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CRITICAL AND SUBCRITICAL FRACTIONAL
TRUDINGER-MOSER TYPE INEQUALITIES ON R

FUTOSHI TAKAHASHI

Abstract. In this paper, we are concerned with the critical and
subcritical Trudinger-Moser type inequalities for functions in a
fractional Sobolev space H1/2,2 on the whole real line. We prove
the relation between two inequalities and discuss the attainability
of the suprema.

1. Introduction

Let Ω ⊂ RN , N ≥ 2 be a domain with finite volume. Then the
Sobolev embedding theorem assures that W 1,N

0 (Ω) ↪→ Lq(Ω) for any
q ∈ [1,+∞), however, a simple example shows that the embedding

W 1,N
0 (Ω) ↪→ L∞(Ω) does not hold. Instead, functions in W 1,N

0 (Ω)
enjoy the exponential summability:

W 1,N
0 (Ω) ↪→ {u ∈ LN(Ω) :

∫
Ω

exp
(
α|u|

N
N−1

)
dx <∞ for anyα > 0},

see Yudovich [29], Pohozaev [24], and Trudinger [28]. Later, Moser [18]
improved the embedding above as follows, now known as the Trudinger-
Moser inequality:

TM(Ω, α) = sup
u∈W

1,N
0 (Ω)

∥∇u∥
LN (Ω)

≤1

1

|Ω|

∫
Ω

exp(α|u|
N

N−1 )dx

{
<∞, α ≤ αN ,

= ∞, α > αN ,

here αN = Nω
1

N−1

N−1 and ωN−1 = |SN−1| denotes the area of the unit
sphere in RN . On the attainability of TM(Ω, α), Carleson-Chang [4],
Flucher [6], and Lin [13] proved that TM(Ω, α) is attained for any
0 < α ≤ αN .

On domains with infinite volume, for example on the whole space
RN , the Trudinger-Moser inequality does not hold as it is. However,
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several variants are known on the whole space. In the following, let

ΦN(t) = et −
N−2∑
j=0

tj

j!

denote the truncated exponential function.
First, Ogawa [20], Ogawa-Ozawa [21], Cao [3], Ozawa [23], and

Adachi-Tanaka [1] proved that the following inequality holds true, which
we call Adachi-Tanaka type Trudinger-Moser inequality:

A(N,α) = sup
u∈W1,N (RN )\{0}
∥∇u∥

LN (RN )
≤1

1

∥u∥N
LN (RN )

∫
RN

ΦN(α|u|
N

N−1 )dx

{
<∞, α < αN ,

= ∞, α ≥ αN .

The inequality enjoys the scale invariance under the scaling u(x) 7→
uλ(x) = u(λx) for λ > 0. Note that the critical exponent α = αN is not
allowed for the finiteness of the supremum. Recently, it is proved that
A(N,α) is attained for any α ∈ (0, αN) by Ishiwata-Nakamura-Wadade
[10] and Dong-Lu [5]. In this sense, Adachi-Tanaka type Trudinger-
Moser inequality has a subcritical nature of the problem.

On the other hand, Ruf [26] and Li-Ruf [15] proved that the following
inequality holds true:

B(N,α) = sup
u∈W1,N (RN )

∥u∥
W1,N (RN )

≤1

∫
RN

ΦN(α|u|
N

N−1 )dx

{
<∞, α ≤ αN ,

= ∞, α > αN .

Here ∥u∥W 1,N (RN ) =
(
∥∇u∥NLN (RN ) + ∥u∥NLN (RN )

)1/N
is the full Sobolev

norm. Note that the scale invariance (u 7→ uλ) does not hold for this
inequality. Also note that the critical exponent α = αN is permitted
to the finiteness.

Concerning the attainability of B(N,α), the following facts have
been proved:

• If N ≥ 3, then B(N,α) is attained for 0 < α ≤ αN [26].
• If N = 2, then there exists α∗ > 0 such that B(2, α) is attained
for α∗ < α ≤ α2(= 4π) [26], [9].

• If N = 2 and α > 0 is sufficiently small, then B(2, α) is not
attained. [9].

The non-attainability of B(2, α) for α sufficiently small is attributed
to the non-compactness of “vanishing” maximizing sequences, as de-
scribed in [9].

In the following, we focus our attention on the fractional Sobolev
spaces.
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Let s ∈ (0, 1), p ∈ [1,+∞) and let Ω ⊂ RN be a bounded Lipschitz
domain. For s > 0, let us consider the space

Ls(RN) =

{
u ∈ L1

loc(RN) :

∫
RN

|u|
1 + |x|N+s

dx <∞
}
.

For u ∈ Ls(RN), we define the fractional Laplacian (−∆)s/2u as follows:
First, for ϕ ∈ S(RN), the rapidly decreasing functions on RN , (−∆)s/2ϕ
is defined via the normalized Fourier transform F as (−∆)s/2ϕ(x) =
F−1(|ξ|sFϕ(ξ))(x) for x ∈ RN . Then for u ∈ Ls(RN), (−∆)s/2u is
defined as the element of S ′(RN), the tempered distributions on RN ,
by the relation

⟨ϕ, (−∆)s/2u⟩ = ⟨(−∆)s/2ϕ, u⟩ =
∫
R
(−∆)s/2ϕ · udx, ϕ ∈ S(RN).

Note that Lp(RN) ⊂ Ls(RN) for any p ≥ 1. Also note that it could
happen supp((−∆)s/2u) ̸⊂ Ω even if supp(u) ⊂ Ω for some open set Ω
in RN .

By using the above notion, we define the Bessel potential space
Hs,p(Ω) for a (possibly unbounded) set Ω ⊂ RN as

Hs,p(RN) =
{
u ∈ Lp(RN) : (−∆)s/2u ∈ Lp(RN)

}
,

H̃s,p(Ω) =
{
u ∈ Hs,p(RN) : u ≡ 0 onRN \ Ω

}
.

On the other hand, the Sobolev-Slobodeckij space W s,p(RN) is de-
fined as

W s,p(RN) =
{
u ∈ Lp(RN) : [u]W s,p(RN ) <∞

}
,

[u]p
W s,p(RN )

=

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+sp
dxdy,

and for a bounded domain Ω ⊂ RN , we define

W̃ s,p(Ω) = C∞
c (Ω)

∥·∥
Ws,p(RN )

where ∥u∥W s,p(RN ) =
(
∥u∥p

Lp(RN )
+ [u]p

W s,p(RN )

)1/p
. It is known that

W̃ s,p(Ω) =
{
u ∈ W s,p(RN) : u ≡ 0 onRN \ Ω

}
if Ω is a Lipschitz domain and Hs,p(RN) = F s

p,2(RN) (Triebel-Lizorkin

space),W s,p(RN) = Bs
p,p(RN) (Besov space). ThusHs,2(RN) = W s,2(RN),

however in general, Hs,p(RN) ̸= W s,p(RN) for p ̸= 2. See [25], [11] and
the references therein.

Recently, Martinazzi [17] (see also [12]) proved a fractional Trudinger-
Moser type inequality on H̃s,p(Ω) as follows: Let p ∈ (1,∞) and



4 FUTOSHI TAKAHASHI

s = N/p for N ∈ N. Then for any open Ω ⊂ RN with |Ω| < ∞,
it holds

sup
u∈H̃s,p(Ω)

∥(−∆)s/2u∥Lp(Ω)≤1

1

|Ω|

∫
Ω

exp(α|u|
p

p−1 )dx

{
<∞, α ≤ αN,p,

= ∞, α > αN,p.

Here αN,p =
N

ωN−1

(
Γ((N−s)/2)

Γ(s/2)2sπN/2

)−p/(p−1)

.

We note that, differently from the classical case, the attainability of
the supremum is not known even for N = 1 and p = 2.

On the Sobolev-Slobodeckij spaces W̃ s,p(Ω) with sp = N , similar
fractional Trudinger-Moser inequality is also proved by Parini-Ruf [25]
when N ≥ 2 and Iula [11] when N = 1. In this case, the result is
weaker and the inequality holds true only for 0 ≤ α < α∗

N,p for some
(explicit) value α∗

N,p. Also, it is not known the inequality holds or not
when α = α∗

N,p.
In the following, we are interested in the simplest one dimensional

case, that is, we put N = 1, s = 1/2 and p = 2. In this case, the Bessel
potential space H1/2,2(R) coincides with the Sobolev-Slobodeckij space
W 1/2,2(R) and both seminorms are related as

∥(−∆)1/4u∥2L2(R) =
1

2π
[u]2W 1/2,2(R),

see Proposition 3.6. in [19]. Then the fractional Trudinger-Moser in-
equality in [17], [12] can be read as

Proposition 1. (A fractional Trudinger-Moser inequality on H̃1/2,2(I))
Let I ⊂ R be an open bounded interval. Then it holds

sup
u∈H̃1/2,2(I)

∥(−∆)1/4u∥
L2(I)

≤1

1

|I|

∫
I

eα|u|
2

dx

{
<∞, α ≤ α1,2 = π,

= ∞, α > π

For the fractional Adachi-Tanaka type Trudinger-Moser inequality
on the whole line, put

(1.1) A(α) = sup
u∈H1/2,2(R)\{0}

∥(−∆)1/4u∥
L2(R)≤1

1

∥u∥2L2(R)

∫
R

(
eαu

2 − 1
)
dx.

Then by the precedent results by Ogawa-Ozawa [21] and Ozawa [23],
it is known that A(α) <∞ for small exponent α.

On the other hand, it is already known a fractional Li-Ruf type
Trudinger-Moser inequality on H1/2,2(R):
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Proposition 2. (Iula-Maalaoui-Martinazzi [12])

(1.2) B(α) = sup
u∈H1/2,2(R)

∥u∥
H1/2,2(R)

≤1

∫
R

(
eαu

2 − 1
)
dx

{
<∞, α ≤ π,

= ∞, α > π.

Here

∥u∥H1/2,2(R) =
(
∥(−∆)1/4u∥2L2(R) + ∥u∥2L2(R)

)1/2
is the full Sobolev norm on H1/2,2(R).

Concerning A(α) in (1.1), a natural question is that to what range
of the exponent α the supremum is finite. As pointed out in [8], it
remained an open problem for a while. In this paper, first we prove
the finiteness of supremum in the full range of values of exponent.

Theorem 1. (Full range Adachi-Tanaka type on H1/2,2(R)) We have

A(α) = sup
u∈H1/2,2(R)\{0}

∥(−∆)1/4u∥
L2(R)≤1

1

∥u∥2L2(R)

∫
R

(
eαu

2 − 1
)
dx.

{
<∞, α < π,

= ∞, α ≥ π.

Ozawa [22] proved that the Adachi-Tanaka type Trudinger-Moser
inequality is equivalent to the Gagliardo-Nirenberg type inequality, and
he also proved an exact relation between the best constants of both
inequalities. As a result, we have the next corollary.

Corollary 1. Set

β0 = lim sup
q→∞

sup
u∈H1/2,2(R),u̸=0

∥u∥Lq(R)

q1/2∥(−∆)1/4u∥1−2/q

L2(R)∥u∥
2/q

L2(R)

.

Then β0 = (2πe)−1/2.

Furthermore, we obtain the relation between the suprema of both
critical and subcritical Trudinger-Moser type inequalities along the line
of Lam-Lu-Zhang [14].

Theorem 2. (Relation) We have

B(π) = sup
α∈(0,π)

1− (α/π)

(α/π)
A(α).

Also we obtain how Adachi-Tanaka type supremum A(α) behaves
when α tends to π.
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Theorem 3. (Asymptotic behavior) There exist C1, C2 > 0 such that
for any α < π which is close enough to π, it holds

C1

1− α/π
≤ A(α) ≤ C2

1− α/π
.

Note that the estimate from the above follows from Theorem 2 and
Proposition 2. On the other hand, we will see that that the estimate
from the below follows from a computation using the Moser sequence.

Concerning the existence of maximizers of Adachi-Tanaka type supre-
mum A(α) in (1.1), we see

Theorem 4. (Attainability of A(α)) A(α) is attained for any α ∈
(0, π).

On the other hand, as for B(α) in (1.2), we have

Theorem 5. (Non-attainability of B(α)) For 0 < α << 1, B(α) is
not attained.

It is plausible that there exists α∗ > 0 such that B(α) is attained for
α∗ < α ≤ π, but we do not have a proof up to now.

Finally, we improve the subcritical Adachi-Tanaka type inequality
along the line of Dong-Lu [5]:

Theorem 6. For α > 0, set

(1.3) E(α) = sup
u∈H1/2,2(R)\{0}

∥(−∆)1/4u∥
L2(R)≤1

1

∥u∥2L2(R)

∫
R
u2eαu

2

dx.

Then we have

E(α)

{
<∞, α < π,

= ∞, α ≥ π.

Furthermore, E(α) is attained for all α ∈ (0, π).

Since eαt
2 −1 ≤ αt2eαt

2
for t ∈ R, Theorem 6 extends Theorem 1. In

the classical case, Dong-Lu used a rearrangement technique to reduce
the problem to one-dimension and obtained the similar inequality by
estimating a one-dimensional integral. The method is similar to [4]. In
the fractional setting H1/2,2, we cannot follow this argument and we
need a new idea.

The organization of the paper is as follows: In section 2, we prove
Theorem 1, 2, and 3. In section 3, we prove Theorem 4 and 5. In
section 4, we prove Theorem 6.
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2. Proof of Theorem 1, 2, and 3

For the proofs of Theorem 1, 2, and 3, we prepare several lemmas.

Lemma 1. Set

(2.1) Ã(α) = sup
u∈H1/2,2(R)\{0}

∥(−∆)1/4u∥
L2(R)≤1

∥u∥
L2(R)=1

∫
R

(
eαu

2 − 1
)
dx.

Then Ã(α) = A(α) for any α > 0.

Proof. For any u ∈ H1/2,2(R) \ {0} and λ > 0, we put uλ(x) = u(λx)
for x ∈ R. Then we have

(2.2)

{
∥(−∆)1/4uλ∥L2(R) = ∥(−∆)1/4u∥L2(R),

∥uλ∥2L2(R) = λ−1∥u∥2L2(R),

since

2π∥(−∆)1/4uλ∥2L2(R) = [uλ]
2
W 1/2,2(R)

=

∫
R

∫
R

|u(λx)− u(λy)|2

|x− y|2
dxdy

=

∫
R

∫
R

|u(λx)− u(λy)|2

|λx− λy|2
d(λx)d(λy)

= [u]2W 1/2,2(R) = 2π∥(−∆)1/4u∥2L2(R).

Thus for any u ∈ H1/2,2(R) \ {0} with ∥(−∆)1/4u∥L2(R) ≤ 1, if we

choose λ = ∥u∥2L2(R), then uλ ∈ H1/2,2(R) satisfies

∥(−∆)1/4uλ∥L2(R) ≤ 1 and ∥uλ∥2L2(R) = 1.

Thus

1

∥u∥2L2(R)

∫
R

(
eαu

2 − 1
)
dx =

∫
R

(
eαu

2
λ − 1

)
dx ≤ Ã(α),

which implies A(α) ≤ Ã(α). The opposite inequality is trivial. □

Lemma 2. For any 0 < α < π, it holds

A(α) ≤ (α/π)

1− (α/π)
B(π).

Proof. Choose any u ∈ H1/2,2(R) with ∥(−∆)1/4u∥L2(R) ≤ 1 and ∥u∥L2(R) =

1. Put v(x) = Cu(λx) where C2 = α/π ∈ (0, 1) and λ = C2

1−C2 . Then
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by scaling rules (2.2), we see

∥v∥2H1/2,2(R) = ∥(−∆)1/4v∥2L2(R) + ∥v∥2L2(R)

= C2∥(−∆)1/4u∥2L2(R) + λ−1C2∥u∥2L2(R)

≤ C2 + λ−1C2 = 1.

Also we have∫
R

(
eπv

2 − 1
)
dx =

∫
R

(
eπC

2u2(λx) − 1
)
dx

= λ−1

∫
R

(
eπC

2u2(y) − 1
)
dy

=
1− C2

C2

∫
R

(
eαu

2(y) − 1
)
dy

=
1− (α/π)

(α/π)

∫
R

(
eαu

2(y) − 1
)
dy.

Thus testing B(π) by v, we see

B(π) ≥
∫
R

(
eπv

2 − 1
)
dx ≥ 1− (α/π)

(α/π)

∫
R

(
eαu

2(y) − 1
)
dy.

By taking the supremum for u ∈ H1/2,2(R) with ∥(−∆)1/4u∥L2(R) ≤ 1
and ∥u∥L2(R) = 1, we have

B(π) ≥ 1− (α/π)

(α/π)
Ã(α).

Finally, Lemma 1 implies the result. □

Proof of Theorem 1: The assertion that A(α) < ∞ for α < π follows
from Lemma 2 and the fact B(π) <∞ by Proposition 2.

For the proof of A(π) = ∞, we use the Moser sequence

uε =


(log(1/ε))1/2 , if |x| < ε,
log(1/|x|)

(log(1/ε))1/2
, if ε < |x| < 1,

0, if 1 ≤ |x|,
(2.3)

and its estimates

∥(−∆)1/4uε∥2L2(R) = π + o(1),(2.4)

∥(−∆)1/4uε∥2L2(R) ≤ π
(
1 + (C log(1/ε))−1

)
,(2.5)

∥uε∥2L2(R) = O
(
(log(1/ε))−1)(2.6)
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as ε → 0 for some C > 0. Note uε ∈ W̃ 1/2,2((−1, 1)) ⊂ W 1/2,2(R) =
H1/2,2(R). For the estimate (2.4), we refer to Iula [11] Proposition 2.2.
For the estimate (2.5), we refer to [11] equation (35). Actually, after a
careful look of the proof of Proposition 2.2 in [11], we confirm that

lim
ε→0

(log(1/ε))
(
∥(−∆)1/4uε∥2L2(R) − π

)
≤ C

for a positive C > 0, which implies (2.5). For (2.6), we compute

∥uε∥2L2(R) =

∫
|x|≤ε

(log(1/ε)) dx+

∫
ε<|x|≤1

(
log(1/|x|)

(log(1/ε))1/2

)2

dx

= 2ε log(1/ε) +
2

log(1/ε)

∫ 0

log(1/ε)

t2(−et)dx

= 2ε log(1/ε) +
2

log(1/ε)
(Γ(3) + o(1))

as ε→ 0. Thus we obtain (2.6).
By testing A(π) by vε = uε/∥(−∆)1/4uε∥L2(R), we have

A(π) ≥ 1

∥vε∥2L2(R)

∫
R

(
eπv

2
ε − 1

)
dx

≥
∥(−∆)1/4uε∥2L2(R)

∥uε∥2L2(R)

∫
|x|≤ε

(
eπv

2
ε − 1

)
dx

≥
∥(−∆)1/4uε∥2L2(R)

∥uε∥2L2(R)
ε exp

(
π

log(1/ε)

∥(−∆)1/4uε∥2L2(R)

)

≥
∥(−∆)1/4uε∥2L2(R)

∥uε∥2L2(R)
ε exp

(
log(1/ε)

1 + (C log(1/ε))−1

)
since et − 1 ≥ (1/2)et for t large and (2.5). Also since

t

1 + 1
Ct

− t =
−1/C

1 + 1
Ct

→ − 1

C
as t→ ∞,

we see t
1+ 1

Ct

= t− 1/C + o(1) as t→ ∞. Put t = log(1/ε), we see

exp

(
log(1/ε)

1 + (C log(1/ε))−1

)
= exp (log(1/ε)− 1/C + o(1)) = (1/ε)e−1/C+o(1),

which leads to

ε exp

(
log(1/ε)

1 + (C log(1/ε))−1

)
≥ e−1/C+o(1) ≥ δ > 0
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for some δ > 0 independent of ε→ 0. Therefore, by (2.4), (2.5), (2.6),
we have for δ′ > 0

A(π) ≥ π + o(1)

(C log(1/ε)))−1
δ ≥ δ′ (log(1/ε)) → ∞

as ε→ 0. This proves A(π) = ∞. □

Proof of Theorem 2: By Lemma 2, we have

B(π) ≥ sup
α∈(0,π)

1− (α/π)

(α/π)
A(α).

Let us prove the opposite inequality. Let {un} ⊂ H1/2,2(R), un ̸= 0,
∥(−∆)1/4un∥2L2(R) + ∥un∥2L2(R) ≤ 1, be a maximizing sequence of B(π).

We may assume ∥(−∆)1/4un∥2L2(R) < 1 for any n ∈ N. Put
vn(x) =

un(λnx)

∥(−∆)1/4un∥L2(R)
, (x ∈ R)

λn =
1−∥(−∆)1/4un∥2

L2(R)
∥(−∆)1/4un∥2

L2(R)
> 0.

Thus by (2.2), we see

∥(−∆)1/4vn∥2L2(R) = 1,

∥vn∥2L2(R) =
λ−1
n

∥(−∆)1/4un∥2L2(R)
∥un∥2L2(R) =

∥un∥2L2(R)

1− ∥(−∆)1/4un∥2L2(R)
≤ 1,

since ∥(−∆)1/4un∥2L2(R)+∥un∥2L2(R) ≤ 1. Thus, setting αn = π∥(−∆)1/4un∥2L2(R) <

π for any n ∈ N, we may test A(αn) by {vn}, which results in

B(π) + o(1) =

∫
R

(
eπu

2
n(y) − 1

)
dy

= λn

∫
R

(
e
π∥(−∆)1/4un∥2

L2(R)
v2n(x) − 1

)
dx

≤ λn
1

∥vn∥2L2(R)

∫
R

(
eαnv2n(x) − 1

)
dx

≤ λnA(αn) =
1− (αn/π)

(αn/π)
A(αn)

≤ sup
α∈(0,π)

1− (α/π)

(α/π)
A(α).

Here we have used a change of variables y = λnx for the second equality,
and ∥vn∥2L2(R) ≤ 1 for the first inequality. Letting n→ ∞, we have the

desired result. □
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Proof of Theorem 3:
We need to prove that there exists C1 > 0 such that for any α < π

which is sufficiently close to π, it holds that

A(α) ≥ C1

1− α/π
.

Again we use the Moser sequence (2.3) and we test A(α) by vε =
uε/∥(−∆)1/4uε∥L2(R). As in the similar calculations in the proof of
Theorem 1, we have

A(α) ≥ 1

∥vε∥2L2(R)

∫
R

(
eαv

2
ε − 1

)
dx

≥ (1/2)

∥vε∥2L2(R)

∫
|x|≤ε

eαv
2
εdx

≥ Cε (log(1/ε)) exp

(
α

π

log(1/ε)

1 + (C log(1/ε))−1

)
= Cε (log(1/ε)) exp (δε log(1/ε))

where we put δε = (α
π
) 1
1+(C log(1/ε))−1 ∈ (0, 1).

Now, for α < π which is sufficiently close to π, we fix ε > 0 small
such that

(2.7)
1

1− α/π
≤ log(1/ε) ≤ 2

1− α/π
,

which implies

exp

(
− 2

1− α/π

)
≤ ε ≤ exp

(
− 1

1− α/π

)
.

With this choice of ε > 0, we have

A(α) ≥ Cε (log(1/ε)) exp (δε log(1/ε))

= Cε (log(1/ε)) (1/ε)δε = Cε1−δε (log(1/ε)) .(2.8)
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Now, we estimate that

ε1−δε ≥
(
exp

(
− 2

1− α/π

))1−δε

= exp

(
− 2

1− α/π
(1− δε)

)
= exp

(
−
(

2

1− α/π

){
(1− α/π) + (α/π)

(
1− 1

1 + (C log 1/ε)−1

)})
= exp

(
−2−

(
2(α/π)

1− α/π

)(
1

1 + C log 1/ε

))
≥ exp

(
−2−

(
2(α/π)

1− α/π

)(
1

1 + C
1−α/π

))
= e−2 · e−

2(α/π)
C+1−α/π = e−2 · e−f(α/π)

where f(t) = 2t
C+1−t

for t ∈ [0, 1] and we have used (2.7) in the last

inequality. We easily see that f(0) = 0, f ′(t) = 2(C+1)
(C+1−t)2

> 0 for t > 0,

thus f(t) is strictly increasing in t and maxt∈[0,1] f(t) = f(1) = 2/C.
Thus we have

ε1−δε ≥ e−2 · e−2/C =: C0

which is independent of α. Backing to (2.8) with (2.7), we observe that

A(α) ≥ Cε1−δε (log(1/ε)) ≥ CC0 (log(1/ε)) ≥
CC0

1− α/π

which proves the result. □

3. Proof of Theorem 4 and 5

For u ∈ H1/2,2(R), u∗ will denote its symmetric decreasing rearrange-
ment defined as follows: For a measurable set A ⊂ R, let A∗ denote an
open interval A∗ = (−|A|/2, |A|/2). We define u∗ by

u∗(x) =

∫ ∞

0

χ{y∈R:|u(y)|>t}∗(x)dt

where χA denote the indicator function of a measurable set A ⊂ R.
Note that u∗ is nonnegative, even, and decreasing on the positive line
R+ = [0,+∞). It is known that

(3.1)

∫
R
F (u∗)dx =

∫
R
F (|u|)dx

for any nonnegative measurable function F : R+ → R+, which is the
difference of two monotone increasing functions F1, F2 with F1(0) =
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F2(0) = 0 such that either F1 ◦ |u| or F2 ◦ |u| is integrable. Also the
inequality of Pólya-Szegö type∫

R
|(−∆u∗)1/4|2dx ≤

∫
R
|(−∆u)1/4|2dx

holds true for u ∈ H1/2,2(R), see for example, [2] and [16].

Remark 1. Note that Radial Compactness Lemma by Strauss [27] is
violated on R. More precisely, let

H
1/2,2
rad (R) = {u ∈ H1/2,2(R) : u(x) = u(−x), x ≥ 0},

then H
1/2,2
rad (R) cannot be embedded compactly in Lq(R) for any q > 0.

To see this, let ψ ̸= 0 be an even function in C∞
c (R) with supp(ψ) ⊂

(−1, 1) and put un(x) = ψ(x− n) + ψ(x+ n). Then we see un is even,
compactly supported smooth function, and un ⇀ 0 weakly in H1/2,2(R)
as n→ ∞. But {un} does not have any strong convergent subsequence
in Lq(R), because ∥un∥qLq(R) = 2∥ψ∥qLq(R) > 0 for any n sufficient large.

However, for a sequence {un}n∈N ⊂ H1/2,2(R) with un even, nonneg-
ative and decreasing on R+, we have the following compactness result.

Proposition 3. Assume {un} ⊂ H1/2,2(R) be a sequence such that
un is even, nonnegative and decreasing on R+. Let un ⇀ u weakly in
H1/2,2(R). Then un → u strongly in Lq(R) for any q ∈ (2,+∞) for a
subsequence.

Proof. Since {un} ⊂ H1/2,2(R) is a weakly convergent sequence, we
have supn∈N ∥un∥H1/2,2(R) ≤ C for some C > 0. We also have un(x) →
u(x) a.e x ∈ R for a subsequence, thus u is even, nonnegative and
decreasing on R+. Now, we use the estimate below, which is referred
to a Simple Radial Lemma: If u ∈ L2(R) is even, nonnegative and
decreasing on R+, then it holds

(3.2) u2(x) ≤ 1

2|x|

∫ |x|

−|x|
u2(y)dy ≤ 1

2|x|
∥u∥2L2(R) (x ̸= 0).

Thus u2n(x) ≤ C
2|x| for x ̸= 0 by supn∈N ∥un∥H1/2,2(R) ≤ C and u2(x) ≤

C
2|x| by the pointwise convergence. Now, set vn = |un − u|q for q > 2.
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Then we see vn(x) → 0 a.e. x ∈ R. Moreover,∫
|x|≥R

|un − u|qdx = 2

∫ ∞

R

|un − u|qdx

≤ 2q
(∫ ∞

R

|un|qdx+
∫ ∞

R

|u|qdx
)

≤ C

∫ ∞

R

dx

|x|q/2
=

CR1−q/2

(q/2)− 1
→ 0

as R → ∞ since q > 2. Thus {vn}n∈N is uniformly integrable. Also by
[19] Theorem 6.9, we know that

H1/2,2(R) ⊂ Lq0(R) for any q0 ≥ 2 and ∥u∥Lq0 (R) ≤ C∥u∥H1/2,2(R).

For any q > 2, take q0 such that 2 < q < q0 < ∞. Since un − u is
uniformly bounded in H1/2,2(R), we have ∥un − u∥Lq0 (R) ≤ C, and∫

I

vndx =

∫
I

|un − u|qdx ≤
(∫

I

|un − u|q0dx
)q/q0

|I|1−q/q0

for any bounded measurable set I ⊂ R. Therefore
∫
I
vndx → 0 if

|I| → 0, which implies {vn} is uniformly absolutely continuous. Thus
by Vitali’s Convergence Theorem (see for example, [7] p.187), we obtain
vn = |un − u|q → 0 strongly in L1(R), which is the desired conclusion.

□
Proposition 4. Assume {un} ⊂ H1/2,2(R) be a sequence with ∥(−∆)1/4un∥L2(R) ≤
1. Let un ⇀ u weakly in H1/2,2(R) for some u and assume un is even,
nonnegative and decreasing on R+. Then we have∫

R

(
eαu

2
n − 1− αu2n

)
dx→

∫
R

(
eαu

2 − 1− αu2
)
dx

for any α ∈ (0, π).

Proof. The similar proposition above is already appeared, see [10] Lemma
3.1, and [5] Lemma 5.5. We prove it here for the reader’s convenience.

Put Φα(t) = eαt
2 − 1 and Ψα(t) = eαt

2 − 1− αt2. Note that Φα(t) is
nonnegative, strictly convex and Ψ′

α(t) = 2αtΦα(t). Thus by the mean
value theorem, we have

|Ψα(un)−Ψα(u)| ≤ Ψ′
α(θun + (1− θ)u)|un − u|

≤ 2α|θun + (1− θ)u|Φα(θun + (1− θ)u)|un − u|
≤ 2α(|un|+ |u|) (θΦα(un) + (1− θ)Φα(u)) |un − u|
≤ 2α(|un|+ |u|) (Φα(un) + Φα(u)) |un − u|.
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Thus we have∫
R
|Ψα(un)−Ψα(u)|dx ≤ 2α

∫
R
(|un|+ |u|) (Φα(un) + Φα(u)) |un − u|dx

≤ 2α∥|un|+ |u|∥La(R)∥Φα(un) + Φα(u)∥Lb(R)∥un − u∥Lc(R)

(3.3)

by Hölder’s inequality, where a, b, c > 1 and 1/a + 1/b + 1/c = 1 are
chosen later.

First, direct calculation shows that

(3.4) (Φα(t))
b < ebαt

2 − 1 (t ∈ R)

for all b > 1. Thus if we fix 1 < b < π/α so that bα < π is realized,
then we have

∥Φα(un) + Φα(u)∥bLb(R) ≤
(
∥Φα(un)∥Lb(R) + ∥Φα(u)∥Lb(R)

)b
≤ 2b−1

(∫
R
(Φα(un))

b dx+

∫
R
(Φα(u))

b dx

)
≤ 2b−1

(∫
R

(
ebαu

2
n − 1

)
dx+

∫
R

(
ebαu

2 − 1
)
dx

)
≤ 2b−1A(bα)

(
∥un∥2L2(R) + ∥u∥2L2(R)

)
,

here we used (3.4) for the third inequality and Theorem 1 for the last
inequality, the use of which is valid since ∥(−∆)1/4un∥L2(R) ≤ 1 and

∥(−∆)1/4u∥L2(R) ≤ 1 by the weak lower semicontinuity. Note that
{un} satisfies supn∈N ∥un∥H1/2,2(R) ≤ C for some C > 0. Thus we have
obtained ∥Φα(un) + Φα(u)∥Lb(R) = O(1) independent of n.

Next, we estimate the term ∥|un|+|u|∥La(R). Since {un} is a bounded

sequence in H1/2,2(R), we have by [19] Theorem 6.9 that ∥u∥Lq(R) ≤
C∥un∥H1/2,2(R) for any q ≥ 2. Thus we see ∥|un| + |u|∥La(R) ≤ C for
some C > 0 independent of n for a ≥ 2. Now, note that if we choose
1 < b < π/α and a > 2 sufficiently large, then we can find c > 2 such
that 1/a+ 1/b+ 1/c = 1.

By these choices and Proposition 3, we conclude that ∥un−u∥Lc(R) →
0 as n→ ∞. Backing to (3.3) with all together, we conclude that∫

R
Ψα(un)dx→

∫
R
Ψα(u)dx (n→ ∞),

which is the desired conclusion. □

Now, we prove Theorem 4. We will show that A(α) in (1.1) is at-
tained for any 0 < α < π. Since A(α) = Ã(α) by Lemma 1, we choose
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a maximizing sequence for Ã(α):∫
R

(
eαu

2
n − 1

)
dx = A(α) + o(1) (n→ ∞).

Here {un}n∈N ⊂ H1/2,2(R) satisfies ∥(−∆)1/4un∥L2(R) ≤ 1 and ∥un∥L2(R) =
1. By appealing to the use of rearrangement, we may furthermore
assume that un is nonnegative, even, and decreasing on R+. Since
{un}n∈N ⊂ H1/2,2(R) is a bounded sequence, we have u ∈ H1/2,2(R)
such that un ⇀ u in H1/2,2(R). By Proposition 4, we see∫

R

(
eαu

2
n − 1− αu2n

)
dx =

∫
R

(
eαu

2 − 1− αu2
)
dx

as n→ ∞. Therefore, since ∥un∥2L2(R) = 1, we have, letting n→ ∞,

(3.5) A(α) = α+

∫
R

(
eαu

2 − 1− αu2
)
dx.

Next, we claim that A(α) > α for any 0 < α < π. Indeed, take any
u0 ∈ H1/2,2(R) such that u0 ̸≡ 0, ∥(−∆)1/4u0∥L2(R) ≤ 1 and ∥u0∥L2(R) =
1. Then we have

A(α) = Ã(α) ≥
∫
R

(
eαu

2
0 − 1

)
dx = α +

∫
R

(
eαu

2
0 − 1− αu20

)
dx.

Now, since eαt
2 − 1− αt2 > 0 for any t > 0, we have∫

R

(
eαu

2
0 − 1− αu20

)
dx > 0

for u0 ̸≡ 0, which results in A(α) > α, the claim.
By the claim and (3.5), we conclude that the weak limit u satisfies

u ̸≡ 0. By the weak lower semi continuity, we have u ̸≡ 0 satisfies
∥(−∆)1/4u∥L2(R) ≤ 1 and ∥u∥L2(R) ≤ 1. Thus by (3.5) again, we see

A(α) = α +

∫
R

(
eαu

2 − 1− αu2
)
dx

≤ α +
1

∥u∥2L2(R)

∫
R

(
eαu

2 − 1− αu2
)
dx

= α +
1

∥u∥2L2(R)

∫
R

(
eαu

2 − 1
)
dx− α

∥u∥2L2(R)

∥u∥2L2(R)

=
1

∥u∥2L2(R)

∫
R

(
eαu

2 − 1
)
dx.

Thus we have shown that u ∈ H1/2,2(R) maximizes A(α). □
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Next, we prove Theorem 5. We follow Ishiwata’s argument in [9].
Let

M =
{
u ∈ H1/2,2(R) : ∥u∥H1/2,2(R) = 1

}
,

Jα :M → R, Jα(u) =

∫
R

(
eαu

2 − 1
)
dx.

Actually, we will show a stronger claim that Jα has no critical point on
M for sufficiently small α > 0. Assume the contrary that there exists
a critical point v ∈ M of Jα for small α > 0. Then we define an orbit
on M through v as

vτ (x) =
√
τv(τx) τ ∈ (0,∞), wτ =

vτ
∥vτ∥H1/2

∈M.

Note that w1 = v thus it must be d
dτ

∣∣∣
τ=1

Jα(wτ ) = 0. By scaling rules

(2.2), we see for any p ≥ 2,

∥vτ∥pLp(R) = τ p/2−1∥v∥pLp(R) and ∥(−∆)1/4vτ∥L2(R) = τ∥(−∆)1/4v∥L2(R).

Now, we see

Jα(wτ ) =

∫
R

(
eαw

2
τ − 1

)
dx =

∫
R

∞∑
j=1

αj

j!

v2jτ (x)

(∥vτ∥22 + ∥(−∆)1/4vτ∥22)
j

=
∞∑
j=1

αj

j!

∥vτ∥2j2j
(∥vτ∥22 + ∥(−∆)1/4vτ∥22)

j =
∞∑
j=1

αj

j!

τ j−1∥v∥2j2j
(∥v∥22 + τ∥(−∆)1/4v∥22)

j

=
∞∑
j=1

αj

j!
fj(τ)

where fj(τ) =
τ j−1c

(b+τa)j
with a = ∥(−∆)1/4v∥22, b = ∥v∥22 and c = ∥v∥2j2j.

Since

f ′
j(τ) =

τ j−2c

(b+ τa)j+1
{−τa+ (j − 1)b}
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and ∥(−∆)1/4v∥22 + ∥v∥22 = 1, we calculate

d

dτ

∣∣∣
τ=1

Jα(wτ )

=
∞∑
j=1

[
αj

j!

τ j−2∥v∥2j2j
(∥v∥22 + τ∥(−∆)1/4v∥22)

j+1

{
−τ∥(−∆)1/4v∥22 + (j − 1)∥v∥22

}]
τ=1

≤ −α∥(−∆)1/4v∥22∥v∥22 +
∞∑
j=2

αj

(j − 1)!
∥v∥2j2j

= α∥(−∆)1/4v∥22∥v∥22

{
−1 +

∞∑
j=2

αj−1

(j − 1)!

∥v∥2j2j
∥(−∆)1/4v∥22∥v∥22

}
.

Here, we need the following lemma:

Lemma 3. (Ogawa-Ozawa [21]) There exists C > 0 such that for any
u ∈ H1/2,2(R) and p ≥ 2, it holds

∥u∥pLp(R) ≤ Cpp/2∥(−∆)1/4u∥p−2
L2(R)∥u∥

2
L2(R).

For p = 2j, Lemma 3 implies

∥v∥2j2j
∥(−∆)1/4v∥22∥v∥22

≤ C(2j)j ∥(−∆)1/4v∥2j−4
2︸ ︷︷ ︸

≤1 (j≥2)

≤ C(2j)j.

Thus for 0 < α << 1 sufficiently small (it would be enough that
α < 1/(2e)), Stirling’s formula j! ∼ jje−j

√
2πj implies that

∞∑
j=2

αj−1

(j − 1)!

∥v∥2j2j
∥(−∆)1/4v∥22∥v∥22

≤
∞∑
j=2

αj−1

(j − 1)!
(2j)j ≤ αC

for some C > 0 independent of α. Therefore we have d
dτ
Jα(wτ )

∣∣∣
τ=1

< 0

for small α, which is a desired contradiction. □

4. Proof of Theorem 6.

In order to prove Theorem 6, first we set

(4.1) F (β) = sup
u∈H1/2,2(R)

∥u∥
H1/2,2(R)

≤1

∫
R
u2eβu

2

dx

for β > 0. Then we have

Proposition 5. We have F (β) <∞ for β < π
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Proof. We follow the proof of Theorem 1.5 in [12]. Take any u ∈
H1/2,2(R) with ∥u∥H1/2,2(R) ≤ 1 in the admissible sets for F (β) in (4.1).
By appealing to the rearrangement, we may assume that u is even,
nonnegative and decreasing on R+. We divide the integral∫

R
u2eβu

2

dx =

∫
R\I

u2eβu
2

dx+

∫
I

u2eβu
2

dx = (I) + (II),

where I = (−1/2, 1/2).
First, we estimate (I). By the Radial Lemma (3.2), we see for any

k ∈ N, k ≥ 2,

u2k(x) ≤

(
∥u∥2L2(R)

2|x|

)k

=
∥u∥2kL2(R)

2k
1

|x|k
for x ̸= 0.

Thus ∫
R\I

u2k(x)dx ≤
∥u∥2kL2(R)

2k

∫
R\I

dx

|x|k

=
∥u∥2kL2(R)

2k−1

∫ ∞

1/2

dx

xk
=

∥u∥2kL2(R)

k − 1
.

Therefore, we have

(I) =

∫
R\I

u2eβu
2

dx =

∫
R\I

u2

(
1 +

∞∑
k=1

βku2k

k!

)
dx

=

∫
R\I

u2dx+
∞∑
k=2

βk−1

(k − 1)!

∫
R\I

u2kdx

≤ ∥u∥2L2(R) +
∞∑
k=2

βk−1

(k − 1)!

∥u∥2kL2(R)

k − 1

= ∥u∥2L2(R)

(
1 +

∞∑
k=2

βk−1

(k − 1)(k − 1)!
∥u∥2(k−1)

L2(R)

)
.

Now by the constraint ∥u∥H1/2,2(R) ≤ 1, we have ∥u∥L2(R) ≤ 1. Also if we

put ak =
βk−1

(k−1)(k−1)!
, then

∑∞
k=2 ak converges since ak+1/ak = β k−1

k2
→ 0

as k → ∞. Thus we obtain

(I) ≤ 1 +
∞∑
k=2

βk−1

(k − 1)(k − 1)!
≤ C

where C > 0 is independent of u ∈ H1/2,2(R) with ∥u∥H1/2,2(R) ≤ 1.
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Next, we estimate (II). Set

v(x) =

{
u(x)− u(1/2), |x| ≤ 1/2,

0, |x| > 1/2.

Then by the argument of [12], we know that

∥(−∆)1/4v∥2L2(R) ≤ ∥(−∆)1/4u∥2L2(R),

u2(x) ≤ v2(x)
(
1 + ∥u∥2L2(R)

)
+ 2

for x ∈ I. Put w = v
√
1 + ∥u∥2L2(R). Then we have w ∈ H̃1/2,2(I) since

v ≡ 0 on R \ I, and

∥(−∆)1/4w∥2L2(R) =
(
1 + ∥u∥2L2(R)

)
∥(−∆)1/4v∥2L2(R)

≤
(
1 + ∥u∥2L2(R)

)(
1− ∥u∥2L2(R)

)
≤ 1.

Thus we may use the fractional Trudinger-Moser inequality (Proposi-
tion 1) to w to obtain ∫

I

eπw
2

dx ≤ C

for some C > 0 independent of u. By u2 ≤ w2 + 2 on I, we conclude
that ∫

I

eπu
2

dx ≤
∫
I

eπ(w
2+2)dx = e2π

∫
I

eπw
2

dx ≤ C ′.

Now, since β < π, there is an absolute constant C0 such that t2eβt
2 ≤

C0e
πt2 for any t ∈ R. Finally, we obtain

(II) =

∫
I

u2eβu
2

dx ≤ C0

∫
I

eπu
2

dx ≤ C0C
′.

Proposition 5 follows from the estimates (I) and (II). □
By using Proposition 5 and arguing as in the proof of Theorem 1

(after establishing the similar claims as in Lemma 1 and Lemma 2), it
is easy to obtain the following Proposition:

Proposition 6. For any 0 < α < β < π, we have

E(α) ≤
(

1

1− α/β

)
F (β).

Since F (β) <∞ for any β < π, this proves the first part of Theorem
6. For the attainability of E(α) for α ∈ (0, π), it is enough to argue as
in the proof of Theorem 4. We omit the details. □
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