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EHRHART POLYNOMIALS OF 3-DIMENSIONAL SIMPLE
INTEGRAL CONVEX POLYTOPES

YUSUKE SUYAMA

ABSTRACT. We give an explicit formula on the Ehrhart polynomial of a 3-
dimensional simple integral convex polytope by using toric geometry.

1. INTRODUCTION

Let P C R? be an integral convex polytope of dimension d, that is, a convex
polytope whose vertices have integer coordinates. For a non-negative integer [, we
write [P = {lz | x € P}. Ehrhart [2] proved that the number of lattice points in
[P can be expressed by a polynomial in [ of degree d:

|(IP)NZY| = cgl® + cg—11"" + -+ + co.
This polynomial is called the Ehrhart polynomial of P. It is known that:
(1) Co = 1.

(2) cq—1 is half of the sum of relative volumes of facets of P ([1, Theorem 5.6]).
(3) cq is the volume of P ([1, Corollary 3.20]).

However, we have no formula on other coefficients of Ehrhart polynomials. In
particular, we do not know a formula on ¢; for a general 3-dimensional integral
convex polytope. In this paper, we find an explicit formula on ¢; of the Ehrhart
polynomial of a 3-dimensional simple integral convex polytope, see Theorem 5.

Pommersheim [4] gave a method for computing the (d — 2)-nd coefficient of the
Ehrhart polynomial of a d-dimensional simple integral convex polytope P by using
toric geometry. He obtained an explicit description of the Ehrhart polynomial of a
tetrahedron by using this method. Our formula is obtained by using this method
for a general 3-dimensional simple integral convex polytope.

The structure of the paper is as follows. In Section 2, we state the main theorem
and give a few examples. In Section 3, we give a proof of the main theorem.

ACKNOWLEDGMENT. This work was supported by Grant-in-Aid for JSPS Fellows
15J01000. The author wishes to thank his supervisor, Professor Mikiya Masuda,
for his continuing support.

2. THE MAIN THEOREM

Let P C R? be a 3-dimensional simple integral convex polytope, and let F1, ..., F,
be the facets of P. For k = 1,...,n, we denote by v, € Z? the inward-pointing
primitive normal vector of Fy. For an edge E of P, we denote by Vol(E) the relative
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2 YUSUKE SUYAMA

volume of F, that is, the length of £ measured with respect to the lattice of rank
one in the line containing F.

DEFINITION 1. For each edge F = F, N Fy, of P, we define an integer m(E) and
a rational number s(E) as follows:
(1) We define m(E) = |((Rvg, + Rog,) NZ3)/(Zvg, + Zug,)|.

(2) There exists a basis €1, ez for (Rug, + Rug,) N Z3 such that vy, = e; and
Uk, = pe1 + gea for some ¢ > p > 0. Then we define s(E) = s(p, q), where
s(p, q) is the Dedekind sum, which is defined by

- 2(ONE): @-{iH £

REMARK 2. We have ¢ = m(F). Although p is not uniquely determined, s(p, q)
does not depend on the choice of eq, es. Thus s(E) is well-defined.

DEFINITION 3. For each facet F of P, we define a rational number C(F) as follows.
We name vertices and facets around F as in Figure 1. We denote by v € Z3 the
inward-pointing primitive normal vector of F'.

FIGURE 1. vertices and facets around F.

Fori=1,...,r, we define

(Pio1Qi—1,Vkyyy) . (PiPiy1,0k,_,)
5 i = )
€i(Pi—1Qi—1,v) gi—1(PiPit1,vk,)

g; = det(v, v, ,,vk,) >0, a; =

i+17 23
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where vy, = Uk, , Uk, = Vk,,€0 = &r, Po = Pr, Pry1 = P1,Qo = Q, and (-, ) is the
standard inner product on R3. Then we define

—1
bi+1 Ei+1 0 LR 0
—1 —1
€1 b2 g

C(F) = — Z a; 0 57;__,'_12 0 Ei€i+1"'€jfl

2<i<j<r

VO].(P]‘,LP]')
m(P; 1 P;)

—1
bj,Q 5j72

0 e 0 Ej_E2 bj_l

where P;_1P; is the edge whose endpoints are P;_; and P;, and the determinants
above are understood to be one when j =i + 1.

REMARK 4. The proof of Theorem 5 below shows that C(F') does not depend on
the choice of Fy,.

The following is our main theorem:

Theorem 5. Let P C R? be a 3-dimensional simple integral convexr polytope, and
let E1,...,E, and Fy, ..., F, be the edges and the facets of P, respectively. Then
the coefficient ¢1 of the Ehrhart polynomial |(IP) N Z3| = ¢33 + col? + c1l + ¢ is
given by

> (s(Ej) + 4) Vol(E;) + 7 ; C(Fy).

Jj=1

EXAMPLE 6. Let a, b, c be positive integers with ged(a,b,c) = 1 and let P C R? be
the tetrahedron with vertices

0 a 0 0
o=o]|, p=(o0o], B=[0b]|, P=]|0
0 0 0 c

We put A = ged(b,¢), B = ged(a, ), C = ged(a,b) and d = ABC. Then we have
the following table:

edgeE OP1 OPQ OP3 Plpg P1P3 P2P3
Vol(E) a b c C B A
m(E) 1 1 1 cC/d bB/d aA/d
ab cC ac bB bc aA
s(E) 0 0 0 | —s riva Rl i R iir s
facet F OP1P2 OP1P3 OP2P3 P1P2P3
inward-pointing primitive 0 0 1 —be/d
normal vector of F 0 1 0 —ac/d
1 0 0 —ab/d
C(F) ab/c ac/b be/a d?/(abc)

TABLE 1. the values of Vol(E), s(E) and C(F).
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Thus we have

> <S(E) + i) Vol(E) + 1—12 > oow)
(

F:facet

ab cC 1 ac bB 1
_S(d’d>+4>c+(_s<d’d)+4)B
\4d 1 2\c " Ta Tane )

which coincides with the formula in [4, Theorem 5].

EXAMPLE 7. Let a and ¢ be positive integers and b be a non-negative integer.
Consider the convex hull P C R? of the six points

0 a 0
o=|01], A= 0|, B=| a |,

0 0 0

b a+b b
oO=10|, A= 0 , B =1 a

c c c

P is a 3-dimensional simple polytope. We put g = ged(b,¢). Then we have the
following table:

edge E || OA OB AB 00" | AA’ BB’ O'A’ O'B’ A'B’
Vol(F) a a a g g g a a a
mE) || 1 c/g c/g 1 1 c/g 1 c/g c/g
b ¢ b ¢ c b ¢ b ¢
s(E) 0 | —s (575) s(;,;) 0 0 —s (1,5) 0 3(5,§> —s (5,§>
facet F OAB | OAA'O! OBB'O’ ABB'A’ O'A'B’

e )y

normal vector of F’ 0 1 0 —c/g

1 0 —b/g b/g

C(F) 0 c g%/c g%/c 0
TABLE 2. the values of Vol(E), s(E) and C(F).

inward-pointing primitive ( 0 >

()
()

FIGURE 2. the simple polytope P.
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Thus we have

> (s(E) + D Vol(E) + 1—12 > ow)

E:edge F:facet

c 3a 39 1 2g°
= — 1. — — —_— —_— —_—
S(’g g+2+4+12<c+c

C c [ 2c c c
sle—1)c(=—1 2(£—-1)¢ c_1 2
_ 9(9 )9(9 ) 9(9 )9 g 3¢ 3¢9 ¢ g
2 6 T Ity T T e
30

On the other hand, since
(al +1)(al + 2)

(c/9)]2),
#{(z,y) € Z* | (z,y,2) € IP} = al(al +21) ((¢/9)]
5 ((c¢/9) I2)
for 2 =0,1,...,cl, we have
o +1)

|(IP)NZ3 = (gl +1) +

@ﬁggia (el +1) = (gl +1))

CLQC

1 3
:2l3+2(a2+ac+2ag)l2+<2a+g)l+1.

The coefficient of  is also 3a/2 + g.

3. PROOF OF THEOREM 5

First we recall some facts about toric geometry, see [3] for details. Let P C R¢
be a d-dimensional integral convex polytope. We define a cone

or ={veR| (v —u,v) >0V € P,Vuc F}
for each face F' of P. Then the set
Ap ={op | F is a face of P}

of such cones forms a fan in R?, which is called the normal fan of P. Let X(Ap) be
the associated projective toric variety. We denote by V(o) the subvariety of X (Ap)
corresponding to o € Ap. Let Td;(X(Ap)) € A;(X(Ap))g be the i-th Todd class
in the Chow group of i-cycles with rational coefficients.

Theorem 8. Let P C RY be a d-dimensional integral convex polytope and |(IP) N
7 = cqld+cqg_ 11971 +- - -+cqg be its Ehrhart polynomial. If Td;(X(Ap)) has an ex-
pression of the form Y prp[V(or)] with rgp € Q, then we have ¢; = Y p 7 Vol(F),
where [V (oF)] is the class of V(op) in the Chow group and Vol(F) is the relative
volume of F.
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Now we assume that d = 3 and P is simple. Then the associated toric variety
X (Ap) is Q-factorial and we know the ring structure of the Chow ring A*(X (Ap))g
with rational coefficients. Let F1, ..., E,, and F},..., F, be the edges and the facets
of P, respectively. We have
(3.1) > (o) [V(ep)] =0 Vue (Q°).
k=1
If Fy, and F}, are distinct, then
1 .
——[V(og,) (1<3j<m:Fy NF, =F))
3.2) [V % _ [ mpl 7 ! 2
32 Wion, Vion,) = { & R
in A* (X(Ap))@
Pommersheim gave an expression of Td;_o(X(Ap)) for a d-dimensional simple
integral convex polytope P C R?. In the case where d = 3, we have the following:

Theorem 9 (Pommersheim [4]). If P C R? is a 3-dimensional simple integral
convex polytope, then

Ta(X(Ar) = Y ((8) + 1) Vw1 + 5 DV (on )
j=1 k=1
We use the notation in Definition 3. It suffices to show
bi+1 E;_ll 0 s 0
e btz Eith -
€i€it1 " &1
174 2 _ i -1 -, " A R Y | VA
[ (UF>] 2<;< a 0 Ei-‘r? . . 0 m(Pj—IPj) [ (UPJ—IPJ)]
<i<j<r . . .
. . . bj_z 6‘]-72
0 - 0 &ly b
for each facet F' of P.
We put
bs et 0 .- 0
est bt E;:l
Dist)=] 0 ey . . 0
: . btfl 5;_11
0 - 0 &Y b
for 2 < s <t < rand D(s,t) = 1 for s > t. Define u € (Q*)* by (u,v) =

t
1, {(u,vg, ) = 0, {(u,vg,) = 0. By (3.1) and (3.2), we have
Vi) = Vien) Yot Vion, | = =2 i siVion )

Hence it suffices to show
(3.3) (u, vg,) Z a;D(i+ 1,5 —1)eigip1 - €51

forany j=3,...,r
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First we claim that

-1 -1 _ _
(3.4) €5 1Vk; T &5 Uy, = U+ bjvg;
for any j = 2,...,r — 1. By Cramer’s rule, we have
; B det(vkﬁl,vkj,vkjfl)v det(v,vkﬂl,vkrl)vk det(v, vk, Vi, ;) .
ki1 — . — Uk,
J det (v, v, Vk;_,) det(v, v, v;_,) °  det(v,vx;,vp,_,) "’
det(va,,, s Uk, Vk;_y) det(v, Vi, Vi, ) £;
= v+ V. — Vg4~
. . J . J
€j—1 €j—1 €j—-1
So we have

-1 -1
€5 _1Vkj_y + €; Ukjp

(3.5) -1 _—1 -1 _—1
=€, 1¢; det(vkj+1,vk_7.,vkj_l)v+5j_1sj det(v, Vi, ,, Vk;_, )k, -

[
Taking the inner product of both sides of (3.5) with P;_1Q;_1 gives
1,5 A _ _ _—
Ej 1<P]’*1Qj*17 vkj+1> = 5]._115]. 1det(vk5j+17vkj ) 'Uk]-71)<Pj*1ijla U>7

which means a; = 5;7116]»_1det(vk”1 ;Uk;, Vk;_,). Taking the inner product of both

e
sides of (3.5) with P;P;y1 gives
e 1 —
5j—1<Pij+17 Uk?j71> = Ej—llgj det(v, vkj+1’vkj—1)<Pij+1’ Ukj>’

which means b; = 5]-__115j_1det(v, Uk; 41> Vk;_, ). Thus (3.4) follows.

We show (3.3) by induction on j. If j = 3, then both sides are ases. If j = 4,
then both sides are agbseaes + ages. Suppose 4 < j < r — 1. By (3.4) and the
hypothesis of induction, we have

(u, vk, ) = (u, aje5v + bjejoe, — £50150k, )
= ajej + bjej(u, vg;) — 53-__1153-(1;, Uk, )
j—1

=aje; + bjé‘j ZazD(z + 1,7 — 1){:‘1’51‘4_1 cerE5-1
=2

j—2
— 8;_115j ZalD(z + ].,j — 2)61'61'_;,_1 . ‘€j_2.
=2

On the other hand,

J
Z a;D(i+1,j)eigiy1- €
=2
Jj—2
= ajsj + aj,lbjsj,lsj + ZCLLD(Z + 1aj)5i€i+1 o 'Ej.
=2
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Since
j—2
ZCLZD(Z + 1,j)€i€¢+1 .. '€j
i=2
j—2
= Zai(bjD(i +1,7=1) =2 D(i+ 1,j = 2))eigisr -
i=2

j—2
= bj&j ZalD(z + 1,7 — 1)5i5i+1 €51
=2

j—2
-1 . .
—€51€j E a;D(i+1,j —2)ei€ir1- €52,
i=2
we have

J
> a;iD(i+1,)eigip1 €5
=2

j—2
= aje; + aj_lbjsj_lej + b]‘e’:‘j Z(IZD(Z + 1,5 — 1)5i5i+1 creEi-1
1=2
j—2
— 6;711?3]' Z aiD(i +1,5— 2)82'51‘4_1 cerEj-2
=2
j—1
= aje; + bjé‘j ZazD(z +1,5— 1)6@614.1 crrEj-1
1=2

Jj—2
5]‘_—115]' Z a; D+ 1,7 —2)eigi41 - €j—2
i=2

(u, vk.7‘+1>'

Thus (3.3) holds for j + 1. This completes the proof of Theorem 5.

REFERENCES

[1] M. Beck and S. Robins: Computing the Continuous Discretely, Undergraduate Texts in Math-
ematics, Springer, 2007.

[2] E. Ehrhart: Polynémes Arithmétiques et Méthode des Polyedres en Combinatoire, Birkhéuser,
Boston-Basel-Stuttgart, 1977.

[3] W. Fulton: Introduction to Toric Varieties, Annals of Mathematics Studies 131, Princeton
Univ. Press, Princeton, NJ, 1993.

[4] J. E. Pommersheim: Toric varieties, lattice points and Dedekind sums, Math. Ann. 295 (1993),
1-24.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA CITY UNIVERSITY,
3-3-138 SUGIMOTO, SUMIYOSHI-KU, OSAKA 558-8585 JAPAN
E-mail address: d15san0w03@st.osaka-cu.ac.jp



