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THE COHOMOLOGY RINGS OF REGULAR NILPOTENT HESSENBERG VARIETIES

IN LIE TYPE A

HIRAKU ABE, MEGUMI HARADA, TATSUYA HORIGUCHI, AND MIKIYA MASUDA

Abstract. Let n be a fixed positive integer and h : {1, 2, . . . , n} → {1, 2, . . . , n} a Hessenberg function.
The main results of this paper are twofold. First, we give a systematic method, depending in a simple
manner on the Hessenberg function h, for producing an explicit presentation by generators and relations of
the cohomology ring H∗(Hess(N, h)) with Q coefficients of the corresponding regular nilpotent Hessenberg

variety Hess(N, h). Our result generalizes known results in special cases such as the Peterson variety and
also allows us to answer a question posed by Mbirika and Tymoczko. Moreover, our list of generators in
fact forms a regular sequence, allowing us to use techniques from commutative algebra in our arguments.
Our second main result gives an isomorphism between the cohomology ring H∗(Hess(N, h)) of the regular

nilpotent Hessenberg variety and the Sn-invariant subring H∗(Hess(S, h))Sn of the cohomology ring of
the regular semisimple Hessenberg variety (with respect to the Sn-action on H∗(Hess(S, h)) defined by
Tymoczko). Our second main result implies that dimQH

k(Hess(N, h)) = dimQH
k(Hess(S, h))Sn for all

k and hence partially proves the Shareshian-Wachs conjecture in combinatorics, which is in turn related

to the well-known Stanley-Stembridge conjecture. A proof of the full Shareshian-Wachs conjecture was
recently given by Brosnan and Chow, but in our special case, our methods yield a stronger result (i.e. an
isomorphism of rings) by more elementary considerations. This paper provides detailed proofs of results we
recorded previously in a research announcement.
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1. Introduction and statement of main results (Theorem A and Theorem B)

Hessenberg varieties in type A are subvarieties of the full flag variety Flag(Cn) of nested sequences of
linear subspaces in Cn. Their geometry and (equivariant) topology have been studied extensively since
the late 1980s [13, 15, 14]. This subject lies at the intersection of, and makes connections between, many
research areas such as geometric representation theory (see for example [46, 21]), combinatorics (see e.g.
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conjecture.
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[19, 36]), and algebraic geometry and topology (see e.g. [34, 8, 51, 31]). For instance, a special case of
Hessenberg varieties called the Peterson variety Petn arises in the study of the quantum cohomology of
the flag variety [34, 42]. More generally, geometric properties and invariants of many different types of
Hessenberg varieties (including in Lie types other than A) have been widely studied: for instance, the issue
of connectedness is addressed in [52, 40], Tymoczko shows that they are not necessarily pure-dimensional in
[52], and affine pavings of various cases of Hessenberg varieties are constructed in [53, 39, 30]. In addition,
the (equivariant and ordinary) cohomology rings of Hessenberg varieties have received much attention. To
cite just two examples, the second author and Tymoczko gave an explicit set of generators for H∗

S(Petn)
and prove a Schubert-calculus-type “Monk formula”, resulting in a presentation of H∗

S(Petn) via generators
and relations in [25], and in a different direction, Brion and Carrell showed an isomorphism between the
equivariant cohomology ring of a regular nilpotent Hessenberg variety with the affine coordinate ring of a
certain affine curve [8]. Beyond the two manuscripts just mentioned, there has also been extensive work on
the equivariant and ordinary cohomology rings of Springer varieties [12, 49, 16, 28, 2] and of some types of
regular nilpotent Hessenberg varieties (including Peterson varieties in different Lie types) [6, 18, 24]. However,
it has been an open question to give a general and systematic description of the equivariant cohomology
rings of all regular nilpotent Hessenberg varieties [30, Introduction, page 2], to which our results provides an
answer (in Lie type A).

In addition, very recent developments provide further evidence that Hessenberg varieties occupy a central
place in the fruitful intersection of algebraic geometry, combinatorics, and geometric representation theory.
We first recall some background. The well-known Stanley-Stembridge conjecture in combinatorics states
that the chromatic symmetric function of the incomparability graph of a so-called (3 + 1)-free poset is e-
positive. In related work, Stanley [47] also showed a relation between q-Eulerian polynomials and a certain
Sn-representation on the cohomology of the toric variety associated with the Coxeter complex of type An−1

studied by Procesi [41]. The above toric variety is a special case of a regular semisimple Hessenberg va-
riety of type A [14], and Tymoczko [54] has defined Sn-representations on their cohomology rings which
generalize the Sn-representation studied by Procesi. Motivated by the above, Shareshian and Wachs formu-
lated in 2011 a conjecture [43] relating the chromatic quasisymmetric function of the incomparability graph
of a natural unit interval order and Tymoczko’s Sn-representation on the cohomology of the associated
regular semisimple Hessenberg variety. While the Shareshian-Wachs conjecture does not imply the Stanley-
Stembridge conjecture, it nevertheless represents a significant step towards its solution. In a 2015 preprint,
Brosnan and Chow [9] prove the Shareshian-Wachs conjecture by showing a remarkable relationship between
the Betti numbers of different Hessenberg varieties; a key ingredient in their approach is a certain family of
Hessenberg varieties, the (cohomology of the) fibers of which are related via monodromy. Our second main
result (Theorem B) also contributes to this discussion, as we explain below. We should also mention that, in
a different direction, Ting, Vilonen, and Xue find in their 2015 preprints [10, 11] concerning a Springer cor-
respondence for symmetric spaces (corresponding to the split symmetric pair (SL(n,C), SO(n,C))) that it is
useful for their theory to replace the classical Springer resolution and Grothendieck simultaneous resolution
with certain pairs of families of Hessenberg varieties.

We now describe the two main results (Theorem A and Theorem B below) of this manuscript in more
detail. Recall that the flag variety Flag(Cn) consists of nested sequences of linear subspaces of Cn,

Flag(Cn) := {V• = ({0} ⊂ V1 ⊂ V2 ⊂ · · ·Vn−1 ⊂ Vn = Cn) | dimC(Vi) = i for all i = 1, . . . , n}.

Additionally, let h : {1, 2, . . . , n} → {1, 2, . . . , n} be a Hessenberg function, i.e. h satisfies h(i) ≥ i for all i
and h(i+1) ≥ h(i) for all i < n. Also let N denote a regular nilpotent matrix in gl(n,C), i.e. a matrix whose
Jordan form consists of exactly one Jordan block with corresponding eigenvalue equal to 0. Then we may
define the regular nilpotent Hessenberg variety (associated to h) to be the subvariety of Flag(Cn)
defined by

(1.1) Hess(N, h) := {V• ∈ Flag(Cn) | NVi ⊂ Vh(i) for all i = 1, . . . , n} ⊂ Flag(Cn).

Our first main theorem gives an explicit presentation via generators and relations of the cohomology1 ring
H∗(Hess(N, h)) of the regular nilpotent Hessenberg variety associated to any Hessenberg function h. For any

1Throughout this document (unless explicitly stated otherwise) we work with cohomology with coefficients in Q.
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pair i, j with i ≥ j, let f̌i,j be the polynomial

f̌i,j :=

j∑
k=1

(
xk

i∏
ℓ=j+1

(xk − xℓ)
)
for i ≥ j(1.2)

with the convention
∏j

ℓ=j+1(xk − xℓ) = 1.

Theorem A. Let n be a positive integer and h : {1, 2, . . . , n} → {1, 2, . . . , n} a Hessenberg function. Let N
denote a regular nilpotent matrix in gl(n,C) and let Hess(N, h) ⊂ Flag(Cn) be the associated regular nilpotent
Hessenberg variety. Then the restriction map

H∗(Flag(Cn)) → H∗(Hess(N, h))

is surjective, and there is an isomorphism of graded Q-algebras

(1.3) H∗(Hess(N, h)) ∼= Q[x1, . . . , xn]/Ǐh

where Ǐh is the ideal of Q[x1, . . . , xn] defined by

(1.4) Ǐh := (f̌h(j),j | 1 ≤ j ≤ n).

The following points are worth noting immediately. Firstly, the equation (1.2) gives a simple closed formula
for the polynomials f̌h(j),j generating the ideal Ǐh in (1.3); moreover, the ideal depends in a manifestly

simple and systematic manner on the Hessenberg function h. Secondly, these generators {f̌h(j),j}nj=1 have

algebraic properties which make them particularly useful. Specifically, the f̌h(j),j (as well as their equivariant
counterparts fi,j which we discuss below) in fact form a regular sequence (cf. Definition 6.1) in the sense
of commutative algebra, and it is precisely this property which allows us to exploit techniques in e.g. the
theory of Hilbert series and Poincaré duality algebras to prove both of our main results. Thirdly, we can
answer a question posed by Mbirika and Tymoczko [37, Question 2]: they asked whether H∗(Hess(N, h)) is
isomorphic to the quotient of Q[x1, . . . , xn] by a certain ideal, described in detail in [37], which is generated
by “truncated symmetric polynomials”. Our Theorem A says that, in general, the answer is “No”. For
instance, in the special case of the Peterson variety Petn of complex dimension n for n ≥ 3, it is not difficult
to see directly from Mbirika and Tymoczko’s definitions in [37] that their ring contains a non-zero element of
degree 2 whose square is equal to 0, whereas one can see from our presentation (1.3) that H∗(Petn) contains
no such element. Finally, our Theorem A generalizes known results: in the special cases of the full flag
variety Flag(Cn) and the Peterson variety Petn, the presentation given in Theorem A recovers previously
known presentations of the relevant cohomology rings (cf. Remarks 7.2 and 7.3).

Next we turn to Theorem B, for which we need additional terminology. Let h be a Hessenberg function
and this time let S denote a regular semisimple matrix in gl(n,C), i.e. a matrix which is diagonalizable with
distinct eigenvalues. Then the regular semisimple Hessenberg variety (associated to h) is defined to
be

(1.5) Hess(S, h) := {V• ∈ Flag(Cn) | SVi ⊂ Vh(i) for all i = 1, . . . , n} ⊂ Flag(Cn).

The cohomology rings of these varieties admit an action of the symmetric group Sn, as Tymoczko pointed
out many years ago [54]. In Theorem B, we prove - for a fixed Hessenberg function h - that there exists an
isomorphism of graded rings between the cohomology ring of the corresponding regular nilpotent Hessen-
berg variety and the Sn-invariant subring of the cohomology ring of the corresponding regular semisimple
Hessenberg variety. More precisely, we have the following.

Theorem B. Let n be a positive integer and h : {1, 2, . . . , n} → {1, 2, . . . , n} a Hessenberg function. Let
N denote a regular nilpotent matrix and S denote a regular semisimple matrix in gl(n,C). Let Hess(N, h)
and Hess(S, h) be the associated regular nilpotent and regular semisimple Hessenberg varieties respectively.
Then there exists a unique graded Q-algebra homomorphism A : H∗(Hess(N, h)) → H∗(Hess(S, h)) making
the following diagram commute:

(1.6)

H∗(Flag(Cn)) −−→
−−−→
−−−→

−−
−→

H∗(Hess(S, h))

A

H∗(Hess(N, h))
3



where the maps H∗(Flag(Cn)) → H∗(Hess(S, h)) and H∗(Flag(Cn)) → H∗(Hess(N, h)) are induced from
the inclusions Hess(S, h) ↪→ Flag(Cn) and Hess(N, h) ↪→ Flag(Cn) respectively. Moreover, the image of
A is precisely the ring H∗(Hess(S, h))Sn of Sn-invariants in H∗(Hess(S, h)), and when the target of A is
restricted to this invariant subring, then

(1.7) A : H∗(Hess(N, h)) → H∗(Hess(S, h))Sn

is an isomorphism of graded Q-algebras.

As a special case, we note that Theorem B implies that the cohomology ring H∗(Petn) of the Peterson
variety Petn is isomorphic to theSn-invariant subringH

∗(X)Sn of the cohomology ring of the toric varietyX
associated with Coxeter complex of type An−1. This special case could be observed previously by comparing
the description of H∗(Petn) given explicitly in [18] to the description of H∗(X)Sn stated without proof in
[32]. Indeed, the striking similarity of the rings in [32] and [18] was our original motivation to prove Theorem
B.

Next we discuss the relationship between Theorem B and recent research in combinatorics. As briefly
discussed above, Shareshian and Wachs conjectured a precise relationship between the (Frobenius character-
istic of) Tymoczko’s Sn-representation on the cohomology group of a regular semisimple Hessenberg variety
Hess(S, h) and the chromatic quasisymmetric function XG(x, t) of a graph G defined from the Hessenberg
function h [43, 44]. (Details are in Section 11.) When both sides of their conjectured equality are expanded
in terms of Schur functions sλ(x) for λ a partition of n, their conjecture can be interpreted as a set of equal-
ities of the coefficients (which are polynomials in t) of sλ(x) on each side. In [44, Theorem 6.9] Shareshian
and Wachs also obtain a closed formula for the coefficient of sn(x), i.e. the coefficient corresponding to the
trivial representation, and it agrees with the Hilbert series (also a polynomial in t) of H∗(Hess(N, h)). Upon
unraveling some definitions, it readily follows that our Theorem B proves the Shareshian-Wachs conjecture
for the coefficient of the trivial representation. During the preparation of this manuscript we learned that
Brosnan and Chow have independently proved the full Shareshian-Wachs conjecture, i.e. the equality of the
coefficients for all Schur functions, not just sn(x). However, we note that while Brosnan and Chow obtain
an equality of dimensions of vectors spaces dimHk(Hess(N, h)) = dimHk(Hess(S, h))Sn for varying k [9,
Theorem 76], their techniques do not appear to immediately yield further information about the product
structure on the rings H∗(Hess(N, h)) and H∗(Hess(S, h))Sn . Thus, for our special case, our Theorem B is
stronger than the corresponding result in [9]. Moreover, while Brosnan and Chow’s arguments utilize deep
and powerful results in the theory of local systems and perverse sheaves (specifically, the local invariant
cycle theorem of Beilinson-Bernstein-Deligne), our methods are more elementary, thus providing a useful
alternative perspective on this circle of ideas.

We now briefly discuss the methods used in the proofs of Theorems A and B. Our basic strategy is to
exploit the presence of additional symmetry on the varieties in question. Indeed, there is a 1-dimensional
torus S ∼= C∗ acting on Hess(N, h) (see Section 2) and there is an action of the standard maximal torus
T of GL(n,C) on Hess(S, h), allowing us to consider the equivariant cohomology rings H∗

S(Hess(N, h)) and
H∗

T (Hess(S, h)) respectively. Doing so allows us to use well-known techniques in equivariant topology, e.g.
localization to the torus-fixed point set [29] and, in the case ofH∗

T (Hess(S, h)), Goresky-Kottwitz-MacPherson
theory [23]. More specifically, we obtain Theorem A by first proving Theorem 3.5, which is an “equivariant
version of Theorem A”; more precisely, we show that the S-equivariant cohomology ring H∗

S(Hess(N, h)) can
be described as a quotient

H∗
S(Hess(N, h))

∼= Q[x1, . . . , xn, t]/(fh(j),j | 1 ≤ j ≤ n)

for certain polynomials fh(j),j in the variables x1, . . . , xn and t (defined precisely in Section 3). Here t is
the “equivariant variable” coming from the S-action. Theorem 3.5 immediately yields Theorem A because

the expressions
∑j

k=1 xk

(∏h(j)
ℓ=j+1(xk − xℓ)

)
are simply the polynomials obtained from fh(j),j by setting the

equivariant variable t equal to 0. The technical and laborious proof of Theorem 3.5 takes up the bulk of
this paper, but the idea is rather simple, as we now explain. We first inductively define the polynomials
fh(j),j and also define a graded Q-algebra homomorphism φ̃h from Q[x1, . . . , xn, t] to H∗

S(Hess(N, h)) which
factors through H∗

S(Flag(Cn)). Each polynomial fh(j),j is then shown to be in the kernel of φ̃h; here the key
strategy is to exploit the fact (which follows from general equivariant-topology arguments) that the natural

4



restriction map H∗
S(Hess(N, h)) → H∗

S(Hess(N, h)
S) to the S-fixed point set is injective. This then suffices

to show that there is a well-defined homomorphism

(1.8) Q[x1, . . . , xn, t]/(fh(j),j | 1 ≤ j ≤ n) → H∗
S(Hess(N, h)).

By an argument (similar in flavor to the discussions in [18]) using Hilbert series and by exploiting the fact
that the {f̌h(j),j} form a regular sequence, together with a trick which uses localization with respect to the
multiplicative subset Q[t] \ {0}, we can then show that (1.8) is an isomorphism.

Next we describe our proof of Theorem B. The inclusion Hess(S, h) ↪→ Flag(Cn) induces a natural map
H∗(Flag(Cn)) → H∗(Hess(S, h)). Theorem A gives us an explicit and finite list of generators for the ker-
nel of H∗(Flag(Cn)) → H∗(Hess(N, h)). So in order to prove that there exists a ring homomorphism A

as claimed in Theorem B, it suffices to show that the f̌h(j),j map to 0 in H∗(Hess(S, h)). This is pre-
cisely what we do, but as in the argument for Theorem A above, it turns out to be easiest to first work
equivariantly. Specifically, we prove that the fh(j),j (thought of as polynomials in certain T -equivariant
Chern classes) in H∗

T (Flag(Cn)) map to elements in H∗
T (Hess(S, h)) which lie in the kernel of the forgetful

map H∗
T (Hess(S, h)) → H∗(Hess(S, h)); the desired non-equivariant statement then readily follows. The

fact that the image of the homomorphism A : H∗(Hess(N, h)) → H∗(Hess(S, h)) thus defined lies in the
Sn-invariant subring (with respect to Tymoczko’s Sn-action) is an immediate consequence of the simple
facts that Tymoczko’s Sn-action is trivial on H∗(Flag(Cn)) (Lemma 8.5) and that the restriction map
H∗(Flag(Cn)) → H∗(Hess(S, h)) is Sn-equivariant (Lemma 8.4).

Our last task is to show that the map A : H∗(Hess(N, h)) → H∗(Hess(S, h))Sn (note the restricted
target) is an isomorphism. Here we use a combination of techniques from both equivariant geometry and
commutative algebra. As a simple first step, we show the surjectivity of A onto H∗(Hess(S, h))Sn by
(again) working equivariantly. Indeed, it is not hard to see directly from Tymoczko’s definition that the
Sn-invariant subrings of H

∗
T (Flag(Cn)) and H∗

T (Hess(S, h)) are isomorphic, so the map H∗(Flag(Cn))Sn =
H∗(Flag(Cn)) → H∗(Hess(S, h))Sn is a surjection; it follows immediately that A is also surjective. Our
proof of the injectivity of A, on the other hand, is slightly more involved, and uses techniques which are
probably less familiar to the readers of this manuscript. The starting point is the simple observation in
Lemma 10.5 that if R and R′ are finite-dimensional graded algebras with same highest degree d, R is a
Poincaré duality algebra (cf. Definition 10.4), and φ : R → R′ is a surjective graded ring homomorphism
inducing an isomorphism on the highest degrees, then φ is an isomorphism. Our strategy is to apply this
simple observation to R = H∗(Hess(N, h)) and R′ = H∗(Hess(S, h))Sn and our map A. Of course this makes
it necessary to check that H∗(Hess(N, h)) is a Poincaré duality algebra, but this turns out to be a rather
standard exercise in commutative algebra, where we again depend heavily on the fact that the {f̌h(j),j} form
a regular sequence. Since this argument is not standard in the literature on Hessenberg varieties, we have
included it in the Appendix. Finally, to see that A is an isomorphism in the top degree, the key step turns
out to be that the usual pairing on H∗(Hess(S, h)) is Sn-invariant (Proposition 9.5).

The paper is organized as follows. After briefly reviewing some background and terminology on regular
nilpotent Hessenberg varieties in Section 2, we state the equivariant version of our Theorem A in Section 3
as Theorem 3.5. The key properties of the polynomials fi,j , necessary for the proof of Theorem 3.5, are
recorded in Section 4. The fact that the homomorphism (1.8) is well-defined is shown in Section 5. To prove
that (1.8) is in fact an isomorphism requires some preparatory arguments using Hilbert series, which are
recorded in Section 6. In Section 7, using the results of the previous sections we are able to complete the
proof of Theorem 3.5 and hence also of Theorem A. Next, turning our attention to Theorem B, we quickly
recount some background and terminology concerning regular semisimple Hessenberg varieties in Section 8.
We recall and also prove some essential facts about Tymoczko’s Sn-action on the (equivariant and ordinary)
cohomology of regular semisimple Hessenberg varieties in Section 9. We prove Theorem B in Section 10 and
discuss the connection between our results and the Shareshian-Wachs conjecture in Section 11. We briefly
record some directions for future work in Section 12.
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2. Background and preliminaries

In this section we recall some background and establish some terminology for the rest of the paper.
Specifically, in Section 2.1 we recall the definitions of the regular nilpotent Hessenberg varieties, as well
as the torus actions on them. We also quickly recount some techniques in torus-equivariant cohomology
which will be used throughout. In Section 2.2 we analyze the torus-fixed point set of the regular nilpotent
Hessenberg variety which plays a key role in our later arguments.

2.1. The setup. Hessenberg varieties in Lie type A are subvarieties of the (full) flag variety Flag(Cn),
which is the collection of sequences of nested linear subspaces of Cn:

Flag(Cn) := {V• = ({0} ⊂ V1 ⊂ V2 ⊂ · · ·Vn−1 ⊂ Vn = Cn) | dimC(Vi) = i for all i = 1, . . . , n}.

It is well-known that Flag(Cn) can also be realized as a homogeneous space GL(n,C)/B where B is the
standard Borel subgroup of upper-triangular invertible matrices. Thus there is a natural action of GL(n,C)
on Flag(Cn) given by left multiplication on cosets.

A Hessenberg variety in Flag(Cn) is specified by two pieces of data: a Hessenberg function and a choice
of an element in the Lie algebra gl(n,C) of GL(n,C). We begin by discussing the first of these parameters.
Throughout this document we use the notation

[n] := {1, 2, . . . , n}.

Definition 2.1. A Hessenberg function is a function h : [n] → [n] satisfying the following two conditions

h(i) ≥ i for i ∈ [n],

h(i+ 1) ≥ h(i) for i ∈ [n− 1].

We frequently write a Hessenberg function by listing its values in sequence, i.e. h = (h(1), h(2), . . . , h(n)).

We also define Hn to be the set of Hessenberg functions h : [n] → [n], i.e.

Hn := {h : [n] → [n] | h is a Hessenberg function}.(2.1)

For the discussion to follow, it will be useful to introduce some terminology associated to a given Hessen-
berg function.

Definition 2.2. Let h ∈ Hn be a Hessenberg function. Then we define the Hessenberg subspace H(h) to
be the linear subspace of gl(n,C) ∼= Mat(n× n,C) specified as follows:

H(h) := {A = (aij)i,j∈[n] ∈ gl(n,C) | aij = 0 if i > h(j)}.(2.2)

Example 2.3. If n = 6, then h = (3, 3, 4, 5, 6, 6) is a Hessenberg function and its Hessenberg space H(h) is


⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆
0 0 ⋆ ⋆ ⋆ ⋆
0 0 0 ⋆ ⋆ ⋆
0 0 0 0 ⋆ ⋆




⊂ M(6× 6,C)

6



where the ⋆ indicate free variables taking values in C. It is conceptually useful to express H(h) pictorially by
drawing a configuration of boxes on a square grid of size n × n whose shaded boxes corresponds to the free
parameters ⋆ above. See Figure 1.

Figure 1. The picture of H(h) for h = (3, 3, 4, 5, 6, 6).

It is important to note that the H(h) is frequently not a Lie subalgebra of gl(n,C). However, it is stable
under the conjugation action of the usual maximal torus T (of invertible diagonal matrices), and we may
decompose H(h) into eigenspaces with respect to this action as

H(h) ∼= b⊕

 ⊕
i,j∈[n],

j<i≤h(j)

gl(n,C)(i,j)

(2.3)

where b = Lie(B) denotes the Lie algebra of the Borel subgroup of upper-triangular matrices, and gl(n,C)(i,j)
denotes the 1-dimensional T -weight space of gl(n,C) spanned by the elementary matrix Ei,j with a 1 in the
(i, j)-th entry and 0’s elsewhere. In Lie-theoretic language, the (i, j) satisfying the condition in the RHS
of (2.3) correspond to the negative roots of gl(n,C) whose corresponding root spaces appear in H(h). It will
be useful later on to focus attention on these roots, so we introduce the notation

NR(h) := {(i, j) ∈ [n]× [n] | j < i ≤ h(j)}.(2.4)

Intuitively, when visualizing the Hessenberg space explicitly as in Figure 1, the set NR(h) corresponds one-
to-one with “the boxes in (the picture associated to) H(h) which lie strictly below the main diagonal”. See
Figure 2.

H(h) : NR(h) :

Figure 2. The pictures of H(h) and NR(h) for h = (3, 3, 4, 5, 6, 6).

Given a pair (i, j) ∈ NR(h), we also define its height2 ht(i, j) as

ht(i, j) := i− j.(2.5)

Intuitively, the height of a pair (i, j) is k exactly when the (i, j)-th matrix entry is “k steps below the (main)
diagonal”. In Lie-theoretic terms, the height of (i, j) is the number of negative simple roots required to
express the T -weight of gl(n,C)(i,j).

2Here, contrary to customary usage, we require that the height of a negative root is a positive integer.
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We now introduce the main geometric objects of interest in this manuscript. Let h : [n] → [n] be a
Hessenberg function and let A be an n × n matrix in gl(n,C). Then the Hessenberg variety Hess(A, h)
associated to h and A is defined to be

Hess(A, h) := {V• ∈ Flag(Cn) | AVi ⊂ Vh(i) for all i ∈ [n]} ⊂ Flag(Cn).(2.6)

In particular, by definition Hess(A, h) is a subvariety of Flag(Cn), and if h = (n, n, . . . , n), then it is
immediate from (2.6) that Hess(A, h) = Flag(Cn) for any choice of A. Thus the full flag variety Flag(Cn)
is itself a special case of a Hessenberg variety; this will be important later on. We also remark that if
g ∈ GL(n,C), then Hess(A, h) and Hess(gAg−1, h) can be identified via the action of GL(n,C) on Flag(Cn).
In particular, important geometric features of Hessenberg varieties are frequently dependent only on the
conjugacy class of the element A ∈ gl(n,C), and not on A itself.

In this paper we focus on two special cases of Hessenberg varieties, as we now describe. Let N denote a
regular nilpotent matrix in gl(n,C), i.e. a matrix whose Jordan form consists of exactly one Jordan block
with corresponding eigenvalue equal to 0. Similarly let S denote a regular semisimple matrix in gl(n,C),
i.e. a matrix which is diagonalizable with distinct eigenvalues. Then, for any choice of Hessenberg function
h ∈ Hn, we call Hess(N, h) the regular nilpotent Hessenberg variety (associated to h) and call
Hess(S, h) the regular semisimple Hessenberg variety (associated to h). Both of the above types of
Hessenberg varieties have been much studied, and it is known, for example, that Hess(N, h) is irreducible
[5] and possibly singular [34, 31], while Hess(S, h) is smooth, and possibly non-connected [14]. As already
noted, the essential geometry of the regular semisimple Hessenberg variety Hess(S, h) depends only on the
conjugacy class of S. In fact, even more is true: it can be seen, for instance, that the (ordinary or equivariant)
cohomology of Hess(S, h) is also independent of the choices of the (distinct) eigenvalues of S (see e.g. [54]).
For concreteness, henceforth we will always assume that N and S are of the form

(2.7) N =


0 1

0 1
. . .

. . .

0 1
0

 and S =


µ1

µ2

. . .

µn


with respect to the standard basis of Cn, where µ1, µ2, . . . , µn are mutually distinct complex numbers. We
also note that the dimensions of Hess(N, h) and Hess(S, h) have been computed explicitly in terms of the
Hessenberg function [14, 45] and they coincide:

dimC Hess(N, h) = dimC Hess(S, h) =
n∑

j=1

(h(j)− j).(2.8)

Note that this number is also the number of boxes in the picture associated to NR(h). For example, if
h = (3, 3, 4, 5, 6, 6) as in Figure 2, then dimC Hess(N, h) = dimC Hess(S, h) = 6.

An essential ingredient in our discussion is the presence of torus actions on Hess(N, h) and Hess(S, h). In
both cases, the relevant torus action is induced from one on the ambient variety Flag(Cn). First recall that
the standard maximal torus

T =



g1

g2
. . .

gn


∣∣∣∣∣∣∣∣∣ gi ∈ C∗, i ∈ [n]

(2.9)

of invertible diagonal matrices (with respect to the standard basis of Cn) acts on the flag variety Flag(Cn) ∼=
GL(n,C)/B by left multiplication of cosets. Since our matrix S in (2.7) commutes with any element of T , it
is straightforward to see that this T -action on Flag(Cn) preserves the regular semisimple Hessenberg variety
Hess(S, h) for any choice of h. On the other hand, it can also be seen that this T -action does not preserve
the regular nilpotent Hessenberg variety Hess(N, h) in general. To salvage this situation, we consider the
following 1-dimensional subgroup S of T :

8



S :=



g

g2

. . .

gn


∣∣∣∣∣∣∣∣∣ g ∈ C∗

 .(2.10)

It is straightforward to check that this subgroup does preserve Hess(N, h) [26, Lemma 5.1]. In summary,
we have seen that, for any choice of Hessenberg function h ∈ Hn, there is a T -action on Hess(S, h) and an
S-action on Hess(N, h).

The above torus actions lead us to a study of the equivariant cohomology of Hessenberg varieties, so
we now quickly recall some basic background on equivariant topology. Suppose X is a a topological space
which admits a continuous action by the torus T . The T -equivariant cohomology H∗

T (X) is defined to be the
ordinary cohomology H∗(X ×T ET ) where ET → BT is the universal principal bundle of T . In particular,
H∗

T (pt) = H∗(BT ) and H∗
T (X) is an H∗

T (pt)-module via the T -equivariant collapsing map X → pt. We
have

H∗(BT ) ∼= SymQ(Hom(T,C∗)⊗Z Q)(2.11)

so we may identify H∗(BT ) with the polynomial ring Q[t1, . . . , tn] where the element ti is the first Chern
class of the line bundle over BT corresponding to the projection T → C∗, diag(g1, . . . , gn) 7→ gi.

Next we recall some standard constructions on the ambient space Flag(Cn) leading to a well-known ring
presentation for the equivariant cohomology of Flag(Cn). Let Ei denote the i-th tautological vector bundle
over Flag(Cn); namely, Ei is the sub-bundle of the trivial vector bundle Flag(Cn)×Cn over Flag(Cn) whose
fiber over a point V• = (V1 ⊂ · · · ⊂ Vn) ∈ Flag(Cn) is exactly Vi. Let

τTi ∈ H2
T (Flag(Cn))(2.12)

denote the T -equivariant first Chern class of the tautological line bundle Ei/Ei−1. It is known that
H∗

T (Flag(Cn)) is generated as a ring by the elements τT1 , . . . , τTn together with the t1, . . . , tn (the latter
coming from the H∗

T (pt)-module structure). Indeed, there is a ring isomorphism

H∗
T (Flag(Cn)) ∼= Q[x1, . . . , xn, t1, . . . , tn]/(ei(x1, . . . , xn)− ei(t1, . . . , tn) | i ∈ [n])

defined by sending the polynomial ring variables xi on the RHS to the Chern class τTi of the i-th tautological
line bundle and the variables ti to the Chern classes (which by slight abuse of notation we denote by the
same) ti, and the ei denotes the degree-i elementary symmetric polynomial in the relevant variables. Here
and below it should be noted that the degrees of the variables in question are 2, i.e.

deg xi = deg ti = 2 for all i ∈ [n].

By setting the variables ti equal to 0, we can also describe the non-equivariant cohomology ringH∗(Flag(Cn))
as follows. Let

τi ∈ H2(Flag(Cn))(2.13)

be the (non-equivariant) first Chern class of the tautological line bundle Ei/Ei−1. Then we have

(2.14) H∗(Flag(Cn)) ∼= Q[x1, . . . , xn]/(ei(x1, . . . , xn) | i ∈ [n])

where each xi corresponds to the first Chern class τi.
As mentioned above, we will also analyze the action of the 1-dimensional subgroup S of T . Let C temporar-

ily denote the 1-dimensional representation of S defined by the group homomorphism diag(g, g2, . . . , gn) 7→ g
and consider the associated line bundle ES ×S C → BS. Let

t ∈ H2(BS)(2.15)

denote the first Chern class of this line bundle. As in the case of T above, we identify H∗(BS) with the
polynomial ring Q[t].

A useful and fundamental technique in torus-equivariant topology is the restriction to the fixed point set
of the torus action. If the Serre spectral sequence of the fibration ET ×T X → BT collapses at the E2-stage,
then the equivariant cohomology of X (with Q-coefficients) is a free H∗

T (pt)-module, i.e. as an H∗
T (pt)-

module we have H∗
T (X) ∼= H∗

T (pt) ⊗Q H∗(X). In addition, under some technical hypotheses on X which
9



are satisfied by the spaces considered in this paper,3 it follows from the localization theorem [29, p.40] that
the inclusion XT ↪→ X of the T -fixed point set induces an injection H∗

T (X) ↪→ H∗
T (X

T ). Any Hessenberg
variety (in Lie type A) admits a paving by complex affines [51, Theorem 7.1], so their cohomology rings are
concentrated in even degrees. Hence the corresponding Serre spectral sequence of the fibration associated
to a continuous group action collapses at the E2-stage, and their equivariant cohomology rings are free
H∗

T (pt)-modules [38, Ch 3, Theorem 4.2]. To summarize, we have

H∗
T (Flag(Cn)) ∼= H∗

T (pt)⊗Q H∗(Flag(Cn)) as H∗
T (pt)-modules,

H∗
S(Hess(N, h))

∼= H∗
S(pt)⊗Q H∗(Hess(N, h)) as H∗

S(pt)-modules,(2.16)

and we also have injections

ι1 : H∗
T (Flag(Cn)) ↪→ H∗

T (Flag(Cn)T ),

ι2 : H∗
S(Hess(N, h)) ↪→ H∗

S(Hess(N, h)S)(2.17)

where all the maps are induced from the inclusions.
Thus, in order to analyze H∗

S(Hess(N, h)), it suffices to understand their restrictions to the S-fixed point
set. This will be a fundamental strategy employed throughout this paper. As a consequence, it is important
to explicitly describe the relevant fixed point sets, to which we now turn.

We begin with the most familiar special case, namely Flag(Cn); the general case will be analyzed in
Section 2.2. For the standard T -action on the ambient variety Flag(Cn), it is well-known that the T -fixed
point set Flag(Cn)T can be identified with the permutation group Sn on n letters. Indeed, we now fix once
and for all an identification

(2.18) Sn

∼=→ Flag(Cn)T

which takes a permutation w ∈ Sn to the flag specified by Vi := spanC{ew(1), . . . , ew(i)}, where {e1, . . . , en}
denotes the standard basis of Cn. (Alternatively, given the usual identification of Flag(Cn) with GL(n,C)/B,
we take w to the coset represented by the standard permutation matrix associated to w whose (w(j), j)-th
entry is required to be 1 for each j and otherwise entries are 0.) Restricting our attention to the subtorus
S ⊂ T , it is straightforward to check that the S-fixed point set Flag(Cn)S of the flag variety Flag(Cn) are
also given by the above set Flag(Cn)T , i.e.

Flag(Cn)S = Flag(Cn)T .(2.19)

From here it also quickly follows that

Hess(N, h)S = Hess(N, h) ∩ (Flag(Cn))T .

Thus the set of S-fixed point set Hess(N, h)S is a subset of Flag(Cn)T , and through our fixed identification
Flag(Cn)T ∼= Sn from (2.18) we henceforth view Hess(N, h)S as a subset of Sn.

Based on the above discussions, we may consider the commutative diagram

(2.20)

H∗
T (Flag(Cn))

ι1−−−−→ H∗
T (Flag(Cn)T ) ∼=

⊕
w∈Sn

Q[t1, . . . , tn]y yπ1

H∗
S(Flag(Cn))

ι′1−−−−→ H∗
S(Flag(Cn)S) ∼=

⊕
w∈Sn

Q[t]y yπ2

H∗
S(Hess(N, h))

ι2−−−−→ H∗
S(Hess(N, h)S) ∼=

⊕
w∈Hess(N,h)S⊂Sn

Q[t]

where all the maps are induced from the inclusion maps on underlying spaces. Note that all of ι1, ι
′
1, and ι2

are injective as explained above since ι′1 is a special case of ι2.

Lemma 2.4. We have π1 =
⊕

w∈Sn
πw
1 where πw

1 : Q[t1, . . . , tn] → Q[t] is a ring homomorphism sending
each ti to it, and we have π2((fw)w∈Sn

) = (fw)w∈Hess(N,h)S for (fw)w∈Sn
∈
⊕

w∈Sn
Q[t].

3For instance, it would certainly suffice if X is locally contractible, compact, and Hausdorff.
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Proof. The claim for π2 is clear. For the map π1, the w-th component of this map under the identification
(2.11) is induced by the projection map Sym(Lie(T )∗) → Sym(Lie(S)∗) since the identification (2.11) (and a
similar one for H∗(BS)) is natural with respect to a homomorphism S ↪→ T . This comes from the inclusion
Lie(S) ↪→ Lie(T ), and now the definition (2.10) of S shows that this projection is induced by ti 7→ it. 2

By slight abuse of notation, for g ∈ H∗
T (Flag(Cn)) we denote its image ι1(g) also by g. Also, for

an element g ∈
⊕

w∈Sn
Q[t1, . . . , tn] we will denote its w-th component by g(w). Furthermore, we let

ti ∈
⊕

w∈Sn
Q[t1, . . . , tn] denote the “constant polynomial” with value ti at each w, i.e. ti(w) = ti for

all w ∈ Sn. We apply the same convention for H∗
S(Hess(N, h))

ι2
↪→ H∗

S(Hess(N, h)S) and so we have the
“constant” class

t ∈
⊕

w∈Hess(N,h)S

Q[t].(2.21)

This is the image of t ∈ H2(BS) (defined in (2.15)) under the canonical homomorphism H∗(BS) →
H∗

S(Hess(N, h)) composed with ι2.
The following is well-known.

Lemma 2.5. Using the notation above, τTi (w) = tw(i) for w ∈ Sn.

Proof. Recall that τTi ∈ H2
T (Flag(Cn)) is the T -equivariant first Chern class of the tautological line bun-

dle Ei/Ei−1 as introduced above. For each permutation w ∈ Sn, the identification (2.18) gives us the
permutation flag V• ∈ Flag(Cn)T given by Vi = spanC{ew(1), . . . , ew(i)}. The pullback of the line bundle
ET×T (Ei/Ei−1) → ET×T Flags(Cn) on ET×T {V•} is naturally isomorphic to the line bundle ET×T Cw(i)

over BT appearing above. Thus, the claim follows from the definition of tw(i). 2

2.2. The S-fixed point set of Hess(N, h). The injectivity of ι2 in (2.17) shows that we can analyze
H∗

S(Hess(N, h)) by viewing its elements as lists of polynomials with one coordinate for each (isolated) fixed
point in Hess(N, h)S . To successfully implement this strategy, we must understand the fixed point set
Hess(N, h)S , viewed as a subset of Sn, in more detail. This is the goal of this section. In addition, we
introduce some terminology associated to these fixed points, as well as a Hessenberg function hw associated
to a permutation w which will be useful for our later arguments. Indeed, it turns out that we can characterize
Hess(N, h)S in terms of these functions hw (Proposition 2.15).

We will use the standard one-line notation w = (w(1)w(2) · · ·w(n)) for permutations in Sn. It will
occasionally be convenient for us to think of permutations in Sn as permutations on {0} ∪ [n], i.e. we use a
convention

(2.22) w(0) = 0 for all w ∈ Sn.

As a first step, we have the following.

Lemma 2.6. The S-fixed point set Hess(N, h)S ⊂ Sn of Hess(N, h) is given by

Hess(N, h)S = {w ∈ Sn | w−1(w(j)− 1) ≤ h(j) for all j ∈ [n]}.

Proof. Since Hess(N, h)S = Hess(N, h)∩ (Flag(Cn))T , it suffices to show that for any w ∈ Sn
∼= Flag(Cn)T ,

the condition w−1(w(j) − 1) ≤ h(j) (j = 1, 2, . . . , n) is equivalent to the condition w ∈ Hess(N, h). From
(2.6) and (2.2) we see immediately that

w ∈ Hess(N, h) if and only if w−1Nw ∈ H(h)

where we regard w as a permutation matrix, i.e. the matrix with (w(j), j)-th entry equal to 1 for each j
and all other entries equal to 0. Since our N is the regular nilpotent matrix sending e1 7→ 0 and ej 7→ ej−1

for j > 1, we have that Nw(ej) = N(ew(j)) = 0 if w(j) = 1 and Nw(ej) = ew(j)−1 if w(j) ̸= 1. So

w−1Nw(ej) = 0 if w(j) = 1 and w−1Nw(ej) = ew−1(w(j)−1) if w(j) ̸= 1. Thus w−1Nw ∈ H(h) precisely

means that w−1(w(j)− 1) ≤ h(j) for all j ∈ [n], where we follow the notational convention of (2.22). 2

In words, the condition in the above lemma can be stated as follows. Let w ∈ Sn and let w =
(w(1) w(2) . . . w(n)) be its one-line notation. Suppose that a consecutive pair of integers k, k+1 is inverted
in the one-line notation of w, i.e. k appears to the right of k + 1, and suppose in this situation that k + 1
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appears in the j-th place (so w(j) = k+1) while k appears in the ℓ-th place (so w(ℓ) = k = w(j)− 1). Then
the requirement of the condition is that ℓ ≤ h(j). Informally, the Hessenberg function gives a restriction on
“how far to the right” of w(j) = k + 1 the value w(j)− 1 = k is allowed to appear. Note that, for any j, if
the pair w(j) = k + 1 and w(j)− 1 = k are not inverted in the one-line notation of w, i.e. k appears to the
left of k + 1, then the condition is immediate, since by definition Hessenberg functions satisfy h(j) ≥ j.

Example 2.7. Suppose h = (3, 3, 4, 5, 7, 7, 7) and w = (4532167) in one-line notation. Then the pairs
(k + 1, k) which appear in inverted order in the one-line notation are (4, 3), (3, 2), and (2, 1). We check the
condition of the lemma for each pair in turn, following the notation in the discussion above.

• For k + 1 = 4, since the 4 occurs in the first spot in the one-line notation we have w(1) = 4 and
hence j = 1, while ℓ = 3 since the 3 appears in the 3rd spot. Since h(1) = 3, we have ℓ ≤ h(1).
In the schematic below, we have circled the ℓ-th position in the “position” row, the value of h(j) in
the “h” row, and the inverted pair k + 1 and k in the “w” row. With respect to this schematic, the
condition of the lemma is that the number circled in the “position” row must be less than or equal to
the number circled in the “h” row.

w = 4 5 3 2 1 6 7
h = 3 3 4 5 7 7 7

position : 1 2 3 4 5 6 7g gg g
• Similarly, for k + 1 = 3 we have j = 3 and ℓ = 4. Since h(3) = 4 we have ℓ ≤ h(3).

w = 4 5 3 2 1 6 7
h = 3 3 4 5 7 7 7

position : 1 2 3 4 5 6 7gggg
• Finally, for k + 1 = 2 we have j = 4 and ℓ = 5. Since h(4) = 5 we have ℓ ≤ h(4).

w = 4 5 3 2 1 6 7
h = 3 3 4 5 7 7 7

position : 1 2 3 4 5 6 7gggg
The above shows that w ∈ Hess(N, h)S in this case. On the other hand, the permutation v = (4532671) in
one-line notation is not contained in Hess(N, h)S since (2, 1) is an inverted pair, but the 1 appears “too far
to the right” of the 2 – i.e. in this case j = 4 and ℓ = 7, and 7 ̸≤ 5 = h(4).

v = 4 5 3 2 6 7 1
h = 3 3 4 5 7 7 7

position : 1 2 3 4 5 6 7g gg g
The inverted pairs (k+1, k) play a special role in analyzing the S-fixed point set of Hess(N, h). Motivated

by this, we introduce some terminology.

Definition 2.8. Let w ∈ Sn be a permutation and let i, j ∈ [n]. We say that P = (i, j) is an N-inversion
if i < j and w(i) = w(j) + 1. We refer to i (respectively j) as the left (respectively right) position of the
N-inversion. Given an N-inversion P = (i, j) we let LP (P) := i denote its left position and RP (P) := j its
right position.

Given a permutation w ∈ Sn we now define

Dw := {P = (i, j) ∈ [n]× [n] | P is an N-inversion in w}.
In the following it will be useful to focus on certain subsets of Dw. Let j ∈ [n]. We define

Dw(j) := {P ∈ Dw | 1 ≤ LP (P) ≤ j and j < RP (P) ≤ n}.
In words, the set Dw(j) consists of the N-inverted pairs whose left position is at or to the left of the j-th
place, and whose right position is strictly to the right of the j-th place.

Example 2.9. Let w be as in Example 2.7.

• For j = 1, we have Dw(j = 1) = {(1, 3)}.

w = 4 5 3 2 1 6 7
position : 1 2 3 4 5 6 7g gg g
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Here the bold vertical line in the schematic above indicates the distinction between j(= 1) and j +1.
Similarly, for j = 2, we have Dw(j = 2) = Dw(1).

• For j = 3, we have Dw(3) = {(3, 4)}.

w = 4 5 3 2 1 6 7
position : 1 2 3 4 5 6 7gggg

• For j = 4, we have Dw(4) = {(4, 5)}.

w = 4 5 3 2 1 6 7
position : 1 2 3 4 5 6 7gggg

• For j = 5, 6, 7, we have Dw(j) = ∅.

The following is a quick consequence of the definition.

Lemma 2.10. Let w ∈ Sn and Dw(j) be as above. Then Dw(j) = ∅ if and only if {w(1), w(2), . . . , w(j)} =
{1, 2, . . . , j}.

Proof. If {w(1), w(2), . . . , w(j)} = {1, 2, . . . , j} then clearly Dw(j) = ∅ from the definition. Now suppose
Dw(j) = ∅. Take an element w(p) ∈ {w(1), w(2), . . . , w(j)} (1 ≤ p ≤ j). Suppose q is such that w(p)− 1 =
w(q). Then from the assumption that Dw(j) = ∅ we must have q ≤ j. That is, if w(p) ̸= 1, then
w(p) − 1(= w(q)) is also contained in {w(1), . . . , w(j)}. This means that {w(1), . . . , w(j)} is of the form
{k ∈ [n] | k ≤ k0} for some k0 ∈ [n], but since the cardinality is j, it has to be {w(1), . . . , w(j)} = {1, . . . , j}
as desired. 2

Example 2.11. Continuing with Example 2.9 we can verify the lemma in this case by seeing that indeed
Dw(5) = Dw(6) = Dw(7) = ∅ and {w(1), w(2), . . . , w(5)} = {1, 2, 3, 4, 5} and similarly for the others.

Our next step is to define a map w 7→ hw which associates to any permutation w ∈ Sn a Hessenberg
function hw. The Hessenberg function hw is the minimal Hessenberg function h such that w ∈ Hess(N, h),
in a sense to be made precise below. Specifically, given w ∈ Sn we define

(2.23) hw(j) :=

{
j if Dw(j) = ∅
max{RP (P) | P ∈ Dw(j))} if Dw(j) ̸= ∅.

We first prove that the function hw thus defined is in fact a Hessenberg function.

Lemma 2.12. Let hw be as above. Then hw ∈ Hn.

Proof. We must show that hw(i) ≥ i for all i ∈ [n] and hw(i + 1) ≥ hw(i) for all i ∈ [n − 1]. First notice
that if Dw(j) ̸= ∅, then every element of {RP (P) | P ∈ Dw(j)} is > j by definition of Dw(j). Thus the
first claim follows from the definition of hw. Next we check the second claim. Fix an i in [n − 1]. We take
cases. First suppose Dw(i) = ∅. Then hw(i) = i by definition of hw and since we have already seen that
hw(i+ 1) ≥ i+ 1, we obtain hw(i) ≤ hw(i+ 1) as desired. Next suppose Dw(i) ̸= ∅ and Dw(i+ 1) = ∅. By
Lemma 2.10 this means {w(1), . . . , w(i+ 1)} = {1, 2, . . . , i+ 1} but {w(1), . . . , w(i)} ̸= {1, . . . , i}. It follows
that Dw(i) consists of a single N-inverted pair P, and that RP (P) = i + 1. In particular hw(i) = i + 1.
Hence hw(i + 1) ≥ i + 1 = hw(i) and the claim holds in this case. Finally suppose both Dw(i) ̸= ∅ and
Dw(i+1) ̸= ∅. If the N-inverted pair achieving the maximum of the right position of Dw(i) is also an element
of Dw(i + 1), then clearly hw(i + 1) = max{RP (P) | P ∈ Dw(i + 1)} ≥ max{RP (P) | P ∈ Dw(i)} = hw(i)
and the claim holds. Otherwise, the maximum of {RP (P) | P ∈ Dw(i)} must be i + 1, and hw(i) = i + 1.
Since hw(i + 1) ≥ i + 1, the claim also holds in this case. We have checked all cases so this completes the
proof. 2

The following reformulation of the definition of hw is sometimes useful. In the case when Dw(j) ̸= ∅, it
can be seen from the definitions that the value hw(j) may also be expressed as

(2.24) hw(j) = max{w−1(w(p)− 1) | 1 ≤ p ≤ j} if Dw(j) ̸= ∅.
Note also that we have

(2.25) w−1(w(j)− 1) ≤ hw(j) for all j ∈ [n]
13



by (2.24) together with the fact w−1(w(j) − 1) ≤ j if Dw(j) = ∅ by Lemma 2.10 (see also our convention
(2.22)).

Before stating the next proposition we recall a natural partial ordering on Hessenberg functions.

Definition 2.13. Let h′, h ∈ Hn. Then we say h′ ⊂ h if h′(j) ≤ h(j) for all j ∈ [n].

The relation h′ ⊂ h is evidently a partial order on Hn. Note that from the definition of Hess(N, h) it is
immediate that

h′ ⊂ h implies Hess(N, h′) ⊂ Hess(N, h)

which explains our choice of notation.

Remark 2.14. Mbirika and Tymoczko [37] denote the above partial order with the symbol ≤ instead of the
symbol ⊂ which we use above. In later sections we additionally introduce a refinement of the above partial
order to a total order ⪯.

With the terminology in place, we can give equivalent characterizations of the permutations w ∈ Sn

which lie in the S-fixed point set of Hess(N, h).

Proposition 2.15. Let w ∈ Sn and let h ∈ Hn. Then the following are equivalent:

(1) w ∈ Hess(N, h)S,
(2) w−1(w(j)− 1) ≤ h(j) for all j ∈ [n],
(3) hw ⊂ h.

Proof. The equivalence of (1) and (2) is the content of Lemma 2.6 above. Also, it is easy to see that (3)
implies (2) since we have (2.25) and by assumption we have hw(j) ≤ h(j) for all j ∈ [n]. Hence it suffices to
prove that (2) implies (3).

Suppose w−1(w(j)− 1) ≤ h(j) for all j ∈ [n]. We wish to prove that hw(j) ≤ h(j) for all j ∈ [n]. We take
cases. Suppose Dw(j) = ∅. Then hw(j) = j ≤ h(j), where the inequality holds because h ∈ Hn. Hence the
claim holds in this case. Now suppose Dw(j) ̸= ∅. Then by (2.24) we have hw(j) = max{w−1(w(p)−1) | 1 ≤
p ≤ j} but the assumption shows w−1(w(p)− 1) ≤ h(p) ≤ h(j) for all p with 1 ≤ p ≤ j. Hence hw(j) ≤ h(j)
also in this case. 2

For a fixed permutation w ∈ Sn, the above proposition implies that hw is the unique minimum with
respect to the partial order ⊂ in the set {h ∈ Hn | w ∈ Hess(N, h)S}.

Finally, we record the following property of hw which we will use in Section 5.

Lemma 2.16. Let w ∈ Sn and let hw be defined as above. For a fixed j ∈ [n− 1], suppose Dw(j) ̸= ∅ (i.e.
hw(j) ≥ j + 1). Then

hw(j) = w−1(w(j)− 1) if and only if hw(j − 1) < hw(j).

Proof. First suppose hw(j − 1) < hw(j). We wish to show that hw(j) = w−1(w(j) − 1). We take cases. If
Dw(j − 1) ̸= ∅, then by (2.24) we have

hw(j − 1) = max{w−1(w(p)− 1) | 1 ≤ p ≤ j − 1} < max{w−1(w(p)− 1) | 1 ≤ p ≤ j} = hw(j)

This implies that hw(j) = w−1(w(j)− 1). Next suppose that Dw(j − 1) = ∅. Suppose in order to obtain a
contradiction that hw(j) ̸= w−1(w(j)−1). By assumption, we have Dw(j) ̸= ∅ so hw(j) = max{w−1(w(p)−
1) | 1 ≤ p ≤ j}. If hw(j) ̸= w−1(w(j) − 1) then the maximum must be achieved by a value w−1(w(p) − 1)
for 1 ≤ p ≤ j − 1, and since hw(j) ≥ j, this implies Dw(j − 1) ̸= ∅. This is a contradiction and we conclude
hw(j) = w−1(w(j)− 1).

Now suppose hw(j) = w−1(w(j) − 1). We wish to show hw(j − 1) < hw(j). We again take cases. If
Dw(j − 1) = ∅, then by definition (2.23) of hw, we have hw(j − 1) = j − 1 < j ≤ hw(j), as desired. If
Dw(j − 1) ̸= ∅, from (2.24) we have

hw(j − 1) = max{w−1(w(p)− 1) | 1 ≤ p ≤ j − 1}.
But from the assumption Dw(j) ̸= ∅ and also from (2.24), we have

hw(j) = max{w−1(w(p)− 1) | 1 ≤ p ≤ j} = w−1(w(j)− 1).

Hence, the maximum of the set is reached at p = j, implying that the values for 1 ≤ p < j are strictly less
than w−1(w(j)− 1). Thus hw(j − 1) < hw(j) as desired. 2
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3. Statement of Theorem 3.5, the equivariant version of Theorem A

In this section we state the equivariant version of Theorem A. Consider the restriction homomorphism

(3.1) H∗
T (Flag(Cn)) → H∗

S(Hess(N, h))

and let

τ̄Si ∈ H2
S(Hess(N, h)) for i ∈ [n](3.2)

be the S-equivariant first Chern class of the tautological line bundle Ei/Ei−1 over Flag(Cn) restricted to
Hess(N, h). That is, τ̄Si is the image of τTi (see (2.12)) under (3.1). We next analyze some algebraic relations
satisfied by the τ̄Si . For this purpose, we now introduce some polynomials fi,j(x1, . . . , xn, t) ∈ Q[x1, . . . , xn, t]
for n ≥ i ≥ j ≥ 1.

First we define

(3.3) pi :=
i∑

k=1

(xk − kt) ∈ Q[x1, . . . , xn, t] for i ∈ [n].

For convenience we also set p0 := 0.

Definition 3.1. Let (i, j) be a pair of natural numbers satisfying n ≥ i ≥ j ≥ 1. We define polynomials fi,j
inductively as follows. As the base case, when i = j, we define

(3.4) fj,j := pj for j ∈ [n].

Proceeding inductively, for (i, j) with n ≥ i > j ≥ 1 we define

(3.5) fi,j := fi−1,j−1 +
(
xj − xi − t

)
fi−1,j

where we take the convention f∗,0 := 0 for any ∗.

Informally, we may visualize each fi,j as being associated to the lower-triangular (i, j)-th entry in an n×n
matrix, as follows:

(3.6)



f1,1 0 · · · · · · 0
f2,1 f2,2 0 · · ·

f3,1 f3,2 f3,3
. . .

...
fn,1 fn,2 · · · fn,n

 .

Remark 3.2. Informally, we say that the equation (3.5) defines fi,j in terms of the polynomials “to its
north and northwest”, when the fi,j are visualized as matrix entries as in (3.6):

fi−1,j−1 fi−1,j

· · · fi,j

In particular, fi,j is in the ideal of Q[x1, . . . , xn, t] generated by the polynomials to its north and northwest.

Example 3.3. Suppose n = 4. Then the fi,j have the following form.

fi,i = pi (1 ≤ i ≤ 4)

f2,1 = (x1 − x2 − t)p1

f3,2 = (x1 − x2 − t)p1 + (x2 − x3 − t)p2

f4,3 = (x1 − x2 − t)p1 + (x2 − x3 − t)p2 + (x3 − x4 − t)p3

f3,1 = (x1 − x3 − t)(x1 − x2 − t)p1

f4,2 = (x1 − x3 − t)(x1 − x2 − t)p1 + (x2 − x4 − t){(x1 − x2 − t)p1 + (x2 − x3 − t)p2}
f4,1 = (x1 − x4 − t)(x1 − x3 − t)(x1 − x2 − t)p1

15



Remark 3.4. For general n, the polynomials fi,j for each (i, j)-th entry in the matrix (3.6) above can also be
expressed in a closed formula in terms of certain polynomials ∆i,j for i ≥ j which are determined inductively,
starting on the main diagonal. As for the fi,j, we think of ∆i,j for i ≥ j as being associated to the (i, j)-th
box in an n× n matrix. In what follows, for 0 ≤ k ≤ n− 1, we refer to the lower-triangular matrix entries
in the (i, j)-th spots where i − j = k as the k-th lower diagonal. (Equivalently, the k-th lower diagonal
is the “usual” diagonal of the lower-left (n − k) × (n − k) submatrix.) The usual diagonal is the 0-th lower
diagonal in this terminology. We now define the ∆i,j as follows.

(1) First place the linear polynomial xi − it in the i-th entry along the 0-th lower (i.e. main) diagonal,
so ∆i,i := xi − it.

(2) Suppose that ∆i,j for the (k−1)-st lower diagonal have already been defined. Let (i, j) be on the k-th
lower diagonal, so i− j = k. Define

∆i,j :=

(
j∑

ℓ=1

∆i−j+ℓ−1,ℓ

)
(xj − xi − t).

In words, this means the following. Suppose k = i − j > 0. Then ∆i,j is the product of (xj − xi − t) with
the sum of the entries in the boxes which are in the “diagonal immediately above the (i, j)-th box” (i.e. the
boxes which are in the (k − 1)-st lower diagonal), but we omit any boxes to the right of the (i, j)-th box (i.e.
in columns j + 1 or higher). Finally, the polynomial fi,j is obtained by taking the sum of the entries in the
(i, j)-th box and any boxes “to its left” in the same lower diagonal. More precisely,

fi,j =

j∑
k=1

∆i−j+k,k.

Now let Q[x1, . . . , xn, t] denote the polynomial ring equipped with a grading defined by

deg xi = 2 for all i ∈ [n] and deg t = 2.

Note that Q[x1, . . . , xn, t] is evidently a Q[t]-algebra. We define a graded Q[t]-algebra homomorphism φ̃h by

φ̃h : Q[x1, . . . , xn, t] → H∗
S(Hess(N, h)) ; xi 7→ τ̄Si , t 7→ t(3.7)

where τ̄Si (defined in (3.2)) is the S-equivariant first Chern class of the tautological line bundle Ei/Ei−1

restricted to Hess(N, h) and the class t ∈ H∗
S(Hess(N, h)) is the Chern class in (2.15). We are now ready

to state the main technical result of this manuscript, the content of which is that the map φ̃h induces an
isomorphism of graded Q[t]-algebras between H∗

S(Hess(N, h)) and the quotient of Q[x1, . . . , xn, t] by the ideal
Ih generated by a certain subset of the polynomials fi,j defined above. The proof of Theorem 3.5 occupies
Sections 4 through 7.

Theorem 3.5. Let n be a positive integer and h : [n] → [n] a Hessenberg function. Let Hess(N, h) ⊂
Flag(Cn) denote the corresponding regular nilpotent Hessenberg variety equipped with the action of the 1-
dimensional subgroup S described in Section 2.1. Then the restriction map

H∗
T (Flag(Cn)) → H∗

S(Hess(N, h))

is surjective, and there is an isomorphism of graded Q[t]-algebras

H∗
S(Hess(N, h))

∼= Q[x1, . . . , xn, t]/Ih

sending xi to τ̄Si and t to t, where τ̄Si (defined in (3.2)) is the S-equivariant first Chern class of the tautological
line bundle restricted to Hess(N, h) and we identify H∗(BS) ∼= Q[t]. Here the ideal Ih is defined by

(3.8) Ih := (fh(j),j | 1 ≤ j ≤ n).

Using the association of the polynomials fi,j with the (i, j)-th entry of the matrix (3.6), the ideal Ih can
visually be described as being generated by the fi,j in the boxes at the bottom of each column in the the
picture associated to the Hessenberg subspace H(h) defined in (2.2) (see Figure 1). For instance, in the
h = (3, 3, 4, 5, 6, 6) given in Example 2.3, the generators are f3,1, f3,2, f4,3, f5,4, f6,5, f6,6.
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Remark 3.6. The above generalizes known results. Indeed, consider the special case h = (2, 3, . . . , n, n), i.e.
h(j) = j + 1 for 1 ≤ j ≤ n − 1 and h(n) = n. In this case the corresponding regular nilpotent Hessenberg
variety has been well-studied and it is called a Peterson variety Petn (in Lie type A). Our result above is
a generalization of the result in [18] which gives a presentation of H∗

S(Petn). Indeed, for 1 ≤ j ≤ n− 1, we
obtain from (3.5) and (3.3) that

fj+1,j = fj,j−1 + (xj − xj+1 − t)fj,j

= fj,j−1 + (−pj−1 + 2pj − pj+1 − 2t)pj

and since fn,n = pn we have

H∗
S(Petn) ∼= Q[x1, . . . , xn, t]/

(
fj,j−1 + (−pj−1 + 2pj − pj+1 − 2t)pj , pn | 1 ≤ j ≤ n− 1

)
= Q[x1, . . . , xn, t]/

(
(−pj−1 + 2pj − pj+1 − 2t)pj , pn | 1 ≤ j ≤ n− 1

)
∼= Q[p1, . . . , pn−1, t]/

(
(−pj−1 + 2pj − pj+1 − 2t)pj | 1 ≤ j ≤ n− 1

)
which agrees with [18]. (In the last expression appearing in the string of equalities above, we take the
convention p0 = pn = 0.)

4. Properties of the fi,j

In this section, in preparation for the proof of Theorem 3.5, we further analyze the polynomials fi,j
defined in Definition 3.1. The results in this section, particularly Corollary 4.7, set the stage for the proof
in Section 5 that the map φ̃h of (3.7) induces a well-defined map

φh : Q[x1, . . . , xn, t]/Ih → H∗
S(Hess(N, h)).

We begin with the following.

Lemma 4.1. The ideal Ih defined in (3.8) contains fi,j for all i ≥ h(j). In particular, if h ⊂ h′ in the sense
of Definition 2.13, then Ih′ ⊂ Ih.

Proof. We prove that Ih contains fi,j for all i ≥ h(j) by induction on j. When j = 1, by the recursive
relation (3.5) we have

fi+1,1 = (x1 − xi+1 − t)fi,1,

and hence the assumption fh(1),1 ∈ Ih implies that fi,1 ∈ Ih for i ≥ h(1).
Now, assume that the claim holds for j−1, that is, fi,j−1 ∈ Ih for all i ≥ h(j−1). We show that fi,j ∈ Ih

for all i ≥ h(j). Since fh(j),j ∈ Ih by definition, again by induction on i, we may suppose fi,j ∈ Ih for some
i ≥ h(j) and then we must prove that fi+1,j ∈ Ih. By the recursive relation (3.5), we have

fi+1,j = fi,j−1 +
(
xj − xi+1 − t

)
fi,j .

Since we have i ≥ h(j) ≥ h(j−1), the inductive hypothesis implies that the RHS of this identity is contained
in Ih, and hence we obtain fi+1,j ∈ Ih as desired. 2

Remark 4.2. Following Remark 3.2, we can informally interpret Lemma 4.1 as follows. If the entries of
both of the boxes to the north and northwest of a given fi,j is in the ideal Ih, then by (3.5), so is fi,j. But a
box in the leftmost column has no box to its northwest, so if any (entry in a) box in the leftmost column is in
Ih, then anything below it is also in Ih. Then, arguing similarly for the other columns, the property of being
in Ih can be seen to “propagate down columns, provided the boxes to its left are already in Ih”. Informally, if
the fi,j (contained in the boxes) in a “descending staircase” are known to be in Ih, then the argument above
shows that the entire region below the staircase is also contained in Ih. Figures 3 and 4 illustrate this general
principle for the special case h = (3, 3, 4, 5, 6, 6).
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Figure 3. The boxes at the (h(j), j)-th places, whose entries are in Ih, are shaded.

Figure 4. Once we know that the entries in the “descending staircase” boxes (h(j), j) are
in Ih, we also know that the entire region below the staircase are also in Ih.

The definition of φ̃h in (3.7) sends the variables xi to τ̄Si . In the next section we will prove that this map
sends each fh(j),j to zero. In preparation for this, we investigate below some general properties of fi,j(w),

i.e. the w-th component of fi,j , at each fixed point w ∈ Flag(Cn)S = Sn. More precisely, letting

τSi ∈ H∗
S(Flag(Cn))

be the S-equivariant first Chern class of the tautological line bundle Ei/Ei−1 over Flag(Cn) described in
Section 2, we study the image of fi,j(τ

S
1 , . . . , τ

S
n , t) under the localization map

(4.1) ι′1 : H∗
S(Flag(Cn)) →

⊕
w∈Sn

Q[t].

For the rest of this section, by slight abuse of notation we write

fi,j = fi,j(τ
S
1 , · · · , τSn , t)(4.2)

i.e. the elements of H∗
S(Flag(Cn)) obtained by “evaluating at the τSi ”. Fix w ∈ Sn and denote by

fi,j(w) ∈ Q[t]

the w-th component of the image of fi,j under the localization map ι′1 above. Recall from Lemma 2.4 that
the w-th component of the map π1 =

⊕
w∈Sn

πw
1 in the commutative diagram (2.20) is a ring homomorphism

sending each ti to it. Combined with Lemma 2.5, this implies that

τSi (w) = w(i)t for i ∈ [n].

It then follows from the definition of the fi,j (Definition 3.1) that

fj,j(w) =

j∑
k=1

(w(k)− k)t (1 ≤ j ≤ n),

fi,j(w) = fi−1,j−1(w) + (w(j)− w(i)− 1)t · fi−1,j(w) (n ≥ i > j ≥ 1).

(4.3)

The inductive nature of the fi,j allows us to conclude the following.

Lemma 4.3. Let h ∈ Hn. Let fi,j = fi,j(τ
S
1 , . . . , τ

S
n , t) be defined as above. If fh(j),j(w) = 0 for all j ∈ [n],

then fi,j(w) = 0 for all j ∈ [n] and i ≥ h(j).
18



Proof. Recall that Ih is by definition the ideal of Q[x1, . . . , xn, t] generated by the fh(j),j for j ∈ [n]. From
Lemma 4.1 we know that if i ≥ h(j) then fi,j ∈ Ih. By assumption, each fh(j),j lies in the kernel of the ring
homomorphism

Q[x1, . . . , xn, t] → H∗
S(Flag(Cn)) → Q[t]

where the first arrow sends xi to τSi and the second map is the w-th coordinate of the localization map
in (4.1). Thus the ideal Ih also lies in the kernel as well, and hence also fi,j for i ≥ h(j). 2

Remark 4.4. The above lemma can also be interpreted informally as saying that the property of vanishing
at w also “propagates down columns” in the sense of Remark 4.2.

To motivate the following discussion, it is useful to observe some properties of the fi,j for j = 1. For
simplicity, we use the notation

u1 := (w(1)− 1)t.

Since f∗,0 = 0 for any ∗, for the case j = 1 the inductive description in (4.3) simplifies, and it is easy to see
that for i ≥ 2 we have

(4.4) fi,1(w) = u1

i∏
k=2

(u1 − w(k)t) =
i∑

k=1

(−1)i−kei−k(w(2), . . . , w(i))t
i−kuk

1

where eℓ denotes the ℓ-th elementary symmetric polynomial in the given variables, and we take e0 := 1 by
convention. Note that f1,1(w) = u1 by definition, so by the above convention on e0, the equation (4.4) also
holds for i = 1.

The above computation turns out to be a special case of a general phenomenon, recorded in Lemma 4.6.
In order to state and prove the result, we need to first introduce and study some properties of a new set of
polynomials.

Let Q[u1, . . . , un, t] be a graded polynomial ring of indeterminates u1, . . . , un, t with deg ui = 2 for i ∈ [n]
and deg t = 2. We inductively define a collection of polynomials bk,j ∈ Q[u1, . . . , un, t] for n ≥ k ≥ j ≥ 1 as
follows. First define

(4.5) bj,j :=

j∑
k=1

(uk − (k − 1)t) for all j ∈ [n].

Then we define bk,j for k ≥ j by the equation

(4.6) bk+1,j := bk,j−1 + ujbk,j − (uj + t)bk−1,j−1

where by convention we take b∗,0 := 0 for any ∗. Note that bk,j = bk,j(u1, . . . , uj , t) depends only on
u1, . . . , uj and t, and deg bk,j = 2(k − j + 1) = deg fk,j for k ≥ j since deg t = 2.

The following property of the bk,j will be useful later on.

Lemma 4.5. Let bk,j be defined as above. Then for any pair k, j ∈ [n] with k ≥ j the function bk,j is a
symmetric polynomial in the variables u1, . . . , uj.

Proof. We argue by induction on the indices (k, j) ∈ [n]2 for k ≥ j, with respect to the partial order defined
by: (k′, j′) < (k, j) if and only if j′ < j, or j′ = j and k′ < k. Note also that the claim of the lemma clearly
holds for any bj,j with j ∈ [n], by its definition (4.5). Now we wish to show that the claim holds for bk+1,j for
k ≥ j where we may assume by induction that the claim holds for bk′,j′ with (k′, j′) < (k + 1, j). From the
definition of bk+1,j in (4.6) it then follows that bk+1,j is symmetric in the first j − 1 variables u1, . . . , uj−1.
Therefore, it now suffices to show that bk+1,j is also symmetric in uj−1 and uj .

For k = j for any j, we may explicitly compute from (4.6) and (4.5) as follows:

bj+1,j = bj,j−1 − tbj−1,j−1 + uj(bj,j − bj−1,j−1)

= bj,j−1 − tbj−1,j−1 + uj(uj − (j − 1)t)

= (bj−1,j−2 − tbj−2,j−2 + uj−1(uj−1 − (j − 2)t))

− t(bj−2,j−2 + (uj−1 − (j − 2)t)) + uj(uj − (j − 1)t)

= bj−1,j−2 − 2tbj−2,j−2 + (u2
j−1 + u2

j − (j − 1)(uj−1 + uj)t+ (j − 2)t2).
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Since bj−1,j−2 and bj−2,j−2 are functions in the variables u1, . . . , uj−2, it follows from the explicit expression
above that bj+1,j = bj+1,j(u1, . . . , uj , t) is symmetric in uj−1 and uj .

We now claim bk+1,j is symmetric in uj−1 and uj for j ≥ 2 and k > j. Generalizing the argument for the
case k = j above, we may derive the following by repeated use of the inductive definition of the bk,j :

bk+1,j = bk,j−1 − tbk−1,j−1 + uj(bk,j − bk−1,j−1)

= bk,j−1 − tbk−1,j−1 − ujtbk−2,j−1 + u2
j (bk−1,j − bk−2,j−1)

= . . .

= bk,j−1 −
k−1∑

q=j−1

uk−1−q
j tbq,j−1 + uk+1−j

j (bj,j − bj−1,j−1)

= bk,j−1 −
k−1∑

q=j−1

uk−1−q
j tbq,j−1 + uk+1−j

j (uj − (j − 1)t).

Using this expression several times, we may express bk+1,j explicitly in terms of functions bℓ,j−2 and the
variables uj−1 and uj :

bk+1,j = bk−1,j−2 −
k−2∑

r=j−2

uk−2−r
j−1 tbr,j−2 + uk+1−j

j−1 (uj−1 − (j − 2)t)

− uk−j
j tbj−1,j−1

−
k−1∑
q=j

uk−1−q
j t

bq−1,j−2 −
q−2∑

r=j−2

uq−2−r
j−1 tbr,j−2 + uq+1−j

j−1 (uj−1 − (j − 2)t)


+ uk+1−j

j (uj − (j − 1)t)

= bk−1,j−2 −
k−2∑

r=j−2

uk−2−r
j−1 tbr,j−2 + uk+1−j

j−1 (uj−1 − (j − 2)t)

− uk−j
j t(bj−2,j−2 + (uj−1 − (j − 2)t))

−
k−1∑
q=j

uk−1−q
j t

bq−1,j−2 −
q−2∑

r=j−2

uq−2−r
j−1 tbr,j−2 + uq+1−j

j−1 (uj−1 − (j − 2)t)


+ uk+1−j

j (uj − (j − 1)t).

By exchanging the order of the sums with respect to q and r, this is further equal to

bk−1,j−2 −
k−2∑

r=j−2

(uk−2−r
j−1 + uk−2−r

j )tbr,j−2 +
k−3∑

r=j−2

(
k−1∑

q=r+2

u
q−(2+r)
j−1 uk−1−q

j

)
t2br,j−2

+ (uk+2−j
j−1 + uk+2−j

j )− (j − 1)(uk+1−j
j−1 + uk+1−j

j )t

+ uk+1−j
j−1 t−

k−1∑
q=j−1

(uj−1 − (j − 2)t)uq+1−j
j−1 uk−1−q

j t.

By separating the last summand, we obtain the equality

bk+1,j =bk−1,j−2 −
k−2∑

r=j−2

(uk−2−r
j−1 + uk−2−r

j )tbr,j−2 +
k−3∑

r=j−2

(
k−1∑

q=r+2

u
q−(2+r)
j−1 u

(k−1)−q
j

)
t2br,j−2

+ (uk+2−j
j−1 + uk+2−j

j )− (j − 1)(uk+1−j
j−1 + uk+1−j

j )t

+

k−1∑
q=j−1

(j − 2)u
q−(j−1)
j−1 u

(k−1)−q
j t2 −

k−2∑
q=j−1

u
q−(j−1)+1
j−1 u

(k−2)−q+1
j t.
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Since bk−1,j−2 and br,j−2 are functions in the variables u1, . . . , uj−2, it can be seen from the final explicit
expression above that bk+1,j = bk+1,j(u1, . . . , uj , t) is symmetric in the uj−1 and uj , as desired. 2

We can now state the property of the polynomials fi,j which generalizes the computation in (4.4). For
the following lemma, we make the substitution

ur = (w(r)− 1)t for r ∈ [n].(4.7)

Lemma 4.6. Let k ≥ j, k, j ∈ [n]. Let bk,j = bk,j((w(1)− 1)t, . . .) ∈ Q[t] denote the polynomial bk,j defined
in (4.5) and (4.6) evaluated at ur = (w(r)− 1)t as in (4.7). Then for any pair i, j ∈ [n] with i ≥ j we have

(4.8) fi,j(w) =

i∑
k=j

(−1)i−kei−k(w(j + 1), . . . , w(i))ti−kbk,j in Q[t].

Proof. We prove the claim by induction on pairs (i, j) with respect to the same partial order considered in
the proof of Lemma 4.5. First suppose j = 1. In this case b1,1 = u1 by definition and since b∗,0 = 0 the
equation (4.6) reduces to bk+1,1 = u1bk,1, we obtain bk,1 = uk

1 . Thus, for j = 1 and any i ≥ j, the claim (4.8)
is precisely the assertion (4.4) obtained in the discussion above.

Now by induction suppose the equality (4.8) holds for j − 1 and for any i ≥ j − 1. Moreover, for i = j we
have fj,j(w) = bj,j by definition of the bj,j so the assertion also holds in this case. Also for the case i = j+1
we can compute explicitly from (4.3) that the LHS of (4.8) is

fj+1,j(w) = fj,j−1(w) + (w(j)− w(j + 1)− 1)tfj,j(w)

=

j∑
k=j−1

(−1)j−kej−k(w(j))t
j−kbk,j−1 + (uj − w(j + 1)t)bj,j

= −w(j)tbj−1,j−1 + bj,j−1 + (uj − w(j + 1)t)bj,j

= −(uj + t)bj−1,j−1 + bj,j−1 + (uj − w(j + 1)t)bj,j

where we have used the inductive hypothesis, (4.7), and fj,j(w) = bj,j . The RHS of (4.8) can similarly be
computed to be

j+1∑
k=j

(−1)j+1−kej+1−k(w(j + 1))tj+1−kbk,j = −w(j + 1)tbj,j + bj+1,j

= −w(j + 1)tbj,j + (bj,j−1 + ujbj,j − (uj + t)bj−1,j−1)

= −(uj + t)bj−1,j−1 + bj,j−1 + (uj − w(j + 1)t)bj,j

where we have used (4.6). Comparing with the above, we may conclude that (4.8) holds for i = j + 1.
We now wish to show that (4.8) holds for a pair (i, j) with i > j+1, where we may also assume j > 1. We

will use the following facts and conventions concerning the elementary symmetric polynomials ek: e−1 = 0
and e0 = 1 for any number of variables, and eℓ(y1, . . . , ys) = 0 if ℓ > s, i.e. if the expected degree is greater
than the number of variables. With these conventions and from the definition of the elementary symmetric
polynomials we may derive the identity

ei−k−1(w(j), . . . , w(i− 1)) = ei−k−1(w(j + 1), . . . , w(i− 1)) + w(j)ei−k−2(w(j + 1), . . . , w(i− 1))(4.9)

for any k with j− 1 ≤ k ≤ i− 1. Now by the recursive description (4.3) of fi,j(w), the inductive hypotheses,
(4.9), and (4.7), we can compute fi,j(w) to be

fi,j(w) = fi−1,j−1(w) + (uj − w(i)t) · fi−1,j(w) by (4.3)

=

i−1∑
k=j−1

(−1)i−k−1ei−k−1(w(j), . . . , w(i− 1))ti−k−1bk,j−1

+ (uj − w(i)t) ·

i−1∑
k=j

(−1)i−k−1ei−k−1(w(j + 1), . . . , w(i− 1))ti−k−1bk,j


by the inductive hypothesis
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=
i−1∑

k=j−1

(−1)i−k−1
(
ei−k−1(w(j + 1), . . . , w(i− 1)) + w(j)ei−k−2(w(j + 1), . . . , w(i− 1))

)
ti−k−1bk,j−1

+ (uj − w(i)t) ·

i−1∑
k=j

(−1)i−k−1ei−k−1(w(j + 1), . . . , w(i− 1))ti−k−1bk,j

 by (4.9)

=
i−1∑

k=j−1

(−1)i−k−1ei−k−1(w(j + 1), . . . , w(i− 1))ti−k−1bk,j−1

+
i−1∑

k=j−1

(−1)i−k−1ei−k−2(w(j + 1), . . . , w(i− 1))(uj + t)ti−k−2bk,j−1

+
i−1∑
k=j

(−1)i−k−1ei−k−1(w(j + 1), . . . , w(i− 1))ujt
i−k−1bk,j

−
i−1∑
k=j

(−1)i−k−1ei−k−1(w(j + 1), . . . , w(i− 1))w(i)ti−kbk,j by (4.7).

By the convention that e−1 = 0, eℓ(y1, . . . , ys) = 0 if ℓ > s and by a re-indexing in order to gather terms, it
follows that this is further equal to

i−1∑
k=j−1

(−1)i−k−1ei−k−1(w(j + 1), . . . , w(i− 1))ti−k−1
(
bk,j−1 + ujbk,j − (uj + t)bk−1,j−1

)
−

i∑
k=j

(−1)i−k−1ei−k−1(w(j + 1), . . . , w(i− 1))w(i)ti−kbk,j .

By the recursive definition (4.6) of bk+1,j for k ≥ j, and because the term ei−k−1(w(j + 1), . . . , w(i −
1)) vanishes for k = j − 1, we can replace the expressions bk,j−1 + ujbk,j − (uj + t)bk−1,j−1 in the first
summand above with bk+1,j . Then by re-indexing the first summand and using (a re-indexed version of) the
equality (4.9), we obtain the following equality

fi,j(w) =

i∑
k=j

(−1)i−kei−k(w(j + 1), . . . , w(i))ti−kbk,j

as, desired. This proves the claim. 2

The property of the fi,j(w) which we have proved above leads us to the following important observation.
We will use this in the next section to prove that φ̃h of (3.7) sends each fh(j),j to zero.

Corollary 4.7. Let m ∈ [n − 1] and w ∈ Sn. If w′ is the permutation obtained by interchanging w(m)
and w(m + 1) in the one-line notation of w, then we have fi,j(w

′) = fi,j(w) for i, j ∈ [n] with i ≥ j and
i ̸= m, j ̸= m.

Proof. From (4.8) it follows that fi,j(w) depends only on {w(1), . . . , w(i)}. Thus, if i < m then since fi,j
is independent of both w(m) and w(m + 1), the claim follows trivially. If m < j then w(m), w(m + 1) ∈
{w(1), . . . , w(j)}, and since the bk,j are symmetric by Lemma 4.5, the claim follows. If j < m < i then
w(m), w(m+ 1) ∈ {w(j + 1), . . . , w(i)}, and since the ei−k are also symmetric, the result follows. 2

5. First part of proof of Theorem 3.5: well-definedness

In order to prove that the homomorphism φ̃h defined in (3.7) induces a well-defined homomorphism

(5.1) φh : Q[x1, . . . , xn, t]/Ih → H∗
S(Hess(N, h)) ; xi 7→ τ̄Si , t 7→ t,
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it suffices to show that the polynomials fh(j),j generating the ideal Ih lie in the kernel of the map φ̃h :
Q[x1, . . . , xn, t] → H∗

S(Hess(N, h)) given in (3.7). By the commutative diagram (2.20) and in particular by
the injectivity of the bottom horizontal map ι2, it in turn suffices to show that fh(j),j(w) = 0 for any fixed

point w ∈ Hess(N, h)S . This is the content of Proposition 5.3 below, whose proof occupies the bulk of this
section.

For the purposes of the argument below it is useful to introduce the following terminology. Consider the
pairs (i, j) for i, j ∈ [n] in bijective correspondence with the entries in an n × n matrix. As in Remark 3.4,
for a fixed integer ℓ ≥ 0, we refer to the pairs {(i, j) | i > j, i − j = ℓ} as the ℓ-th lower diagonal. We say
that the ℓ-th lower diagonal is lower than the k-th lower diagonal if ℓ > k. See Figure 5.

•
•

•

•
•

•
•

•

Figure 5. The picture of the ℓ-th lower diagonals for ℓ = 0 (on the left) and ℓ = 2 (on the
right) for n = 5.

Given a Hessenberg function h, we have already defined a corresponding Hessenberg subspace H(h)
(Definition 2.2). We can then ask which is the lowest lower diagonal which the Hessenberg subspace meets.
More precisely, we say that a Hessenberg function meets the ℓ-th lower diagonal if there exists some
j ∈ [n] such that h(j) − j ≥ ℓ. For example, for h = (2, 3, 4, 5, 5) a Peterson Hessenberg function, the
Hessenberg subspace meets the 0-th and 1st lower diagonals, whereas for h = (3, 4, 4, 5, 5), the Hessenberg
subspace also meets the 2nd lower diagonal. The lowest lower diagonal which h meets is evidently
maxj∈[n]{h(j)−j}. Finally, we shall say that m is the last time that h meets its lowest lower diagonal
if ℓ = maxj∈[n]{h(j)− j} and m = maxj∈[n]{j | h(j)− j = ℓ}. See Figure 6.

•
•

•
•

•
•

•

Figure 6. h = (2, 3, 4, 5, 5) meets the 1st lower diagonal and m = 4 (on the left), and
h = (3, 4, 4, 5, 5) meets the 2nd lower diagonal and m = 2 (on the right).

The following lemma proven by Drellich will be useful to prove Proposition 5.3 below. Recall from (2.1)
that Hn is the set of Hessenberg functions on [n].

Lemma 5.1. ([17, Theorem 4.5]) Let h ∈ Hn. Suppose h(r) = r for some r and let

h1 = (h(1), . . . , h(r)), h2 = (h(r + 1)− r, . . . , h(n)− r).

Then h1 ∈ Hr and h2 ∈ Hn−r. Moreover, for any V• ∈ Hess(N, h) we have Vr = Cr = Ce1⊕ · · ·⊕Cer where
e1, . . . , en denote the standard basis of Cn. In particular

Hess(N, h) ∼= Hess(N1, h1)×Hess(N1, h2)

where N1 and N2 are the regular nilpotent matrices in Jordan canonical form of size r and n−r, respectively.

The following is straightforward and will be used later.
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Corollary 5.2. Let h ∈ Hn. Suppose h(r) = r for some r and let h1, h2 be as above. Let S ⊂ T
be the subtorus defined in (2.10). The S-action on Hess(N, h) preserves each factor in the decomposition
Hess(N, h) ∼= Hess(N1, h1)×Hess(N2, h2). In particular,

Hess(N, h)S ∼= Hess(N1, h1)
S1 ×Hess(N2, h2)

S2

where S1, S2 are the subgroups of GL(r,C) and GL(n − r,C) respectively defined in the same manner as
in (2.10).

We are ready for the main assertion of this section.

Proposition 5.3. Let h ∈ Hn and j ∈ [n]. If w ∈ Hess(N, h)S , then fh(j),j(w) = 0.

Proof. We will first reduce the argument to the case when n ≥ 2 and h(j) ≥ j + 1 for all j ∈ [n− 1]. To see
this, suppose that n = 1. Then Hess(N, h) = Flag(C1) = {id} where id ∈ S1 is the identity permutation.
Hence, in this case the claim is obvious by the recursive description (4.3) of fj,j(id). Now suppose that
n > 1 and that the claim holds for all n′ < n. Suppose also there exists r, 1 ≤ r < n, such that h(r) = r
and without loss of generality let r be the smallest such. From Corollary 5.2 we have that in (writing
permutations in one-line notation)

(5.2) Hess(N, h)S = {(u(1) . . . u(r) v(1)+r . . . v(n−r)+r) ∈ Sn | u ∈ Hess(N1, h1)
S1 , v ∈ Hess(N2, h2)

S2}
where S1 ⊂ GL(r,C) and S2 ⊂ GL(n− r,C) are as in Corollary 5.2. By assumption on r and the definition
of Hessenberg functions we have that if 1 ≤ j ≤ r then 1 ≤ h(j) ≤ r, and if r + 1 ≤ j ≤ n then
r + 1 ≤ h(j) ≤ n. Now let w ∈ Hess(N, h)S . We wish to show that fh(j),j(w) = 0 for all j ∈ [n]. First
consider the case when 1 ≤ j ≤ r. By the arguments in the previous section we know fh(j),j(w) depends
only on the values {w(1), . . . , w(h(j))}. By assumption on h and j we know h(j) ≤ r, so fh(j),j(w) depends

only on {w(1), . . . , w(r)}. Since w ∈ Hess(N, h)S , from (5.2) we know {w(1), . . . , w(r)} = {u(1), . . . , u(r)}
for some u ∈ Hess(N1, h1)

S1 ⊆ Sr. Now the inductive hypothesis applied to n′ = r < n implies fh(j),j(w) =
fh1(j),j(u) = 0 as desired. Second, consider the case when r + 1 ≤ j ≤ n. For this case, note first that since
h(j) ≤ r for j ≤ r, the above argument together with Lemma 4.3 implies that fi,j(w) = 0 for all j ≤ r
and i ≥ r. (It may be helpful for the reader to recall the visualization in Remark 4.4: the point is that
the (restrictions to w of the) entries in the lower-left (n− r)× r submatrix of (3.6) are all zero.) From the
inductive definition of the fi,j , it follows that for j with r + 1 ≤ j ≤ n, the value fh(j),j(w) agrees with the
value of fh2(j−r),j−r(v) where v appears in (5.2). Since n − r < n, the inductive hypothesis again implies
fh(j),j(w) = fh2(j−r),j−r(v) = 0 as desired.

An induction on n and the argument above shows that it now suffices to prove the claim for the case when
n ≥ 2 and

h(j) ≥ j + 1 for all j ∈ [n− 1].

Fix such an n. The set of Hessenberg functions associated to n which we must analyze is exactly

H ′
n := {h ∈ Hn | h(j) ≥ j + 1 for all j ∈ [n− 1]}.

The remainder of our argument is by induction using the total order on H ′
n, denoted by ≺, defined by

h′ ≺ h ⇔ ∃ m ∈ [n− 1] such that for all j ∈ [n] with j > m we have h′(j) = h(j), and h′(m) < h(m).

(5.3)

The order ≺ is the usual reverse lexicographic order on Zn
≥0 if we view a Hessenberg function h as a sequence

(h(1), h(2), . . . , h(n)) of positive integers. We also note that the above total order is a refinement of the
partial order h′ ⊂ h of Definition 2.13. Moreover, the unique minimal element in H ′

n with respect to ⪯ is
the Hessenberg function satisfying h(j) = j + 1 for all j ∈ [n− 1]. The base case of our induction therefore
exactly corresponds to the Peterson variety, and as discussed in Remark 3.6 the results of [18] imply that
the claim of the proposition holds in this case. Thus we may now assume that the claim is true for all h′ ≺ h
and we must now prove the claim for h.

Suppose w ∈ Hess(N, h)S . Then by Proposition 2.15 we know hw ⊂ h, from which it follows that hw ⪯ h.
If hw ̸= h, by the inductive hypothesis we may conclude that fhw(j),j(w) = 0 for all j. From Lemma 4.3 and
the definition of the partial order hw ⊂ h it then follows that fh(j),j(w) = 0 for all j, as desired. Thus it
remains to check the claim for those w with the property that h = hw.
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Since we may assume that h = hw is strictly larger than the Hessenberg function associated to the base
case of the Peterson variety, there exists a j such that h(j) ≥ j+2. Note that such a j must satisfy j ≤ n−2
due to the definition of Hessenberg functions. Now let m be the last time that h = hw meets its lowest
lower diagonal, in the sense discussed above. By the above, such an m must satisfy h(m) ≥ m + 2 and
m ≤ n − 2. We also have that h(m − 1) < h(m), since otherwise h meets a lower diagonal which is lower
than that containing (h(m),m), contradicting the definition of m. From Lemma 2.16 it then follows that
h(m) = hw(m) = w−1(w(m)− 1), or in other words

w(h(m)) = w(m)− 1.(5.4)

Define a permutation w′ ∈ Sn obtained from w by interchanging the values in the m-th and (m + 1)-st
positions of the one-line notation of w, i.e. w′(m) = w(m+ 1), w′(m+ 1) = w(m), and w′(j) = w(j) for all
j ̸= m,m+ 1. Let h′ := hw′ denote the corresponding Hessenberg function.

We claim that

h′(j) = h(j) for all j ≥ m+ 1 and h′(m) < h(m).(5.5)

To see this, first consider the case j ≥ m+ 1. Recall that the definition of h(j) = hw(j) and h′(j) = hw′(j)
is in terms of the sets Dw(j), Dw′(j) which are in turn constructed from the sets Dw and Dw′ by looking at
N-inverted pairs P with LP (P) ≤ j. Since w and w′ only differ in the m-th and (m+1)-st entries, if j ≥ m+1
then from the definition it follows that Dw(j) is obtained from Dw′(j) by replacing any m which appears in
a left position with an m+ 1, and hence h(j) = hw(j) = hw′(j) = h′(j) as desired. Next, we wish to prove
that h′(m) < h(m). To see this, first consider the case that Dw′(m) = ∅. In this case, from the definition
of h′ = hw′ we have h′(m) = m, but since h(m) ≥ m+ 2 as we observed above, we conclude h′(m) < h(m)
as desired. Second, we consider the case Dw′(m) ̸= ∅. From (5.4) we know (m,h(m)) ∈ Dw(m) and since
h(m) achieves the maximum of the set {RP (P) | P ∈ Dw(m)} by definition (2.23), there are no N-inverted
pairs P ∈ Dw(m) with RP (P) > h(m). Now recall that we wish to show h′(m) < h(m) and we assume that
Dw′(m) ̸= ∅. Since w and w′ swapped their m-th and (m+ 1)-st places, the pair (m,h(m)) is no longer an
N-inverted pair in Dw′(m). Let p := w−1(w(m) + 1) and q := w−1(w(m + 1) − 1) ≥ 0 (see our convention
(2.22)). Then it follows that

Dw′(m) ⊂ (Dw(m) \ {(m,h(m))}) ∪ {(p,m+ 1)} ∪ {(m, q)}.(5.6)

We have

q = w−1(w(m+ 1)− 1) ≤ hw(m+ 1) = hw(m) = w−1(w(m)− 1)

where the first inequality follows from (2.25) and the middle equality is because m is the last time h meets its
lowest lower-diagonal. Since w(m) ̸= w(m+1) it cannot happen that q = w−1(w(m+1)−1) = w−1(w(m)−1),
so we conclude q < hw(m) = h(m). Since (m,h(m)) ∈ Dw(m) and Dw′(m) ̸= ∅, by (2.23) we have
hw(m) = maxRP (Dw(m)) and hw′(m) = maxRP (Dw′(m)). It then follows from (5.6) and h(m) ≥ m + 2
that h′(m) = hw′(m) < hw(m) = h(m), as desired.

We have just seen that h and h′ agree in all coordinates to the right of m, and that h′(m) < h(m). Thus
h′ ≺ h, and by the inductive hypothesis, the claim of the proposition holds for h′, so fh′(j),j(w

′) = 0 for all j.
Moreover, since w′ is obtained from w by interchanging the entries w(m) and w(m+ 1), from Corollary 4.7
we may conclude that fh′(j),j(w) = 0 for all j ≥ m+ 1. Since we have also seen above that h(j) = h′(j) for
j ≥ m+ 1, this implies fh(j),j(w) = 0 for all j ≥ m+ 1.

Next we compute for j = m. First, we have from the recursive relations (4.3) that

fh(m),m(w) = fh(m)−1,m−1(w) + (w(m)− w(h(m))− 1)t · fh(m)−1,m(w)

= fh(m)−1,m−1(w)

= fh(m)−1,m−1(w
′)

(5.7)

where the second equality holds because we have shown that w(m) − 1 = w(h(m)) in (5.4) and the third
equality follows by Corollary 4.7 since h(m) ≥ m+ 2 so h(m)− 1 ̸= m. Recall that hw′ = h′ ≺ h, so by the
inductive hypothesis we have that fh′(j),j(w

′) = 0 for all j. But then by Lemma 4.3 we know that fi,j(w
′) = 0

for any j ∈ [n] and i ≥ h′(j). In particular, since h′(m − 1) ≤ h′(m) by definition of Hessenberg functions
and since h′(m) ≤ h(m)−1 as shown in (5.5), we have h′(m−1) ≤ h(m)−1 and hence fh(m)−1,m−1(w

′) = 0.
From (5.7) this implies fh(m),m(w) = 0, as desired.
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It remains to check that fh(j),j(w) = 0 for j ≤ m−1. We will again argue by comparing the computations
for h′ with those for h. Note that in general it may not be the case that h′ ⊂ h. Recalling that h′ = hw′

is defined in terms of the permutation w′ which differs from w only in the m-th and (m + 1)-st spots, it is
useful to define

(5.8) r := min{j | m ≤ h(j)}, s := min{j | m+ 1 ≤ h(j)}.

We also define r0 (respectively s0) as the position of w(m) + 1 (respectively w(m+ 1) + 1):

w(r0)− 1 = w(m) = w′(m+ 1), w(s0)− 1 = w(m+ 1) = w′(m).

It is clear from the definitions that r0 ̸= m and s0 ̸= m+ 1. If r0 < m, then (r0,m) is an N-inverted pair in
Dw(r0), so m ≤ hw(r0) = h(r0) by the definition (2.23) of hw, and if r0 > m then since h(r0) = hw(r0) ≥ r0,
we also have m ≤ h(r0). Thus, from the definition (5.8) of r we see that r ≤ r0. Similarly s ≤ s0. Moreover,
since h(m) ≥ m + 2 and m ≤ n − 2 by the definition of m, we also have r ≤ s ≤ m ≤ n − 2. In summary,
we have

(5.9) r ≤ r0, s ≤ s0, r ≤ s ≤ m ≤ n− 2.

Note also that from the definition of r it follows that h(r − 1) < h(r). Furthermore, from (5.9) we know
r < n and hence from the original assumption on the Hessenberg function h we know h(r) ≥ r+1. Thus we
may apply Lemma 2.16 to conclude that

h(r) = w−1(w(r)− 1) and hence w(h(r)) = w(r)− 1.(5.10)

That is, we have (r, h(r)) ∈ Dw.
The next observation will be useful in what follows. By assumption on the Hessenberg function h we have

h(j) ≥ j + 1 for all j ≤ n− 1 and hence from the definition (2.23) of h = hw we see that Dw(j) ̸= ∅ for all
j ≤ n−1. Since w′ and w only differ in the m-th and (m+1)-st spots we also have Dw′(j) ̸= ∅ for j ≤ m−1.
Hence, the description (2.24) for hw and hw′ shows that for j ≤ m− 1 we can express h(j) and h′(j) by

h(j) = hw(j) = max{w−1(w(p)− 1) | 1 ≤ p ≤ j},
h′(j) = hw′(j) = max{w′−1(w′(p)− 1) | 1 ≤ p ≤ j}.

(5.11)

Recall that we wish to show fh(j),j(w) = 0 for j ≤ m− 1. We will argue on a case-by-case basis according
to the value of h(r), where r is the value defined in (5.8).

Case 1. Suppose h(r) ≥ m+2. Then from the definitions of r and s in (5.8) it immediately follows that
r = s. We already know that r ≤ r0 from (5.9), but in this case from (5.10) we in fact have

w−1(w(r)− 1) = h(r) ≥ m+ 2 > m = w−1(w(r0)− 1)

so r ̸= r0, from which it follows r < r0. It similarly follows that s = r < s0. From this we claim that
h(j) = h′(j) for j ≤ m− 1. Indeed, recall from (5.11) that h(j) (respectively h′(j)) can be described as the
maximum of the right positions RP (P) of N-inverted pairs P whose left positions go from 1 up to j. Our
assumption that h(r) ≥ m+ 2 implies that the one-line notation of w is of the form

(. . . , w(r), . . . , w(m), w(m+ 1), . . . , w(h(r)) = w(r)− 1, . . .)

where the position h(r) of w(r) − 1 is, by assumption, to the right of both w(m) and w(m + 1). We have
just argued that r < r0 and r < s0, which is to say that if w(m) and w(m) + 1 (respectively w(m + 1)
and w(m + 1) + 1) appear in inverted order in w, then the larger value w(m) + 1 = w(r0) (respectively
w(m + 1) + 1 = w(s0)) must appear to the right of w(r). (If they do not appear in inverted order, then
they cannot be an inverted pair and hence never contribute to the computation of h = hw.) But since
h(j) is computed by looking for the maximum of the RP (P) for such P whose left position is up to j, and
since the N-inverted pair (r, h(r)) occurs before r0 and s0 (i.e. r < r0 and r < s0) but has a larger RP (P)
(i.e. w(h(r)) = w(r)− 1 occurs to the right of w(m) and w(m+ 1)), this implies that the inverted pairs (if
any) with right positions m and m + 1 never achieve the maximum in the computation of h(j). Since w′

differs from w only by interchanging the w(m) and w(m+ 1), this assertion remains true for w′. Hence the
computation for h(j) and h′(j) remains unchanged, and we conclude

h(j) = h′(j) for j ≤ m− 1.
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Now from the inductive hypothesis we know fh′(j),j(w
′) = 0 for all j ∈ [n]. Since we just saw h(j) = h′(j)

for j ≤ m− 1 in this case, we then obtain that fh(j),j(w
′) = 0 for j ≤ m− 1. Finally, observe that h(j) < m

for any j < r by definition of r, and for j ≥ r the assumption that h(r) ≥ m + 2 implies that h(j) ̸= m.
Hence we may apply Corollary 4.7 and conclude that fh(j),j(w) = 0 for j ≤ m− 1, as desired.

Case 2. Next we consider the case h(r) = m + 1. We immediately see that r = s in this case as well.
Recall from (5.10) that h(r) = w−1(w(r)−1). Since h(r) = m+1 by assumption we have w(m+1) = w(r)−1.
Recall that the definition of m guarantees that h(m) ≥ m+2, so r < m. Based on this discussion we conclude
that the one-line notation for w looks like

(. . . , w(r) = w(m+ 1) + 1, . . . , w(m), w(m+ 1), . . .)

so we can see that r = s = s0 in this case. Also, arguing as in the case above, we know that r < r0. We
claim that

h′(j) ≤ h(j) for all j ≤ m− 1.(5.12)

We take cases. Recall that r0 ̸= m since r0 is defined by w(r0) = w(m) + 1. First suppose r0 ≥ m+ 1, i.e.
the value w(m)+1 occurs to the right of w(m) in the one-line notation for w. In this case, the integers w(m)
and w(m) + 1 are not inverted in w and hence never contributes to the computation of any h(j). Hence we
may conclude (5.12) in this case. Next consider the case r0 ≤ m−1, so the one-line notation for w looks like

(. . . , w(r) = w(m+ 1) + 1, . . . , w(r0) = w(m) + 1, . . . , w(m), w(m+ 1), . . .)

and the one-line notation for w′ then looks like

(. . . , w′(r) = w(m+ 1) + 1, . . . , w′(r0) = w(m) + 1, . . . , w(m+ 1), w(m), . . .).

In what follows we prove (5.12) by looking at the one-line notations. Recall that the only difference between
w and w′ is that w(m) and w(m + 1) have been interchanged, and that the computation of h(j) involves
looking at N-inverted pairs in Dw with left position up to j (and similarly for h′(j)). For the cases 1 ≤ j < r
or r0 ≤ j ≤ m− 1 (i.e. the cases in which j is outside of the range between r and r0 − 1), we see from this
observation together with the above one-line notations that h′(j) = h(j). For the case r ≤ j < r0, we have
h′(j) ≤ h(j) by the same reasoning. Thus we conclude (5.12), as desired.

Now from the inductive hypothesis we know that fh′(j),j(w
′) = 0 for all j, so from Lemma 4.3 and (5.12)

we may conclude that fh(j),j(w
′) = 0 for all j ≤ m − 1. From the assumption that h(r) = m + 1 it follows

as in the argument for Case 1 that there does not exist any j with h(j) = m, and since j ≤ m− 1 we have
j ̸= m. Hence we may apply Corollary 4.7 to conclude that fh(j),j(w) = 0 for j ≤ m − 1, as desired. This
completes the argument for Case 2.

Case 3. It remains to consider the case when h(r) = m. This means that m is actually achieved as a
value of h, so by the definition of s it follows that r ̸= s, r < s, and h(s) ≥ m+1. From (5.10) we also know
w(r)− 1 = w(h(r)), and since h(r) = m we have w(r)− 1 = w(m). Hence r = r0. The one-line notation for
w therefore looks like

(. . . , w(r) = w(r0) = w(m) + 1, . . . , w(s), . . . , w(m), w(m+ 1), . . .)

and the one-line notation for w′ looks like

(. . . , w(r) = w(r0) = w(m) + 1, . . . , w(s), . . . , w(m+ 1), w(m), . . .)

where the only difference is the interchanging of w(m) and w(m+ 1).
We now concretely analyze the difference between h and h′. Recalling s ≤ s0 from (5.9) where we recall

that s0 is the position of w(m + 1) + 1 in the one-line notation for w, it follows from arguments similar to
those in the previous cases that

h′(j) = h(j) < m for 1 ≤ j ≤ r − 1,

h′(j) = m+ 1 = h(j) + 1 for r ≤ j ≤ s− 1, and

h′(j) = h(j) > m for s ≤ j ≤ m− 1 (note that if s = m then there are no such j).

(5.13)

Now, consider j with 1 ≤ j ≤ r− 1 or s ≤ j ≤ m− 1. By (5.13) we have in these cases that h′(j) = h(j).
Hence by the inductive hypothesis fh(j),j(w

′) = fh′(j),j(w
′) = 0. Moreover, since j ̸= m and h(j) ̸= m by

(5.13), we may again apply Corollary 4.7 to conclude that fh(j),j(w) = 0, as desired.
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It remains to consider the case of j with r ≤ j ≤ s− 1. For such j we have h(j) = m, so we wish to prove
that fm,j(w) = 0 for r ≤ j ≤ s− 1. We argue by induction, with the base case being j = r. For what follows
we introduce the temporary notation

(5.14) Aj := fm−1,j(w) = fm−1,j(w
′) (j ≤ m− 1).

where the second equality holds because j ̸= m by assumption and by Corollary 4.7. Also, from (5.13) we
have that h′(r − 1) = h(r − 1) ≤ m − 1, so from our inductive hypothesis on h′ and Lemma 4.3 we may
conclude

Ar−1 = fm−1,r−1(w
′) = 0.

Since m > r, using the recursive equation (4.3) of the fi,j(w) we may now compute

fm,r(w) = fm−1,r−1(w) + (w(r)− w(m)− 1)fm−1,r(w)t

= Ar−1 + (w(r)− w(m)− 1)Art

= 0 + 0 = 0

where we have used the fact that r = r0 and thus w(r) = w(m) + 1. This proves the claim for the base case
j = r.

Now suppose by induction that fm,k(w) = 0 for some k with r ≤ k ≤ s − 2, and we wish to prove the
statement for k + 1. We know from (5.13) that h′(k + 1) = m + 1, so from our inductive hypothesis on h′

we have fm+1,k+1(w
′) = 0. Since m > k + 1, using (repeatedly) the recursive equation (4.3) of the fi,j(w)

and (5.14) we have

0 = fm+1,k+1(w
′)

= fm,k(w
′) +

(
w′(k + 1)− w′(m+ 1)− 1

)
fm,k+1(w

′)t

= Ak−1 + (w′(k)− w′(m)− 1)Akt

+
(
w′(k + 1)− w′(m+ 1)− 1

)(
Ak +

(
w′(k + 1)− w′(m)− 1

)
Ak+1t

)
t

= Ak−1 +
(
w(k)− w(m+ 1) + w(k + 1)− w(m)− 2

)
Akt

+
(
w(k + 1)− w(m)− 1

)(
w(k + 1)− w(m+ 1)− 1

)
Ak+1t

2

(5.15)

where the last equality also uses the definition of w′ in terms of w. By our assumption on k we have

fm,k(w) = Ak−1 +
(
w(k)− w(m)− 1

)
Akt = 0,

and hence we can further simplify the last expression in (5.15) as

(5.16) 0 =
(
w(k + 1)− w(m+ 1)− 1

)(
Ak +

(
w(k + 1)− w(m)− 1

)
Ak+1t

)
t.

Now remember that by assumption k + 1 ≤ s − 1 and also s ≤ s0 from (5.9), which means w(k + 1) ̸=
w(s0) = w(m+ 1) + 1. Thus from (5.16) we finally obtain

fm,k+1(w) = Ak +
(
w(k + 1)− w(m)− 1

)
Ak+1t = 0,

as desired. This proves the result that fh(j),j(w) = 0 for all r ≤ j ≤ s− 1, so we have checked all cases and
the result is proved. 2

We now prove that the ring homomorphism (5.1) is well-defined. Recall that Ih is the ideal ofQ[x1, . . . , xn, t]
generated by fh(j),j for j = 1, . . . , n.

Corollary 5.4. The graded Q[t]-algebra homomorphism

φh : Q[x1, . . . , xn, t]/Ih → H∗
S(Hess(N, h))

which sends each xi to the S-equivariant first Chern class τ̄Si and t to t is well-defined, where we identify
H∗(BS) ∼= Q[t].

28



Proof. For w ∈ Hess(N, h)S , the w-th component of the image of fh(j),j(τ̄
S
1 , . . . , τ̄

S
n , t) under the localization

map

ι2 : H∗
S(Hess(N, h)) →

⊕
w∈Hess(N,h)S⊂Sn

Q[t]

is precisely the fh(j),j(w) considered in Proposition 5.3. Thus, Proposition 5.3 together with the injectivity
of ι2 implies that

fh(j),j(τ̄
S
1 , . . . , τ̄

S
n , t) = 0 ∈ H∗

S(Hess(N, h))

for all j ∈ [n]. Hence, the ring homomorphism φ̃h defined in (3.7) factors through the quotient by Ih,
inducing the map φh as desired. 2

6. Hilbert series

The main result of this section, Proposition 6.12, takes a further step in the proof of Theorem 3.5 by
proving that the two rings are additively isomorphic as graded Q-vector spaces, i.e. that their Hilbert series
(to be defined below) are equal. This will be useful in our arguments in Section 7 because, if a map between
two graded vector spaces is injective and we know the dimensions of the graded pieces are equal, then the
map must be an isomorphism.

We outline the content of this section. We first record some preliminary definitions and recall some
properties of regular sequences. To prove Proposition 6.12 it will turn out to be useful to first compute the
Hilbert series for the ordinary cohomology. As a first step, by using results of Mbirika-Tymoczko [37] and
a small trick involving the Hessenberg space’s negative roots, we rewrite the Hilbert series of the ordinary
cohomology H∗(Hess(N, h)) in terms of h. Next, we show in Lemma 6.5 that the polynomials f̌i,j defined
in (1.2) can be obtained from the fi,j by setting the variable t equal to 0, and then prove that the homogeneous

polynomials f̌h(1),1, . . . , f̌h(n),n described in (6.4) form a regular sequence in Q[x1, . . . , xn]. Since the degrees

of the f̌h(i),i are known, this allows us to conclude that the Hilbert series of Hess(N, h) and Q[x1, . . . , xn]/Ǐh
are equal. Here recall that Ǐh, defined in (1.4), is the ideal

Ǐh = (f̌h(1),1, . . . , f̌h(n),n)

generated by the fh(j),j for j ∈ [n]. Now some straightforward arguments, involving on the one hand some
elementary considerations using module bases and the S-equivariant formality of Hess(N, h) on the other,
yield the fact that the Hilbert series of the S-equivariant cohomology H∗

S(Hess(N, h)) and Q[x1, . . . , xn, t]/Ih
are equal.

As before, we equip the polynomial rings Q[x1, . . . , xn] and Q[x1, . . . , xn, t] with the gradings defined by

deg xi = 2 for all i ∈ [n] and deg t = 2.

We begin by recalling the definition of Hilbert series. Let R =
⊕∞

i=0 Ri be a graded Q-vector space where
each Ri is finite-dimensional. Then we define its Hilbert series to be

F (R, s) :=

∞∑
i=0

(dimQ Ri)s
i ∈ Z[[s]]

where s is a formal parameter.
We also take a moment to recall the definition and some properties of regular sequences, which we use

extensively for the remainder of this section.

Definition 6.1. ([35, Section 16]) For a ring S, a sequence θ1, . . . , θr ∈ S is called a regular sequence if:

(i) θi is non-zero, and not a zero-divisor, in S/(θ1, . . . , θi−1) for i = 1, . . . , r,
(ii) S/(θ1, . . . , θr) ̸= 0.

Remark 6.2. There are other useful characterizations of regular sequences which we shall employ in our
arguments below.
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(1) If S is a graded Q-algebra and θ1, . . . , θr are positive-degree homogeneous elements, then it is well-
known that {θ1, . . . , θr} is a regular sequence as above if and only if {θ1, . . . , θr} is algebraically
independent over Q and S is a free Q[θ1, . . . , θr]-module (e.g. [48, Chapter 1, Section 5.6]).

(2) In the discussion below, the ring S in Definition 6.1 is always the polynomial ring S = Q[x1, . . . , xn]
which is a graded Q-algebra, and we will only consider sequences θ1, . . . , θr of positive-degree homo-
geneous polynomials. In this setting, the condition (ii) of Definition 6.1 is automatically satisfied.
Thus in this special case (θ1, . . . , θr) is a regular sequence if and only if the condition (i) holds.

(3) Let the polynomial ring Q[x1, . . . , xn] be graded with deg xi = 2 for 1 ≤ i ≤ n. It is also well-known
(see for instance [48, p.35]) that a sequence θ1, . . . , θr ∈ Q[x1, . . . , xn] of positive-degree homogeneous
polynomials is a regular sequence if and only if

F (Q[x1, . . . , xn]/(θ1, . . . , θr), s) =
1

(1− s2)n

r∏
k=1

(1− sdeg θk)

where deg θk is the degree in Q[x1, . . . , xn] and it is the twice of its degree in the variables x1, . . . , xn

since deg xi = 2.
(4) Finally, continuing in the special setting of the previous item, if r = n (i.e. the number of poly-

nomials θi in the sequence is equal to the number of variables in the ambient polynomial ring
S = Q[x1, . . . , xn]), it is known that a sequence of positive-degree homogeneous elements θ1, . . . , θn in
Q[x1, . . . , xn] is a regular sequence if and only if the solution set of the equations θ1 = 0, . . . , θn = 0
in Cn consists only of the origin {0}. (This is because the above characterization (3) is valid
for any coefficient field and hence [18, Proposition 5.1] gives the claim, since the Hilbert series
of Q[x1, . . . , xn]/(θ1, . . . , θr) and C[x1, . . . , xn]/(θ1, . . . , θr) are the same.)

The following simple fact, which follows from [48, Chapter 1, Theorem 5.9], is also useful.

Lemma 6.3. Let g1, . . . , gn be positive-degree homogeneous polynomials in Q[x1, . . . , xn]. Suppose {g1, . . . , gn}
is a regular sequence in Q[x1, . . . , xn]. (Note that the length of the sequence equals the number of variables
in the ambient polynomial ring.) Then Q[x1, . . . , xn] is finitely generated as a Q[g1, . . . , gn]-module.

With these preliminaries in place, we begin our computation of the Hilbert series F (H∗
S(Hess(N,h)), s) of

the equivariant cohomology ring H∗
S(Hess(N, h)). Our first step towards this goal is to compute the Hilbert

series of the ordinary cohomology ring H∗(Hess(N, h)) using results of Mbirika [36] (we also took inspiration
from related work of Peterson and Brion-Carrell as in [8]).

Lemma 6.4. Let n be a positive integer and h : [n] → [n] a Hessenberg function. Let Hess(N, h) denote the
corresponding regular nilpotent Hessenberg variety. Then the Hilbert series of the ordinary cohomology ring
H∗(Hess(N, h)) (equipped with the usual grading) is

(6.1) F (H∗(Hess(N, h)), s) =
n∏

j=1

1− s2(h(j)−j+1)

1− s2
.

The following proof of Lemma 6.4 uses a trick which re-writes certain expressions as a product over
negative roots NR(h) contained in the Hessenberg space as in (2.4).

Proof of Lemma 6.4. Following [36], we define integers βi for i ∈ [n] by

βi := i− |{k ∈ [n] | h(k) < i}|.
It is straightforward to see that βi − 1 is the number of elements in NR(h) which are contained in the
i-th row, i.e. pairs in NR(h) whose first coordinates equal to i. In particular, βi > 0 for all i ∈ [n].
For a positive integer β, denote by hβ(x1, . . . , xk) the degree-β complete symmetric polynomial in the
listed variables. Following [36] we define Jh to be the ideal in Q[x1, . . . , xn] generated by the polynomials
hβn(xn), hβn−1(xn−1, xn), . . . , hβ1(x1, . . . , xn). It turns out [36, Theorem 3.4.3] that the Hilbert series of
H∗(Hess(N, h)) and Q[x1, . . . , xn]/Jh coincide:

F (H∗(Hess(N, h)), s) = F (Q[x1, . . . , xn]/Jh, s).

We next claim that this sequence hβn(xn), hβn−1(xn−1, xn),. . . , hβ1(x1, . . . , xn) forms a regular sequence.
Since there are precisely n elements in the sequence, which is equal to the number of variables in the
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ambient polynomial ring, we may use the characterization in Remark 6.2(4) above; in particular, it suffices
to see that their common zero locus in Cn is just the origin 0 ∈ Cn. Noting as above that each βi is positive,
we see first that hβn(xn) = xβn

n = 0 implies xn = 0. But if xn = 0 then hβn−1(xn, xn−1) = hβn−1(0, xn−1) =

hβn−1(xn−1) = x
βn−1

n−1 = 0 and we may conclude xn−1 = 0. Continuing in this manner we see that all
xi = 0, i.e. the common zero locus is {0} as desired. Using the characterization of regular sequences in
Remark 6.2(3) we then have

(6.2) F (Q[x1, . . . , xn]/Jh, s) = F (Q[x1, . . . , xn], s)

n∏
i=1

(1− s2βi) =

n∏
i=1

βi−1∏
k=1

1− s2(k+1)

1− s2k
.

As we already observed, βi − 1 counts the number of pairs (i, j) in NR(h) in the i-th row. Put another way,
the set of pairs in NR(h) with first coordinate equal to i can also be expressed as

{(i, i− k) | 1 ≤ k ≤ βi − 1}

and in particular we see that the corresponding heights of these pairs in the sense of (2.5) range precisely
between 1 and βi−1. Using the same reasoning for each i ∈ [n], the last expression in (6.2) can be re-written
as

(6.3)
∏

(i,j)∈NR(h)

1− s2(ht(i,j)+1)

1− s2·ht(i,j)

But now we may decompose the terms in (6.3) according to columns instead of rows. In this case, from the
definition of NR(h) it is straightforward to rewrite (6.3) as

n∏
j=1

h(j)−j∏
k=1

1− s2(k+1)

1− s2k
=

n∏
j=1

1− s2(h(j)−j+1)

1− s2
.

This proves the claim. 2

We now wish to relate the Hilbert series of H∗(Hess(N, h)) to the Hilbert series of the quotient ring
Q[x1, . . . , xn]/Ǐh. This will in turn allow us to compute and compare the Hilbert series of H∗

S(Hess(N, h))
and Q[x1, . . . , xn, t]/Ih. However, in order to accomplish this, we must first analyze the relationship between
the series fi,j defined in Section 3 and the series f̌i,j ∈ Q[x1, . . . , xn] defined in (1.2). It turns out that f̌i,j
is obtained from fi,j by setting the variable t equal to 0.

Lemma 6.5. For all n ≥ i ≥ j ≥ 1, we have

fi,j(x1, . . . , xn, t = 0) = f̌i,j =

j∑
k=1

(
xk

i∏
ℓ=j+1

(xk − xℓ)
)
.(6.4)

Proof. The second equality is just the definition (1.2), so we only need to prove the first equality. Let
f ′
i,j := fi,j(x1, . . . , xn, 0) ∈ Q[x1, . . . , xn]. We wish to show f ′

i,j = f̌i,j . From Definition 3.1 we immediately
see that these polynomials satisfy the following recursion relations:

f ′
j,j =

j∑
k=1

xk for j ∈ [n],

f ′
i,j = f ′

i−1,j−1 + (xj − xi)f
′
i−1,j for n ≥ i > j ≥ 1.

(6.5)

We introduce a total order on the set {(i, j) ∈ [n]× [n] | i ≥ j} by the condition

(i′, j′) ≤ (i, j) if and only if (i′ − j′ < i− j) or (i′ − j′ = i− j and i′ ≤ i)

and we prove the claim by induction on this total order. When i = j, it is clear by (6.5) that the claim
holds. Let i > j and assume the claim holds for (i′, j′) less than (i, j). Since we have (i − 1, j − 1) < (i, j)
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and (i− 1, j) < (i, j) by definition of our total order, the inductive hypothesis and (6.5) show that

f ′
i,j = f ′

i−1,j−1 + (xj − xi)f
′
i−1,j

=

j−1∑
k=1

(
xk

i−1∏
ℓ=j

(xk − xℓ)
)
+ (xj − xi)

j∑
k=1

(
xk

i−1∏
ℓ=j+1

(xk − xℓ)
)

=

j−1∑
k=1

(
xk

i−1∏
ℓ=j+1

(xk − xℓ)
)(

(xk − xj) + (xj − xi)
)
+ (xj − xi)xj

i−1∏
ℓ=j+1

(xj − xℓ)

=

j−1∑
k=1

(
xk

i∏
ℓ=j+1

(xk − xℓ)
)
+ xj

i∏
ℓ=j+1

(xj − xℓ) =

j∑
k=1

(
xk

i∏
ℓ=j+1

(xk − xℓ)
)
= f̌i,j

as desired. 2

For future reference, we also record the degrees of the polynomials fi,j and f̌i,j , both of which are
immediate from their definitions.

Lemma 6.6. The degree of fi,j and f̌i,j in the variables xi and t is i − j + 1. With respect to the grading
in Q[x1, . . . , xn, t] and Q[x1, . . . , xn] respectively, we have

deg(fi,j) = deg(f̌i,j) = 2(i− j + 1).(6.6)

We denote by

Ǐh := (f̌h(j),j | 1 ≤ j ≤ n) ⊂ Q[x1, . . . , xn](6.7)

the ideal of Q[x1, . . . , xn] generated by the polynomials f̌h(j),j . Our next goal is to relate the polynomials

f̌h(j),j (and the ideal Ǐh they generate) with the Hilbert series F (H∗(Hess(N, h)), s). Armed with Lemma 6.4

and the results summarized in Remark 6.2, we can accomplish this goal once we show that the f̌h(j),j form
a regular sequence, which we do in the next two lemmas.

Lemma 6.7. ([20, Exercise 1, page 74]) Let m be an arbitrary positive integer and y1, . . . , ym be indetermi-
nates. For i a positive integer let

ei(y) :=
∑

1≤k1<···<ki≤m

yk1 · · · yki and pi(y) :=
m∑

k=1

yik

be the i-th elementary symmetric polynomial and the i-th power sum in the variables y1, . . . , ym respectively.
Then the following identity holds:

−
q−1∑
r=1

(−1)rer(y)pq−r(y) = (−1)qqeq(y) + pq(y) for any q ≥ 1.(6.8)

Lemma 6.8. The polynomials f̌h(1),1, f̌h(2),2, · · · , f̌h(n),n form a regular sequence in Q[x1, . . . , xn].

Proof. We use Remark 6.2(4) to prove this claim, that is, we show that the solution set in Cn of the equations
f̌h(j),j = 0 for all j ∈ [n] consists of only the origin {0}. Observe that if f̌h(j),j = 0 for all j ∈ [n] then from

Lemma 4.1 we also have f̌n,j = 0 for all j ∈ [n] since we have (6.4) and the substitution t = 0 is a ring
homomorphism from Q[x1, . . . , xn, t] to Q[x1, . . . , xn]. Hence it suffices to prove the statement of the lemma
in the special case when h(j) = n for all j ∈ [n], i.e. that if f̌n,j = 0 for all j ∈ [n] then xj = 0 for all j ∈ [n].

To prove this, we first claim that for j ∈ [n] we have

f̌n,j =

j−1∑
i=0

(−1)iei(xn+2−j , . . . , xn)pj−i(x)(6.9)
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where we denote pj−i(x) = pj−i(x1, . . . , xn). This equality holds since from (6.4) and (6.8) the left-hand-side
is

f̌n,j =

n+1−j∑
k=1

(
xk

n∏
ℓ=n+2−j

(xk − xℓ)
)

=

n+1−j∑
k=1

xk

( j−1∑
i=0

(−1)iei(xn+2−j , . . . , xn)x
j−1−i
k

)

=

j−1∑
i=0

(−1)iei(xn+2−j , . . . , xn)pj−i(x1, . . . , xn+1−j)

= pj(x1, . . . , xn+1−j) +

j−1∑
i=1

(−1)iei(xn+2−j , . . . , xn)
(
pj−i(x)− pj−i(xn+2−j , . . . , xn)

)
= pj(x1, . . . , xn+1−j) + pj(xn+2−j , . . . , xn) +

j−1∑
i=1

(−1)iei(xn+2−j , . . . , xn)pj−i(x)

by (6.8) and ej(xn+2−j , . . . , xn) = 0

=

j−1∑
i=0

(−1)iei(xn+2−j , . . . , xn)pj−i(x).

Now (6.9) shows that the transition matrix from p1(x), . . . , pn(x) to f̌n,1, . . . , f̌n,n is lower-triangular with

diagonal entries all equal to 1, and hence the ideal of Q[x1, . . . , xn] generated by f̌n,1, . . . , f̌n,n and the ideal
of Q[x1, . . . , xn] generated by power sums p1(x), . . . , pn(x) are the same ;

(f̌n,1, . . . , f̌n,n) = (p1(x), . . . , pn(x)) ⊂ Q[x1, . . . , xn].(6.10)

Recall that we assume that f̌n,j = 0 for all j with 1 ≤ j ≤ n. In particular, we obtain pj(x) = 0 for all j
with 1 ≤ j ≤ n. It is well-known and easy to prove that this implies that x1 = · · · = xn = 0. Now the claim
follows from the characterization of regular sequences in Remark 6.2(4). 2

A computation of the Hilbert series is now straightforward.

Corollary 6.9. The Hilbert series of the graded Q-algebras H∗(Hess(N, h)) and Q[x1, . . . , xn]/Ǐh are equal,
i.e.

F (H∗(Hess(N, h)), s) = F (Q[x1, . . . , xn]/Ǐh, s) =

n∏
j=1

1− s2(h(j)−j+1)

1− s2
.

Proof. Recalling that deg f̌h(j),j = 2(h(j)− j + 1) from (6.6), Lemma 6.8 and Remark 6.2(3) show that

F (Q[x1, . . . , xn]/Ǐh, s) =
n∏

j=1

1− s2(h(j)−j+1)

1− s2
.

Thus, together with Lemma 6.4, we obtain the claim. 2

We now turn our attention to the main goal of this section, which is the computation of the Hilbert series
F (H∗

S(Hess(N, h)), s) in terms of the ideal Ih generated by the polynomials fh(j),j . We continue to use the
technique of regular sequences. Indeed, our first step, Lemma 6.10 below, states that the n+1 homogeneous
polynomials {fh(1),1, . . . , fh(n),n, t} form a regular sequence in Q[x1, . . . , xn, t]; this in fact follows easily from
the above arguments.

Lemma 6.10. The polynomials fh(1),1, . . . , fh(n),n, t form a regular sequence in Q[x1, . . . , xn, t]. Moreover,
Q[x1, . . . , xn, t] is a finitely generated and free Q[fh(1),1, . . . , fh(n),n, t]-module.

Proof. By Remark 6.2(4), the first claim follows from Lemma 6.5 and Lemma 6.8. The second claim then
follows from the characterization in Remark 6.2(1) and Lemma 6.3. 2
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As we have just seen, Q[x1, . . . , xn, t] is a free and finitely generated Q[fh(1),1, . . . , fh(n),n, t]-module. A
straightforward argument (using, for instance, a choice of basis together with the fact that fh(1),1, . . . , fh(n),n, t
are algebraically independent over Q) then shows that the quotient Q[x1, . . . , xn, t]/(fh(1),1, . . . , fh(n),n) =
Q[x1, . . . , xn, t]/Ih is a free and finitely generated module over Q[t]. We record the following.

Corollary 6.11. As Q[t]-modules and hence as graded Q-vector spaces, we have

Q[x1, . . . , xn, t]/Ih ∼= Q[t]⊗Q
(
Q[x1, . . . , xn]/Ǐh

)
.

In particular,

F (Q[x1, . . . , xn, t]/Ih, s) =
1

1− s2
F (Q[x1, . . . , xn]/Ǐh, s).

Proof. Since Q[x1, . . . , xn, t]/Ih is a finitely generated free Q[t]-module as observed above, we have

Q[x1, . . . , xn, t]/Ih ∼= Q[t]⊗Q (Q[x1, . . . , xn, t]/(fh(1),1, . . . , fh(n),n, t))

as Q[t]-modules. The module in the right hand side is naturally isomorphic to Q[t]⊗Q (Q[x1, . . . , xn]/Ǐh) by
the definition (6.7) of Ǐh. Hence, we obtain the first claim. In particular this means

F (Q[x1, . . . , xn, t]/Ih, s) = F (Q[t], s)F (Q[x1, . . . , xn]/Ǐh, s)

=
1

1− s2
F (Q[x1, . . . , xn]/Ǐh, s)

as desired. 2

The main result of this section now follows easily.

Proposition 6.12. The Hilbert series of the graded Q-algebras H∗
S(Hess(N, h)) and Q[x1, . . . , xn, t]/Ih are

equal, i.e. F
(
Q[x1, . . . , xn, t]/Ih, s

)
= F

(
H∗

S(Hess(N, h)), s).

Proof. Since Hess(N, h) admits a paving by complex affines (cf. discussion before (2.16)), we have

H∗
S(Hess(N, h))

∼= H∗
S(pt)⊗Q H∗(Hess(N, h))

as H∗
S(pt)-modules and hence also as graded Q-vector spaces. In particular,

F (H∗
S(Hess(N, h)), s) = F (H∗

S(pt), s)F (H∗(Hess(N, h)), s).

Also since H∗
S(pt)

∼= Q[t] is a polynomial ring in one variable we have F (H∗
S(pt), s) =

1
1−s2 and we obtain

F (H∗
S(Hess(N, h)), s) =

1

1− s2
F (H∗(Hess(N, h)), s)

=
1

1− s2
F (Q[x1, . . . , xn]/Ǐh, s)

= F (Q[x1, . . . , xn, t]/Ih, s)

by Corollary 6.9 and Corollary 6.11, as desired. 2

7. Second part of proof of Theorem 3.5 and proof of Theorem A

The purpose of this section is to complete the proof of Theorem 3.5 and hence also of Theorem A.
Specifically, we prove that the graded Q[t]-algebra homomorphism

φh : Q[x1, . . . , xn, t]/Ih → H∗
S(Hess(N, h)) ; xi 7→ τ̄Si , t 7→ t

(which was shown to be well-defined in Corollary 5.4) is in fact an isomorphism. Before launching into the
proof we sketch the essential idea. As mentioned in the introductory remarks to Section 6, if two vector
spaces are a priori known to have the same dimension, then a linear map between them is an isomorphism if
and only if it is injective if and only if it is surjective. We will now use this elementary linear algebra fact to
its full effect, given that we have shown that the dimensions of H∗(Hess(N, h)) and Q[x1, . . . , xn]/Ǐh coincide
(Corollary 6.9), and that the dimensions of (the graded pieces of) H∗

S(Hess(N, h)) and Q[x1, . . . , xn, t]/Ih
coincide (Proposition 6.12). The other essential trick we use is that of localization: instead of directly
attacking the problem of showing that φh is injective (which, as we said above, would suffice to show that
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φh is an isomorphism), we show first that a certain localization R−1φh is an isomorphism by using the
localization theorem in equivariant topology. We make this more precise below.

Let R = Q[t]\{0} and consider the induced homomorphism R−1φh between the R−1Q[t]-algebras

R−1φh : R
−1
(
Q[x1, . . . , xn, t]/Ih

)
→ R−1H∗

S(Hess(N, h)).(7.1)

Recall from Section 2.1 that the S-equivariant cohomology of the full flag variety Flag(Cn) is generated
as an H∗

S(pt)-module by the S-equivariant first Chern classes of the tautological line bundles. In our setting,
this means that for the special case h = (n, n, . . . , n), by the definition of φh we already know that

(7.2) Q[x1, . . . , xn, t] → H∗
S(Hess(N, h)) = H∗

S(Flag(Cn))

is surjective. We harness this fact, together with the localization theorem in equivariant topology and our
explicit description of the S-fixed point set of Hess(N, h), to show that R−1φh is surjective for general h.
The fact that R−1φh is an isomorphism then follows from a simple dimension-counting argument over the
field R−1Q[t] = Q(t) of rational functions in one variable, as suggested in the introductory remarks above.

Lemma 7.1. The map R−1φh in (7.1) is an isomorphism.

Proof. For simplicity of notation in what follows, for the special case h = (n, n, . . . , n) with Hess(N, h) =
Flag(Cn), we denote the corresponding ideal by I and the corresponding map by φ. Then, as discussed
above, φ is surjective. In particular, R−1φ is also surjective.

Next, recall from Lemma 4.1 that if we have h ⊂ h′ for two Hessenberg functions h and h′ then Ih′ ⊂ Ih
and hence there exists a natural induced map Q[x1, . . . , xn, t]/Ih′ → Q[x1, . . . , xn, t]/Ih. In our case, for any
Hessenberg function h it is always true that h ⊂ h′ for the “largest” Hessenberg function h′ := (n, n, . . . , n),
so we conclude from Lemma 4.1 and a localization that there exists a natural map

(7.3) R−1(Q[x1, . . . , xn, t]/I) → R−1(Q[x1, . . . , xn, t]/Ih).

In fact, we may enlarge this to the following commutative diagram

R−1
(
Q[x1, . . . , xn, t]/I

) R−1φ−−−−→ R−1H∗
S(Flag(Cn)) −−−−→∼=

R−1H∗
S(Flag(Cn)S)y y y

R−1
(
Q[x1, . . . , xn, t]/Ih

) R−1φh−−−−→ R−1H∗
S(Hess(N, h)) −−−−→∼=

R−1H∗
S(Hess(N, h)S)

where the map in (7.3) is the leftmost vertical arrow, and all other unlabelled maps are induced from the
geometric inclusion maps. The two horizontal maps in the square on the right are both isomorphisms by the
localization theorem in equivariant topology [29, p.40]. Moreover, the right-most vertical map is a surjection
since the S-fixed point set Hess(N, h)S is a subset of the S-fixed point set of Flag(Cn). Thus the middle
vertical map must be surjective, and from there it also follows that R−1φh is surjective.

To show that R−1φh is in fact an isomorphism, we now compare the dimensions of R−1(Q[x1, . . . , xn, t]/Ih)
and R−1H∗

S(Hess(N, h)) as vector spaces over R
−1Q[t] = Q(t) the field of rational functions in one variable

t. Since we have H∗
S(Hess(N,h)) ∼= H∗

S(pt)⊗Q H∗(Hess(N, h)) by (2.16), we obtain

R−1H∗
S(Hess(N, h)) ∼= R−1H∗

S(pt)⊗Q H∗(Hess(N, h)) ∼= Q(t)⊗Q H∗(Hess(N, h)).

In particular, the dimension of R−1H∗
S(Hess(N, h)) as a Q(t)-vector space is the dimension of H∗(Hess(N, h))

as a Q-vector space. On the other hand, from Corollary 6.11 we also know that, as a Q[t]-module, we have

Q[x1, . . . , xn, t]/Ih ∼= Q[t]⊗Q (Q[x1, . . . , xn]/Ǐh)

which means that

R−1(Q[x1, . . . , xn, t]/Ih) ∼= Q(t)⊗Q (Q[x1, . . . , xn]/Ǐh)

and hence the dimension ofR−1(Q[x1, . . . , xn, t]/Ih) as aQ(t)-vector space is the dimension ofQ[x1, . . . , xn]/Ǐh
as a Q-vector space. But we have just seen in Corollary 6.9 that these two rings H∗(Hess(N, h)) and
Q[x1, . . . , xn]/Ǐh have the same Hilbert series, and in particular are of the same dimension. Since R−1φh has
been shown to be a surjective map between vector spaces of the same dimension, it must be an isomorphism,
as desired. 2
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We now wish to use the fact that R−1φh is an isomorphism to deduce that φh must be an isomorphism.

Proof of Theorem 3.5. Consider the following commutative diagram:

Q[x1, . . . , xn, t]/Ih
φh−−−−→ H∗

S(Hess(N, h))y y
R−1(Q[x1, . . . , xn, t]/Ih)

R−1φh−−−−→∼=
R−1H∗

S(Hess(N, h))

The left vertical map is injective since Q[x1, . . . , xn, t]/Ih is a free Q[t]-module by Corollary 6.11. We just saw
that the bottom horizontal map is an isomorphism in Lemma 7.1. From the commutativity of the diagram
we may conclude that φh is an injection. But by Proposition 6.12 we know that the Hilbert series of the
target and the domain agree, showing that their graded pieces have the same dimension. Thus, φh is an
isomorphism, as desired.

Finally, this implies that the S-equivariant cohomology ring H∗
S(Hess(N, h)) is generated by the first

Chern class τ̄Si of the i-th tautological line bundle (over Flag(Cn)) restricted to Hess(N, h), and hence the
restriction map H∗

T (Flag(Cn)) → H∗
S(Hess(N, h)) is surjective. 2

We can now prove Theorem A. Indeed, since the odd degree cohomology groups of Hess(N, h) vanish as
discussed in Section 2, by setting t = 0 we obtain the ordinary cohomology. Recall from Lemma 6.5, we have

f̌i,j = fi,j(x1, . . . , xn, t)|t=0 =

j∑
k=1

(
xk

i∏
ℓ=j+1

(xk − xℓ)
)

(n ≥ i ≥ j ≥ 1).

Let

τ̄i ∈ H2(Hess(N, h))(7.4)

be the image of the Chern class τi ∈ H2(Flag(Cn)) under the restriction mapH∗(Flag(Cn)) → H∗(Hess(N, h)).
That is, τ̄i is the first Chern class of the tautological line bundle over Flag(Cn) restricted to Hess(N, h). (Its
equivariant version τ̄Si ∈ H2

S(Hess(N, h)) is defined in (3.2).)

Proof of Theorem A. Consider the forgetful map H∗
S(Hess(N, h)) → H∗(Hess(N, h)) which sends the ideal of

H∗
S(Hess(N, h)) generated by t to zero. This map is surjective since Hess(N, h) admits a paving by complex

affines [51] as mentioned in Section 2 and hence the Serre spectral sequence collapses at E2-stage [38, Chapter
III, Theorem 2.10]. Thus, from Theorem 3.5 together with (6.4), we obtain

Q[x1, . . . , xn]/Ǐh ∼= H∗
S(Hess(N, h))/(t) ∼= H∗(Hess(N, h))

by sending each xi to τ̄i defined above where Ǐh =
(
f̌h(j),j | 1 ≤ j ≤ n

)
. Since the (equivariant) re-

striction map H∗
T (Flag(Cn)) → H∗

S(Hess(N, h)) is surjective from Theorem 3.5, so is the restriction map
H∗(Flag(Cn)) → H∗(Hess(N, h)). 2

Remark 7.2. For the special case of the Peterson variety when h = (2, 3, · · · , n, n), from Remark 3.6 it
follows that Theorem A is also a generalization of the result in [18] which gives a presentation of the ordinary
cohomology ring H∗(Petn).

Remark 7.3. Consider the special case h = (n, n, . . . , n) in which the associated regular nilpotent Hessenberg
variety is the full flag variety Flag(Cn). In this case, (6.9) and (6.10) provide an explicit relation between

the generators f̌n,j of our ideal Ǐh = Ǐ(n,n,...,n) and the power sums pj(x) = pj(x1, . . . , xn) :=
∑n

k=1 x
j
k, thus

relating our presentation with the usual Borel presentation as in (2.14), see e.g. [20].

Remark 7.4. The usual Borel presentation of H∗(Flag(Cn)) given in (2.14), where the ideal of relations is
taken to be generated by the elementary symmetric polynomials, holds also with Z coefficients. Although the
power sums pr generate this ideal I when we consider the cohomology ring with Q coefficients, this is not true
with Z coefficients. Thus our Theorem A does not hold with Z coefficients in the case when h = (n, n, . . . , n),
suggesting that there is some subtlety in the relationship between the choice of coefficients and the choice of
generators of the ideal Ih.
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8. The equivariant cohomology rings of regular semisimple Hessenberg varieties

Our second main result, Theorem B, relates the ordinary cohomology ring H∗(Hess(N, h)) of the regular
nilpotent Hessenberg variety and the Sn-invariant subring H∗(Hess(S, h))Sn of the ordinary cohomology of
the regular semisimple Hessenberg variety. In this section, we recall the definition of the Sn-action on the
T -equivariant cohomology H∗

T (Hess(S, h)) – which then induces an Sn-action on H∗(Hess(S, h)) – where T
is the usual maximal torus defined in (2.9). It is this Sn-action with respect to which we take the invariants
in our Theorem B. We also record some preliminary results concerning this action.

Let h ∈ Hn be a Hessenberg function and Hess(S, h) the regular semisimple Hessenberg variety associated
to h as defined in (1.5). Here and below, we use the notation

d := dimC Hess(S, h)(8.1)

where the computation of this quantity in terms of the Hessenberg function h is described in (2.8).
As we saw in Section 2, the maximal torus T of GL(n,C) acts on Flag(Cn) and preserves Hess(S, h).

Moreover, it is straightforward to see that each T -fixed point in Flag(Cn) is contained in Hess(S, h) [14], so
we have

Hess(S, h)T = Flag(Cn)T .

As before, we use the identification Hess(S, h)T = Flag(Cn)T ∼= Sn as in (2.18).
Tymoczko described the equivariant cohomology ring H∗

T (Hess(S, h)) as an algebra over H∗(BT ) by using
techniques introduced by Goresky, Kottwitz, and MacPherson [23], which we now briefly recall. Let X be a
topological space admitting an action of a torus T . Under some technical hypotheses on this T -action, all of
which are satisfied by the T -action on Hess(S, h), the theory of Goresky-Kottwitz-MacPherson (also known
as “GKM theory”) states that the inclusion map ι : XT ↪→ X of the T -fixed point set into the ambient space
induces an injection

(8.2) ι∗ : H∗
T (X) ↪→ H∗

T (X
T )

and describes the image im(ι∗) explicitly as follows. Assuming that XT is finite (which is true in our case)
we have

H∗
T (X

T ) ∼=
⊕

p∈XT

H∗
T (p)

where the RHS is a finite direct sum and each p is an isolated fixed point of X. For α ∈ H∗
T (X), since the map

ι∗ in (8.2) is an injection, here and below we abuse notation and denote also by α its image in H∗
T (X

T ) ∼=⊕
p∈XT H∗

T (p)
∼=
⊕

p∈XT Q[t1, . . . , tn] (see (2.11)). In particular we denote by α(p) ∈ Q[t1, . . . , tn] the

component of α corresponding to p and we write α = (α(p))p∈XT . In our situation, any Hessenberg variety
(in Lie type A) admits a paving by complex affines ([51, Theorem 7.1]), and hence the localization theorem
of torus-equivariant topology implies that the inclusion map of the fixed point set induces injection

ι3 : H∗
T (Hess(S, h)) ↪→ H∗

T (Hess(S, h)T ) =
⊕

w∈Sn

Q[t1, . . . , tn].

where we identify Hess(S, h)T = Flag(Cn)T ∼= Sn as above. Tymoczko’s description of the image under ι3
of H∗

T (Hess(S, h)) states that

(8.3) H∗
T (Hess(S, h))

∼=

α ∈
⊕

w∈Sn

Q[t1, . . . , tn]

∣∣∣∣∣∣
α(w)− α(w′) is divisible by tw(i) − tw(j)

if there exist 1 ≤ j < i ≤ n satisfying
w′ = w(j i) and i ≤ h(j)


where (j i) ∈ Sn denotes the element of Sn which transposes i and j. The condition given in the right hand
side of (8.3) is called the GKM condition (for Hess(S, h)).

Note that if the Hessenberg function h is chosen to be h = (n, n, . . . , n), then the corresponding Hessenberg
variety Hess(S, h) is equal to Flag(Cn). Also in this case, because the condition i ≤ h(j) = n is always
satisfied, the description (8.3) becomes

H∗
T (Flag(Cn)) ∼=

α ∈
⊕

w∈Sn

Q[t1, . . . , tn]

∣∣∣∣∣∣
α(w)− α(w′) is divisible by tw(i) − tw(j)

if there exist 1 ≤ j < i ≤ n satisfying
w′ = w(j i)

 .
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In particular it can be seen explicitly that the RHS of the above imposes more conditions on a collection
(α(p))p∈Sn than the RHS of (8.3), and thus we can see that for an arbitrary Hessenberg function h, the
restriction map

H∗
T (Flag(Cn)) → H∗

T (Hess(S, h))

is an injection by considering the following commutative diagram

(8.4)

H∗
T (Flag(Cn))

ι1−−−−→ H∗
T (Flag(Cn)T ) ∼=

⊕
w∈Sn

Q[t1, . . . , tn]y yid

H∗
T (Hess(S, h))

ι3−−−−→ H∗
T (Hess(S, h)T ) ∼=

⊕
w∈Sn

Q[t1, . . . , tn].

The identification given in (8.3) allows us to visualize elements in H∗
T (Hess(S, h)) pictorially. Define the

GKM graph of Hess(S, h) to be the graph with vertices corresponding to the fixed point set Hess(S, h)T ∼=
Sn and with an edge between two vertices w and w′ exactly if there exist 1 ≤ j < i ≤ n with i ≤ h(j) and
w′ = w(j i). Additionally, we equip each such edge with the data of the polynomial tw(i) − tw(j).

Example 8.1. Let n = 3. Then for any Hessenberg function the GKM graph has vertex set S3. The figures
below depict the GKM graphs of the corresponding regular semisimple Hessenberg varieties for h = (3, 3, 3)
(on the left) and h = (2, 3, 3) (on the right), where the vertices are labelled by their corresponding elements
in S3 written in the standard one-line notation and we have used different patterns to depict the edges to
encode the data of the attached polynomial.

= t1 − t2

= t2 − t3

= t1 − t3

(1 2 3)

(3 2 1)

(1 2 3)

(1 3 2)

(3 1 2)

(3 2 1)

(2 1 3)

(2 3 1)

(1 3 2)

(3 1 2)

(2 1 3)

(2 3 1)

Continuing the example with h = (2, 3, 3), a class α in H∗
T (Hess(S, (2, 3, 3))) can be visualized by attaching

the polynomial α(w) to each vertex w ∈ S3. The GKM condition states that if w and w′ are connected by
an edge in the graph, then the difference α(w) − α(w′) must be divisible by the polynomial decorating that
edge. With this in mind, the reader may check, for example, that the collection of polynomials in the left
figure satisfies the GKM conditions and hence is an element of H∗

T (Hess(S, (2, 3, 3))), but the collection in
the right figure is not.

0

0

0

t3 − t1

t2

t2 − t3

0

t1 − t3

0

0

t2 − t1

0

The ring map H∗
T (pt) = H∗(BT ) → H∗

T (Hess(S, h)) induced from the collapsing map Hess(S, h) → pt,
which makes H∗

T (Hess(S, h)) into an H∗
T (pt)-module, can also be explicitly visualized using the GKM graph.

Indeed, the image of ti ∈ H∗
T (pt) = H∗(BT ) ∼= Q[t1, . . . , tn] under the composition

H∗
T (pt) → H∗

T (Hess(S, h))
ι3→ H∗

T (Hess(S, h)T )
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is given simply by attaching the monomial ti to each vertex in the graph (see also (2.21)), e.g. for h = (2, 3, 3)
we have

ti

ti

ti

ti

ti

ti

H2(BT ) ∋ ti 7→ ∈
⊕

w∈Sn

Q[t1, · · · , tn]

Henceforth, by slight abuse of notation, we shall denote also by ti the equivariant cohomology class in
H∗

T (Hess(S, h)) obtained in this way. In particular it is immediate, with this notation, that

(8.5) ti(w) = ti for all w ∈ Sn.

This class ti ∈ H2
T (Hess(S, h)) is in fact the image of ti ∈ H2(BT ) (defined after (2.11)) under the canonical

homomorphism H∗(BT ) → H∗
T (Hess(S, h)).

We now describe the Sn-action on H∗
T (Hess(S, h)) constructed explicitly by Tymoczko [54]. (This action

also induces an Sn-action on the ordinary cohomology H∗(Hess(S, h)), as we explain below.) First, define an
Sn-action on the polynomial ring Q[t1, . . . , tn] in the standard way by permuting the indices of the variables,
i.e. for ti ∈ Q[t1, . . . , tn] and v ∈ Sn we define

v · ti := tv(i).

This induces an Sn-action on Q[t1, . . . , tn] by Q-linear ring homomorphisms. Recall that by (8.3) the data
of an element α ∈ H∗

T (Hess(S, h)) is equivalent to a list (α(w))w∈Sn of polynomials in Q[t1, . . . , tn] satisfying
the GKM conditions. With this understanding, Tymoczko defines, for v ∈ Sn and α = (α(w))w∈Sn , the
element v · α by the formula

(8.6) (v · α)(w) := v · α(v−1w) for all w ∈ Sn.

It is straightforward to check that the class v · α thus defined again satisfies the GKM conditions and hence
this action is well-defined.

Example 8.2. Let n = 3 and h = (2, 3, 3). Let α be the class considered in Example 8.1 above and consider
s1 ∈ S3 where s1 is the transposition of 1 and 2. Then the class s1 · α can be seen to be

=s1 ·
0

0

0

t3 − t1

t2 − t1

0

t3 − t2

0

0

0

0

t1 − t2

using the explicit formula (8.6).

The following is immediate from (8.5) and (8.6).

Lemma 8.3. Let ti ∈ H∗
T (Hess(S, h)) denote the “constant” class corresponding to ti ∈ H∗(BT ) as described

in (8.5). Then v · ti = tv(i).

The above lemma implies that the ideal of H∗
T (Hess(S, h)) generated by the classes t1, . . . , tn is preserved

by Tymoczko’s Sn-action. Since the odd degree cohomology of Hess(S, h) vanishes, the forgetful map
H∗

T (Hess(S, h)) → H∗(Hess(S, h)) is surjective [38, Ch III, Theorem 2.10 and Theorem 4.2], and the kernel
is precisely the ideal generated by the ti. Thus, we obtain an isomorphism

(8.7) H∗(Hess(S, h)) ∼= H∗
T (Hess(S, h))/(t1, . . . , tn)

and the fact that the ideal (t1, . . . , tn) is Sn-invariant implies that the RHS, and hence also the LHS, has a
well-defined Sn-action. The following is then straightforward from the definitions.
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Lemma 8.4. The diagram

H∗
T (Flag(Cn)) //

��

H∗
T (Hess(S, h))

��
H∗(Flag(Cn)) // H∗(Hess(S, h))

commutes, where the horizontal maps are induced from the inclusion map Hess(S, h) ↪→ Flag(Cn) and the
vertical arrows are forgetful maps. Moreover, all maps in the diagram are Sn-equivariant.

Note that Sn naturally acts on Flag(Cn) on the left by multiplication by permutation matrices, and it
is well-known (see e.g. [33], [54]) that this induces Tymoczko’s Sn-representation on H∗

T (Flag(Cn)) and
H∗(Flag(Cn)). Note that this Sn-action is obtained by restricting the natural GL(n,C)-action on Flag(Cn).
The path-connectedness of GL(n,C) implies that the induced GL(n,C)-representation on H∗(Flag(Cn)) is
trivial. Hence we obtain the following.

Lemma 8.5. ([54, Proposition 4.4]) The Sn-representation on H∗(Flag(Cn)) is trivial.

9. Properties of the Sn-action on H∗
T (Hess(S, h))

In this section, we prepare for the proof of Theorem B by analyzing in more detail the properties of
the Sn-action on H∗

T (Hess(S, h)) defined in Section 8. Our first result is Proposition 9.3, which explicitly
identifies the Sn-invariant subring of H∗

T (Hess(S, h)) (hence also of H∗
T (Flag(Cn)) as a special case). Our

second result is Proposition 9.5, which states that there exists an Sn-invariant non-degenerate pairing on
the ordinary cohomology groups of complementary degree of Hess(S, h).

We begin with Proposition 9.3. It will turn out that theSn-invariant subring ofH
∗
T (Hess(S, h)) (and hence

also H∗
T (Flag(Cn))) is a copy of the polynomial ring H∗

T (pt)
∼= Q[t1, . . . , tn], but some care must be taken in

defining the embedding of H∗
T (pt) into H∗

T (Hess(S, h)) (and H∗
T (Flag(Cn))) that achieves this isomorphism.

Specifically, the embedding does not take the element ti ∈ H∗
T (pt)

∼= Q[t1, . . . , tn] to the “constant class” in
H∗

T (Flag(Cn)) (and in H∗
T (Hess(S, h))) described in (8.5) which takes the constant value ti(w) = ti at all

w ∈ Sn, as one might initially expect. Instead, the images are defined to be certain characteristic classes,
as we now explain. Recall from (2.12) that τTi ∈ H2

T (Flag(Cn)) denotes the T -equivariant first Chern class
of the tautological line bundle Ei/Ei−1 over Flag(Cn). We denote by

τ̂Ti ∈ H2
T (Hess(S, h))(9.1)

the image of τTi under the restriction map H∗
T (Flag(Cn)) → H∗

T (Hess(S, h)).

Lemma 9.1. Let i ∈ [n]. The classes τTi ∈ H2
T (Flag(Cn)) and τ̂Ti ∈ H2

T (Hess(S, h)) are Sn-invariant.

Proof. The following proof is independent of the choice of the Hessenberg function h, so since the choice
h = (n, n, . . . , n) yields Hess(S, h) = Flag(Cn) as a special case, it suffices to show the claim for Hess(S, h).
We have already seen from Lemma 2.5 that τTi (w) = tw(i). By the definition of τ̂Ti and the commutativity
of (8.4), we also have

τ̂Ti (w) = tw(i).(9.2)

By (9.2) and the definition (8.6) of the Sn-action on H∗
T (Hess(S, h)), we can compute that for any w ∈ Sn

we have

(v · τ̂Ti )(w) = v · τ̂Ti (v−1w) = v · tv−1w(i) = tv(v−1w(i)) = tw(i) = τ̂Ti (w)

as desired. 2

We now define a graded Q-algebra homomorphism Ψ : H∗
T (pt)

∼= Q[t1, . . . , tn] → H∗
T (Flag(Cn)) by

sending the generator ti to the i-th equivariant Chern class τTi , and define Ψ̂ : H∗
T (pt) → H∗

T (Hess(S, h)) by
composing Ψ with the natural restriction H∗

T (Flag(Cn)) → H∗
T (Hess(S, h)). In particular, by definition the

following diagram
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(9.3) H∗
T (pt)

−−−
→Ψ

H∗
T (Flag(Cn))

−−−−−−→

−−→ι1 H∗
T (Flag(Cn)T )

−−−→
Ψ̂

−−→ι3H∗
T (Hess(S, h)) H∗

T (Hess(S, h)T )

commutes.
It is useful to observe that the invariant subspace H∗

T (Hess(S, h))Sn of H∗
T (Hess(S, h)) (respectively

H∗(Hess(S, h))Sn of H∗(Hess(S, h))) in fact forms a subring.

Lemma 9.2. The symmetric group Sn acts on H∗
T (Hess(S, h)) and H∗(Hess(S, h)) via ring automorphisms,

i.e. for v ∈ Sn and α, β ∈ H∗
T (Hess(S, h)), we have v · (αβ) = (v ·α)(v ·β), and similarly for H∗(Hess(S, h)).

Moreover, the identity elements of the rings H∗
T (Hess(S, h)) and H∗(Hess(S, h)) are Sn-invariant.

Proof. Since the forgetful map H∗
T (Hess(S, h)) → H∗(Hess(S, h)) is Sn-equivariant and surjective, it suffices

to prove the claims for H∗
T (Hess(S, h)). Using the GKM description in (8.3), we view α = (α(w))w∈Sn and

β = (β(w))w∈Sn as lists of polynomials. In H∗
T (Hess(S, h)

T ) the product structure is given by coordinate-
wise multiplication, so αβ = (α(w)β(w))w∈Sn , where α(w)β(w) is the usual multiplication of polynomials.
From the definition (8.6) of the Sn-action on H∗

T (Hess(S, h)), it is a straightforward computation to see
v · (αβ) = (v · α)(v · β) since the Sn-action on H∗

T (pt) appearing in (8.6) preserves the ring structure
of H∗

T (pt). Finally, it is easy to see that the identity element 1 ∈ H∗
T (Hess(S, h)) of the T -equivariant

cohomology is Sn-invariant by the definition of the representation (8.6). 2

By Lemma 9.1, the images of Ψ and Ψ̂ are contained in the Sn-invariant subrings of H
∗
T (Flag(Cn)) and

H∗
T (Hess(S, h)) respectively. In fact, we can say more.

Proposition 9.3. The Q-algebra homomorphisms Ψ and Ψ̂ induce isomorphisms from H∗
T (pt)

∼= Q[t1, . . . , tn]
to the subrings H∗

T (Flag(Cn))Sn and H∗
T (Hess(S, h))

Sn of Sn-invariants, respectively. In particular, the
two subrings H∗

T (Flag(Cn))Sn and H∗
T (Hess(S, h))

Sn are isomorphic.

Proof. The proof we give below applies to Hess(S, h) for any h ∈ Hn, thus includes Flag(Cn) as a special

case. In particular, showing that Ψ̂ : H∗
T (pt) → H∗

T (Hess(S, h))Sn is an isomorphism for any h ∈ Hn implies
all the claims made in the proposition.

We first show injectivity of Ψ̂, for which it is useful to consider the projection πe : H∗
T (Hess(S, h)T ) ∼=⊕

w∈Sn
H∗

T (pt) → H∗
T (pt) of

⊕
w∈Sn

H∗
T (pt) to the component corresponding to the identity element e ∈

Sn. Then, from the above computation τ̂Ti (w) = tw(i) for w ∈ Sn, it follows that τ̂Ti (e) = ti for all i and

hence the composition H∗
T (pt)

Ψ̂→ H∗
T (Hess(S, h))

Sn
πe→ H∗

T (pt) is the identity map. In particular, Ψ̂ must
be injective.

Next we claim that an |Sn|-tuple α = (α(w))w∈Sn is Sn-invariant if and only if α(w) = w · α(e) for all
w ∈ Sn. Indeed, if w · α = α for all w ∈ Sn then

α(w) = (w · α)(w) = w · α(w−1w) = w · α(e)
for all w ∈ Sn. On the other hand if α(w) = w · α(e) for all w ∈ Sn then for any v, w ∈ Sn we have

(v · α)(w) = v · α(v−1w) = v · (v−1w · α(e)) = w · α(e) = α(w),

so v ·α = α and α is Sn-invariant. Since the classes τ̂Ti satisfy both τ̂Ti (e) = ti and τ̂Ti (w) = tw(i) = w · ti =
w · τ̂Ti (e) for all w ∈ Sn, it follows that any Sn-invariant |Sn|-tuple α = (α(w))w∈Sn can be written as a
polynomial in the τ̂Ti : namely, if α(e) = F (t1, . . . , tn) ∈ H∗

T (pt)
∼= Q[t1, . . . , tn], then α = F (τ̂T1 , . . . , τ̂Tn ). In

particular, Ψ̂ is surjective, as desired. 2

Our second goal for this section is to show that there exists an Sn-invariant and non-degenerate pairing
on the ordinary cohomology groups of Hess(S, h) of complementary degree. This pairing is straightforward
in the sense that it is essentially the usual Poincaré duality pairing, although care is needed since our variety
Hess(S, h) need not be connected (it is, however, pure-dimensional [14]); indeed, it is not hard to see that
Hess(S, h) is disconnected if and only if h(r) = r for some r ∈ [n] (see [14, 50]). To see that the pairing
is compatible with the Sn-action, we first work in T -equivariant cohomology and then deduce the desired
results in ordinary cohomology.
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We need some terminology. Recall from (8.1) that d = dimC Hess(S, h). Recall also that the collapsing
map

pr : Hess(S, h) → pt

induces a map

prT! : H∗
T (Hess(S, h)) → H∗−2d

T (pt) = H∗−2d(BT )

often called the “equivariant integral” or “equivariant Gysin map”. The equivariant integral is well-known to
be an H∗

T (pt)-module homomorphism. Moreover, by the famous Atiyah-Bott-Berline-Vergne formula [3, 7]
we may compute the equivariant integral by fixed point data as follows:

(9.4) prT! (α) =
∑

w∈Sn

α(w)

ew

where α(w) denotes the restriction of α to the fixed point w, ew denotes the T -equivariant Euler class of the
normal bundle to the fixed point w in Hess(S, h), and we have used our fixed identification of Hess(S, h)T with
Sn. (This formula was originally stated for cohomology rings with C coefficients, but since the expression on
the RHS of (9.4) is valid with Q-coefficients, it can be seen that this formula holds also with Q-coefficients.)
Finally we recall that the equivariant and ordinary Gysin maps are related by the following commutative
diagram

H∗
T (Hess(S, h))

prT! //

��

H∗−2d
T (pt)

��
H∗(Hess(S, h))

pr! // H∗−2d(pt)

(9.5)

where the vertical arrows are the forgetful maps and the horizontal arrows are the respective Gysin maps.
All the cohomology groups in the diagram (9.5) are equipped with Sn-actions, where the Sn-action on the

ordinary cohomology H∗(pt) ∼= Q of a point is induced from that on H∗
T (pt) by the isomorphism H∗(pt) ∼=

H∗(BT )/(t1, . . . , tn) ∼= Q[t1, . . . , tn]/(t1, . . . , tn) ∼= Q. In particular, the forgetful map H∗
T (pt) → H∗(pt) is

Sn-equivariant by definition and the Sn-action on H∗(pt) is trivial. We record the following.

Lemma 9.4. The ordinary Gysin map pr! in (9.5) is Sn-equivariant.

Proof. The definition given above of the Sn-action on H∗(pt) ∼= Q implies that the right vertical arrow
in (9.5) is Sn-equivariant, and we saw in Lemma 8.4 that the left vertical arrow in (9.5) is Sn-equivariant.
Recalling also that the left vertical arrow is surjective (see e.g. (8.7)), in order to prove the lemma, it
therefore suffices to show that the top horizontal arrow prT! is Sn-equivariant. Thus we wish to show

prT! (v · α) = v · prT! (α)

for v ∈ Sn and α ∈ H∗
T (Hess(S, h)). Before proceeding it is useful to observe that the T -equivariant Euler

class ew of Hess(S, h) at w ∈ Sn is

ew =
∏

j<i≤h(j)

(tw(j) − tw(i)) ∈ H∗
T (pt)(9.6)

(e.g. [14]) where we have written w = (w(1) w(2) · · · w(n)) ∈ Sn in one-line notation. In particular, since
vw = (vw(1) vw(2) · · · vw(n)) in one-line notation, we conclude from the above that

v · ew = v ·
∏

j<i≤h(j)

(tw(j) − tw(i)) =
∏

j<i≤h(j)

(tvw(j) − tvw(i)) = evw
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for any v, w ∈ Sn. Now, using the Atiyah-Bott-Berline-Vergne formula (9.4), we have

prT! (v · α) =
∑

w∈Sn

(v · α)(w)
ew

=
∑

w∈Sn

v · α(v−1w)

ew

=
∑

u∈Sn

v · α(u)
evu

=
∑

u∈Sn

v · α(u)
v · eu

= v · prT! (α)
where the second equality follows from the definition (8.6) of the Sn-representation on H∗

T (Hess(S, h)) and
the fourth equality follows from the above observation for v · ew. This proves the lemma. 2

We now define a pairing ⟨·, ·⟩ on the ordinary cohomology H∗(Hess(S, h)) as follows: for 0 ≤ k ≤ d, we
define

⟨·, ·⟩ : H2k(Hess(S, h))×H2d−2k(Hess(S, h)) → Q ∼= H0(pt) ; (α, β) 7→ ⟨α, β⟩ := pr!(αβ).(9.7)

Proposition 9.5. The pairing ⟨·, ·⟩ defined in (9.7) is non-degenerate and Sn-invariant.

Proof. We begin with Sn-invariance. Let α ∈ H2k(Hess(S, h)) and β ∈ H2d−2k(Hess(S, h)) and v ∈ Sn.
Then

⟨v · α, v · β⟩ = pr!((v · α)(v · β)) = pr!(v · (αβ)) = v · pr!(αβ) = pr!(αβ) = ⟨α, β⟩
where the second equality uses Lemma 9.2, the third uses Lemma 9.4, and the fourth equality is because the
Sn-action on H∗(pt) ∼= Q is trivial, as observed above.

Next we claim that the pairing ⟨·, ·⟩ is non-degenerate. This is an elementary argument which is clearer
when stated more generally. It is useful to recall that for a disconnected complex manifold X = ⊔a∈SXa

with connected components Xa each of real dimension 2d, the cohomology ring H∗(X) is a direct sum⊕
a∈S H

∗(Xa) (in particular, the cup product among different components vanishes) and the Gysin map

H2d(X) =
⊕

a∈S H
2d(Xa) → H0(pt) ∼= Q is simply the sum of the individual Gysin maps associated to

the projections pra : Xa → pt, i.e. pr! =
∑

a∈S(pra)!. Thus it suffices to show that the given pairing is
non-degenerate when restricted to the a-th component. But on each such component Xa, the Gysin map is
given by capping with the fundamental homology class [Xa] ∈ H2d(Xa) and the non-degeneracy becomes the
usual statement of Poincaré duality. Applying this argument to the case X = Hess(S, h) yields the desired
result. 2

Finally, we prove a fact which we use in the next section.

Lemma 9.6. We have

dimQ H0(Hess(S, h))Sn = dimQ H2d(Hess(S, h))Sn = 1.(9.8)

Proof. We have seen in Proposition 9.5 that the pairing (9.7) is non-degenerate andSn-invariant, so it follows
that H0(Hess(S, h)) and H2d(Hess(S, h)) are dual representations. This implies that H0(Hess(S, h))Sn ∼=
H2d(Hess(S, h))Sn . Now from the GKM description of H∗

T (Hess(S, h)) in (8.3) and the explicit formula for
Tymoczko’s Sn-action, it is not difficult to see directly that H0

T (Hess(S, h))Sn is Q-spanned by the identity
element (whose component at each fixed point w is 1); from this it also follows that H0(Hess(S, h))Sn is
Q-spanned by the identity element, so dimQ H0(Hess(S, h))Sn = 1. By the above, this in turn implies
dimQ H2d(Hess(S, h))Sn = 1, as desired. 2

10. Proof of Theorem B

In this section we prove Theorem B. As a first step, we prove the following.

Proposition 10.1. There exists a well-defined homomorphism of graded Q-algebras A : H∗(Hess(N, h)) →
H∗(Hess(S, h)) making the diagram

(10.1)
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H∗(Flag(Cn)) −−→
−−−→
−−−→

−−
−→

H∗(Hess(S, h))

A

H∗(Hess(N, h)).

commute, where the maps H∗(Flag(Cn)) → H∗(Hess(S, h)) and H∗(Flag(Cn)) → H∗(Hess(N, h)) are in-
duced from the inclusions Hess(S, h) ↪→ Flag(Cn) and Hess(N, h) ↪→ Flag(Cn) respectively. Moreover, the
image of A lies in H∗(Hess(S, h))Sn , and when the target is restricted to H∗(Hess(S, h))Sn , then

(10.2) A : H∗(Hess(N, h)) → H∗(Hess(S, h))Sn

is surjective.

To prove Proposition 10.1 we (once again) first work with the equivariant cohomology ringH∗
T (Hess(S, h));

we also capitalize on our explicit presentation ofH∗(Hess(N, h)) obtained in Theorem A. More precisely, recall
that the ordinary cohomology ring H∗(Flag(Cn)) is generated by the first Chern classes τi of the tautological
line bundles Ei/Ei−1 as described in (2.14), and by Theorem A, the map H∗(Flag(Cn)) → H∗(Hess(N, h)),
induced by the inclusion Hess(N, h) ↪→ Flag(Cn), is surjective. Recall from (7.4) that

τ̄i ∈ H2(Hess(N, h))

is the image of τi (see (2.13)). Then Theorem A shows that H∗(Hess(N, h)) is generated by the τ̄i, and that
the map sending the polynomial variable xi to τ̄i gives an isomorphism

H∗(Hess(N, h)) ∼= Q[x1, . . . , xn]/(f̌h(j),j(x1, . . . , xn) | 1 ≤ j ≤ n).

Now denote by

τ̂i ∈ H2(Hess(S, h))

the image of τi under the restriction map H∗(Flag(Cn)) → H∗(Hess(S, h)) (whereas the corresponding T -
equivariant Chern class τ̂Ti ∈ H2

T (Hess(S, h)) was defined in (9.1)). That is, τ̂i is the first Chern class of the
tautological line bundle over Flag(Cn) restricted to Hess(S, h). In order to show that there exists a ring
homomorphism A : H∗(Hess(N, h)) → H∗(Hess(S, h)) making (10.1) commute, from the above discussion
it follows that it suffices to show that the images τ̂i of the τi in H∗(Hess(S, h)) also satisfy the relations
specified by the {f̌h(j),j}1≤j≤n, i.e. that

(10.3) f̌h(j),j(τ̂1, . . . , τ̂n) = 0 ∈ H∗(Hess(S, h)) for all 1 ≤ j ≤ n.

In order to prove (10.3), we will first work in the equivariant cohomology ring H∗
T (Hess(S, h)). Specifically,

recall from (2.12) that τTi is the T -equivariant first Chern class of the tautological line bundle Ei/Ei−1 in
H∗

T (Flag(Cn)), so that τTi maps to τi under the forgetful map H∗
T (Flag(Cn)) → H∗(Flag(Cn)). Similarly

τ̂Ti is the image of τTi in H∗
T (Hess(S, h)) as defined in (9.1). Recall also that the kernel of the forgetful

map H∗
T (Hess(S, h)) → H∗(Hess(S, h)) is the ideal (t1, . . . , tn) ⊂ H∗

T (Hess(S, h)) generated by the classes
ti ∈ H∗

T (Hess(S, h)). Thus, in order to show the vanishing relations (10.3) it suffices to show that

f̌h(j),j(τ̂
T
1 , . . . , τ̂Tn ) ∈ (t1, . . . , tn) ⊂ H∗

T (Hess(S, h)) for all 1 ≤ j ≤ n.

This is precisely the goal of the next two lemmas.
We first define some classes in H∗

T (Hess(S, h)). Fix j, k with j, k ∈ [n]. For each w ∈ Sn, we define a
polynomial gj,k(w) ∈ Q[t1, . . . , tn] by

(10.4) gj,k(w) :=

{∏h(j)
ℓ=j+1(tk − tw(ℓ)) if k ∈ {w(1), . . . , w(j)}

0 otherwise,

where we take the convention
∏j

ℓ=j+1(tk − tw(ℓ)) = 1. Thus, for fixed j and k, the collection {gj,k(w)}w∈Sn

specifies an element of H∗
T (Hess(S, h)T ) ∼=

⊕
w∈Sn

Q[t1, . . . , tn].

Lemma 10.2. The polynomials {gj,k(w)}w∈Sn in (10.4) satisfy the GKM conditions (8.3) for Hess(S, h), and
hence gj,k := {gj,k(w)}w∈Sn is (the image under ι3 of) an equivariant cohomology class in H∗

T (Hess(S, h)).

Proof. Fix j, k ∈ [n]. For each r ∈ [n], let us denote

Sr
n := {w ∈ Sn | w(r) = k}

which is the set of permutations having k at the r-th position in the one-line notation. Then we have
a decomposition Sn =

∪n
r=1 S

r
n, and the condition k ∈ {w(1), . . . , w(j)} is equivalent to w ∈

∪
r≤j S

r
n.
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Recalling that the equivariant Chern class τ̂Ti satisfies τ̂Ti (w) = tw(i) for w ∈ Sn by (9.2), we can rewrite
gj,k as

gj,k(w) =

{∏h(j)
ℓ=j+1(tk − τ̂Tℓ )(w) if w ∈

∪
r≤j S

r
n,

0 otherwise.
(10.5)

We now check that the collection {gj,k(w)}w∈Sn satisfies the GKM condition (8.3) for Hess(S, h) by using
(10.5). Let w,w′ ∈ Sn with w′ = w(a b) for some a, b ∈ [n], and suppose that w and w′ are connected
by an edge of the GKM graph of Hess(S, h). We show that the difference gj,k(w) − gj,k(w

′) is divisible by
tw(a) − tw(b) by taking cases.

Case 1. Suppose w,w′ ∈
∪

r≤j S
r
n. Note that the collection {

∏h(j)
ℓ=j+1(tk − τ̂Tℓ )(w)}w∈Sn satisfies the

GKM condition for Hess(S, h) since
∏h(j)

ℓ=j+1(tk − τ̂Tℓ ) is an element of H∗
T (Hess(S, h)) and we have the

isomorphism (8.3). Thus the claim holds in this case by (10.5).

Case 2. Suppose w,w′ ∈
∪

r>j S
r
n. In this case, the claim is immediate since gj,k(w) = gj,k(w

′) = 0 by

(10.5).

Case 3. Suppose w ∈
∪

r≤j S
r
n and w′ ∈

∪
r>j S

r
n. In this case, the condition w′ = w(a b) implies that

we have w(a) = k or w(b) = k. Without loss of generality, we may assume that w(a) = k. This means
a ≤ j because w ∈

∪
r≤j S

r
n. Similarly since we have w′(b) = k and w′ ∈

∪
r>j S

r
n, it follows that b > j.

Combining this with a ≤ j, we obtain a < b. Hence the assumption that w and w′ are connected by an edge
of the GKM graph of Hess(S, h) implies that b ≤ h(a). In particular, we obtain j + 1 ≤ b ≤ h(j) since a ≤ j
implies h(a) ≤ h(j). Now from (10.5) we have

gj,k(w)− gj,k(w
′) =

h(j)∏
ℓ=j+1

(tk − τ̂Tℓ )(w)− 0 =

h(j)∏
ℓ=j+1

(tk − tw(ℓ)).

Since we have w(a) = k and j + 1 ≤ b ≤ h(j) as discussed above, the above product contains tk − tw(b) =
tw(a) − tw(b), and hence gj,k(w)− gj,k(w

′) is divisible by tw(a) − tw(b), as desired. 2

Next, we explicitly show (using the classes gj,k introduced above) that the classes f̌h(j),j(τ̂
T
1 , . . . , τ̂Tn ) are

contained in the ideal of H∗
T (Hess(S, h)) generated by the ti.

Lemma 10.3. Let j ∈ [n]. Then

f̌h(j),j(τ̂
T
1 , . . . , τ̂Tn ) =

n∑
k=1

tkgj,k in H∗
T (Hess(S, h)).

In particular, f̌h(j),j(τ̂
T
1 , . . . , τ̂Tn ) lies in the ideal (t1, . . . , tn) ⊂ H∗

T (Hess(S, h)) for all j ∈ [n].

Proof. Since the restriction map H∗
T (Hess(S, h))

ι3→ H∗
T (Hess(S, h)T ) is injective, in order to prove the lemma

it suffices to prove that for all w ∈ Sn we have

f̌h(j),j(τ̂
T
1 , . . . , τ̂Tn )(w) =

n∑
k=1

tkgj,k(w) ∈ Q[t1, . . . , tn].

Now recall that by definition, if k ̸∈ {w(1), . . . , w(j)} then gj,k(w) = 0. Hence

tkgj,k(w) =

{
tk
∏h(j)

ℓ=j+1(tk − tw(ℓ)) if k ∈ {w(1), . . . , w(j)},
0 otherwise.

Thus if we take the sum of the tkgj,k(w) over k = 1, · · · , n, it in fact suffices to take the sum only for
k = w(1), w(2), . . . , w(j). Hence, we obtain by (6.4) that

n∑
k=1

tkgj,k(w) =

j∑
k=1

(
tw(k)

h(j)∏
ℓ=j+1

(tw(k) − tw(ℓ))
)
= f̌h(j),j(w)

as desired. 2
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From the above discussion and by Lemma 10.2 and Lemma 10.3, it is now clear that there exists a unique
ring homomorphism

A : H∗(Hess(N, h)) → H∗(Hess(S, h))

which makes the diagram (1.6) in Theorem B commute. We note that A maps τ̄i to τ̂i for i = 1, . . . , n. We
are now ready to prove Proposition 10.1.

Proof of Proposition 10.1. We need to show that the image of A lies in the Sn-invariants. From its def-
inition, it is clear that the image of A coincides with the image of the restriction map H∗(Flag(Cn)) →
H∗(Hess(S, h)). Hence the claim follows from the facts that the Sn-representation on H∗(Flag(Cn)) is
trivial (Lemma 8.5) and that the bottom map in (8.4) is a homomorphism of Sn-representations. Hence we
may consider the map with restricted target

(10.6) A : H∗(Hess(N, h)) → H∗(Hess(S, h))Sn .

Now we show that (10.6) is surjective. Consider the following commutative diagram:

H∗
T (Flag(Cn))SnH∗

T (pt)
∼=

H∗(Flag(Cn))SnH∗(Flag(Cn)) =
ιSn

−−−−→
−−−→
−−→

H∗
T (Hess(S, h))Sn ∼= H∗

T (pt)

H∗(Hess(S, h))Sn

∼=−−−−→

−−−→
−−→

A

H∗(Hess(N, h))

−−−→
−−→

−−−
→

where the surjectivity of H∗(Flag(Cn)) → H∗(Hess(N, h)) is from Theorem A and the top horizontal arrow
is an isomorphism by Proposition 9.3. Furthermore, the surjectivity of the forgetful maps H∗

T (Flag(Cn)) →
H∗(Flag(Cn)) and H∗

T (Hess(S, h)) → H∗(Hess(S, h)) imply that both of the vertical maps (i.e. their restric-
tions to invariant subrings) in the above diagram are also surjective. Indeed, for any Sn-invariant element
x ∈ H∗(Hess(S, h))Sn we can take a lift x̃ ∈ H∗

T (Hess(S, h)); averaging x̃ over Sn yields an Sn-invariant
element which maps to x. Now the commutativity of the above diagram implies that A is surjective onto
H∗(Hess(S, h))Sn , as desired. 2

It remains to show that A : H∗(Hess(N, h)) → H∗(Hess(S, h))Sn is also injective (and hence an isomor-
phism, since we already know it is surjective). We achieve this by employing some basic commutative algebra
facts concerning Poincaré duality algebras. The basic idea, encapsulated in Lemma 10.5 below, is the very
simple fact that if φ : R → S is a surjective graded algebra homomorphism from a Poincaré duality algebra
and φ induces an isomorphism between Rmax and Smax (where Rmax and Smax denote the highest-degree
component of R and S respectively), then φ must be an isomorphism. Since we have already shown above
that A : H∗(Hess(N, h)) → H∗(Hess(S, h))Sn is surjective, Lemma 10.5 essentially reduces the question to
showing that the domain is a Poincaré duality algebra and that A induces an isomorphism on the top degree.

There exist different definitions of Poincaré duality algebras in the literature, but we use the following.

Definition 10.4. Suppose that R =
⊕d

i=0 Ri is a graded algebra over some fixed field k, finite-dimensional
over k. Suppose R0

∼= Rd
∼= k. We say R is a Poincaré duality algebra (PDA) if the bilinear pairing

(10.7) Ri ×Rd−i → Rd

defined by the multiplication in R is non-degenerate for all i = 0, . . . , d.

The following straightforward lemma is the essence of our argument.

Lemma 10.5. Let R =
⊕d

i=0 Ri and R′ =
⊕d

i=0 R
′
i be graded algebras such that Rd ̸= {0} and R′

d ̸= {0}
in the same highest degree d. Let φ : R → R′ be a graded ring homomorphism. Suppose that R is a
Poincaré duality algebra. If φ is surjective and it restricts to an isomorphism between Rd to R′

d, then φ is
an isomorphism.
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Proof. It suffices to prove that φ is injective. Let α ∈ R be a homogeneous element of degree i, and suppose
that φ(α) = 0. Suppose for a contradiction that α is non-zero. Then since R is a PDA, by Definition 10.4
it follows that there exists a homogeneous element β ∈ R of degree d − i such that αβ ̸= 0 in Rd. Hence
we obtain φ(αβ) = φ(α)φ(β) ̸= 0 since φ is an isomorphism on degree d, which contradicts the assumption
that φ(α) = 0. Hence, α = 0 and φ is injective. 2

It remains to show that our rings H∗(Hess(N, h)) and H∗(Hess(S, h))Sn and the map A satisfies the con-
ditions of Lemma 10.5. In particular, we wish to show that the ring H∗(Hess(N, h)) ∼= Q[x1, . . . , xn]/(f̌h(j),j |
j ∈ [n]) is a PDA. Recall that we showed in Lemma 6.8 that our generators f̌h(1),1, f̌h(2),2, · · · , f̌h(n),n form
a regular sequence of length equal to the number of variables in the polynomial ring. In this setting, it is
well-known to experts that the quotient Q[x1, . . . , xn]/(f̌h(j),j | j ∈ [n]) is a Poincaré duality algebra. We
record this in the following proposition. Since the proof of the proposition is an exercise in commutative
algebra which may not be familiar to some of our readers, we have included details of the proof in the
Appendix.

Proposition 10.6. Let h ∈ Hn be a Hessenberg function and let Hess(N, h) denote the associated regular
nilpotent Hessenberg variety. Then, with respect to the usual grading and multiplication in cohomology, the
ordinary cohomology ring H∗(Hess(N, h)) is a Poincaré duality algebra.

Now we can prove Theorem B.

Proof of Theorem B. We apply Lemma 10.5 to our Q-algebra homomorphism A in (10.1). We already know
that the map is surjective by Proposition 10.1 and that the domain of this map is Poincaré duality algebra
from Proposition 10.6. Also, since we know that

dimQ H2d(Hess(N, h)) = dimQ H2d(Hess(S, h))Sn = 1

from the computation of the Hilbert polynomial of H∗(Hess(N, h)) and Lemma 9.6, the surjectivity of A
shows that the map A restricted on degree 2d is an isomorphism. Hence, by Lemma 10.5 the Q-algebra
homomorphism A : H∗(Hess(N, h)) → H∗(Hess(S, h))Sn is an isomorphism, as desired. 2

11. Connection to the Shareshian-Wachs conjecture

As mentioned in the Introduction, our work on Hessenberg varieties turns out to be related to combi-
natorics through the Shareshian-Wachs conjecture. Although this conjecture has recently been proved by
Brosnan and Chow, the approach taken in this paper offers a different perspective on the problem and, as
we noted in the Introduction, our Theorem B proves (at least, for the coefficient of the Schur function sn(x)
corresponding to the trivial representation) a statement which is strictly stronger than the corresponding
statement in [9]. For this reason, in this section we briefly review the context, give the precise statement of
the Shareshian-Wachs conjecture, and explain the relationship between the conjecture and our Theorem B.

In [43, 44], the Shareshian-Wachs conjecture is formulated in terms of natural unit interval orders and
incomparability graphs, but for the purposes of this paper it is convenient to rephrase it more directly in
terms of Hessenberg functions. Fix a Hessenberg function h : [n] → [n]. Let P (h) denote the partially
ordered set whose underlying set is [n] and with partial order defined by j <P i if and only if h(j) < i [44,
Section 4]. The following characterizes natural unit interval orders in terms of such posets.

Proposition 11.1. ([44, Proposition 4.1]) Let P be a poset on [n]. Then P is a natural unit interval order
if and only if P = P (h) for some Hessenberg function h.

Furthermore, the incomparability graph of a poset P as defined in [44, Section 1] has as its vertices
the elements of P , and an edge between two elements precisely when the two elements are incomparable
with respect to the given partial order. From the definition of P (h) above, it is then immediate that the
incomparability graph G of P (h) is the graph with vertex set [n] and with edges E given by

E := {{i, j} | i, j ∈ [n], j < i ≤ h(j)}

i.e. there is an edge between i and j (where without loss of generality i > j) exactly when i ≤ h(j). For
example, if h = (1, 2, . . . , n), then evidently E is empty, and the corresponding incomparability graph G has
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n vertices and no edges. At the other extreme, if h = (n, n, . . . , n), then its comparability graph G is the
complete graph on n vertices.

Next, let x1, x2, x3, . . . be a countably infinite set of variables. Denoting by P the set of positive integers,
we call a map κ : V = [n] → P a coloring of G if κ satisfies κ(i) ̸= κ(j) for any {i, j} ∈ E, i.e. if κ(i) is the
“color” of the vertex i, then we require that adjacent vertices must be colored differently. Let C(G) denote
the set of all colorings of G, and let xκ denote the monomial

∏
i∈[n] xκ(i) for any coloring κ. We also define

asc(κ) := |{{i, j} ∈ E | j < i and κ(j) < κ(i)}|

Then the chromatic quasisymmetric function of G is defined to be

XG(x, t) :=
∑

κ∈C(G)

tasc(κ)xκ.

In our situation, where G = inc(P (h)) is the incomparability graph of a natural unit interval order P (h), it
is known that when we consider XG(x, t) as a polynomial in t, each coefficient is an element of the algebra
ΛZ of symmetric functions in the variables x [44, Theorem 4.5]. That is, we have XG(x, t) ∈ ΛZ[t]. In the
following example, for i a positive integer, we denote by ei(x) the i-th elementary symmetric function in the
variables x.

Example 11.2. (1) If h = (1, 2, . . . , n), then XG(x, t) = e1(x)
n.

(2) If h = (n, . . . , n), then XG(x, t) = [n]t!en(x) where

[i]t = 1 + t+ · · ·+ ti−1 =
1− ti

1− t
, [n]t! :=

n∏
i=1

[i]t.

Finally, following standard notation in the theory of symmetric functions, we denote by ω the involution
of ΛZ, the algebra of symmetric functions, which exchanges the elementary basis {eλ} with the complete
homogeneous basis {hλ} (as λ ranges over partitions) [20, Section 6]. For our purposes it is useful to note
that, for ω defined as above, we have ω(sλ) = sλ∗ , where sλ denotes the Schur function associated to a
partition λ [20, Section 6] and λ∗ denotes the partition conjugate to λ. Based on the above discussion, the
reader may easily check that the formulation of the Shareshian-Wachs conjecture recorded below is equivalent
to that given in [44, Conjecture 1.4].

Conjecture 11.3. Let h : [n] → [n] be a Hessenberg function, P (h) its associated poset and G the incompa-
rability graph of P (h). Let XG(x, t) denote the chromatic quasisymmetric function of G, and let Hess(S, h)
be the regular semisimple Hessenberg variety associated to h. Then

ωXG(x, t) =

|E(G)|∑
j=0

chH2j(Hess(S, h))tj(11.1)

where ch denotes the Frobenius characteristic of Tymoczko’s Sn-representation on H2j(Hess(S, h)).

Since (11.1) takes place within the ring of symmetric functions, expanding both sides in terms of (the
basis of) Schur functions sλ(x), we may interpret (11.1) as the statement that the coefficient of sλ(x) on
both sides must be equal for each partition λ. In [44, Theorem 6.9] Shareshian and Wachs also obtain a
closed formula for the coefficient of sn(x), i.e. the coefficient corresponding to the trivial representation.

Theorem 11.4. ([44, Theorem 6.9]) In the Schur basis expansion of XG(x, t), the coefficient of s1n(x) is∏n
j=1[h(j)− j + 1]t.

Finally, since ωs1n(x) = sn(x) is the Frobenius characteristic of the trivial representation and the poly-
nomial

∏n
j=1[h(j)− j + 1]t is exactly the Hilbert series F (H∗(Hess(N, h)), s) by Lemma 6.4 (after replacing

s2 by t), it follows from Theorem B that Shareshian-Wachs conjecture holds for the component of the trivial
representation. We record the following.

Corollary of Theorem B. The coefficients of sn(x) are the same on the both sides of (11.1).

48



12. Open questions and future work

In this section we briefly discuss some possible directions for future work.

• In this manuscript we focused only on the case of Lie type A. It would be of interest to extend
our results to the other Lie types. There are preliminary results in this direction; indeed, the
last 3 authors of the present work have obtained a presentation of the (equivariant and ordinary)
cohomology of the Peterson variety in all Lie types in a systematic manner in [24].

• Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λℓ) be a partition of n, so
∑ℓ

i=1 λi = n. Let Nλ be a nilpotent matrix
with Jordan blocks of sizes specified by λ. Then Hess(Nλ, h = (1, 2, 3, . . . n)) is a so-called Springer
variety. In this special case, De Concini and Procesi gave a presentation of H∗(Sλ) as a quotient
of a polynomial ring [12] (which was then simplified further by Tanisaki [49]). Later on, Garsia
and Procesi gave a monomial basis for H∗(Sλ) with respect to the DeConcini-Procesi presentation
[22]. It would be interesting to find a similar monomial basis for the cohomology H∗(Hess(N, h)) of
regular nilpotent Hessenberg varieties with respect to our presentation in Theorem A.

• As we already mentioned, the work of Brosnan and Chow gives a very different proof of the fact
that the dimension of H∗(Hess(N, h)) agrees with the dimension of H∗(Hess(S, h))Sn , whereas our
Theorem B shows that the two are in fact isomorphic as rings. Brosnan and Chow’s result additionally
proves the equality of dimensions of H∗(Hess(S, h))Sλ and H∗(Hess(Rλ, h)) where Sλ is any Young
subgroup of Sn and Rλ is a regular matrix of type λ (i.e. a matrix with Jordan blocks of sizes
parametrized by λ and with all eigenvalues distinct). It would be interesting to study whether the
product structures of these rings are also related in a way similar to the special case given in our
Theorem B.

• It is of interest to determine the ring structure of the full cohomology ring H∗(Hess(S, h)) (i.e. not
just the Sn-invariant subring) of regular semisimple Hessenberg varieties for arbitrary Hessenberg
functions h. We have preliminary results in this direction. For example, it turns out that, when
h = (h(1), n, . . . , n) with an arbitrary value of h(1), the classes g1,i and τ̂i for i = 1, . . . , n generate
H∗(Hess(S, h)) as a ring, and it is possible to give an explicit presentation of H∗(Hess(S, h)) with
respect to these generators. Similarly, the corresponding classes also can be shown to generate the
ring H∗(Hess(S, h)) for the case h = (m, . . . ,m, n, . . . , n) for any m. Furthermore, we have found a
finite list of generators of H∗(Hess(S, h)) for the case h = (h(1), h(2), n, . . . , n) with arbitrary values
of h(1) and h(2). In an ongoing project, we are investigating the problem of finding ring generators
of H∗(Hess(S, h)) for arbitrary Hessenberg functions h which behave well with respect to Tymoczko’s
Sn-representation.

Appendix: The ring H∗(Hess(N, h)) is a Poincaré duality algebra

The purpose of this Appendix is to provide some details on a (fairly standard) proof of Proposition 10.6.
The following two propositions will inform our methods.

Proposition A.1. ([35, Theorem 21.3]) Let R be a Noetherian local ring. Then, if R is a complete inter-
section ring, then R is Gorenstein.

Proposition A.2. ([27, Theorem 2.79]) Let R =
⊕d

i=0 Ri be a graded Artinian algebra with R0 a field.
Then R is Gorenstein if and only if R is a Poincaré duality algebra.

(We note here that the definition of Poincaré duality algebras given in [27], from which we are quoting
Proposition A.2 above, differs from that given in Definition 10.4. However, this does not pose a problem
because in our special case, the two definitions turn out to be equivalent.)

The idea is that the two propositions above together imply that we only need to show that H∗(Hess(N, h))
is a complete intersection ring. However, in order to apply the propositions, we must first check that
H∗(Hess(N, h)) satisfies the hypotheses of both Proposition A.2 and A.1. Since H∗(Hess(N, h)) is a quotient
Q[x1, . . . , xn]/Ǐh, it is a graded algebra with R0

∼= Q a field, this amounts to checking that it is also local
and Artinian (hence Noetherian). The following very simple observation shows the former.

Lemma A.3. Let R =
⊕d

i=0 Ri be a graded ring and suppose that R0 is a field. Then R is a local ring.
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Proof. Recall that a ring is a local ring which has a unique maximal ideal. It can be seen straightforwardly
that the set of units in R are precisely those of the form a0 + a1 + · · ·+ ad with ai ∈ Ri and a0 ̸= 0. Thus
the set of non-units m is given precisely by the condition a0 = 0, which is an ideal. Hence R is local, since

it has a unique maximal ideal m =
⊕d

i=1 Ri. 2

Next we check that R = H∗(Hess(N, h)) is Artinian.

Lemma A.4. The ring R = H∗(Hess(N, h)) is Artinian.

Proof. The ring H∗(Hess(N, h)) is Noetherian since it is a quotient of a polynomials rings, and we saw in
Lemma A.3 that it is local. Moreover, from the proof of Lemma A.3 and since H∗(Hess(N, h)) is a finite-
dimensional Q-vector space we also see that its unique maximal ideal m satisfies mk = 0 for some k. Now
[4, Proposition 8.6] implies the claim. 2

We have now seen that H∗(Hess(N, h)) satisfies the hypotheses of both of the propositions above. It now
remains to show that H∗(Hess(N, h)) is a complete intersection ring. To achieve this, we use the following
theorem. Recall that a Noetherian local ring S is called regular if its maximal ideal can be generated by
precisely dimS elements, where dimS denotes the Krull dimension of the ring S.

Theorem A.5. ([35, Theorem 21.2.]) A Noetherian local ring is a complete intersection ring if its completion

R̂ is a quotient S/I of a complete regular local ring S by an ideal I generated by a regular sequence.

We can now prove that H∗(Hess(N, h)) is a Poincaré duality algebra.

Proof of Proposition 10.6. Recalling again that H∗(Hess(N, h)) ∼= Q[x1, . . . , xn]/Ǐh from Theorem A, it fol-
lows from the above discussion that it suffices to prove that R := Q[x1, . . . , xn]/Ǐh is a a complete intersection
ring. To do so, we use the characterization of complete intersection rings in Theorem A.5. We denote by
Q[[x1, . . . , xn]] the ring of formal power series in the variables x1, . . . , xn with coefficients in Q. Below, by
slight abuse of notation we also denote by Ǐh the ideal in Q[[x1, . . . , xn]] generated by the f̌h(j),j (thought of
as elements in Q[[x1, . . . , xn]]).

From Lemmas A.3 and A.4 (and their proofs) we know that the ideal (x1, . . . , xn) generated by the

(equivalence classes of) xi’s in R is its unique maximal ideal. We claim that the completion R̂ of R with
respect to this maximal ideal is Q[[x1, . . . , xn]]/Ǐh. Indeed, by definition of R, we have the following exact
sequence of Q[x1, . . . , xn]-modules

0 → Ǐh → Q[x1, . . . , xn] → R → 0.

Since completions and quotients commute for finitely generated modules over a Noetherian ring [4, Proposi-
tion 10.12], the completion with respect to the maximal ideal (x1, . . . , xn) of Q[x1, . . . , xn] gives the following
exact sequence

0 → ̂̌Ih → Q[[x1, . . . , xn]] → R̂ → 0.

Finally, since the completion ̂̌Ih is precisely the ideal in Q[[x1, . . . , xn]] generated by the f̌h(1),1, . . . , f̌h(n),n
[4, Proposition 10.15], the claim follows. Moreover, it follows from [35, Example 1 of §1 and Theorem 19.5]
that the ring of formal power series Q[[x1, . . . , xn]] is a complete regular local ring.

Thus it remains to check that the sequence {f̌h(1),1, . . . , f̌h(n),n} is a regular sequence in Q[[x1, . . . , xn]].

To see this, we check the conditions (i) and (ii) in Definition 6.1. Since each f̌h(j),j is homogeneous of positive

degree, condition (ii) is clear. For condition (i), let us show that f̌h(j),j is not a zero-divisor in the quotient

ring Q[[x1, . . . , xn]]/(f̌h(1),1, . . . , f̌h(j−1),j−1). To do this, suppose that there exists g ∈ Q[[x1, . . . , xn]] such
that

f̌h(j),jg =

j−1∑
k=1

gkf̌h(k),k(A.1)

for some g1, . . . , gj−1 ∈ Q[[x1, . . . , xn]]. We claim that g ∈ (f̌h(1),1, . . . , f̌h(j−1),j−1) in Q[[x1, . . . , xn]]. Re-

calling that f̌h(1),1, . . . , f̌h(j),j are homogeneous polynomials, let i ≥ 0 and denote by g[i] the degree-i

component of g, and similarly for the others. By taking the (deg i + deg f̌h(j),j)-th component of (A.1),

it follows that g[i] ∈ (f̌h(1),1, . . . , f̌h(j−1),j−1) in the polynomial ring Q[x1, . . . , xn] since f̌h(1),1, . . . , f̌h(j),j
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are a regular sequence in the polynomial ring Q[x1, . . . , xn]. Since the i was arbitrary, we obtain that
g ∈ (f̌h(1),1, . . . , f̌h(j−1),j−1) in Q[[x1, . . . , xn]]. Hence, from Theorem A.5 we deduce that Q[x1, . . . , xn]/Ǐh
is a complete intersection ring, as desired. 2
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