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EHRHART POLYNOMIALS OF 3-DIMENSIONAL SIMPLE

INTEGRAL CONVEX POLYTOPES

YUSUKE SUYAMA

Abstract. We give an explicit formula on the Ehrhart polynomial of a 3-
dimensional simple integral convex polytope by using toric geometry.

1. Introduction

Let P ⊂ Rd be an integral convex polytope of dimension d, that is, a convex
polytope whose vertices have integer coordinates. For a non-negative integer l, we
write lP = {lx | x ∈ P}. Ehrhart [2] proved that the number of lattice points in
lP can be expressed by a polynomial in l of degree d:

|(lP ) ∩ Zd| = cdl
d + cd−1l

d−1 + · · ·+ c0.

This polynomial is called the Ehrhart polynomial of P . It is known that:

(1) c0 = 1.
(2) cd−1 is half of the sum of relative volumes of facets of P ([1, Theorem 5.6]).
(3) cd is the volume of P ([1, Corollary 3.20]).

However, we have no formula on other coefficients of Ehrhart polynomials. In
particular, we do not know a formula on c1 for a general 3-dimensional integral
convex polytope. In this paper, we find an explicit formula on c1 of the Ehrhart
polynomial of a 3-dimensional simple integral convex polytope, see Theorem 5.

Pommersheim [4] gave a method for computing the (d− 2)-nd coefficient of the
Ehrhart polynomial of a d-dimensional simple integral convex polytope P by using
toric geometry. He obtained an explicit description of the Ehrhart polynomial of a
tetrahedron by using this method. Our formula is obtained by using this method
for a general 3-dimensional simple integral convex polytope.

The structure of the paper is as follows. In Section 2, we state the main theorem
and give a few examples. In Section 3, we give a proof of the main theorem.

Acknowledgment. This work was supported by Grant-in-Aid for JSPS Fellows
15J01000. The author wishes to thank his supervisor, Professor Mikiya Masuda,
for his continuing support.

2. The main theorem

Let P ⊂ R3 be a 3-dimensional simple integral convex polytope, and let F1, . . . , Fn

be the facets of P . For k = 1, . . . , n, we denote by vk ∈ Z3 the inward-pointing
primitive normal vector of Fk. For an edge E of P , we denote by Vol(E) the relative
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2 YUSUKE SUYAMA

volume of E, that is, the length of E measured with respect to the lattice of rank
one in the line containing E.

Definition 1. For each edge E = Fk1 ∩ Fk2 of P , we define an integer m(E) and
a rational number s(E) as follows:

(1) We define m(E) = |((Rvk1 + Rvk2) ∩ Z3)/(Zvk1 + Zvk2)|.

(2) There exists a basis e1, e2 for (Rvk1 + Rvk2) ∩ Z3 such that vk1 = e1 and
vk2 = pe1 + qe2 for some q > p ≥ 0. Then we define s(E) = s(p, q), where
s(p, q) is the Dedekind sum, which is defined by

s(p, q) =

q∑
i=1

((
i

q

))((
pi

q

))
, ((x)) =

{
x− [x]− 1

2 (x /∈ Z),
0 (x ∈ Z).

Remark 2. We have q = m(E). Although p is not uniquely determined, s(p, q)
does not depend on the choice of e1, e2. Thus s(E) is well-defined.

Definition 3. For each facet F of P , we define a rational number C(F ) as follows.
We name vertices and facets around F as in Figure 1. We denote by v ∈ Z3 the
inward-pointing primitive normal vector of F .

Figure 1. vertices and facets around F .

For i = 1, . . . , r, we define

εi = det(v, vki+1 , vki) > 0, ai =
⟨−−−−−−→Pi−1Qi−1, vki+1⟩
εi⟨

−−−−−−→
Pi−1Qi−1, v⟩

, bi =
⟨−−−−→PiPi+1, vki−1⟩
εi−1⟨

−−−−→
PiPi+1, vki⟩

,
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where vk0 = vkr , vkr+1 = vk1 , ε0 = εr, P0 = Pr, Pr+1 = P1, Q0 = Qr and ⟨·, ·⟩ is the
standard inner product on R3. Then we define

C(F ) = −
∑

2≤i<j≤r

ai

∣∣∣∣∣∣∣∣∣∣∣∣∣

bi+1 ε−1
i+1 0 · · · 0

ε−1
i+1 bi+2 ε−1

i+2

. . .
...

0 ε−1
i+2

. . .
. . . 0

...
. . .

. . . bj−2 ε−1
j−2

0 · · · 0 ε−1
j−2 bj−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
εiεi+1 · · · εj−1

Vol(Pj−1Pj)

m(Pj−1Pj)
,

where Pj−1Pj is the edge whose endpoints are Pj−1 and Pj , and the determinants
above are understood to be one when j = i+ 1.

Remark 4. The proof of Theorem 5 below shows that C(F ) does not depend on
the choice of Fk1 .

The following is our main theorem:

Theorem 5. Let P ⊂ R3 be a 3-dimensional simple integral convex polytope, and
let E1, . . . , Em and F1, . . . , Fn be the edges and the facets of P , respectively. Then
the coefficient c1 of the Ehrhart polynomial |(lP ) ∩ Z3| = c3l

3 + c2l
2 + c1l + c0 is

given by
m∑
j=1

(
s(Ej) +

1

4

)
Vol(Ej) +

1

12

n∑
k=1

C(Fk).

Example 6. Let a, b, c be positive integers with gcd(a, b, c) = 1 and let P ⊂ R3 be
the tetrahedron with vertices

O =

 0
0
0

 , P1 =

 a
0
0

 , P2 =

 0
b
0

 , P3 =

 0
0
c

 .

We put A = gcd(b, c), B = gcd(a, c), C = gcd(a, b) and d = ABC. Then we have
the following table:

edge E OP1 OP2 OP3 P1P2 P1P3 P2P3

Vol(E) a b c C B A
m(E) 1 1 1 cC/d bB/d aA/d

s(E) 0 0 0 −s

(
ab

d
,
cC

d

)
−s

(
ac

d
,
bB

d

)
−s

(
bc

d
,
aA

d

)
facet F OP1P2 OP1P3 OP2P3 P1P2P3

inward-pointing primitive
normal vector of F

 0
0
1

  0
1
0

  1
0
0

  −bc/d
−ac/d
−ab/d


C(F ) ab/c ac/b bc/a d2/(abc)
Table 1. the values of Vol(E), s(E) and C(F ).
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Thus we have∑
E:edge

(
s(E) +

1

4

)
Vol(E) +

1

12

∑
F :facet

C(F )

=
a

4
+

b

4
+

c

4
+

(
−s

(
ab

d
,
cC

d

)
+

1

4

)
C +

(
−s

(
ac

d
,
bB

d

)
+

1

4

)
B

+

(
−s

(
bc

d
,
aA

d

)
+

1

4

)
A+

1

12

(
ab

c
+

ac

b
+

bc

a
+

d2

abc

)
,

which coincides with the formula in [4, Theorem 5].

Example 7. Let a and c be positive integers and b be a non-negative integer.
Consider the convex hull P ⊂ R3 of the six points

O =

 0
0
0

 , A =

 a
0
0

 , B =

 0
a
0

 ,

O′ =

 b
0
c

 , A′ =

 a+ b
0
c

 , B′ =

 b
a
c

 .

P is a 3-dimensional simple polytope. We put g = gcd(b, c). Then we have the
following table:

edge E OA OB AB OO′ AA′ BB′ O′A′ O′B′ A′B′

Vol(E) a a a g g g a a a

m(E) 1 c/g c/g 1 1 c/g 1 c/g c/g

s(E) 0 −s
(

b
g
, c
g

)
s
(

b
g
, c
g

)
0 0 −s

(
1, c

g

)
0 s

(
b
g
, c
g

)
−s

(
b
g
, c
g

)
facet F OAB OAA′O′ OBB′O′ ABB′A′ O′A′B′

inward-pointing primitive

normal vector of F

 0
0

1

  0
1

0

  c/g
0

−b/g

  −c/g
−c/g

b/g

  0
0

−1


C(F ) 0 c g2/c g2/c 0

Table 2. the values of Vol(E), s(E) and C(F ).

Figure 2. the simple polytope P .
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Thus we have∑
E:edge

(
s(E) +

1

4

)
Vol(E) +

1

12

∑
F :facet

C(F )

= −s

(
1,

c

g

)
g +

3a

2
+

3g

4
+

1

12

(
c+

2g2

c

)

= −g

c/g−1∑
i=1

(
i
c
g

− 1

2

)2

+
3a

2
+

3g

4
+

c

12
+

g2

6c

= −g

c/g−1∑
i=1

(
g2

c2
i2 − g

c
i+

1

4

)
+

3a

2
+

3g

4
+

c

12
+

g2

6c

= −g3

c2

(
c
g − 1

)
c
g

(
2c
g − 1

)
6

+
g2

c

(
c
g − 1

)
c
g

2
− g

c
g − 1

4
+

3a

2
+

3g

4
+

c

12
+

g2

6c

=
3a

2
+ g.

On the other hand, since

#{(x, y) ∈ Z2 | (x, y, z) ∈ lP} =


(al + 1)(al + 2)

2
((c/g)|z),

al(al + 1)

2
((c/g) |/z)

for z = 0, 1, . . . , cl, we have

|(lP ) ∩ Z3| = (al + 1)(al + 2)

2
(gl + 1) +

al(al + 1)

2
((cl + 1)− (gl + 1))

=
a2c

2
l3 +

1

2

(
a2 + ac+ 2ag

)
l2 +

(
3a

2
+ g

)
l + 1.

The coefficient of l is also 3a/2 + g.

3. Proof of Theorem 5

First we recall some facts about toric geometry, see [3] for details. Let P ⊂ Rd

be a d-dimensional integral convex polytope. We define a cone

σF = {v ∈ Rd | ⟨u′ − u, v⟩ ≥ 0 ∀u′ ∈ P, ∀u ∈ F}

for each face F of P . Then the set

∆P = {σF | F is a face of P}

of such cones forms a fan in Rd, which is called the normal fan of P . Let X(∆P ) be
the associated projective toric variety. We denote by V (σ) the subvariety of X(∆P )
corresponding to σ ∈ ∆P . Let Tdi(X(∆P )) ∈ Ai(X(∆P ))Q be the i-th Todd class
in the Chow group of i-cycles with rational coefficients.

Theorem 8. Let P ⊂ Rd be a d-dimensional integral convex polytope and |(lP ) ∩
Zd| = cdl

d+cd−1l
d−1+· · ·+c0 be its Ehrhart polynomial. If Tdi(X(∆P )) has an ex-

pression of the form
∑

F rF [V (σF )] with rF ∈ Q, then we have ci =
∑

F rFVol(F ),
where [V (σF )] is the class of V (σF ) in the Chow group and Vol(F ) is the relative
volume of F .
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Now we assume that d = 3 and P is simple. Then the associated toric variety
X(∆P ) is Q-factorial and we know the ring structure of the Chow ring A∗(X(∆P ))Q
with rational coefficients. Let E1, . . . , Em and F1, . . . , Fn be the edges and the facets
of P , respectively. We have

(3.1)
n∑

k=1

⟨u, vk⟩[V (σFk
)] = 0 ∀u ∈ (Q3)∗.

If Fk1 and Fk2 are distinct, then

(3.2) [V (σFk1
)][V (σFk2

)] =

{ 1
m(Ej)

[V (σEj )] (1 ≤ ∃j ≤ m : Fk1 ∩ Fk2 = Ej),

0 (Fk1 ∩ Fk2 = ∅)

in A∗(X(∆P ))Q.
Pommersheim gave an expression of Tdd−2(X(∆P )) for a d-dimensional simple

integral convex polytope P ⊂ Rd. In the case where d = 3, we have the following:

Theorem 9 (Pommersheim [4]). If P ⊂ R3 is a 3-dimensional simple integral
convex polytope, then

Td1(X(∆P )) =
m∑
j=1

(
s(Ej) +

1

4

)
[V (σEj )] +

1

12

n∑
k=1

[V (σFk
)]2.

We use the notation in Definition 3. It suffices to show

[V (σF )]
2 = −

∑
2≤i<j≤r

ai

∣∣∣∣∣∣∣∣∣∣∣∣∣

bi+1 ε−1
i+1 0 · · · 0

ε−1
i+1 bi+2 ε−1

i+2

. . .
...

0 ε−1
i+2

. . .
. . . 0

...
. . .

. . . bj−2 ε−1
j−2

0 · · · 0 ε−1
j−2 bj−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
εiεi+1 · · · εj−1

m(Pj−1Pj)
[V (σPj−1Pj )]

for each facet F of P .
We put

D(s, t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

bs ε−1
s 0 · · · 0

ε−1
s bs+1 ε−1

s+1

. . .
...

0 ε−1
s+1

. . .
. . . 0

...
. . .

. . . bt−1 ε−1
t−1

0 · · · 0 ε−1
t−1 bt

∣∣∣∣∣∣∣∣∣∣∣∣∣
for 2 < s ≤ t < r and D(s, t) = 1 for s > t. Define u ∈ (Q3)∗ by ⟨u, v⟩ =
1, ⟨u, vk1⟩ = 0, ⟨u, vk2⟩ = 0. By (3.1) and (3.2), we have

[V (σF )]
2 = −[V (σF )]

r∑
j=1

⟨u, vkj ⟩[V (σFkj
)] = −

r∑
j=3

⟨u, vkj ⟩
m(Pj−1Pj)

[V (σPj−1Pj )].

Hence it suffices to show

(3.3) ⟨u, vkj ⟩ =
j−1∑
i=2

aiD(i+ 1, j − 1)εiεi+1 · · · εj−1

for any j = 3, . . . , r.
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First we claim that

(3.4) ε−1
j−1vkj−1 + ε−1

j vkj+1 = ajv + bjvkj

for any j = 2, . . . , r − 1. By Cramer’s rule, we have

vkj+1 =
det(vkj+1 , vkj , vkj−1)

det(v, vkj , vkj−1)
v +

det(v, vkj+1 , vkj−1)

det(v, vkj , vkj−1)
vkj +

det(v, vkj , vkj+1)

det(v, vkj , vkj−1)
vkj−1

=
det(vkj+1 , vkj , vkj−1)

εj−1
v +

det(v, vkj+1 , vkj−1)

εj−1
vkj −

εj
εj−1

vkj−1 .

So we have

ε−1
j−1vkj−1 + ε−1

j vkj+1

= ε−1
j−1ε

−1
j det(vkj+1 , vkj , vkj−1)v + ε−1

j−1ε
−1
j det(v, vkj+1 , vkj−1)vkj .

(3.5)

Taking the inner product of both sides of (3.5) with
−−−−−−→
Pj−1Qj−1 gives

ε−1
j ⟨

−−−−−−→
Pj−1Qj−1, vkj+1⟩ = ε−1

j−1ε
−1
j det(vkj+1 , vkj , vkj−1)⟨

−−−−−−→
Pj−1Qj−1, v⟩,

which means aj = ε−1
j−1ε

−1
j det(vkj+1 , vkj , vkj−1). Taking the inner product of both

sides of (3.5) with
−−−−→
PjPj+1 gives

ε−1
j−1⟨

−−−−→
PjPj+1, vkj−1⟩ = ε−1

j−1ε
−1
j det(v, vkj+1 , vkj−1)⟨

−−−−→
PjPj+1, vkj ⟩,

which means bj = ε−1
j−1ε

−1
j det(v, vkj+1 , vkj−1). Thus (3.4) follows.

We show (3.3) by induction on j. If j = 3, then both sides are a2ε2. If j = 4,
then both sides are a2b3ε2ε3 + a3ε3. Suppose 4 ≤ j ≤ r − 1. By (3.4) and the
hypothesis of induction, we have

⟨u, vkj+1⟩ = ⟨u, ajεjv + bjεjvkj − ε−1
j−1εjvkj−1⟩

= ajεj + bjεj⟨u, vkj ⟩ − ε−1
j−1εj⟨u, vkj−1⟩

= ajεj + bjεj

j−1∑
i=2

aiD(i+ 1, j − 1)εiεi+1 · · · εj−1

− ε−1
j−1εj

j−2∑
i=2

aiD(i+ 1, j − 2)εiεi+1 · · · εj−2.

On the other hand,

j∑
i=2

aiD(i+ 1, j)εiεi+1 · · · εj

= ajεj + aj−1bjεj−1εj +

j−2∑
i=2

aiD(i+ 1, j)εiεi+1 · · · εj .
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Since
j−2∑
i=2

aiD(i+ 1, j)εiεi+1 · · · εj

=

j−2∑
i=2

ai(bjD(i+ 1, j − 1)− ε−2
j−1D(i+ 1, j − 2))εiεi+1 · · · εj

= bjεj

j−2∑
i=2

aiD(i+ 1, j − 1)εiεi+1 · · · εj−1

− ε−1
j−1εj

j−2∑
i=2

aiD(i+ 1, j − 2)εiεi+1 · · · εj−2,

we have
j∑

i=2

aiD(i+ 1, j)εiεi+1 · · · εj

= ajεj + aj−1bjεj−1εj + bjεj

j−2∑
i=2

aiD(i+ 1, j − 1)εiεi+1 · · · εj−1

− ε−1
j−1εj

j−2∑
i=2

aiD(i+ 1, j − 2)εiεi+1 · · · εj−2

= ajεj + bjεj

j−1∑
i=2

aiD(i+ 1, j − 1)εiεi+1 · · · εj−1

− ε−1
j−1εj

j−2∑
i=2

aiD(i+ 1, j − 2)εiεi+1 · · · εj−2

= ⟨u, vkj+1
⟩.

Thus (3.3) holds for j + 1. This completes the proof of Theorem 5.
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