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On Floer homology of the Gauss images of
isoparametric hypersurfaces

Yoshihiro Ohnita

Abstract The Gauss images of isoparametric hypersurfaces in the unit standard
sphere provide compact minimal (thus monotone) Lagrangian submanifolds em-
bedded in complex hyperquadrics. Recently we used the Floer homology and the
lifted Floer homology for monotone Lagrangian submanifolds in order to study their
Hamiltonian non-displaceability in our recent joint paper with Hiroshi Iriyeh, Hui
Ma and Reiko Miyaoka. In this note we will explain the spectral sequences for the
Floer homology and the lifted Floer homology of monotone Lagrangian subman-
ifolds and their applications to the Gauss images of isoparametric hypersurfaces.
They are the main technical part in our joint work. Moreover we will suggest some
related open problems for further research.

1 Introduction

Let Nn be an isoparametric hypersurface in the unit standard sphere Sn+1 ⊂ Rn+2.
By the structure theory of isoparametric hypersurfaces (see [16]), Nn is nothing but
a hypersurface of constant principal curvatures and if we denote by g the distinct
number of principal curvatures of Nn and by m1,m2, · · · ,mg their multiplicities, then
we know mi = mi+2 (i mod g). Moreover, it is known that Nn can be extended to a
compact oriented hypersurface embedded in Sn+1.

We know that isoparametric hypersurfaces in Sn+1 provide a nice class of La-
grangian submanifolds in the complex hyperquadric Qn(C). Note that a complex
hyperquadric Qn(C) can be identified with a real Grassmann manifold G̃r2(Rn+2)
of oriented 2-dimensional vector subspaces of Rn+2 in the standard way:
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2 Yoshihiro Ohnita

Qn(C) ∼= G̃r2(Rn+2) ∼= SO(n+2)/(SO(2)×SO(n))

[a+
√
−1b] ↔ a∧b ↔

[
a,b, · · ·

]
(SO(2)×SO(n))

It is an irreducible compact Hermitian symmetric space of rank 2 for n ≥ 3. If n = 2,
then Q2(C) ∼= S2 × S2, and if n = 1, then Q1(C) ∼= CP1. We denote by ωstd the
standard Kähler form of Qn(C).

In general the Gauss map G of an oriented hypersurface Nn immersed in the unit
standard sphere Sn+1 is defined by

G : Nn ∋ p 7−→ [x(p)+
√
−1n(p)] ∈ Qn(C).

Then we know that G : Nn → (Qn(C),ωstd) is always a Lagrangian immersion.
Palmer ([23]) gave a formula expressing the mean curvature form of G in terms
of principal curvatures of Nn in Sn+1 and from this formula he observed that if
Nn has constant principal curvatures, then the Gauss map G : Nn → (Qn(C),ωstd)
is a minimal Lagrangian immersion. Note that the Gauss map is not necessary an
embedding into Qn(C).

For each isoparametric hypersurface Nn in Sn+1 the image of the Gauss map,
which is called the Gauss image G (Nn), has the following nice properties.

Theorem 1 ([12], [14], [21]). Suppose that Nn is a compact oriented isoparametric
hypersurface embedded in Sn+1 with g distinct principal curvatures and multiplici-
ties (m1,m2). Then the Gauss image G (Nn) has the following properties:

(1) The Gauss image Ln = G (Nn) is a compact smooth minimal Lagrangian sub-
manifold embedded in Qn(C).

(2) The Gauss map G into the Gauss image Ln = G (Nn) gives a covering map
G : Nn → Ln = G (Nn)∼= Nn/Zg with the covering transformation group Zg.

(3) The Gauss image Ln = G (Nn) is monotone in Qn(C) and its minimal Maslov
number ΣL is given by

ΣL =
2n
g

=

{
m1 +m2, if g is even,
2m1, if g is odd. (1)

The Gauss image G (Nn) is orientable (resp. non-orientable) if and only if 2n/g
is even (resp. odd).

It is a natural and interesting problem to study the properties of the Guass image
of isoparametric hypersurfaces in Sn+1 as Lagrangian submanifolds embedded in
Qn(C) ([23], [12], [13], [14], [15]).

Recently in our recent joint paper with Hiroshi Iriyeh, Hui Ma and Reiko
Miyaoka ([11]) in order to study their Hamiltonian non-displaceability we used
the Floer homology and the lifted Floer homology for monotone Lagrangian sub-
manifolds. In this note we will explain the construction of the Floer homology
and the spectral sequences for monotone Lagrangian submanifolds, and also their
lifted Floer homology (Floer, Y.-G. Oh, Biran, Damian), and their applications to the
Gauss images of isoparametric hypersurfaces. They are the main technical part in
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our joint work. The ideas to use the spectral sequence and the lifted Floer homology
in this case are due to H. Iriyeh ([9]) . Moreover we will suggest some related open
problems for further research.

Throughout this article any manifold is smooth and connected.

2 Floer homology of monotone Lagrangian submanifolds

Let (M,ω) be a symplectic manifold．If a diffeomorphism ϕ of M is given by
ϕ = ϕ1 for some time-dependent Hamiltonian Ht (t ∈ [0,1]) and an isotopy ϕt : M →
M (t ∈ [0,1]) of M satisfying the Hamiltonian equation

dϕt(x)
dt

= (XHt )ϕt (x) and ϕ0(x) = x (x ∈ M),

then ϕ is called a Hamiltonian diffeomorphism of (M,ω) and {ϕt}t∈[0,1] is called
a Hamiltonian isotopy of (M,ω). Here XHt denotes a Hamiltonian vector field cor-
responding to a Hamiltonian Ht with respect to ω . Let Haml(M,ω) denote a set
of all Hamiltonian diffeomorphisms of (M,ω). Then Haml(M,ω) is a subgroup of
the identity component Symp0(M,ω) of the symplectic diffeomorphism group of
(M,ω). A Lagrangian submanifold L in M is called Hamiltonian non-displaceable
if L∩ϕ(L) ̸= /0 for any ϕ ∈ Haml(M,ω), and it is called Hamiltonian displaceable
otherwise. It is well-known that in the 2-dimensional standard sphere a small cir-
cle is Hamiltonian displaceable but a great circle is Hamiltonian non-displaceable.
Then the following is one of elementary questions in symplectic geometry:

Question. What Lagrangian submanifolds are Hamiltonian non-displaceable?

Let (M,ω) be a closed symplectic manifold and L be a closed (i.e. compact
without boundary) Lagrangian submanifold embedded in M. Let ϕ ∈ Haml(M,ω)
such that L and ϕ(L) intersects transversally (denoted by the symbol L ⋔ ϕ(L)). Let
(ϕt)t∈[0,1] be a Hamiltonian isotopy of (M,ω) with ϕ1 = ϕ and set Lt := ϕt(L) (t ∈
[0,1]).

Choose an almost complex structure J on M compatible with ω (i.e. ω( · ,J ·) is
a Riemannian metric on M). Define

M (L0,L1) := { u ∈C∞(R× [0,1]) | ∂u
∂τ

+ Jt
∂u
∂ t

= 0,

u(τ,0)⊂ L, u(τ,1)⊂ ϕ1(L),

E(u) :=
1
2

∫
R×[0,1]

∥du∥2dτdt < ∞ }

For x,y ∈ L0 ∩L1, set

M (x,y) := { u ∈ M (L0,L1) | lim
τ→−∞

u(τ, ·) = x, lim
τ→∞

u(τ, ·) = y }.
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Floer showed
M (L0,L1) =

∪
x,y∈L0∩L1

M (x,y)

For a generic choice J, a neighborhood of each u ∈ M (x,y) is a smooth manifold
of finite dimension equal to µu(x,y) = the Maslov-Virerbo index of u.

Let M̂ (x,y) := M (x,y)/R be the moduli space of holomorphic strips joining
from x to y modulo translations with respect to τ . Then note that for such a choice
J, a neighborhood of each [u] ∈ M̂ (x,y) is a smooth manifold of finite dimension
equal to µu(x,y)−1. Denote by M̂ 0(x,y) (resp. M̂ 1(x,y) ) the 0-dimensional (resp.
1-dimensional) component of M̂ (x,y).

For a given Lagrangian submanifold L of a symplectic manifold (M,ω), two
kinds of group homomorphisms Iµ,L : π2(M,L) → Z and Iω,L : π2(M,L) → R are
defined as follows: For a smooth map u : (D2,∂D2) → (M,L) belonging to A ∈
π2(M,L), choose a trivialization of the pull-back bundle u−1T M ∼= D2 ×Cn as a
symplectic vector bundle, which is unique up to the homotopy. This gives a smooth
map ũ from S1 = ∂D2 to Λ(Cn). Here Λ(Cn) denotes a Grassmann manifold of
Lagrangian vector subspaces of Cn. Using the Moslov class µ ∈ H1(Λ(Cn),Z),
we can define Iµ,L(A) := µ(ũ). Next Iω,L is defined by Iω,L(A) :=

∫
D2 u∗ω . Iµ,L is

invariant under symplectic diffeomorphisms and Iω,L is invariant under Hamiltonian
diffeomorphisms but not under symplectic diffeomorphisms.

A Lagrangian submanifold L is called monotone if Iµ,L = λ Iω,L for some con-
stant λ > 0. We denote by ΣL ∈ Z+ a positive generator of an additive subgroup
Im(Iµ,L) ⊂ Z and ΣL is called the minimal Maslov number of L．It is known that
any compact minimal Lagrangian submanifold in an Einstein-Kähler manifold of
positive Einstein constant is monotone ([22]).

The compactness and compactification of 0-dimensional and 1-dimensional mod-
uli spaces of holomorphic strips are due to Gromov, Floer, Y.-G. Oh.

Theorem 2 (Compactness). Suppose that L is compact and monotone with ΣL ≥ 2.
Let x,y ∈ L0 ∩L1 and A > 0. Let {uα} ⊂M (x,y) be a sequence with constant index
µ(uα) = µ0 ≤ 2 and with E(uα)< A. Then there exists a finite subset {z0, · · · ,zk} ⊂
L0∩L1 with z0 = x and zk = y, some ui ∈M (zi−1,zi) for i= 1, · · · ,k, and a sequence
of real numbers {σ i

α}α for i = 1, · · · ,k, such that for each i = 1, · · · ,k the sequence

{uα(τ +σ i
α , t)}α converges to ui(τ, t) in C∞

loc, and moreover
k

∑
i=1

µ(uk) = µ0.

If µ0 = 1, then we have k = 1 and {uα(τ +σα , t)}α converges to u1(τ, t) in C∞
loc,

because of µ(uk) ≥ 1. It implies that the 0-dimensional component of the moduli
space L 0(x,y) is compact and thus a finite set.

Theorem 3 (Compactification). Suppose that L is compact and monotone with
ΣL ≥ 3. Then

M̂ 1(x,y) := M̂ 1(x,y)∪
∪

z∈L0∩L1

(M̂ 0(x,z)×M̂ 0(z,y))
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is a compact 1-dimensional smooth manifold whose boundary is∪
z∈L0∩L1

(M̂ 0(x,z)×M̂ 0(z,y)).

Let
CF(L,ϕ) :=

⊕
x∈L∩ϕ(L)

Z2 x

denote a free Z2-module over all intersection points of L and ϕ(L) where ϕ ∈
Haml(M,ω). By Theorem 2, since M̂ 0(x,y) is finite, we can define n(x,y) :=
♯L̂ 0(x,y) mod 2. Then the Floer boudary operator ∂J is defined by

∂J(x) := ∑
y∈L∩ϕ(L)

n(x,y)y (y ∈ L∩ϕ(L)).

Assume that L is monotone with minimal Maslov number ΣL ≥ 2. Then we
know that ∂J ◦ ∂J = 0, by Theorem 3 if ΣL ≥ 3, or by [18] if ΣL ≥ 2. The ho-
mology H∗(CF(L,ϕ),∂J) for the chain complex (CF(L,ϕ),∂J) does not depend on
the choice of J ∈ Jreg(M,ω) and ϕ ∈ Haml(M,ω) (Floer, Y. G. Oh). The Floer
homology of L is defined by

HF(L) := H∗(CF(L,ϕ),∂J).

Now fix an element x0 ∈ L ∩ ϕ(L). We define a grading of x ∈ L ∩ ϕ(L) by
µu(x,x0) mod ΣL. Here we use a fact that µu(x,x0)− µv(x,x0) is a multiple of
ΣL for arbitrary smooth maps u,v : [0,1]× [0,1] → M with u(τ,0),v(τ,0) ∈ L,
u(τ,1),v(τ,1) ∈ ϕ(L) and u(τ,0),v(τ,0) ∈ L, u(τ,1),v(τ,1) ∈ ϕ(L) ([17], p.973,
Lemma 4.7). Thus the Floer complex CF(L,ϕ) has a Z/ΣL-grading, which depends
on a choice of a base intersection point x0 ∈ L∩ϕ(L). Denote this grading by

CF(L,ϕ) =
ΣL−1⊕
i=0

CFi modΣL(L,ϕ ,x0),

where
CFi modΣL(L,ϕ ,x0) :=

⊕
x∈L∩ϕ(L),µu(x,x0)≡i modΣL

Z2 x.

Let x,y∈ L∩ϕ(L). For u∈ M̂ 0(x,y), since by a composition formula ([5], p.406)

µuv(x,x0) = µu(x,y)+µv(y,x0)

where uv is a composition of u and v, we have

µv(y,x0) = µuv(x,x0)−µu(x,y) = µuv(x,x0)−1.

Thus the Floer boudary operator decreases the grading by 1:
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∂J : CFi modΣL(L,ϕ ,x0)−→CFi−1 modΣL(L,ϕ ,x0).

Hence it induces a Z/ΣL-grading of the Floer homology as

HF(L,ϕ) =
ΣL−1⊕
i=0

HFi modΣL(L,ϕ .x0).

The grading of the Floer homology of L is also preserved under any Hamiltonian
diffeomorphism of (M,ω) (Floer, Y.-G. Oh [17]).

3 Spectral sequence for Floer homology and lifted Floer
homology

Let (M2n,ω) be a compact symplectic manifold of dimension 2n. Let L be a compact
Lagrangian submanifold embedded in M. For a Hamiltonian isotopy (ϕt)t∈[0,1] of M
with L ⋔ ϕ(L), set ϕ = ϕ1 ∈ Haml(M,ω) and L′ = ϕ(L) = ϕ1(L).

Consider a Morse-Smale function f on L and a particular Hamiltonian isotopy
(ϕt)t∈[0,1] which maps L to ϕt(L) = d(t f )(L) ⊂ W ⊂ M. Here W is a Weinstein
neighborhood of L in M which is symplectically diffeomorphic to a tubular neigh-
borhood of the zero section of T ∗L. In this situation note that L∩ϕ1(L) coincide with
the critical point set Crit( f ) of f on L. We may assume that f has exactly one rela-
tive minimum point x0 on L. We choose x0 as a base intersection point of L∩ϕ(L).
Let Crit( f ) denote the set of all critical points of f and Critk( f ) the subset of all
critical points of f with index ind( f )x = k. Denote by (C f

∗ ,∂ f ) the Morse complex
for f , where

C f
∗ =

n⊕
k=0

C f
k , where C f

k =
⊕

x∈Critk( f )

Z2 x

and ∂ f : C f
k → C f

k−1 is the Morse boudary operator of f . In this situation note that
the Maslov-Viterbo index of u coincides with the Morse index of f : For each x ∈
L∩ϕ(L) = Crit( f ) and a smooth map v : [0,1]× [0,1]→ W ⊂ M with v(τ,0) ∈ L,
v(τ,1) ∈ ϕ(L), v(0, t) = x and v(1, t) = y,

µv(x,x0) = ind( f )x − ind( f )x0 = ind( f )x

([24, p. 370, Proiposition 5], [20, p. 318, Lemma 4]). Thus by the definition of a
grading of CF(L,ϕ) we have

CFi modΣL(L,ϕ ,x0) =
⊕

k∈Z,k≡i modΣL

C f
k =

⊕
ℓ∈Z

C f
i+ℓΣL

.

We follow the argument of [20], For a sufficiently small t we can take a disk w :
(D2,∂D2)→ (M,L) with Iω,L([w])> 0 by gluing u ∈ M̂ 0(x,y) with Imu ̸⊂ W to a
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thin strip v between ϕt(L) and L connecting y and x. By the monotonicity of L note
that Iµ,L([w]) = λ Iω,L([w])> 0, and thus Iµ,L([w]) = ℓΣL for some ℓ ∈ N. Thus we
have

0 < Iµ,L([w]) =µu(x,y)−µu′(x,y)

=1− (ind( f )x − ind( f )y)

=1− ind( f )x + ind( f )y ≤ n+1.

Hence we obtain 1 ≤ ℓ ≤ n+1
ΣL

and ind( f )y = ind( f )x − 1+ ℓΣL. Set ν :=
[

n+1
ΣL

]
.

Since we see that ∂J(C
f
k ) ⊂

⊕ν
ℓ=0 C f

k−1+ℓΣL
, the Floer boudary operator ∂J can be

decomposed as
∂J = ∂0 +∂1 + · · ·+∂ν ,

where ∂ℓ : C f
∗ → C f

∗−1+ℓΣL
(ℓ = 1, · · · ,ν). Here note that ∂0 counts small isolated

Floer trajectries (J-holomorphic strips) contained in a Weinstein neighborhood of
L and it coincides with the Morse boudary operator ∂ f of f (local Floer homology
[20]). The operator ∂1 + · · ·+ ∂ν expresses a contribution of large isolated Floer
trajectries.

Y.-G. Oh ([20]) and Biran ([1]) showed the existence of a spectral sequence
{E p,q

r ,dr} converging towards the Floer homology. Such a spectral sequence was
constructed by Biran in the following way ([1]).

Let A :=Z2[T,T−1] =
⊕

k∈Z AkΣL be the algebra of Laurent polynomials over Z2
with the variable T . Here define deg(T ) = ΣL and AkΣL := Z2T k. Now let

C̃ :=C f ⊗A =
⊕
k∈Z

C f ⊗AkΣL =
⊕
i∈Z

C̃i ,

where
C̃i :=

⊕
k∈Z

C f
i−kΣL

⊗AkΣL =
⊕

k∈Z, i−n
ΣL

≤k≤ i
ΣL

C f
i−kΣL

⊗AkΣL .

Define ∂̃J : C̃∗ → C̃∗−1 by

∂̃J := ∂0 ⊗1+∂1 ⊗ τ + · · ·+∂ν ⊗ τν ,

where each τℓ : A∗ → A∗−ℓΣL is the multiplication by T−ℓ. Then we know that ∂̃J :
C̃ → C̃ satisfies ∂̃J ◦ ∂̃J = 0, that is, (C̃, ∂̃ ) is a chain complex. Moreover, as vector
spaces over Z2, we obtain

HFi modΣL(L) ∼= Hi(C̃, ∂̃J) =
Ker(∂̃J : C̃i → C̃i−1)

Im(∂̃J : C̃i+1 → C̃i)
(∀i ∈ Z)

and

H(C̃, ∂̃J) =
Ker(∂̃J : C̃ → C̃)

Im(∂̃J : C̃ → C̃)
=

⊕
i∈Z

Hi(C̃, ∂̃J)∼= HF(L)⊗Z2 A.
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For each p ∈ Z, set
Ap :=

⊕
k≤p

AkΣL ⊂ A

and define
F pC̃ :=C f ⊗Ap.

Then we have an increasing filtration on C̃ =
∪
p∈Z

F pC̃:

· · · ⊂ F−1C̃ ⊂ F0C̃ ⊂ ·· · ⊂ F pC̃ ⊂ F p+1C̃ ⊂ ·· ·

For each p, l ∈ Z, define

F pC̃l := F pC̃∩C̃l =
⊕
k≤p

C f
l−kΣL

⊗AkΣL .

Then for each l ∈ Z we have the increasing filtration on C̃l =
∪
p∈Z

F pC̃l

· · · ⊂ F−1C̃l ⊂ F0C̃l ⊂ ·· · ⊂ F pC̃l ⊂ F p+1C̃l ⊂ ·· ·

which satisfies F pC̃l = {0} for any p <
l −n
ΣL

and F pC̃l = C̃l for any p ≥ l
ΣL

. And

for each p ∈ Z, F pC̃ has a grading

F pC̃ =
⊕
l∈Z

F pC̃l .

For each p ∈ Z with p >
i

ΣL
,

Hi(F pC̃, ∂̃J) =
Ker(∂̃J : F pC̃i → F pC̃i−1)

Im(∂̃J : F pC̃i+1 → F pC̃i)

=
Ker(∂̃J : FC̃i → FC̃i−1)

Im(∂̃J : FC̃i+1 → FC̃i)
= Hi(C̃, ∂̃J) ∼= HFi modΣL(L)

and
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H(F pC̃, ∂̃J) =
Ker(∂̃J : F pC̃ → F pC̃)

Im(∂̃J : F pC̃ → F pC̃)

=
⊕
i∈Z

Hi(F pC̃, ∂̃J)

=
⊕

i<pΣL

Hi(F pC̃, ∂̃J)⊕
⊕

pΣL≤i

Hi(F pC̃, ∂̃J)

=
⊕

i<pΣL

Hi(C̃, ∂̃J)⊕
⊕

pΣL≤i≤pΣL+n

Hi(F pC̃, ∂̃J)

∼=
⊕

i<pΣL

HFi modΣL(L)⊕
⊕

pΣL≤i≤pΣL+n

Hi(F pC̃, ∂̃J) .

For each p ∈ Z, since (F pC̃ =
⊕
l∈Z

F pC̃l , ∂̃J) is a graded filtered complex with

filtration {· · · ⊂ F p−2C̃ ⊂ F p−1C̃ ⊂ F pC̃} and for each l ∈ Z the filtration {· · · ⊂
F p−2C̃l ⊂ F p−1C̃l ⊂ F pC̃l} has finite length, there exists a spectral sequence which
converges to H∗(F pC̃, ∂̃J) (cf. Bott-Tu [2, p.160, Theorem 14.6]). The following
spectral sequence {E p,q

r ,dr} converging to HF(L) was constructed by Biran [1]:

(1)
E p,q

0 =C f
p+q−pΣL

⊗ApΣL , d0 = [∂0]⊗1,

(2)
E p,q

1 = Hp+q−pΣL(L,Z2)⊗ApΣL , d1 = [∂1]⊗T−ΣL ,

where
[∂1] : Hp+q−pΣL(L;Z2)→ Hp+q−1−(p−1)ΣL(L;Z2)

is induced by the operator ∂1.
(3) For each r ≥ 1, E p,q

r has the form E p,q
r =V p,q

r ⊗ApΣL and

dr = δr ⊗T−rΣL : E p,q
r → E p−r,q+r−1

r ,

where each V p,q
r is a vector space over Z2 and δr : V p,q

r → V p−r,q+r−1
r are ho-

momorphisms defined for all p,q satisfying δr ◦δr = 0. Moreover, it holds

V p,q
r+1 =

Ker(δr : V p,q
r →V p−r,q+r−1

r )

Im(δr : V p+r,q−r+1
r →V p,q

r )
.

In particular, we have V p,q
0 =C f

p+q−pΣL
, V p,q

1 = Hp+q−pΣL(L;Z2), δ1 = [∂1].
(4) E p,q

r collapses to E p,q
ν+1 = E p,q

ν+2 = · · ·= E p,q
∞ at (ν +1)-step and for each p ∈ Z

it holds ⊕
q∈Z

E p,q
∞

∼= HF(L)⊗Z2 A,

where we know that ν =

[
dimL+1

ΣL

]
.



10 Yoshihiro Ohnita

Damian ([3]) provided the theory of the lifted Floer homology HF L̄(L) for an
arbitrary covering L̄ → L. Let p : L̄ → L be a covering map of a compact Lagrangian
submanifold L embedded in M. We need to assume that L is monotone with NL ≥ 3.
By lifting to the covering space L̄ all data on L necessary to define the Floer ho-
mology HF(L), Damian defined the lifted Floer complex CF L̄ and the lifted Floer
homology HF L̄(L) of L. The Hamiltonian invariance of the lifted Floer homology
also holds. Moreover he constructed the spectral sequence converging to HF L̄(L)
with the Morse homology of L̄ as the first step. Note that the lifted Floer homol-
ogy HF L̄(L) is not well-defined in the case of ΣL = 2. See [3] for the details. By
definition the non-vanishing of the lifted Floer homology HF L̄(L) also implies the
Hamiltonian non-displaceability of L. However there seems to be no direct relation-
ship between the original Floer homology and the lifted Floer homology.

4 Floer homology and lifted Floer homology of Gauss images of
isoparametric hypersurfaces

Suppose that Ln = G (Nn) ⊂ Qn(C) is the Guass image of an isoparametric hyper-
surface Nn in Sn+1 with g distinct principal curvatures and multiplicities (m1,m2).

Since it follows from Theorem 1 (3) that ν =

[
dimL+1

ΣL

]
=

[
(n+1)g

2n

]
, we get

Lemma 1 ([11]). For each p,q ∈ Z it holds

(0) E p,q
1 = E p,q

∞ (ν = 0) if and only if g = 1 and n ≥ 2.
(1) E p,q

2 = E p,q
∞ (ν = 1) if and only if (g,n) = (1,1), g = 2 or (g,m1,m2) =

(3,2,2),(3,4,4),(3,8,8).
(2) E p,q

3 = E p,q
∞ (ν = 2) if and only if (g,m1,m2) = (3,1,1) or g = 4.

(3) E p,q
4 = E p,q

∞ (ν = 3) if and only if (g,m1,m2) = (6,1,1) or (6,2,2).

In the case when g = 1 or g = 2, since the Gauss image of isoparametric hyper-
surfaces are nothing but real forms of complex hyperquadrics, it is well-known that
HF(L)∼= H∗(L;Z2) ([19], [10]).

In the case when g = 3, that is, Nn is a Cartan hypersurface, we proved

Lemma 2 ([11]). The Gauss image of Ln = G (Nn) of each isoparametric hypersur-
face with g = 3 is a Z2-homology sphere ( i.e. Hk(Ln;Z2) = 0 for each 0 < k < n)
satisfying H1(Ln;Z)∼= Z3.

The Gauss images of Cartan hypersurfaces provide new examples of Lagrangian
Z2-homology spheres embedded in compact Hermitian symmetric spaces.

This result is quite essential for the proof of main theorem [11] in the case when
g = 3. When g = 3 and m = m1 = m2 = 2,4 or 8, by Lemma 1 we have ν = 1. By
Lemma 2 the spectral sequence

[∂1] : Hp+q−2mp(L;Z2)→ Hp+q−2mp+2m−1(L;Z2),
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namely
[∂1] : Hk(L;Z2)→ Hk+2m−1(L;Z2) (k = 0,1, · · · ,n)

implies [∂1] = 0, because we see that, Hk(L;Z2) = {0} or Hk+2m−1(L;Z2) = {0}
since L is a Z2-homology sphere. Thus d1 = 0. The spectral sequence becomes

V p,q
2 =

Ker([∂1] : V p,q
1 →V p−1,q

1 )

Im([∂1] : V p+1,q
1 →V p,q

1 )
=V p,q

1 = Hp+q−pΣL(L;Z2).

and E p,q
∞ = E p,q

2 =V p,q
1 ⊗ApΣL ∼= Hp+q−pΣL(L;Z2)⊗ApΣL . Hence we obtain

HF(L)∼=
⊕
q∈Z

E p,q
∞ =

⊕
q∈Z

E p,q
2

∼=
⊕
q∈Z

Hp+q−pΣL(L;Z2)⊗ApΣL ∼= H∗(L;Z2).

Concerned with the lifted Floer homology to G : N → L = G (N), similarly using
Damian’s spectral sequence and the homological data of isoparametric hypersur-
faces N ([16]) we obtain HFN(L)∼= H∗(N;Z2).

Theorem 4 (IMMO [11]). In the case when g = 3 and m = m1 = m2 = 2,4 or 8, the
Floer homology HF(L) (resp. the lifted Floer homology HFN(L)) is isomorphic to
H∗(L;Z2) (resp. H∗(N;Z2)).

In particular, HF(L) ̸= {0} and thus we see that for any ϕ ∈ Haml(Qn(C),ωstd)
with L ⋔ ϕ(L), it holds ♯(L∩ϕ(L))≥ rankH∗(Ln;Z2) = 2.

In the case when g = 4 or 6, we use homological data on isoparemetric hyper-
surfaces Nn ([16]) and the spectral sequence for the lifted Floer homology HF L̄(L)
applied to the covering map G : L̄ = N → L = G (N) (Damian [3]) in order to discuss
the non-vanishing of the lifted Floer homology.

Theorem 5 (IMMO [11]). In the case when g = 4 or g = 6 except for the remaining
three cases as below, the lifted Floer homology HFN(L) is non-zero:

(g,n,m1,m2) = (3,3,1,1), N = SO(3)
Z2+Z2

,

(g,n,m1,m2) = (4,2k+2,1,k), N = SO(2)×SO(k+2)
Z2×SO(k) (k ≥ 1),

(g,n,m1,m2) = (6,6,1,1), N = SO(4)
Z2+Z2

,

Notice that (g,n,m1,m2) = (1,1,1, -),(2,2,1,1),(3,3,1,1),(4,4,1,1) or (6,6,1,1)
if and only if the minimal Maslov number of the Gauss image L of isoparametric hy-
persurface has ΣL = 2, then any lifted Floer homology HF L̄(L) is not well-defined.

Problem 1. Determine whether the lifted Floer homology HF L̄(L) is nonzero or not
in the case when (g,n,m1,m2) = (4,2k+2,1,k) (k ≥ 2) (then ΣL = k+1 ≥ 3).

Problem 2. Determine whether the Floer homology HF(L) is nonzero or not in the
case when (g,n,m1,m2) = (3,3,1,1),(4,4,1,1) or (6,6,1,1) (then ΣL = 2). When
is the Floer homology HF(L) isomorphic to H∗(L;Z2)?

More generally we should pose the following problem as our goal:
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Problem 3. Determine explicitly the Floer homology HF(L) of the Gauss images
of isoparametric hypersurfaces in the case when (g,m) = (3,1), g = 4 or g = 6.

Since the Floer homology is based on the Mores homology, it is quite natural to
study the following problems:

Problem 4. Determine explicitly the homology HF∗(L;Z2) of the Gauss images of
isoparametric hypersurfaces in the case when g = 4 or g = 6.

Problem 5. Construct concretely the Morse homology of the Gauss images of
isoparametric hypersurfaces in the case when g = 3,4 or g = 6.
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