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THE TORUS EQUIVARIANT COHOMOLOGY RINGS OF

SPRINGER VARIETIES

HIRAKU ABE AND TATSUYA HORIGUCHI

Abstract. The Springer variety of type A associated to a nilpotent operator on Cn

in Jordan canonical form admits a natural action of the `-dimensional torus T ` where

` is the number of the Jordan blocks. We give a presentation of the T `-equivariant

cohomology ring of the Springer variety through an explicit construction of an action of

the n-th symmetric group on the T `-equivariant cohomology group. The T `-equivariant

analogue of so called Tanisaki’s ideal will appear in the presentation.
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1. Introduction

The Springer variety of type A associated to a nilpotent operator N : Cn → Cn is a
closed subvariety of the flag variety of Cn defined by

{V• ∈ Flags(Cn) | NVi ⊆ Vi−1 for all 1 ≤ i ≤ n}.
When the operator N is in Jordan canonical form with Jordan blocks of weakly decreas-
ing size λ = (λ1, · · · , λ`), we denote the Springer variety by Sλ. In 1970’s, Springer
constructed a representation of the n-th symmetric group Sn on the cohomology group
H∗(Sλ;C), and this representation on the top degree part is the irreducible representation
of type λ ([7], [8]). DeConcini-Procesi [] used this representation to give a presentation of
the cohomology ring H∗(Sλ;C) as a quotient of a polynomial ring by an ideal. Tanisaki
[9] gave another set of generators of this ideal which simplifies their presentation; this
ideal is now called Tanisaki’s ideal. We remark that his argument in [9] works also
over Z-coefficient. Our goal in this paper is to give an explicit presentation of the T `-
equivariant cohomology ring H∗

T `(Sλ;Z) where we will explain the `-dimensional torus

T ` below. In more detail, we will give a presentation as the quotient of a polynomial
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2 HIRAKU ABE AND TATSUYA HORIGUCHI

ring by an ideal whose generators are generalizations of the generators of Tanisaki’s ideal
given in [9]. Through the the forgetful map H∗

T `(Sλ;Z) → H∗(Sλ;Z), our presentation
naturally induces the presentation of H∗(Sλ;Z) given in [9].

We organize this paper as follows. In Section 2, we introduce a natural action of the
`-dimensional torus T ` on the Springer variety Sλ for λ = (λ1, · · · , λ`) and give the T `-

fixed points ST
`

λ of the Springer variety Sλ where T ` is defined by the following diagonal
unitary matrices:


h1Eλ1

h2Eλ2

. . .

h`Eλ`

 | hi ∈ C, |hi| = 1 (1 ≤ i ≤ `)

 .

Here, Ei is the identity matrix of size i. We construct an Sn-action on the equivariant
cohomology group H∗

T `(Sλ;Z) in Section 3 by using the localization technique which

involves the equivariant cohomology of the T `-fixed points. We state the main theorem
in Section 4, and prove it in Section 5 by using this Sn-action on H∗

T `(Sλ;Z). Our method

of the proof is the T `-equivariant analogue of [9].

Acknowledgements. The authors thank Professor Toshiyuki Tanisaki for valuable
suggestions and kind teachings.

2. Nilpotent Springer varieties and T `-fixed points

We begin with a definition of type A nilpotent Springer varieties. We work with type
A through out this paper and hence omit it in the following. We first recall that a flag
variety Flags(Cn) consists of nested subspaces of Cn:

V• = (0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = Cn)

where dimC Vi = i for all i.

Definition. Let N : Cn → Cn be a nilpotent operator. The (nilpotent) Springer
variety SN associated to N is the set of flags V• satisfying NVi ⊆ Vi−1 for all 1 ≤ i ≤ n.

Since SgNg−1 is homeomorphic (in fact, isomorphic as algebraic varieties) to SN for
any invertible matrix g ∈ GLn(C), we may assume that N is a Jordan canonical form.
In this paper, we consider the Springer variety

Sλ := {V• ∈ Flags(Cn) | N0Vi ⊆ Vi−1 for all 1 ≤ i ≤ n}
where N0 is in Jordan canonical form with Jordan blocks of weakly decreasing sizes
λ = (λ1, λ2, . . . , λ`).

Let Tn be an n-dimensional torus consisting of diagonal unitary matrices:

(2.1) Tn =



g1

g2
. . .

gn

 | gi ∈ C, |gi| = 1 (1 ≤ i ≤ n)

 .
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Then the n-dimensional torus Tn naturally acts on the flag variety Flags(Cn), but Tn

does not preserve the Springer variety Sλ in general. So we introduce the following
`-dimensional torus:

(2.2) T ` =



h1Eλ1

h2Eλ2

. . .

h`Eλ`

 ∈ Tn | hi ∈ C, |hi| = 1 (1 ≤ i ≤ `)


where Ei is the identity matrix of size i and λ = (λ1, λ2, . . . , λ`). Then the torus T `

preserves the Springer variety Sλ. Our goal in this section is to give the T `-fixed point

set ST
`

λ .

The Tn-fixed point set Flags(Cn)T
n
of the flag variety Flags(Cn) is given by

{(〈ew(1)〉 ⊂ 〈ew(1), ew(2)〉 ⊂ · · · ⊂ 〈ew(1), ew(2), . . . , ew(n)〉 = Cn) | w ∈ Sn}
where e1, e2, . . . , en is the standard basis of Cn and Sn is the symmetric group on n
letters {1, 2, . . . , n}, so we may identify Flags(Cn)T

n
with Sn.

Let w be an element of Sn satisfying the following property:

for each 1 ≤ k ≤ `, the numbers between λ1 + · · ·+ λk−1 + 1 and λ1 + · · ·+ λk(2.3)

appear in the one-line notation of w as a subsequence in the increasing order.

Here, we write λ1 + · · ·+ λk−1 + 1 = 1 when k = 1.

Example. We consider the case n = 6, ` = 3, and λ = (3, 2, 1). Using one-line notation,
the following permutations

w1 = 124365, w2 = 416253, w3 = 612435

satisfy the condition (2.3). In fact, each of the sequences (1, 2, 3), (4, 5), and (6) appears
in the one-line notations as a subsequence in the increasing order.

Lemma 2.1. The T `-fixed points ST
`

λ of the Springer variety Sλ is the set

{w ∈ Sn | w satisfy the condition (2.3)}.

Proof. Let w = V• be a permutation satisfying the condition (2.3). Since w(1) is equal
to one of the numbers 1, λ1+1, λ1+λ2+1, . . . , λ1+ · · ·+λ`−1+1, we have N0V1 ⊆ {0}.
If w(1) = λ1 + · · · + λk−1 + 1, then w(2) is equal to one of the numbers 1 ,λ1 + 1,
. . . , λ1 + · · ·+λk−1 +2, . . . , λ1 + · · ·+ λ`−1 +1. So we also have N0V2 ⊆ V1. Continuing
this argument, we have N0Vi ⊆ Vi−1 for all 1 ≤ i ≤ n, and it follows that the w is an
element of Sλ. On the other hand, the w is clearly fixed by T `, so the w is an element of

ST
`

λ .

Conversely, let V• be an element of ST
`

λ . Let v1,v2,. . . ,vj be generators for Vj where

vj = (x
(j)
1 , x

(j)
2 , · · · , x(j)n )t in Cn for all j. Since we have

N0v1 = (x
(1)
2 , · · · , x(1)λ1

, 0︸ ︷︷ ︸
λ1

, x
(1)
λ1+2, · · · , x

(1)
λ1+λ2

, 0︸ ︷︷ ︸
λ2

, · · · · · · , x(1)λ1+···+λ`−1+2, · · · , x
(1)
n , 0︸ ︷︷ ︸

λ`

)t,
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the condition N0V1 ⊆ V0 = {0} implies that

(2.4) v1 = (x
(1)
1 , 0, · · · , 0︸ ︷︷ ︸

λ1

, x
(1)
λ1+1, 0, · · · , 0︸ ︷︷ ︸

λ2

, · · · · · · , x(1)λ1+···+λ`−1+1, 0, · · · , 0︸ ︷︷ ︸
λ`

)t.

It follows that exactly one of x
(1)
i (i = 1, λ1 + 1, λ1 + λ2 + 1, . . . , λ1 + · · · + λ`−1 + 1)

which appear in (2.4) is nonzero. In fact, V• is fixed by the T `-action and hence we have
〈h · v1〉 = 〈v1〉 for arbitrary h ∈ T ` where

h · v1 = (h1x
(1)
1 , 0, · · · , 0︸ ︷︷ ︸

λ1

, h2x
(1)
λ1+1, 0, · · · , 0︸ ︷︷ ︸

λ2

, · · · · · · , h`x
(1)
λ1+···+λ`−1+1, 0, · · · , 0︸ ︷︷ ︸

λ`

)t.

Since each hi runs over all complex numbers whose absolute values are 1, only one of

x
(1)
i in (2.4) must be nonzero.

If x
(1)
λ1+···+λk−1+1 is nonzero for some 1 ≤ k ≤ `, then we may assume that

v1 = (0, · · · , 0, 1, 0, · · · , 0)t,

vj = (x
(j)
1 , · · · , x(j)λ1+···+λk−1

, 0, x
(j)
λ1+···+λk−1+2, · · · , x

(j)
n )t

for 2 ≤ j ≤ n where the (λ1 + · · ·+ λk−1 + 1)-th component of v1 is one. Since we have

N0v2 = (x
(2)
2 , · · · , x(2)λ1

, 0︸ ︷︷ ︸
λ1

, x
(2)
λ1+2, · · · , x

(2)
λ1+λ2

, 0︸ ︷︷ ︸
λ2

, · · · · · · , x(2)λ1+···+λ`−1+2, · · · , x
(2)
n , 0︸ ︷︷ ︸

λ`

)t,

the condition N0V2 ⊆ V1 implies that
(2.5)

v2 = (x
(2)
1 , 0, · · · , 0︸ ︷︷ ︸

λ1

, · · · · · · , 0, x(2)λ1+···+λk−1+2, 0, · · · , 0︸ ︷︷ ︸
λk

, · · · · · · , x(2)λ1+···+λ`−1+1, 0, · · · , 0︸ ︷︷ ︸
λ`

)t.

Therefore, we see that the only one of x
(2)
i (i = 1, λ1+1, . . . , λ1+ · · ·+λk−1+2, . . . , λ1+

· · · + λ`−1 + 1) which appear in (2.5) is nonzero by an argument similar to that used
above. Continuing this procedure, we conclude that V• = w for some w ∈ Sn satisfying
the condition (2.3). In fact, w(1) is equal to one of the numbers 1, λ1 + 1, λ1 + λ2 + 1,
. . . , λ1 + · · ·+ λ`−1 + 1. If w(1) = λ1 + · · ·+ λk−1 + 1, then w(2) is equal to one of the
numbers 1 ,λ1+1, . . . , λ1+ · · ·+λk−1+2, . . . , λ1+ · · ·+λ`−1+1 and so on. This means
that for each k = 1, . . . , ` the numbers between λ1 + · · · + λk−1 + 1 and λ1 + · · · + λk
appear in the one-line notation of w as a subsequence in the increasing order. 2

Regarding a product of symmetric groups Sλ1 × Sλ2 × · · · × Sλ`
as a subgroup of

the symmetric group Sn, it follows from Lemma 2.1 that the T `-fixed points ST
`

λ of the
Springer variety Sλ is identified with the right cosets Sλ1×Sλ2×· · ·×Sλ`

\Sn where each

w ∈ ST
`

λ corresponds to the right coset [w]. In fact, the condition (2.3) provides a unique
representative for each right coset.
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3. An action of the symmetric group Sn on H∗
T `(Sλ)

In this section, we introduce an action of the symmetric group Sn on the equivariant
cohomology group H∗

T `(Sλ) over Z-coefficient by using the localization technique. We
will see that the projection map

ρλ : H∗
Tn(Flags(Cn))→ H∗

T `(Sλ)

induced from the inclusions of Sλ into Flags(Cn) and T ` into Tn is an Sn-equivariant
map. In particular, we consider the following commutative diagram

(3.1)

H∗
Tn(Flags(Cn))

ι1−−−−→ H∗
Tn(Flags(Cn)T

n
) =

⊕
w∈Sn

H∗(BTn)

ρλ

y π

y
H∗

T `(Sλ)
ι2−−−−→ H∗

T `(S
T `

λ ) =
⊕

w∈ST`
λ

H∗(BT `)

where all the maps are induced from inclusion maps, and construct Sn-actions on the
three modules H∗

Tn(Flags(Cn)),
⊕

w∈Sn
H∗(BTn), and

⊕
w∈ST`

λ

H∗(BT `) to construct

an Sn-action on H∗
T `(Sλ). All (equivariant) cohomology rings are assumed to be over

Z-coefficient unless otherwise specified.
First, we introduce the left action of the symmetric group Sn on the cohomology

group H∗(Flags(Cn)). To do that, we consider the right Sn-action on the flag variety
Flags(Cn) as follows.

For any V• ∈ Flags(Cn), there exists g ∈ U(n) so that Vi =
⊕i

j=1Cg(ej), where

{e1, . . . , en} is the standard basis of Cn. Then the right action of w ∈ Sn on Flags(Cn)
can be defined by

(3.2) V• · w = V ′
•

where V ′
i =

⊕i
j=1Cg(ew(j)).

We recall an explicit presentation of the Tn-equivariant cohomology ring of the flag
variety Flags(Cn). Let Ei be the subbundle of the trivial vector bundle Flags(Cn)×Cn

over Flags(Cn) whose fiber at a flag V• is just Vi. We denote the Tn-equivariant first
Chern class of the line bundle Ei/Ei−1 by x̄i ∈ H2

Tn(Flags(Cn)). Let Ci be the one
dimensional representation of Tn through a map Tn → S1 given by diag(g1, . . . , gn) 7→ gi.
We denote the first Chern class of the line bundle ETn×TnCi over BT

n by ti ∈ H2(BTn).
Since t1, . . . , tn generate H∗(BTn) as a ring and they are algebraically independent, we
identify H∗(BTn) with a polynomial ring;

H∗(BTn) = Z[t1, . . . , tn].

Then the equivariant cohomology H∗
Tn(Flags(Cn)) is generated by x̄1, . . . , x̄n, t1, . . . , tn

as a ring. Defining a surjective ring homomorphism from Z[x1, . . . , xn, t1, . . . , tn] to

H∗
Tn(Flags(Cn)) by sending xi to x̄i and ti to ti, its kernel Ĩ is generated as an ideal by

ei(x1, . . . , xn)− ei(t1, . . . , tn) for all 1 ≤ i ≤ n, where ei is the i-th elementary symmetric
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polynomial. Thus, we have an isomorphism

(3.3) H∗
Tn(Flags(Cn)) ∼= Z[x1, . . . , xn, t1, . . . , tn]/Ĩ.

The right action in (3.2) induces the following left action of the symmetric group Sn
on H∗

Tn(Flags(Cn)):

(3.4) w · x̄i = x̄w(i), w · ti = ti

for w ∈ Sn. In fact, the pullback of the line bundle Ei/Ei−1 under the right action in (3.2)
is exactly the line bundle Ew(i)/Ew(i)−1, and the right action in (3.2) is Tn-equivariant.

Second, we define a left action of v ∈ Sn on the direct sum
⊕

w∈Sn
Z[t1, . . . , tn] of the

polynomial ring as follows:

(3.5) (v · f)|w = f |wv

where w ∈ Sn and f ∈
⊕

w∈Sn
Z[t1, . . . , tn]. Observe that the map ι1 in (3.1) is the

following mapping

ι1(x̄i)|w = tw(i), ι1(ti)|w = ti.(3.6)

Note that it follows from (3.4), (3.5), and (3.6) that the map ι1 is Sn-equivariant map,
i.e. w · (ι1(f)) = ι1(w · f) for any f ∈ H∗

Tn(Flags(Cn)) and w ∈ Sn.
To construct an Sn-action on

⊕
w∈ST`

λ

H∗(BT `), we need some preparations. We

identify H∗(BT `) with a polynomial ring with ` variables. That is,

H∗(BT `) = Z[u1, . . . , u`]

where ui ∈ H2(BT `) is the first Chern class of the line bundle ET ` ×T ` Ci over BT
`.

Here, Ci is the one dimensional representation of T ` through a map T ` → S1 given by
diag(h1, · · · , h1, h2, · · · , h2, · · · · · · , h`, · · · , h`) 7→ hi.

It is known that Flags(Cn) and Sλ admit a cellular decomposition ([6]), so the odd
degree cohomology groups of Flags(Cn) and Sλ vanish. The path-connectedness of
Flags(Cn) and Sλ together with this fact implies that the maps ι1 and ι2 in (3.1) are
injective (cf.[5]) and that the map ρλ in (3.1) is surjective (cf.[2]). The map π in (3.1) is
clearly surjective. Therefore, we obtain the following lemma. Let ȳi be the image ρλ(x̄i)
of x̄i for each i.

Lemma 3.1. The T `-equivariant cohomology ring H∗
T `(Sλ) is generated by ȳ1,. . . ,ȳn,

u1,. . . ,u` as a ring where ȳi is as above and H∗(BT `) = Z[u1, . . . , u`]. 2

Let φ : [n]→ [`] ([n] := {1, 2, . . . , n}) be a map defined by

(3.7) φ(i) = k

if λ1+ · · ·+λk−1+1 ≤ i ≤ λ1+ · · ·+λk where λ1+ · · ·+λk−1 = 0 when k = 1. Observe
that the map π in (3.1) is the following mapping

π(f |w(t1, . . . , tn)) = f |w(uφ(1), . . . , uφ(n)),(3.8)
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where f |w denotes w-component of f . It follows from (3.6), (3.8) and the commutative
diagram in (3.1) that

(3.9) ι2(ȳi)|w = uφ(w(i)) and ι2(ui)|w = ui.

Third, we define the left action of v ∈ Sn on the direct sum
⊕

w∈ST`
λ

Z[u1, . . . , u`] of
the polynomial ring as follows:

(3.10) (v · f)|w = f |w′

for w ∈ ST
`

λ and f ∈
⊕

w∈ST`
λ

Z[u1, . . . , u`] where w′ is the element of ST
`

λ whose right

coset agrees with the right coset [wv] of Sλ1 × Sλ2 × · · · × Sλ`
\Sn. Note that the map π

in (3.1) is not Sn-equivariant in general.

Lemma 3.2. For any v ∈ Sn and 1 ≤ i ≤ n, it follows that

(3.11) v · (ι2(ȳi)) = ι2(ȳv(i)) and v · (ι2(ui)) = ι2(ui)

where the map ι2 is in (3.1) and ȳi is the image of x̄i under the map ρλ in (3.1).

Proof. From (3.9) and (3.10), we have

(v · (ι2(ui)))|w = ι2(ui)|w′ = ui = ι2(ui)|w
for all w ∈ Sn. So the second equation holds. From (3.9) and (3.10) again, we have

(v · (ι2(ȳi)))|w = ι2(ȳi)|w′ = uφ(w′(i)),

ι2(ȳv(i))|w = uφ(w(v(i))).

Therefore, it is enough to prove φ(w′(i)) = φ(wv(i)). Since [w′] = [wv] in Sλ1 × Sλ2 ×
· · · × Sλ`

\Sn, we have

λ1 + · · ·+ λr−1 + 1 ≤ w′(i) ≤ λ1 + · · ·+ λr,

λ1 + · · ·+ λr−1 + 1 ≤ wv(i) ≤ λ1 + · · ·+ λr

for some r. From the definition (3.7) of the map φ, we have φ(w′(i)) = φ(wv(i)), and
the first equation holds. We are done. 2

Since the map ι2 is injective, we obtain an Sn-action on H∗
T `(Sλ) satisfying

(3.12) w · ȳi = ȳw(i) and w · ui = ui

for w ∈ Sn from Lemma 3.1 and Lemma 3.2. Moreover, one can see that the map ρλ in
(3.1) is Sn-equivariant homomorphism by (3.4) and (3.12). We summarize the results in
this section as follows.

Proposition 3.3. There exists an Sn-action on H∗
T `(Sλ) such that the map ρλ in (3.1)

is Sn-equivariant homomorphism where the Sn-action on H∗
Tn(Flags(Cn)) is given by

(3.4).

4. Main theorem

In this section, we state our main theorem. For this purpose, let us clarify our no-
tations. We set pλ(s) := λn−s+1 + λn−s+2 + · · · + λ` for s = 1, · · · , n. We denote by λ̌
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the transpose of λ. That is, λ̌ = (η1, · · · , ηk) where k = λ1 and ηi = |{j | λj ≥ i}| for
1 ≤ i ≤ k. For indeterminates y1, · · · , ys and a1, a2, · · · , let

(4.1) ed(y1, · · · , ys|a1, a2, · · · ) :=
d∑

r=0

(−1)d−rer(y1, · · · , ys)hd−r(a1, · · · , as+1−d)

for d ≥ 0 where ei and hi denote the i-th elementary symmetric polynomial and the
i-th complete symmetric polynomial, respectively. In fact, this is the factorial Schur
function corresponding to the Young diagram consisting of the unique column of length
d as shown in the next section (see Lemma 5.1). We also define a map φλ : [n]→ [`] by
the condition

(uφλ(1), · · · , uφλ(n))(4.2)

= (u1, · · · , u1︸ ︷︷ ︸
λ1−λ2

, u1, u2, · · · , u1, u2︸ ︷︷ ︸
2(λ2−λ3)

, · · · · · · , u1, u2, · · · , u`, · · · · · · , u1, u2, · · · , u`︸ ︷︷ ︸
`(λ`−λ`+1)

)

as ordered sequences where for each 1 ≤ r ≤ ` the r-th sector of the right-hand-side
consists of (u1, u2, · · · , ur) repeated (λr − λr+1)-times. Here, we denote λ`+1 = 0.

Let us define a ring homomorphism

(4.3) ψ : Z[y1, · · · , yn, u1, · · · , u`]→ H∗
T `(Sλ)

by sending yi to ȳi and ui to ui where H
∗(BT `) = Z[u1, · · · , u`]. Recall that ȳi is the

equivariant first Chern class of the tautological line bundle Ei/Ei−1 over Flags(Cn) (see
Section 3) restricted to Sλ. This homomorphism ψ is a surjection by Lemma 3.1.

Theorem 4.1. The map ψ in (4.3) induces a ring isomorphism

H∗
T `(Sλ) ∼= Z[y1, · · · , yn, u1, · · · , u`]/Ĩλ

where Ĩλ is the ideal of the polynomial ring Z[y1, · · · , yn, u1, · · · , u`] generated by the
polynomials ed(yi1 , · · · , yis |uφλ(1), · · · , uφλ(n)) defined in (4.1) with φλ described in (4.2)
for 1 ≤ s ≤ n, 1 ≤ i1 < · · · < is ≤ n, and d ≥ s+ 1− pλ̌(s).

Remark. The ideal Ĩλ is the T `-equivariant analogue of so-called Tanisaki’s ideal (it

is written as Kλ̌ in [9]). Each generator of Ĩλ given above specializes to a generator of
Tanisaki’s ideal given in [9] after the evaluation ui = 0 for all i.

5. Proof of the main theorem

In this section, we prove Theorem 4.1. Our argument is the T `-equivariant version of
[9]. We first show that ed(ȳi1 , · · · , ȳis |uφλ(1), · · · , uφλ(n)) = 0 in H∗

T `(Sλ) for 1 ≤ s ≤ n,
1 ≤ i1 < · · · < is ≤ n, and d ≥ s+ 1− pλ̌(s). By the Sn-action on H∗

T `(Sλ) constructed
in Section 3, we may assume that i1 = 1, · · · , is = s.

Let us first consider the cases for s < n, and prove that for d ≥ s+ 1− pλ̌(s) we have
ed(ȳ1, · · · , ȳs|uφλ(1), · · · , uφλ(n)) = 0 in H∗

T `(Sλ). Take a Tn-invariant complete flag U•
by refining the flag (· · · ⊂ N2

0Cn ⊂ N0Cn ⊂ Cn). This is possible since N0 is in Jordan
canonical form. We denote by w̄ the element of Sn corresponding to U•, i.e. U• = w̄F•
where F• is the standard flag defined by Fi = 〈e1, · · · , ei〉 for all 1 ≤ i ≤ n. For a Young
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diagram µ with at most s rows and n − s columns, the Schubert variety corresponding
to µ with respect to the reference flag U• is

Xµ(U•) = {V ∈ Grs(Cn) | dim(V ∩ Un−s+i−µi) ≥ i for all 1 ≤ i ≤ s}
where Grs(Cn) denotes the set of s dimensional complex linear subspaces in Cn. It

is known that Xµ(F̃•) ∩ Xν(F•) = ∅ unless µ ⊂ ν† (cf. [1] § 9.4, Lemma 3). Here,

ν† = (n − s − νs, · · · , n − s − ν1) and F̃• is the opposite flag of F• defined by F̃i =
〈en+1−i, · · · , en〉. By multiplying both sides of this equality by w̄, we get

(5.1) Xµ(w̄F̃•) ∩Xν(U•) = ∅ unless µ ⊂ ν†.

Since the flag w̄F̃• is Tn-invariant, the Schubert variety Xµ(w̄F̃•) is a T
n-invariant irre-

ducible subvariety of Grs(Cn). Let S̃µ := [Xµ(w̄F̃•)] ∈ H∗
Tn(Grs(Cn)) be the associated

Tn-equivariant cohomology class.
Let p : Flags(Cn)→ Grs(Cn) be the projection defined by p(V•) = Vs. Then it follows

that
p(Sλ) ⊂ Xµ0(U•)

where µ0 = (n − s, · · · , n − s, 0, · · · , 0) with n − s repeated pλ̌(s)-times and 0 repeated
(s−pλ̌(s))-times (cf. [9] § 3, Proposition 3). Hence, we obtain the following commutative
diagram

(5.2)

H∗
Tn(Flags(Cn))

p∗←−−−− H∗
Tn(Grs(Cn))

ρλ

y yi∗

H∗
T `(Sλ)

k∗←−−−− H∗
Tn(Xµ0(U•))

where i∗ is the map induced by the inclusion and k is the restriction of the projection map
p. Let µs,d = (1, · · · , 1, 0, · · · , 0) with 1 repeated d-times and 0 repeated (s − d)-times.
This Young diagram has at most s rows and n− s columns since we are assuming that
s < n. Recall that the Tn-equivariant Schubert class S̃µ = [Xµ(w̄F̃•)] comes from the

relative cohomology H∗
Tn(Grs(Cn), Grs(Cn)\Xµ(w̄F̃•)). So it follows that i∗S̃µs,d

= 0 for

d ≥ s + 1 − pλ̌(s) since µs,d 6⊂ µ†0 and (5.1) show that any cycle in Xµ0(U•) does not

intersect with Xµs,d
(w̄F̃•). Thus, we obtain ρλ(p

∗S̃µs,d
) = 0 by the commutativity of the

diagram (5.2).

To give a polynomial representative of ρλ(p
∗S̃µs,d

), let us first describe p∗S̃µs,d
in terms

of x̄1, · · · , x̄n and t1, · · · , tn. Observe that w ∈ Sn acts on Cn from the left by

w · (x1, · · · , xn) = (xw−1(1), · · · , xw−1(n))

for (x1, · · · , xn) ∈ Cn, and this naturally induces Sn-action on Flags(Cn). For each w ∈
Sn, the induced map on Flags(Cn) is equivariant with respect to a group homomorphism
ψw : Tn → Tn defined by (g1, · · · , gn) 7→ (gw−1(1), · · · , gw−1(n)). This ψw induces a ring
homomorphism on H∗(BTn) = Z[t1, · · · , tn] :

ψ∗
w : Z[t1, · · · , tn]→ Z[t1, · · · , tn] ; ti 7→ tw−1(i),



10 HIRAKU ABE AND TATSUYA HORIGUCHI

and the induced map w∗ onH∗
Tn(Flags(Cn)) is a ring homomorphism satisfying w∗(tiα) =

ψ∗
w(ti)w

∗(α) for any α ∈ H∗
Tn(Flags(Cn)) and i = 1, · · · , n where the products are taken

by the cup products via the canonical homomorphism H∗(BTn) → H∗
Tn(Flags(Cn)).

Similarly, Sn acts on Grs(Cn) from the left, and the projection p : Flags(Cn)→ Grs(Cn)
is Sn-equivariant. Observe that w∗x̄i = x̄i for any w ∈ Sn since w naturally induces a
map Ei/Ei−1 → Ei/Ei−1 which is a fiber-wise isomorphism.

Recall from [3] that the Tn-equivariant Schubert class [Xµ(F•)] ∈ H∗
Tn(Grs(Cn)) with

respect to the standard reference flag F• is represented by the factorial Schur function
(see [4]) in the Tn-equivariant cohomology of Flags(Cn) :

p∗[Xµ(F•)] = sµ(−x̄1, · · · ,−x̄s| − tn, · · · ,−t1).
For the convenience of the reader, we here recall the definition of factorial Schur functions
from [4]: for a Young diagram µ with at most s rows, the factorial Schur function
associated to µ is defined to be

sµ(x1, · · · , xs|a1, a2, · · · ) =
∑
T

∏
α∈µ

(xT (α) − aT (α)+c(α))

as a polynomial in Z[x1, · · · , xs] ⊗ Z[a1, a2, · · · ] where T runs over all semistandard
tableaux of shape µ with entries in {1, · · · , s}, T (α) is the entry of T in the cell α ∈ µ,
and c(α) = j− i is the content of α = (i, j). This polynomial is symmetric in x-variables.

From the definition, we have thatXµ(w̄F̃•) = w̄w0Xµ(F•) where w0 ∈ Sn is the longest
element with respect to the Bruhat order. So it follows that

p∗S̃µ = p∗((w̄w0)
−1)∗[Xµ(F•)] = ((w̄w0)

−1)∗p∗[Xµ(F•)]

= sµ(−x̄1, · · · ,−x̄s| − tw̄(1), · · · ,−tw̄(n))

since the projection p : Flags(Cn) → Grs(Cn) is equivariant with respect to the left
Sn-actions. In particular, the following lemma with the definition (4.1) shows that

p∗S̃µs,d
= (−1)ded(x̄1, · · · , x̄s|tw̄(1), · · · , tw̄(n)).(5.3)

Lemma 5.1. For indeterminates x1, · · · , xs, a1, a2, · · · , we have

sµs,k
(x1, · · · , xs|a1, a2, · · · ) =

k∑
r=0

(−1)k−rer(x1, · · · , xs)hk−r(a1, · · · , as+1−k)

for k ≥ 0 where µs,k = (1, · · · , 1, 0, · · · , 0) with 1 repeated k-times and 0 repeated (s−k)-
times.

Proof. We first find the coefficient of the monomial x1 · · ·xr in sµs,k
(x|a). For each

I = (i1, i2, · · · , ik−r) satisfying r + 1 ≤ i1 < i2 < · · · < ik−r ≤ s, there is a summand in
sµs,k

(x|a) corresponding to the standard tableau TI of shape µs,k whose (j, 1)-th entry is{
j if 1 ≤ j ≤ r,
ij−r if r + 1 ≤ j ≤ k.
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The summand is of the form

(x1 − a1)(x2 − a1) · · · (xr − a1)(xi1 − ai1−r)(xi2 − ai2−r−1) · · · (xik−r
− aik−r−k+1),

and the contribution of the monomial x1 · · ·xr from this polynomial is

(−1)k−r(ai1−rai2−r−1 · · · aik−r−k+1)x1 · · ·xr.
Since the condition on I is equivalent to

1 ≤ i1 − r ≤ i2 − r − 1 ≤ · · · ≤ ik−r − k + 1 ≤ s− k + 1,

we see that the coefficient of x1 · · ·xr in sµs,k
(x1, · · · , xs|a1, a2, · · · ) is

(−1)k−rhk−r(a1, · · · , as−k+1).

Recalling that sµs,k
(x1, · · · , xs|a1, a2, · · · ) is symmetric in x-variables, we conclude that

the coefficient of xj1 · · ·xjr is (−1)k−rhk−r(a1, · · · , as−k+1) for any 1 ≤ j1 < · · · < jr ≤ s.
Thus, the polynomial

(−1)k−rer(x1, · · · , xs)hk−r(a1, · · · , as−k+1)

gives the summand in sµs,k
(x1, · · · , xs|a1, a2, · · · ) whose degree in x-variables is r. 2

From now on, we take a specific choice of w̄ as follows, and we study the image of the
Schubert classes p∗S̃µ under ρλ. We choose w̄ so that its one-line notation is given by

w̄ = J1 · · · J`
where each sector Jr is a sequence of subsectors

Jr = j(1)r · · · j(λr−λr+1)
r

consisted by sequences of the form

j(m)
r = (λ1 − λr) +m , (λ1 − λr) + λ2 +m , . . . . . . , (λ1 − λr) + λ2 + · · ·+ λr +m.

Note that j
(m)
r is a sequence of length r, and Jr is a sequence of length r(λr−λr+1). We

define Jr to be the empty sequence if λr = λr+1. Writing down Jr for some small r, the
reader can see how the complete flag w̄F• refines the flag (· · · ⊂ N2

0Cn ⊂ N0Cn ⊂ Cn).

Example. If n = 16 and λ = (7, 5, 2, 2), then

w̄ = 1 2 3 8 4 9 5 10 6 11 13 15 7 12 14 16

where J1 = j
(1)
1 j

(2)
1 = 1 2, J2 = j

(1)
2 j

(2)
2 j

(3)
2 = 3 8 4 9 5 10, J3 is the empty sequence, and

J4 = j
(1)
4 j

(2)
4 = 6 11 13 15 7 12 14 16. The reader should check that w̄F• refines the flag

(· · · ⊂ N2
0Cn ⊂ N0Cn ⊂ Cn).

The map φ : [n]→ [`] defined in (3.7) takes each sequence j
(m)
r to the sequence 1, · · · , r

since k-th number of j
(m)
r satisfies

λ1 + · · ·+ λk−1 + 1 ≤ (λ1 − λr) + λ2 + · · ·+ λk +m ≤ λ1 + · · ·+ λk.
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This shows that φ ◦ w̄ coincides with the map φλ defined in (4.2). Applying ρλ to (5.3),
we obtain

ρλ ◦ p∗(S̃µs,d
) = (−1)ded(ȳ1, · · · , ȳs|uφλ(1), · · · , uφλ(n))

in H∗
T `(Sλ). Since i

∗(S̃µs,j ) = 0, the commutative diagram (5.2) shows that the left-hand-
side of this equality vanishes. That is, we proved that ed(ȳ1, · · · , ȳs|uφλ(1), · · · , uφλ(n)) =
0 for the cases s < n.

We are left with the case s = n. In this case, we have that d ≥ n + 1 − pλ̌(n) = 1.
Observe that in H∗

Tn(Flags(Cn)) we have

ed(x̄1, · · · , x̄n|t1, · · · , tn)

=

d∑
r=0

(−1)d−rer(x̄1, · · · , x̄n)hd−r(t1, · · · , tn+1−d)

=
d∑

r=0

(−1)d−rer(t1, · · · , tn)hd−r(t1, · · · , tn+1−d)

by the presentation given in (3.3). It is straightforward to check that this is equal
to ed(tn+2−d, · · · , tn) (which is zero since the number of variables is greater than d) by
considering the generating functions with a formal variable z for elementary and complete
symmetric polynomials :

n∏
i=1

(1− tiz) =
n∑

r=0

(−1)rer(t1, · · · , tn)zr,

n∏
i=1

1

1− tiz
=

∑
r≥0

hr(t1, · · · , tn)zr.

That is, the polynomial ed(x̄1, · · · , x̄n|t1, · · · , tn) vanishes in H∗
Tn(Flags(Cn)), and hence

we see that ed(ȳ1, · · · , ȳn|uφλ(1), · · · , uφλ(n)) = 0.

Now, the homomorphism (4.3) induces a surjective ring homomorphism

ψ̄ : Z[y1, · · · , yn, u1, · · ·u`]/Ĩλ −→ H∗
T `(Sλ).

In what follows, we prove that this is an isomorphism by thinking of both sides as
Z[u1, · · ·u`]-algebras. Namely, the ring on the left-hand-side admits the obvious mul-
tiplication by u1, · · · , un, and the ring on the right-hand-side has the canonical ring
homomorphism H∗(BT `)→ H∗

T `(Sλ) with the identification H∗(BT `) = Z[u1, · · ·u`].
Recall that Sλ admits a cellular decomposition by even dimensional cells constructed

by [6] (c.f. [2]). So the spectral sequence for the fiber bundle ET ` ×T ` Sλ → BT ` shows
that H∗

T `(Sλ) is a free Z[u1, · · · , u`]-module and that its rank over Z[u1, · · · , u`] coincides
with the rank of the non-equivariant cohomology:

rankZ[u1,··· ,u`]H
∗
T `(Sλ) = rankZH

∗(Sλ) =
n!

λ1!λ2! · · ·λ`!
=:

(
n

λ

)
.
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Hence, to prove that the map ψ̄ is an isomorphism, it is sufficient to show that the

module Z[y1, · · · , yn, u1, · · ·u`]/Ĩλ is generated by
(
n
λ

)
elements as a Z[u1, · · · , u`]-module.

To do that, let us consider a graded ring1 Z[y1, · · · , yn]/Iλ where Iλ is Tanisaki’s ideal,
namely this is generated by ed(yi1 , · · · , yis) for 1 ≤ s ≤ n, 1 ≤ i1 < · · · < is ≤ n, and
d ≥ s+ 1− pλ̌(s). In [9], it is shown that this is a free Z-module of rank

(
n
λ

)
.

Lemma 5.2. Let Φ1(y), · · · ,Φk(y) be homogeneous polynomials in Z[y1, · · · , yn] which
give an additive basis of Z[y1, · · · , yn]/Iλ where k =

(
n
λ

)
. If we think of Φ1(y), · · · ,Φk(y)

as elements of Z[y1, · · · , yn, u1, · · · , u`]/Ĩλ, then they generate Z[y1, · · · , yn, u1, · · · , u`]/Ĩλ
as a Z[u1, · · · , u`]-module.

Proof. It suffices to show that any monomialm of y1, · · · , yn in Z[y1, · · · , yn, u1, · · · , u`]/Ĩλ
can be written as a Z[u1, · · · , u`]-linear combination of Φ1(y), · · · ,Φk(y). We prove this
by induction on the degree d of m. The base case d = 0 is clear, i.e. Φi(y) = 1 for
some i. We assume that d ≥ 1 and the claim holds for d− 1. Let θ be a homomorphism
from Z[y1, · · · , yn, u1, · · · , u`]/Ĩλ to Z[y1, · · · , yn]/Iλ sending yi to yi and ui to 0. This is

well-defined since each generator ed(ȳ1, · · · , ȳs|uφλ(1), · · · , uφλ(n)) of Ĩλ is mapped to the
corresponding generator ed(yi1 , · · · , yis) of Iλ. By the assumption, θ(m) can be written
as a Z-linear combination of Φ1(y), · · · ,Φk(y), that is, we have

m−
∑
i

aiΦi(y) ∈ ker θ

for some ai ∈ Z. Here, ker θ is the ideal of Z[y1, · · · , yn, u1, · · · , u`]/Ĩλ generated by

u1, · · · , u`. In fact, it follows that the image of Iλ in Z[y1, · · · , yn, u1, · · · , u`]/Ĩλ is in-

cluded in the ideal (u1, · · · , u`) of Z[y1, · · · , yn, u1, · · · , u`]/Ĩλ from the following equation

in Z[y1, · · · , yn, u1, · · · , u`]/Ĩλ:

ed(yi1 , · · · , yis) = −
∑

0≤r<d

(−1)d−rer(yi1 , · · · , yis)hd−r(uφλ(1), · · · , uφλ(s+1−d)).

Therefore, the monomial m can be written as

m =
∑
i

aiΦi(y) +
∑̀
j=1

fj(y, u)uj(5.4)

for some polynomials f1(y, u), · · · , f`(y, u). Sincem has degree d, we can replace the poly-
nomials in the right-hand-side by their homogeneous components of degree d. Namely, we
can assume that degΦi(y) = deg fj(y, u) + 1 = d. Now, the induction assumption shows
that each fj(y, u) is written as a Z[u1, · · · , u`]-linear combination of Φ1(y), · · · ,Φk(y)
since the degree of each monomial in y contained in fj(y, u) is less than d. Hence,
the element m is written by a Z[u1, · · · , u`]-linear combination of Φ1(y), · · · ,Φk(y) in

Z[y1, · · · , yn, u1, · · · , u`]/Ĩλ, as desired.
2

From Lemma 5.2, the surjection ψ̄ has to be an isomorphism as discussed above.

1The argument in [9] to give a presentation of the ring H∗(Sλ;C) works also over Z-coefficient, and in
that sense this ring is the presentation given in [9].
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