγ2 s
. . .

. . .

tγn−1 s
tγn

 .

For [t : s] ∈ P1, the location of the zero entries in the matrix M−1Γt,sM is well-defined. Thus we can define

X̃h := {(MB, [t : s]) ∈ Flags(Cn)× P1 |M−1Γt,sM ∈ H(h)}.

This is a family over P1 via the projection

p̃ : X̃h −→ P1, (MB, [t : s]) 7−→ [t : s].

Clearly, p̃ is surjective.
We examine the fibres of p̃. The fibre p̃−1([0 : 1]) is the regular nilpotent Hessenberg variety Hess(N,h),

which is irreducible of dimension
∑n
i=1(h(i) − i) (see [5, Lemma 7.1]). For [t : s] 6= [0 : 1], the matrix Γt,s

has n distinct eigenvalues, hence the fibre p̃−1([t : s]) is a regular semisimple Hessenberg variety. It is known
that regular semisimple Hessenberg varieties are smooth of dimension

∑n
i=1(h(i) − i) [14, Theorem 6]. In

addition, if h is indecomposable, the regular semisimple Hessenberg variety is connected [14, Corollary 9].
Since p̃−1([t : s]) is smooth and connected, we deduce that it is irreducible.

So far we have shown that p̃ is surjective and that its fibres are all irreducible and of the same dimension.

Since P1 is irreducible, we can apply [40, I, § 6.3, Theorem 8] to deduce that X̃h is irreducible. Finally,
observe that the map

Xh → X̃h, (MB, t) 7→ (MB, [t : 1])

embeds Xh as a nonempty open subset in X̃h. Since X̃h is irreducible, we conclude that Xh is irreducible. �

Proposition 5.5. Suppose that h is indecomposable. The morphism of schemes p : Xh → A1 is flat.

Proof. The scheme Xh is reduced by definition, and it is irreducible by Lemma 5.4. The morphism p : Xh →
A1 is surjective by Lemma 5.3. Moreover, the codomain A1 is an integral regular scheme of dimension 1.
Therefore p is flat by [23, III, Proposition 9.7]. �

Remark 5.6. We sketch a different approach to the proof of Proposition 5.5, which was communicated to
us by P. Brosnan. As shown in [10, §8.2], the family of all regular Hessenberg varieties over regular matrices
is smooth, and has equidimensional fibers. Since a morphism between non-singular varieties is flat if and
only if its fibers are equidimensional (see e.g. [33]), it follows that this family is flat. Finally, since flatness
is preserved under base change, restricting to our smaller family yields the desired statement.

To complete the proof of Theorem 5.1, we still need to show that the scheme-theoretic fibers of p : Xh → A1

over closed points of A1 are reduced. In order to do this, we need to know the local defining ideals of Xh as
a subvariety (subscheme) of Flags(Cn) × A1. This discussion almost exactly mirrors that of Section 3 and
therefore we keep the exposition very brief.

The product Flags(Cn)× A1 is covered by the affine varieties Nw × A1, for w ∈ Sn with coordinate ring
C[xw, t]. The family Xh is covered by Xh ∩ (Nw ×A1), for w ∈ Sn, and if we define Fwi,j := (M−1ΓtM)i,j ∈
C[xw, t], then Xh ∩ (Nw × A1) is set-theoretically cut out by the equations Fwi,j = 0, for all i, j ∈ [n] with
i > h(j). Let Jw,h ⊆ C[xw, t] denote the ideal generated by the Fwi,j , for all i, j ∈ [n] with i > h(j). One can
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easily prove that the affine schemes SpecC[xw, t]/Jw,h glue together along the same lines of Section 3 and
we denote this scheme as X′h.

To prove that the scheme X′h is reduced and hence may be identified with Xh, we essentially follow the
same strategy used in Section 3 although in a slightly different order. Namely, we show that for every
w ∈ Sn, C[xw, t]/Jw,h is Cohen-Macaulay, and C[xw0

, t]/Jw0,h is reduced. The overall reducedness of Xh
will then follow.

Lemma 5.7. For any w ∈ Sn, the ring C[xw, t]/Jw,h is Cohen-Macaulay.

Proof. The argument is the same as that for Proposition 3.15. The only difference is that the parameter t
in C[xw, t], corresponding to the affine line A1, increases the dimension by one. However, the dimension of
C[xw, t]/Jw,h is also increased by one for the same reason. Therefore, we still have that

codim(Jw,h) =

n∑
i=1

(n− h(i)),

which equals the number of generators of Jw,h. �

Lemma 5.8. Suppose that h is indecomposable. Then the localization (C[xw0 , t]/Jw0,h)t is reduced.

Proof. The ideal Jw0,h is generated by the polynomials Fw0
i,j = (M−1ΓtM)i,j with i > h(j). Recall that we

have M−1 = (yi,j), with the yi,j satisfying equation (3.8) and enjoying the properties ((i)), ((ii)), and ((iii))
recorded in the proof of Proposition 3.8. For i < n+ 1− j, equation (3.8) together with properties ((i)) and
((ii)) and ((iii)) imply that

yi,j = −
n−j∑
k=i+1

yi,n+1−kxk,j − xi,j .

Hence, by property ((iii)), the polynomial

(5.3) ỹi,j := yi,j + xi,j

does not depend on the variable xi,j .
From the definition of Fw0

n+1−i,j it follows that

Fw0
n+1−i,j =

(
0 . . . 0 1 yi,n−i . . . yi,1

)



tγ1x1,j + x2,j
...

tγn−j−1xn−j−1,j + xn−j,j
tγn−jxn−j,j + 1

tγn+1−j
0
...
0


= (tγixi,j + xi+1,j) +

n−j∑
k=i+1

(tγkxk,j + xk+1,j)yi,n+1−k + tγn+1−jyi,j .

Note that the first and last summand always appear because the indecomposability of h implies that i <
n+ 1− h(j) 6 n+ 1− j, hence i < n+ 1− j. The condition i < n+ 1− j also guarantees that the variable
xi,j appearing in the expression above is not 0 or 1 (cf. (3.1)). Using equation (5.3), we obtain

(5.4) Fw0
n+1−i,j = t(γi − γn+1−j)xi,j + xi+1,j +

n−j∑
k=i+1

(tγkxk,j + xk+1,j)yi,n+1−k + tγn+1−j ỹi,j .

The coefficient of xi,j in equation (5.4) contains the factor γi − γn+1−j , which is nonzero since we assume
the γk are pairwise distinct. As for the t factor, it will become invertible after passing to the localization
C[xw0 , t]t. With the exception of the first term, all the terms in equation (5.4) depend only on variables xk,`
with k > i and ` > j, or k > i and ` > j.
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Now a simple inductive argument based on the above observations shows that in the localization (C[xw0 , t]/Jw0,h)t
the variables xi,j with 1 6 j 6 n− 1 and 1 6 i 6 n− h(j) can be replaced by expressions involving the free
variables xi,j with 1 6 j 6 n− 1 and i > n− h(j). More formally, we have the following ring isomorphisms

(C[xw0
, t]/Jw0,h)t ∼= C[xw0

, t]t/(Jw0,h)t
∼= C[t±]⊗ C[xi,j | 1 6 j 6 n− 1, i > n− h(j)].

It follows that (C[xw0 , t]/Jw0,h)t is reduced.
In geometric terms, what we have shown may be phrased as follows. First observe that since Xh (and hence

X′h) is irreducible, Spec(C[xw0
, t]/Jw0,h) is irreducible. The non-empty open subset Spec((C[xw0

, t]/Jw0,h)t),
the complement of the zero fiber p−1(0) in Spec(C[xw0

, t]/Jw0,h), is therefore dense. Since we have just seen
that Spec((C[xw0

, t]/Jw0,h)t) is reduced, we conclude Spec(C[xw0
, t]/Jw0,h) is generically reduced, and since

it is also Cohen-Macaulay by Lemma 5.7 and irreducible, by Lemma 3.14 we conclude it is reduced, as
desired. �

The fact that the polynomials Fwi,j generate the defining ideal of Xh ∩ (Nw × A1) now follows from an
argument identical to that for Proposition 3.5 so we omit the proof.

Proposition 5.9. Let h : [n]→ [n] be an indecomposable Hessenberg function. For every w ∈ Sn, the ring
C[xw, t]/Jw,h is the coordinate ring of the subvariety Xh ∩ (Nw × A1) of Nw × A1. In particular, the ideal
Jw,h is radical and is the defining ideal of Xh ∩ (Nw × A1) in Nw × A1.

With the defining polynomials in hand, we are finally ready to prove that the scheme-theoretic fibers of
Xh are reduced. For this purpose, let z ∈ C be a complex number which we also think of as a closed point
in A1. The local ring of A1 at z is the localization C[t](t−z), and let k(z) denote its residue field. Recall that

the scheme-theoretic fibre of the family p : Xh → A1 over z is defined as

(Xh)z := Xh ×A1 Spec (k(z)) .

Since Xh is covered by the open affine schemes Spec(C[xw, t]/Jw,h) for w ∈ Sn, the fibre (Xh)z has an open
affine covering consisting of

Spec(C[xw, t]/Jw,h)×A1 Spec (k(z)) ∼= Spec
(
(C[xw, t]/Jw,h)⊗C[t] k(z)

)
.

Consider the ideal
Jw,h|t=z := 〈Fwi,j |t=z | i > h(j)〉

of C[xw] whose generators are obtained from the generators of Jw,h after setting the variable t equal to z.
Since the functor −⊗C[t] k(z) has the effect of substituting t with z, we have an isomorphism of rings

(C[xw, t]/Jw,h)⊗C[t] k(z) ∼= C[xw]/(Jw,h|t=z).
Thus,

(5.5) (Xh)z =
⋃

w∈Sn

Spec (C[xw]/(Jw,h|t=z)) .

In order to show that the fibres (Xh)z are reduced, we will prove that the rings C[xw]/(Jw,h|t=z) are reduced.

Proposition 5.10. Suppose that h is indecomposable. Let z ∈ C and w ∈ Sn. Then the ring C[xw]/(Jw,h|t=z)
is reduced.

Proof. First, let us consider the case z 6= 0. Focusing on the w0 patch, we observe that the ideal Jw0,h|t=z
is generated by the polynomials

Fw0
n+1−i,j |t=z = z(γi − γn+1−j)xi,j + xi+1,j +

n−j∑
k=i+1

(zγkxk,j + xk+1,j)yi,n+1−k + zγn+1−j ỹi,j .

Proceeding as in Lemma 5.8, it easy to show that

C[xw0
]/(Jw0,h|t=z) ∼= C[xi,j | 1 6 j 6 n− 1, i > n− h(j)].

In particular, C[xw0 ]/(Jw0,h|t=z) is reduced. Using the same argument as in Lemma 5.7, we have that, for
all w ∈ Sn, the rings C[xw]/(Jw,h|t=z) are Cohen-Macaulay. Thus the rings C[xw]/(Jw,h|t=z) are reduced
by Lemma 3.14.
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Next, consider the case z = 0. For any w ∈ Sn, we have

Fwi,j |t=0 = (M−1Γ0M)i,j = (M−1NM)i,j = fwi,j ,

where fwi,j is a generator of the ideal Jw,h as introduced in Section 3. Then we have an equality of ideals
Jw,h|t=0 = Jw,h, for all w ∈ Sn. It follows that the ring C[xw]/(Jw,h|t=0) is reduced by Proposition 3.5. �

Propositions 5.5 and 5.10 together conclude the proof of Theorem 5.1.
We end this section with an example showing that Theorem 5.1 does not hold when h is decomposable.

Example 5.11 (Non-reduced fiber when h is decomposable). Let n = 2 and h = (1, 2). We consider the
open subset Xh ∩ (Nid × A1) of our family Xh and its fiber at t = 0. We have Jid,h = 〈F id

2,1〉 ⊆ C[x1,1, t],
where

F id
2,1 = t(γ2 − γ1)x1,1 − x21,1.

It is easy to see directly that the quotient ring C[xid, t]/Jid,h is reduced. However, we have Jid,h|t=0 = 〈x21,1〉.
Thus the ring C[xid]/〈x21,1〉 is not reduced. We conclude that scheme-theoretic fiber (Xh)0 is not reduced.

6. Preliminaries: Newton-Okounkov bodies and degrees

The results of the previous sections put us in a position to effectively study the Newton-Okounkov bodies of
Hessenberg varieties, and our first results in this direction occupy the remaining sections of this manuscript.
In particular, using (special cases of) the results of Section 7 and Section 8, we give in Section 9 some
explicit computations of Newton-Okounkov bodies of Hessenberg varieties, which was in fact one of the
primary motivations behind the present manuscript. Since we expect that some of the readers of this
manuscript may not be familiar with the theory of Newton-Okounkov bodies, in this section we provide
some background and recall some definitions. As in Section 2, we keep discussion very brief since detailed
exposition is available in the literature (e.g. [27, 30]).

6.1. Definitions and construction of Newton-Okounkov bodies. We begin with the definition of a
valuation (in our setting). We equip Zn with the lexicographic order.

Definition 6.1. (1) Let V be a C-vector space. A prevaluation on V is a function

ν : V \ {0} → Zn

satisfying the following:
(a) ν(cf) = ν(f) for all f ∈ V \ {0} and c ∈ C \ {0},
(b) ν(f + g) > min{ν(f), ν(g)} for all f, g ∈ V \ {0} with f + g 6= 0.

(2) Let A be a C-algebra. A valuation on A is a prevaluation on A, ν : A \ {0} → Zn, which also
satisfies the following: ν(fg) = ν(f) + ν(g) for all f, g ∈ A \ {0}.

(3) The image ν(A \ {0}) ⊂ Zn of a valuation ν on a C-algebra A is clearly a semigroup and is called
the value semigroup of the pair (A, ν).

(4) Moreover, if in addition the valuation has the property that for any pair f, g ∈ A \ {0} with same
value ν(f) = ν(g) there exists a non-zero constant c 6= 0 ∈ C such that either ν(g − cf) > ν(g) or
else g − cf = 0 then we say that the valuation has one-dimensional leaves.

If ν is a valuation with one-dimensional leaves, then the image of ν is a sublattice of Zn of full rank.
Hence, by replacing Zn with this sublattice if necessary, we will always assume without loss of generality
that ν is surjective.

We are interested in valuations which arise naturally in geometric contexts. Let X be a projective variety
of dimension d over C. The following is an example of a valuation on C(X) which is frequently considered
in the theory of Newton-Okounkov bodies. Suppose given a flag

Y• : X = Y0 ⊇ Y1 ⊇ · · · ⊇ Yd−1 ⊇ Yd = {pt}

of irreducible subvarieties of X where codimC(Y`) = ` and each Y` is non-singular at the point Yd = {pt}(` =
0, 1, . . . , d). Such a flag defines a valuation by an inductive procedure involving restricting to each subvariety
and considering the order of vanishing along the next (smaller) subvariety (for details see e.g. [30]). Many
computations of Newton-Okounkov bodies that occur in the current literature are for valuations defined in
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this manner, and the point of Section 7 is to construct a particularly natural and well-behaved such flag of
subvarieties for a regular nilpotent Hessenberg variety.

Now let E := H0(X,L) denote the space of global sections of L; it is a finite dimensional vector space over
C. Recall that the line bundle L gives rise to the Kodaira map ΦE of E, from X to the projective space
P(E∗). The assumption that L is very ample implies that the Kodaira map ΦE is an embedding. Further
let Ek denote the image of the k-fold product E ⊗ · · · ⊗ E in H0(X,L⊗k) under the natural map given
by taking the product of sections. The homogeneous coordinate ring of X with respect to the embedding
ΦE : X ↪→ P(E∗) can be identified with the graded algebra

R = R(E) =
⊕
k>0

Rk,

where Rk := Ek. This is a subalgebra of the ring of sections R(L) =
⊕

k>0H
0(X,L⊗k).

For a fixed ν we now associate a semigroup S(R) ⊂ N × Zd to R. First we identify E = H0(X,L)
with a (finite-dimensional) subspace of C(X) by choosing a non-zero element h ∈ E and mapping f ∈ E
to the rational function f/h ∈ C(X). Similarly, we can associate the rational function f/hk to an element
f ∈ Rk := Ek ⊆ H0(X,L⊗k). We define

(6.1) S = S(R) = S(R, ν, h) =
⋃
k>0

{(k, ν(f/hk)) | f ∈ Ek \ {0}}.

Define C(R) ⊆ R × Rd to be the cone generated by the semigroup S(R), i.e., it is the smallest closed
convex cone centered at the origin containing S(R). We can now define the central object of interest.

Definition 6.2. Let ∆ = ∆(R) = ∆(X,R, ν) be the slice of the cone C(R) at level 1, that is, C(R)∩ ({1}×
Rd), projected to Rd via the projection to the second factor R× Rd → Rd. We have

∆ = conv

(⋃
k>0

{x
k

∣∣∣ (k, x) ∈ S(R)
})

.

The convex body ∆ is called the Newton-Okounkov body of R with respect to the valuation ν.

The above definition can be naturally extended to cover the case of subrings of the ring R = R(E) of the
form R(W ) := ⊕kW k ⊆ R(E) where W is a choice of subspace W ⊆ H0(X,L) = E and W k denotes the
image of the k-tensor product W⊗k → Ek. In this setting we denote the associated Newton-Okounkov body
as ∆(X,R(W ), ν).

6.2. The degree as an upper bound on the volume of a Newton-Okounkov body. In this short
section we point out a completely elementary fact which follows immediately from the properties of Newton-
Okounkov bodies. We do not claim any originality. Nevertheless, because it is an observation which informs
much of what we do in Sections 8 and 9 and because we believe it is potentially useful for anyone attempting
to compute Newton-Okounkov bodies, we take a moment to record it explicitly here.

Let HR(k) := dimC(Rk) be the Hilbert function of the graded algebra R. It is well-known that the
Newton-Okounkov body ∆(R) defined in Section 6.1 encodes information about the asymptotic behavior of
the Hilbert function of R [27, 30, 34, 35].

Theorem 6.3. The Newton-Okounkov body ∆(R) has real dimension d, and the leading coefficient

ad = lim
k→∞

HR(k)

kd
,

of the Hilbert function HR(k) of R is equal to Vol(∆(R)), the Euclidean volume of ∆(R) in Rd. In particular,
the degree of the projective embedding of X in P(E∗) is equal to d!Vol(∆(R)).

More explicitly, the above theorem implies that

(6.2)
1

d!
deg(X ⊆ P(E∗)) = Vol(∆(R)).

The discussion above implies the following elementary observation.
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Observation 6.4. If we can compute the degree of X in P(H0(X,L)∗) = P(E∗) by some other means,
then we have computed the volume of ∆(X,R(V ), ν), independent of any properties of the semigroup or of
the ν(Rk). In particular, if we are able to obtain, via direct computations, a (finite) set of points in the
(projection to the Zd factor of the) semigroup S = S(R) whose convex hull has volume equal to 1

d! times the
degree, then we may immediately conclude that this convex hull is in fact equal to ∆(X,R(V ), ν).

This is the approach we take in the case of the Peterson variety in Section 9. It also motivates our
computation in Section 8, as we explain therein.

7. Flags of subvarieties in regular nilpotent Hessenberg varieties

For a given algebraic variety X, recall from Section 6.1 that the computation of Newton-Okounkov bodies
associated to X requires the choice of auxiliary data, one of which is a valuation on the rational functions on
X. Natural candidates for such valuations are given by well-behaved flags of subvarieties of X. In general
it is natural to choose such flags which are compatible with existing structures on X. For instance, for flag
varieties G/B, Kaveh showed in [26] that flags of Schubert varieties give rise to Newon-Okounkov bodies
with intimate connections to representation theory. For Hessenberg varieties, which are subvarieties of the
flag variety Flags(Cn), it seems quite natural to also consider flags of subvarieties obtained by intersecting
with Schubert varieties. The point of this section is to show that, in the case of indecomposable regular
nilpotent Hessenberg varieties, there is a choice of a sequence of (dual) Schubert varieties which is particularly
well-behaved when intersected with Hess(N,h).

Recall from [19, § 10.6, p.176] that the dual Schubert variety Ωw ⊆ Flags(Cn) for w ∈ Sn is the set of
V• ∈ Flags(Cn) satisfying the condition

dim(Vp ∩ F̃n−q) > |{i 6 p | w(i) > q + 1}|

for q, p ∈ [n] where F• is the anti-standard flag given by F̃j := Cen+1−j ⊕ Cen+2−j ⊕ · · · ⊕ Cen. Recall
also from [19, § 10.2, p.159] that codim(Ωw ⊆ Flags(Cn)) = `(w) the length of w ∈ Sn.

For a permutation w ∈ Sn, let us define the rank matrix rk(w)1 by

rk(w)[q, p] := |{i 6 p | w(i) 6 q}|.

Evidently, rk(w)[q, p] is the rank of the upper left q × p submatrix of the permutation matrix of w. Recall
that the permutation matrix of w ∈ Sn is the matrix which has 1’s in the (w(j), j)-th entries for 1 6 j 6 n
and 0’s elsewhere. For V• ∈ Flags(Cn), let us consider the composition of the maps

Vp ↪→ Cn � Cn/F̃n−q.

Then we have

rank(Vp → Cn/F̃n−q) = dimVp − dim ker(Vp → Cn/F̃n−q) = p− dim(Vp ∩ F̃n−q)

and

rk(w)[q, p] = |{i 6 p | w(i) 6 q}| = p− |{i 6 p | w(i) > q + 1}|.
Hence, we get

(7.1) Ωw = {V• ∈ Flags(Cn) | rank(Vp → Cn/F̃n−q) 6 rk(w)[q, p] for q, p ∈ [n]}.

Now, let us write an element V• ∈ Flags(Cn) = GLn(C)/B in the standard neighbourhood Nw0
(⊂

Flags(Cn)) around w0B by a matrix of the form

V• =


x1,1 x1,2 · · · x1,n−1 1
x2,1 x2,2 · · · 1
...

... . .
.

xn−1,1 1
1

B.(7.2)

1This is the notation from [1]. [19] uses rw(q, p) = rk(w−1)[q, p].
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Then (7.1) implies that the opposite Schubert variety Ωw ∩Nw0 (in this neighbourhood) is described as the
set of V• ∈ Flags(Cn) satisfying the condition:

the upper-left q × p matrix in (7.2) has rank at most rk(w)[q, p] for all q, p ∈ [n].

The diagram of a permutation w ∈ Sn is obtained from the matrix of w−1 by removing all cells in an
n×n array which are weakly to the right and below a 1 in w−1. The remaining cells form the diagram D(w).

1

1

1

1

1

1

1

1

Figure 7.1. For w = 48627315 in one-line notation, D(w) is the configuration of white
boxes in the array above.

It is unfortunate that the diagram is defined in terms of w−1, but that is the most common convention in
the literature. In the discussion below, we wish to work with the permutation matrix for w, so we deal with
the diagram D(w−1) of w−1. Note that the cells of D(w−1) are in bijection with the inversions in w−1, and
in particular, the Bruhat length `(w) = `(w−1) of w is equal to |D(w−1)|.

For w ∈ Sn, we say that the diagram D(w−1) forms a Young diagram if all of the boxes in the diagram
are connected. From the definitions, the following lemma is immediate.

Lemma 7.1. Let w ∈ Sn and suppose that D(w−1) forms a Young diagram. Then we have

rk(w)[q, p] = 0 for (q, p) ∈ D(w−1).

Lemma 7.2. Suppose that D(w−1) forms a Young diagram. Then the opposite Schubert variety Ωw ∩Nw0

(in the affine chart Nw0
) is the set of V• ∈ Flags(Cn) satisfying the condition

xq,p = 0 for (q, p) ∈ D(w−1)

where xi,j are the coordinates for Nw0
given in (7.2).

Proof. Let Z ⊆ Nw0 be the (irreducible) Zariski closed subset of V• ∈ Nw0(⊂ Flags(Cn)) satisfying

xq,p = 0 for (q, p) ∈ D(w−1).

Then, it is clear from Lemma 7.1 that Ωw ∩Nw0
⊆ Z. Also, we have

codim Ωw ∩Nw0
= `(w) = `(w−1) = |D(w−1)| = codimZ

where the first equality uses the fact that Ωw ∩ Nw0
6= ∅. Hence dim Ωw ∩ Nw0

= dimZ, and since Z is
irreducible, we obtain Ωw ∩Nw0

= Z. �

We now build a flag of subvarieties in indecomposable regular nilpotent Hessenberg varieties which looks
like a flag of coordinate subspaces near the point w0. The construction uses a particular sequence of dual
Schubert varieties in Flags(Cn) which we now describe. First set

D := dimC Flags(Cn) =
1

2
n(n− 1)

and let ui ∈ Sn denote the permutation obtained by multiplying the right-most i simple transpositions of
the word

(s1)(s2s1)(s3s2s1) · · · (sn−1sn−2 · · · s2s1),
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where si denotes the simple transposition exchanging i and i+ 1, and we set u0 := id. Note that uD(= w0)
is the longest element. It is not hard to check that the diagrams D(u−1i ) form Young diagrams, and that the

Young diagrams corresponding to the sequence u−10 , u−11 , . . . , u−1D−1, u
−1
D = uD “grow” in sequence by adding

boxes from left to right, starting at the top row. We illustrate with an example.

Example 7.3. Suppose n = 5. Then

u0 = id,

u1 = s1,

u2 = s2s1,

u3 = s3s2s1,

u4 = s4s3s2s1,

u5 = s1 s4s3s2s1,

u6 = s2s1 s4s3s2s1,

u7 = s3s2s1 s4s3s2s1,

u8 = s1 s3s2s1 s4s3s2s1,

u9 = s2s1 s3s2s1 s4s3s2s1,

u10 = s1 s2s1 s3s2s1 s4s3s2s1.

The Young diagrams of u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10 are

∅

We can now define a sequence of subvarieties of Hess(N,h) by intersecting with a sequence of dual Schubert
varieties, as follows:

(7.3) Hess(N,h) = Ωu0 ∩Hess(N,h) ⊇ Ωu1 ∩Hess(N,h) ⊇ · · · ⊇ ΩuD
∩Hess(N,h) = {w0B}.

This sequence is not proper in the sense that it may happen that Ωui
∩ Hess(N,h) = Ωui+1

∩ Hess(N,h)
for some i. Nevertheless, by omitting redundancies of the above form, we obtain a flag of subvarieties of
Hess(N,h) with well-behaved geometric properties within the open dense subset Nw0 . This is the content
of the next theorem and is the main result of this section. Recall from Section 3 that the defining equations
of Nw0,h = Hess(N,h)∩Nw0

in Nw0
have the property that some of the coordinates xi,j are free and others

are non-free variables (cf. remarks after proof of Lemma 3.8).

Theorem 7.4. Let h : [n] → [n] be an indecomposable Hessenberg function. Let {u`}D`=0 be the sequence
in Sn defined above, where D = n(n − 1)/2. Let Nw0,h = Hess(N,h) ∩ Nw0

be the open affine chart of
Hess(N,h) around w0B. Then the subvarieties

(7.4) Nw0,h = Ωu0 ∩Nw0,h ⊇ Ωu1 ∩Nw0,h ⊇ · · · ⊇ ΩuD
∩Nw0,h = {w0B}

satisfy the following:

(1) if the lowest lower-right corner of the Young diagram formed by D(u−1` ) is located at the position
of a free variable, then Ωu`−1

∩Nw0,h 6= Ωu`
∩Nw0,h and

dim Ωu`
∩Nw0,h = dim Ωu`−1

∩Nw0,h − 1;

otherwise, Ωu`−1 ∩Nw0,h = Ωu`
∩Nw0,h;

(2) each Ωu`
∩ Nw0,h is isomorphic to an affine space, and in particular is non-singular and irreducible

in Nw0,h.

Proof. Throughout this argument we use the explicit list of D = n(n − 1)/2 coordinates on Nw0
∼= AD =

An(n−1)/2 given in (7.2), totally ordered by reading the variables from left to right and top to bottom, i.e.

(7.5) x1,1, x1,2, · · · , x1,n−1, x2,1, x2,2, · · · , x2,n−2, · · · , xn−1,1.
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Note also that there are exactly as many variables in the list above as there are elements in the sequence

u1, u2, · · · , uD.
As already observed above, from the construction of the sequence u` it follows that the associated diagrams
D(u−1` ) form Young diagrams, and for a given `, 1 6 ` 6 D, the Young diagram of D(u−1` ) contains the
boxes corresponding to the first ` variables in the list (7.5). We already saw in Lemma 7.2 that Ωu`

∩ Nw0

is equal to the coordinate subspace given by {xq,p = 0 | (q, p) ∈ D(u−1` )}, so it follows that the sequence
of intersections Ωu`

∩ Nw0
can be described explicitly in coordinates by setting the first ` variables in (7.5)

equal to 0, i.e. we have

(7.6) Nw0 ⊃ {x1,1 = 0} ⊃ {x1,1 = x1,2 = 0} ⊃ · · · ⊃ {x1,1 = x1,2 = · · · = xn−1,1 = 0} = {w0B}.
In order to prove the statements in the theorem, we must now also analyze the intersection of these Ωu`

∩Nw0

with Hess(N,h). We proceed by induction on `.
For ` = 1, we have C[Ωu1 ∩Nw0,h] ∼= C[Nw0,h]/〈x1,1〉. As shown in Lemma 3.8, C[Nw0,h] ∼= C[xw0 ]/Jw0,h

is isomorphic to a polynomial ring. Moreover, D(u−11 ) is a single box located at the position of x1,1, which
is always a free variable. Therefore C[Ωu1 ∩Nw0,h] is isomorphic to a polynomial ring of dimension one less
than C[Ωu0 ∩Nw0,h] ∼= C[Nw0,h], and Ωu1 ∩Nw0,h satisfies properties (1) and (2).

For ` > 1, let xi,j denote the `-th variable in the ordered list (7.5), so that Ωu`
∩ Nw0,h is obtained from

Ωu`−1
∩ Nw0,h by setting xi,j equal to 0. (Visually, the position (i, j) is the lowest lower-right corner of the

Young diagram corresponding to D(u−1` ).) First we consider the case when xi,j is a free variable. Then it is
clear that xi,j = 0 places a new linear condition on Ωu`−1

∩Nw0,h. Moreover, C[Ωu`−1
∩Nw0,h] is irreducible

by inductive hypothesis. Therefore the new condition xi,j = 0 forces Ωu`
∩ Nw0,h 6= Ωu`−1

∩ Nw0,h and
dim Ωu`

∩ Nw0,h = dim Ωu`−1
∩ Nw0,h − 1. Next suppose that xi,j is a non-free variable. As we saw in

Lemma 3.8, the defining equations of Hess(N,h) within the affine coordinate chart Nw0 take the form

xi,j = g

where xi,j is a non-free variable and where g is a polynomial in the free variables which is contained in the
ideal generated by xi−1,t for t > j. Since the sequence (7.6) sets variables equal to 0 in order from left to
right and top to bottom, we know that at this `-th step, all variables xi−1,t for t > j, which are contained
in the row directly above that of xi,j , have already been set equal to 0, and hence xi,j is already equal to 0
in Ωu`−1

∩ Nw0,h. Thus the placement of the additional condition xi,j = 0 does not affect the intersection
and we conclude that in this case Ωu`

∩Nw0,h = Ωu`−1
∩Nw0,h, as was to be shown.

It follows from the above that each Ωu`
∩ Nw0,h is isomorphic to an affine space with codimension equal

to the number of free variables contained within the first ` variables in the sequence (7.5). In particular, it
is non-singular and irreducible. This completes the proof. �

The practical consequence of the above discussion is the following. By omitting the redundancies in the
sequence (7.4) caused by the non-free variables, we obtain a flag of subvarieties in Hess(N,h) (defined in
a geometrically natural fashion by intersecting with dual Schubert varieties) such that, near w0B, the flag
is simply a sequence of affine coordinate subspaces. It would be interesting to compute Newton-Okounkov
bodies of regular nilpotent Hessenberg varieties associated to this natural flag. Indeed, the computation of
the special case of the Peterson variety in Section 9 uses the flag described above.

8. Degrees of regular nilpotent Hessenberg varieties

Let Hess(X,h) be a Hessenberg variety in Flags(Cn) and consider a Plücker embedding of Flags(Cn) ↪→
P(V ∗λ ), where λ is a strict partition and Vλ is the irreducible representation of GLn(C) associated with λ. It is
then natural to consider the induced embedding Hess(X,h) ↪→ P(V ∗λ ), and to ask for its degree. Aside from
its intrinstic interest as one of the most basic invariants of an embedding, we also observed in Section 6.2
that a computation of this degree would yield an upper bound on the volume of a Newton-Okounkov body
computed with respect to this embedding and is therefore important in the study of Newton-Okounkov bodies
of Hessenberg varieties. In this section, we apply results of Section 5 to give an efficient computation of the
degree of Hess(N,h) ↪→ P(V ∗λ ) for all indecomposable regular nilpotent Hessenberg varieties. Throughout
this section, we let S : Cn → Cn be a semisimple operator with pairwise distinct eigenvalues, and we consider
the associated regular semisimple Hessenberg variety Hess(S, h).
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In Theorem 5.1 we showed that a certain family Xh → A1 of Hessenberg varieties – whose generic fibres
are regular semisimple Hessenberg varieties and the special fibre is a regular nilpotent Hessenberg variety
– is both flat and has reduced fibres. Since Hilbert polynomials are constant along fibres of a flat family
[23, Theorem 9.9] and because the special fibre is reduced, Theorem 5.1 therefore immediately implies the
following.

Corollary 8.1. Let λ be a dominant weight and let Flags(Cn) ↪→ P(V ∗λ ) be the corresponding Plücker
embedding. By composing with the natural inclusion maps, we obtain embeddings Hess(N,h) ↪→ P(V ∗λ ) and
Hess(S, h) ↪→ P(V ∗λ ). If h is indecomposable, then the degrees of these two embeddings are equal, i.e.,

deg(Hess(N,h) ↪→ P(V ∗λ )) = deg(Hess(S, h) ↪→ P(V ∗λ )).

Example 8.2. Let h : [n] → [n] satisfy h(j) = j + 1 for 1 6 j < n. Then Hess(N,h) is the Peterson
variety Petn. The regular semisimple Hessenberg variety Hess(S, h) is isomorphic to the toric variety XAn−1

associated to the root system of type An−1 [14]. We now have

deg(Petn ↪→ P(V ∗λ )) = deg(XAn−1 ↪→ P(V ∗λ )).

It is known that regular semisimple Hessenberg varieties are smooth and are equipped with an action
of the maximal torus T of GLn(C) [14]. In what follows, we use these facts to maximum effect by using
both the recent work of Abe, Horiguchi, Masuda, Murai, and Sato [4] as well as the classical Atiyah-
Bott-Berline-Vergne formula to obtain a computationally efficient formula for the degree of the embedding
Hess(S, h) ↪→ P(V ∗λ ), expressed as a polynomial in the components of λ = (λ1 > λ2 > . . . , λn−1 > λn). By
Corollary 8.1, the formula also computes the degree of Hess(N,h).

We now turn to the details. For simplicity, throughout this discussion we restrict to the special case of
GLn(C). Let λ = (λ1 > λ2 > . . . , λn−1 > λn) ∈ Zn be a strict partition. It is well-known that there is a
unique irreducible representation Vλ of GLn(C) associated with λ, and a corresponding Plücker embedding

Flags(Cn) ∼= GLn(C)/B ↪→ P(V ∗λ )

given by mapping Flags(Cn) to the GLn(C)-orbit of the highest weight vector in V ∗λ . Composing with the
canonical inclusion map Hess(N,h) ↪→ Flags(Cn), this gives us a closed embedding

Hess(N,h) ↪→ Flags(Cn) ↪→ P(V ∗λ ).

Define the volume of this embedding (or of the corresponding line bundle) by

(8.1) Vol(Hess(N,h) ↪→ P(V ∗λ )) :=
1

d!
deg(Hess(N,h) ↪→ P(V ∗λ ))

where d := dimC Hess(N,h) =
∑n
j=1(h(j)− j). As already observed in (6.2), the right-hand side of (8.1) is

precisely the volume of any Newton-Okounkov body of Hess(N,h) computed with respect to this embedding;
this justifies the choice of terminology.

Using the result from [3] that the cohomology ring H∗(Hess(N,h);Q) is a Poincaré duality algebra gen-
erated by degree 2 elements, the recent work of [4] relates the cohomology ring of Hess(N,h) to other
combinatorial and algebraic invariants; in particular, in [4, § 11] they define, purely algebraically, a certain
polynomial (denoted PI in [4, § 11]) associated to H∗(Hess(N,h);Q). The main result of this section is
that this polynomial computes the volume Vol(Hess(N,h) ↪→ P(V ∗λ )) defined in geometric terms in (8.1).
To state the result precisely, we first concretely define the polynomial (up to a scalar multiple) given in [4]
for our special case of Lie type An−1. Let Q[x1, . . . , xn] be a polynomial ring in n variables and for any
i ∈ [n] let ∂xi

denote the usual derivative with respect to the variable xi. Also for any i, j ∈ [n] we define
∂i,j := ∂xj

− ∂xi
. With this notation in place we may now define, following [4],

(8.2) Ph(x1, . . . , xn) :=

 ∏
h(j)<i

∂i,j

 ∏
16k<`6n

xk − x`
`− k

∈ Q[x1, . . . , xn].

The theorem below is the main result of this section.

Theorem 8.3. Let h : [n] → [n] be an indecomposable Hessenberg function and let λ = (λ1 > λ2 > · · · >
λn) ∈ Zn be a strict partition. Then

Vol(Hess(N,h) ↪→ P(V ∗λ )) = Ph(λ1, . . . , λn).
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Proof. Consider the regular semisimple Hessenberg variety Hess(S, h) corresponding to the same Hessenberg
function h and define the volume Vol(Hess(S, h)) by the same formula (8.1) (replacing N by S). From the
right-hand side of (8.1) and by Corollary 8.1 it follows that it suffices to prove that the volume of the regular
semisimple Hessenberg variety is computed by Ph, i.e. it is enough to show

Vol(Hess(S, h) ↪→ P(V ∗λ )) = Ph(λ1, . . . , λn).

Since Hess(S, h) is non-singular [14], the degree of a projective embedding is equal to its symplectic volume
[22, § 1.3, pg. 171]:

(8.3) Vol(Hess(S, h) ↪→ P(V ∗λ )) =
1

d!
deg(Hess(S, h) ↪→ P(V ∗λ )) =

1

d!

∫
Hess(S,h)

c1(Lλ)d

where c1(Lλ) is the first Chern class of the pullback line bundle Lλ on Hess(S, h) with respect to the Plücker
embedding and d = dimC Hess(S, h) =

∑n
j=1(h(j) − j). Since the maximal torus T of GLn(C) acts on

Hess(S, h) [14], the Atiyah-Bott-Berline-Vergne localization formula [6, 8] computes this integral using the
local data around the torus fixed points:

(8.4)
1

d!

∫
Hess(S,h)

c1(Lλ)d =
1

d!

∑
w∈Sn

λw
ew
,

where λw denotes the weight of the T -action on the fiber of Lλ at the fixed point wB and ew denotes the
T -equivariant Euler class of the normal bundle to the fixed point wB, i.e., the product of the weights of the
T -representation on the tangent space Tw Hess(S, h).

To proceed further we need a more explicit description of the line bundle Lλ. Let Li denote the i-th
tautological line bundle over Flags(Cn), i.e., the fiber of Li at a flag V• ∈ Flags(Cn) is Vi/Vi−1. Then it is
well-known [19, § 9.3] that

Lλ ∼= (L∗1)λ1 ⊗ (L∗2)λ2 ⊗ · · · ⊗ (L∗n)λn(8.5)

is the pullback to Flags(Cn) of O(1) → P(V ∗λ ). By slight abuse of notation we also denote by Lλ this line
bundle restricted on Hess(S, h).

We can now compute the right-hand side of (8.4). Recall that the torus T in question is the diagonal torus
T = {diag(t1, t2, . . . , tn) | ti ∈ C×} of GLn(C). In this context, T -weights are elements of Z[t1, . . . , tn] where
each ti denotes the weight T → C× defined by diag(t1, t2, . . . , tn) 7→ ti. The weight of the i-th tautological
line bundle Li at the fixed point w ∈ Sn is given by tw(i) since the fiber is spanC ew(i) ⊂ Cn by definition of
Li where e1, . . . , en are the standard basis of Cn. Thus the weight λw is

(8.6) λw = −
n∑
i=1

λitw(i).

It is also known [14] that the weight ew is given by

(8.7) ew =
∏

j<i6h(j)

(tw(i) − tw(j)) = (−1)d
∏

j<i6h(j)

(tw(j) − tw(i)).

Putting together (8.3), (8.4), (8.6) and (8.7) we therefore obtain

(8.8) Vol(Hess(S, h) ↪→ P(V ∗λ )) =
1

d!

∑
w∈Sn

(∑n
i=1 λitw(i)

)d∏
j<i6h(j)(tw(j) − tw(i))

.

The essential idea of what follows, due to [4], is to now think of the right-hand side of (8.8) as a polynomial
in the variables λi. More precisely, let us define

QHess(S,h)(x1, . . . , xn) :=
1

d!

∑
w∈Sn

(∑n
i=1 xitw(i)

)d∏
j<i6h(j)(tw(j) − tw(i))

.

This is in fact a polynomial in R[x1, . . . , xn] since after taking the summation over Sn the right-hand side
does not depend on t1, . . . , tn [6, 8]. From the definition it follows that for any strict partition λ = (λ1 >
λ2 > · · · > λn) we have

(8.9) Vol(Hess(S, h) ↪→ P(V ∗λ )) = QHess(S,h)(λ1, . . . , λn).
25



Now a straightforward computation shows that

∂i,j

(
n∑
i=1

xitw(i)

)
= tw(j) − tw(i).

From this, it follows from an easy induction argument that

(8.10) QHess(S,h)(x1, . . . , xn) =

 ∏
h(j)<i

∂i,j

QFlags(Cn)(x1, . . . , xn)

where we think of Flags(Cn) as the regular semisimple Hessenberg variety with h = (n, . . . , n). For a strict
partition λ, the volume of Flags(Cn) with respect to the Plücker embedding into P(V ∗λ ) is well-known to be
the volume of the Gelfand-Cetlin polytope associated to λ, for which a formula is known (e.g. [32] and [36]),
and we conclude

(8.11) Vol(Flags(Cn) ↪→ P(V ∗λ )) = QFlags(Cn)(x1, . . . , xn) =
∏

16k<`6n

xk − x`
`− k

.

From (8.10) and (8.11) we therefore deduce that

(8.12) QHess(S,h)(x1, . . . , xn) = Ph(x1, . . . , xn).

Thus, from (8.9) and (8.12), we conclude that for a strict partition λ

Vol(Hess(S, h) ↪→ P(V ∗λ )) = Ph(λ1, . . . , λn)

as was to be shown. �

Remark 8.4. Since the line bundle L1⊗· · ·⊗Ln is trivial, we have Ln ∼= L∗1⊗· · ·⊗L∗n−1. So we can always
assume that λn = 0.

We now use Theorem 8.3 to compute the volume of a special case of a regular nilpotent Hessenberg variety
which is studied in Section 9.

Example 8.5. Let n = 3 and h = (2, 3, 3), and consider the corresponding regular nilpotent Hessenberg
variety Pet3 := Hess(N,h) ⊂ Flags(C3). Then

Ph(x1, x2, x3) = (∂x1
− ∂x3

)

(
(x1 − x2)(x1 − x3)(x2 − x3)

2

)
=

1

2
(x1 − x2)2 + 2(x1 − x2)(x2 − x3) +

1

2
(x2 − x3)2.

So we obtain

Vol(Pet3 ↪→ P(V ∗λ )) =
1

2
(λ1 − λ2)2 + 2(λ1 − λ2)(λ2 − λ3) +

1

2
(λ2 − λ3)2

for any strict partition λ = (λ1 > λ2 > λ3). Let us introduce the notation a1 := λ2 − λ3 and a2 := λ1 − λ2
and set λ3 = 0 following Remark 8.4. Then we have

Vol(Pet3 ↪→ P(V ∗λ )) =
1

2
a21 + 2a1a2 +

1

2
a22.

9. Newton-Okounkov bodies of Peterson varieties

With the results of Section 7 and 8 in hand, we are now in a position to give a concrete computation of many
examples of Newton-Okounkov bodies associated to the Peterson variety Pet3 as defined in Definition 2.5.
Specifically, we compute the Newton-Okounkov bodies ∆(Pet3, R(Wλ), ν), where here Wλ is the image of
H0(Flags(C3), Lλ) in H0(Pet3, Lλ|Pet3) and Lλ is the Plücker line bundle over Flags(C3) corresponding to
λ (see [19, § 9.3] or (8.5)).

We need some notation. Let λ = (λ1 > λ2 > λ3) ∈ Z3 be a dominant weight where we may assume without
loss of generality that λ3 = 0. In fact it will be convenient to set the notation a1 := λ2 and a2 := λ1 − λ2
so that λ = (a1 + a2, a1, 0). Let Lλ denote the Plücker line bundle obtained from the Plücker embedding
ϕλ : Flags(C3) → P(V ∗λ ) where Vλ denotes the irreducible GL3(C)-representation associated with λ. Let
Wλ denote the image of H0(Flags(C3), Lλ) in H0(Pet3, Lλ|Pet3) and let R(Wλ) denote the corresponding
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graded ring. We use a geometric valuation on Pet3 coming from the flag of subvarieties constructed in
Section 7. More specifically, on the affine open chart Nw0 near the longest permutation w0 = (321) ∈ S3,
it follows from the analysis in Section 3 of the defining equations of regular nilpotent Hessenberg varieties
that Pet◦3 := Nw0

∩ Pet3 can be identified with matrices of the form

(9.1)

y x 1
x 1 0
1 0 0


for arbitrary x, y ∈ C, and applying Theorem 7.4 in this case, we obtain the flag (restricted to Pet◦3)

Pet◦3 ⊃ {x = 0} ⊃ {x = y = 0} = {pt}.
Letting ν denote the valuation corresponding to the above flag, Theorems 9.6 and 9.10 of this section
compute ∆(Pet3, R(W(a1+a2,a1,0)), ν) for all values of a1, a2 ∈ Z>0 (we argue separately the cases a2 > a1
and a1 > a2). It is not hard to see that for the usual lexicographic order on Z2 with x > y, the valuation ν
is the lowest-term valuation.

Before launching into the computations, we briefly recall a well-known basis for H0(Flags(C3), Lλ) and
compute its restriction to Pet03 in terms of the variables x and y above. The following discussion is valid
for more general flags and partitions but we restrict to our case for simplicity; see [19] for details. Let
λ = (a1 + a2, a1, 0) as above, which we now interpret as a Young diagram. For each semistandard Young
tableau T with shape λ there is an associated section σT of H0(Flags(C3), Lλ) obtained by taking the
product of the Plücker coordinates corresponding to each column of T . We illustrate with an example.
When restricted to the affine open chart Nw0

, we obtain expressions which are polynomials in the matrix
entries (suitably interpreted as Plücker coordinates).

Example 9.1. Let

A =

y x 1
x 1 0
1 0 0


represent a flag and suppose T = 1 3

2
. Then the left column corresponds to the determinant

det

(
y x
x 1

)
of the first and second rows of the left 3 × 2 submatrix of A, while the second column corresponds to the
determinant det(1) = 1 of the third row of the left 3× 1 submatrix. Thus σT = y − x2.

It is well-known that sections obtained from semistandard Young tableaux form a basis ofH0(Flags(C3), Lλ)
[19, § 8 and 9].

Theorem 9.2. The set {σT } of all sections corresponding to semistandard Young tableaux of shape λ, as
described above, form a basis for H0(Flags(C3), Lλ).

Motivated by the above theorem, we now analyze the set Sλ of all semistandard Young tableau of shape
λ = (a1 + a2, a1, 0) with entries in {1, 2, 3}. First observe that, from the definition of λ, our Young tableau
contains columns of length at most 2. Moreover, since columns must be strictly increasing, the only possible

length-2 columns which can appear in T ∈ Sλ are 1
2
, 1
3

, and 2
3

. The only possible length-1 columns are 1 , 2

and 3 . Moreover, because rows must be weakly increasing (from left to right), a column 1
2

must appear to

the left of a 1
3

or a 2
3

, and a 1
3

can only appear to the left of a 2
3

, and so on. Thus it is not hard to see

that we can uniquely represent a semistandard Young tableau of shape λ = (a1 + a2, a1, 0) by recording the
number of times each type of column appears. More formally, let

k12(T ) := the number of times the column 1
2

appears in T

and
k1(T ) := the number of times the column 1 appears in T

and similarly for k13(T ), k23(T ), k2(T ) and k3(T ). The following lemma is straightforward.
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Lemma 9.3. Let T ∈ Sλ. Then:

(1) T is completely determined by the 6 integers k12(T ), k13(T ), k23(T ), k1(T ), k2(T ) and k3(T );
(2) we must have k12(T ) + k13(T ) + k23(T ) = a1, k1(T ) + k2(T ) + k3(T ) = a2, and if k23(T ) 6= 0 then

k1(T ) = 0.

Thus the set Sλ is in bijective correspondence with the set

(9.2)
{

(k12, k13, k23, k1, k2, k3) ∈ Z6
>0 | k12 + k13 + k23 = a1, k1 + k2 + k3 = a2, and k23 6= 0⇒ k1 = 0

}
.

Proof. By definition, a Young tableau of shape λ = (a1 + a2, a1, 0), reading left to right, has a1 columns of
size 2 and a2 columns of size 1. A semistandard Young tableau T ∈ Sλ must have weakly increasing rows.

Hence the only possible arrangement of the length-2 columns is to place (starting from the left) all the 1
2

’s,

then the 1
3

’s, and then the 2
3

’s. Since the diagram has a1 many columns of length 2, it is immediate that

k12(T ) + k13(T ) + k23(T ) = a1. It also follows that the left a1 columns are determined by these 3 integers.
Next consider the length-1 columns. Again, since rows must be weakly increasing, all 1 ’s must be placed
first, followed by 2 ’s, followed by the 3 ’s. Finally, if k23(T ) 6= 0, this means that there is already a 2 in the
top row before reaching the length-1 columns, so there cannot be any 1 ’s among the length-1 columns, i.e.
k1(T ) = 0 as claimed. Again it follows that these are completely determined by k1(T ), k2(T ) and k3(T ) and
that k1(T ) + k2(T ) + k3(T ) = a2. Moreover, it is clear that any 6 positive integers satisfying the conditions
of (9.2) correspond to some T ∈ Sλ. �

Based on the above lemma, henceforth we specify a semistandard Young tableau T by a tuple of integers
(k12, k13, k23, k1, k2, k3) satisfying the conditions (9.2), and we also use the notation

(9.3) (12)k12(13)k13(23)k23(1)k1(2)k2(3)k3 .

Example 9.4. Suppose λ = (5, 2, 0) so that a2 = 3 and a1 = 2. The tableau 1 1 2 2 3
3 3

corresponds to

(0, 2, 0, 0, 2, 1) and we also write it as (13)2(2)2(3).

We need the following computation.

Lemma 9.5. Let T be a semistandard Young tableau

T := (12)k12(13)k13(23)k23(1)k1(2)k2(3)k3

as above. Then the section σT , restricted to Pet◦3 and expressed in terms of the variables x and y in (9.1),
takes the form

(y − x2)k12(−x)k13(−1)k23yk1xk21k3 .

Proof. Let A denote a 3× 3 matrix as in (9.1). By its construction, the section σT evaluated at A takes the
form [19]

(P12)k12(P13)k13(P23)k23(P1)k1(P2)k2(P3)k3

where

P12 =

∣∣∣∣y x
x 1

∣∣∣∣ = y − x2, P13 =

∣∣∣∣y x
1 0

∣∣∣∣ = −x, P23 =

∣∣∣∣x 1
1 0

∣∣∣∣ = −1, P1 = y, P2 = x, P3 = 1.

The result follows. �

We can now compute the Newton-Okounkov bodies ∆(Pet3, R(W(a1+a2,a1,0)), ν). Recall from Section 8
(especially Observation 6.4) that if we can find vertices contained in ∆(Pet3, R(W(a1+a2,a1,0), ν) whose convex
hull ∆ has volume equal to the degree of Pet3 ↪→ P(V ∗λ ), then ∆ = ∆(Pet3, R(W(a1+a2,a1,0), ν). Since we
know the degree of Pet3 ↪→ P(V ∗λ ) by Theorem 8.3 and Example 8.5, we take this approach in our arguments
below. We need to consider the cases a2 > a1 and a1 > a2 separately. We begin with the slightly simpler
case, a2 > a1.

Theorem 9.6. Let λ = (a1 + a2, a1, 0) and suppose a2 > a1. Then the corresponding Newton-Okounkov
body ∆(Pet3, R(W(a1+a2,a1,0)), ν) is the convex hull of the vertices

{(0, 0), (2a1 + a2, 0), (0, a1 + a2), (3a1, a2 − a1)}.

28



a2 − a1

a1 + a2

3a1 2a1 + a2

(3a1, a2 − a1)

Figure 9.1. Newton-Okounkov body ∆(Pet3, R(W(a1+a2,a1,0)), ν) for a2 > a1.

Proof. First, notice that the area of the convex hull described in the statement of the theorem is

3a1(a2 − a1) +
1

2
(3a1)(2a1) +

1

2
(a2 − a1)2 =

1

2
a21 + 2a1a2 +

1

2
a22.

Therefore, by Observation 6.4, it suffices to show that the four stated vertices all lie in ν(W(a1+a2,a1,0)). We
deal with the four cases separately.

We begin with (0, 0). The semistandard Young tableau (23)a1(3)a2 corresponds to the polynomial 1 (by
Lemma 9.5), and ν(1) = (0, 0). Hence, (0, 0) is in the image ν(W(a1+a2,a1,0)).

Next we consider (0, a1+a2). The semistandard Young tableau (12)a1(1)a2 corresponds to the polynomial
(y − x2)a1ya2 , and ν((y − x2)a1ya2) = (0, a1 + a2).

Now we consider (2a1+a2, 0), for which we look at the set of tableaux (12)k(13)a1−k(1)a1−k(2)a2−a1+k for
0 6 k 6 a1. Notice that these are valid tableaux because a2 > a1. By Lemma 9.5 these have corresponding
polynomials (up to sign)

gk := (y − x2)kxa2ya1−k =

 k∑
j=0

(−1)j
(
k

j

)
yk−jx2j

xa2ya1−k
=

k∑
j=0

(−1)j
(
k

j

)
xa2+2jya1−j .

Note that the set of a1 + 1 monomials xαyβ that appear in the a1 + 1 polynomials {g0, . . . , ga1} is precisely:

(9.4)
{
xa2ya1 , xa2+2ya1−1, xa2+4ya1−2, . . . , xa2+2a1

}
and also that, with respect to this ordered basis, the (a1 + 1) × (a1 + 1) matrix of coefficients of the gk
is triangular and invertible. Thus xa2+2a1 is equal to an appropriate linear combination of the gk’s and in
particular is in W(a1+a2,a1,0). Since ν(xa2+2a1) = (a2 + 2a1, 0) we see that this vertex lies in the image of ν.

Finally, for the case of the vertex (3a1, a2 − a1) we consider the tableaux (12)k(13)a1−k(1)a2−k(2)k for
0 6 k 6 a1. Notice that these are valid tableaux because a2 > a1. Again by Lemma 9.5, we can compute
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the corresponding polynomials to be

hk := (y − x2)kxa1ya2−k =

 k∑
j=0

(−1)j
(
k

j

)
yk−jx2j

xa1ya2−k
=

k∑
j=0

(−1)j
(
k

j

)
xa1+2jya2−j .

By an argument similar to that above, we can see that there is an appropriate linear combination of the hk
which equals x3a1ya2−a1 , and since ν(x3a1ya2−a1) = (3a1, a2 − a1) we conclude that it is in the image, as
desired. This concludes the proof. �

In order to prove the a1 > a2 case, we will need the following terminology.

Definition 9.7. An upper-triangular Pascal matrix T is an infinite matrix with (i, j)-th entry for

i, j ∈ Z>0 equal to the binomial coefficient
(
j−1
i−1
)
, i.e.

T :=


(
0
0

) (
1
0

) (
2
0

) (
3
0

)
· · ·

0
(
1
1

) (
2
1

) (
3
1

)
· · ·

0 0
(
2
2

) (
3
2

)
· · ·

...
...

...
... · · ·

 ,

where we take the convention that
(
j−1
i−1
)

:= 0 if i− 1 > j − 1.

Definition 9.8. A truncated Pascal matrix is a matrix obtained from an upper-triangular Pascal matrix
T by selecting some arbitrary finite subsets of the rows and columns of T of equal size, i.e.

T (r, s) :=


(
s0
r0

) (
s1
r0

)
· · ·

(
sd
r0

)(
s0
r1

) (
s1
r1

)
· · ·

(
sd
r1

)
...

...
. . .

...(
s0
rd

) (
s1
rd

)
· · ·

(
sd
rd

)
 ,

for some sets r = {r0 < r1 < · · · < rd} and s = {s0 < s1 < · · · < sd}, for si, ri ∈ N.

We will need the following result [28].

Theorem 9.9. Following the notation above, a truncated Pascal matrix is invertible if and only if ri 6 si
for all i.

We now compute the Newton-Okounkov body for the case a1 > a2.

Theorem 9.10. Let λ = (a1 + a2, a1, 0) and suppose a1 > a2. Then the corresponding Newton-Okounkov
body ∆(Pet3, R(W(a1+a2,a1,0)), ν) is the convex hull of the vertices

(0, 0), (0, a1 + a2), (2a2 + a1, 0), (3a2, a1 − a2).

Proof. By the same reasoning as in the proof of Theorem 9.6, it suffices to show that the four vertices given
in the statement of the theorem lie in ν(W(a1+a2,a1,0)). Many of the arguments are similar to those for
Theorem 9.6 so we will be brief.

For (0, 0) and (0, a1 + a2) it suffices to consider the tableaux (23)a1(3)a2 and (12)a1(1)a2 respectively. For
(2a2 +a1, 0), the collection of tableaux (12)k(13)a1−k(1)a2−k(2)k for varying k as in the proof of Theorem 9.6
does the job.

The last case of (3a2, a1−a2) follows the same basic strategy but now also uses truncated Pascal matrices.
Consider the tableaux (12)a1−a2+k(13)a2−k(1)a2−k(2)k where 0 6 k 6 a2. As before we can compute the
corresponding polynomials hk to be

hk =

a1−a2+k∑
j=0

(−1)j
(
a1 − a2 + k

j

)
xa2+2jya1−j , for 0 6 k 6 a2.
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a1 − a2

a1 + a2

3a2 2a2 + a1

(3a2, a1 − a2)

Figure 9.2. Newton-Okounkov body ∆(Pet3, R(W(a1+a2,a1,0)), ν) for a1 > a2.

There are a1 + 1 many monomials xαyβ appearing in these a2 + 1 polynomials; listed in increasing lex order,
they are

(9.5) {xa2ya1 , xa2+2ya1−1, xa2+4ya1−2, . . . , x3a2ya1−a2 , . . . , xa2+2a1−2y, xa2+2a1}.

The (a1 + 1) × (a2 + 1) matrix of coefficients of the hk with respect to the ordered basis (9.5) has (j, k)-th

entry equal to (−1)j
(
a1−a2+k

j

)
.

We wish to find a suitable linear combination of the hk so that its lowest term is a multiple of x3a2ya1−a2 .
Some elementary linear algebra shows that it suffices to prove that the upper-left (a2+1)×(a2+1) submatrix

A of the matrix of coefficients above, with entries equal to (−1)j
(
a1−a2+k

j

)
for 0 6 j, k 6 a2, is invertible.

For this it suffices in turn to show that detA 6= 0. Let A′ denote the matrix obtained from A by multiplying
every other row by (−1); then detA′ = ±detA so it suffices to show detA′ 6= 0. Finally observe that A′

is (up to sign) a truncated Pascal matrix T (r, s) for r = {0 < 1 < 2 < · · · < a2} and s = {a1 − a2 <
a1 − a2 + 1 < · · · < a1}. By our assumption that a1 > a2 we have that ri 6 si for all i, so by Theorem 9.9
we conclude that detA′ 6= 0 as desired. This completes the proof. �
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