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THE EQUIVARIANT COHOMOLOGY RINGS OF PETERSON
VARIETIES IN ALL LIE TYPES

MEGUMI HARADA, TATSUYA HORIGUCHI, AND MIKIYA MASUDA

Abstract. Let G be a complex semisimple linear algebraic group and let Pet
be the associated Peterson variety in the flag variety G/B. The main theo-
rem of this note gives an efficient presentation of the equivariant cohomology
ring H∗

S(Pet) of the Peterson variety as a quotient of a polynomial ring by an
ideal J generated by quadratic polynomials, in the spirit of the Borel presenta-
tion of the cohomology of the flag variety. Here the group S ∼= C∗ is a certain
subgroup of a maximal torus T of G. Our description of the ideal J uses the
Cartan matrix and is uniform across Lie types. In our arguments we use the
Monk formula and Giambelli formula for the equivariant cohomology rings of
Peterson varieties for all Lie types, as obtained in the work of Drellich. Our
result generalizes a previous theorem of Fukukawa-Harada-Masuda, which was
only for Lie type A.
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1. Introduction

The main result of this paper is an explicit and efficient presentation of the equi-
variant cohomology ring of Peterson varieties in all Lie types in terms of generators
and relations, in the spirit of the well-known Borel presentation of the cohomol-
ogy of the flag variety. We briefly recall the setting of our results. The Peterson
variety has been much studied due to its relation, for example, to the quantum
cohomology of the flag variety [11, 13]. Thus it is natural to study their topology,
e.g. the structure of their (equivariant) cohomology rings. In Lie type A the Pe-
terson variety Pet can be easily described in a concrete manner. Specifically, it is
defined to be the following subvariety of the full flag variety F`ags(Cn):

(1.1) Pet := {V• | NVi ⊆ Vi+1 for all i = 1, . . . , n− 1}
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where V• denotes a nested sequence 0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vn−1 ⊆ Vn = Cn of
subspaces of Cn and dimC Vi = i for all i and N : Cn → Cn denotes a princi-
pal nilpotent operator. For a general complex semisimple linear algebraic group
G, there is also a concrete Lie-theoretic description of the Peterson variety as a
subvariety of its flag variety G/B, which we recall in Section 2 below.

In addition, there is a natural subgroup S ∼= C∗ (which is a subgroup of the
maximal torus T of G) which acts on Pet (for details see Section 2). The inclusion
of Pet into G/B induces a natural ring homomorphism

(1.2) H∗
T (G/B) → H∗

S(Pet).

The purpose of this manuscript is to give an efficient presentation of the equivariant
cohomology ring H∗

S(Pet) in all Lie types, using the recent work of Drellich [4] which
gives a Monk formula and a Giambelli formula for Peterson varieties in all Lie types.
In particular, we are able to obtain a uniform description of the relevant ideal J ,
valid for all Lie types, using the Cartan matrix associated to the Lie algebra g of
G. In particular, our analysis shows that the ideal J is generated by quadratics.

Our proof uses Hilbert series and regular sequences, in a similar spirit to previous
work of Fukukawa and the first and third authors [7], which was in turn motivated
by the work of [5, 6] which computes the graph cohomology of the GKM graphs of
the flag varieties of classical type and of G2.

Brion and Carrell give a different description of the equivariant cohomology rings
of Peterson (and other nilpotent Hessenberg) varieties as the coordinate rings of
certain affine curves [3, Theorem 3] using techniques from algebraic geometry. In
a related direction, by extending the ideas of the present manusciprt, we give in
[1] a uniform description (with explicit generators and relations) of the equivariant
cohomology rings of arbitrary regular nilpotent Hessenberg varieties – a class of
varieties which includes the Peterson variety and the full flag variety – in Lie type
A.

This paper is organized as follows. We briefly recall the necessary background
in Section 2. We derive the relevant quadratic relations in Section 3. In particular,
a key computation is contained in Lemma 3.3. The main theorem is proven in
Section 4.

Acknowledgements. The first author is supported in part by an NSERC Discov-
ery Grant (Individual), an Ontario Early Researcher Award, a Canada Research
Chair (Tier 2) Award, and a Japan Society for the Promotion of Science Invitation
Fellowship for Research in Japan (Fellowship ID L-13517). The first author addi-
tionally thanks the Osaka City University Advanced Mathematics Institute for its
hospitality, which made this collaboration possible. The third author is partially
supported by a JSPS Grant-in-Aid for Scientific Research 25400095.

2. Background on the Peterson variety

In this section we record some facts about Peterson varieties which we require
in this manuscript.

Let G be a complex semisimple linear algebraic group of rank n. We fix B a
Borel subgroup and T a maximal torus of G such that T ⊆ B ⊆ G. These choices
then determine the following data:

• a set of simple roots ∆ = {α1, . . . , αn},
• the associated Weyl group W ,
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• the associated Lie algebras t ⊆ b ⊆ g, and
• root spaces gα ⊆ g for each root α.

Definition. Let Eα be a basis element of the root space gα and let N0 =
∑

α∈∆ Eα,
a regular nilpotent operator. In this setting we may define the Peterson variety
(associated to g) as

Pet := {gB ∈ G/B | Ad(g−1)(N0) ∈ b⊕
⊕

α∈−∆

gα}.

As is well-known, the maximal torus T acts on G/B by left multiplication.
This action does not in general preserve the Peterson variety. However, using the
homomorphism φ : T → (C∗)n defined by t 7→ (α1(t), . . . , αn(t)) and defining S to
be the connected component of the identity in

φ−1({(c, c, . . . , c) | c ∈ C∗})

it can be seen that the restriction of the T -action on G/B to the subgroup S does
preserve Pet ([8, Lemma 5.1]).

Next recall that the T -fixed points of G/B are in bijective correspondence with
the Weyl group W of G. Moreover, since the S-fixed points PetS of the Peterson
variety satisfy the relation

PetS = Pet ∩ (G/B)T

we may view PetS as a subset of the Weyl group W . Indeed, the fixed point set
PetS may be described concretely as follows. For a subset K of the set ∆ simple
roots, let WK denote the parabolic subgroup generated by K and let wK denote
the longest element of WK . Then it is known [8, Proposition 5.8] that

PetS = {wK | K ⊆ ∆}.

Here and below we always use complex coefficients C for our cohomology rings
and hence omit it from our notation. Let αi : T → C∗ be a homomorphism which
thus determines a complex 1-dimensional representation of T . Let ET ×T C → BT
be the corresponding complex line bundle and by slight abuse of notation we let
αi ∈ H2(BT ) also denote the corresponding first Chern class. With this notation
in place we have

H∗(BT ) = C[α1, . . . , αn].

Consider the 1-dimensional representation of the diagonal subgroup {(c, c, . . . , c) :
c ∈ C∗} ⊆ (C∗)n obtained via the projection (c, c, . . . , c) → c. Composing with
the restriction to S of the above homomorphism φ, we obtain a 1-dimensional
representation of S and an associated line bundle ES ×S C → BS with first Chern
class denoted t ∈ H2(BS). With this notation in place we have

H∗(BS) = C[t].

Next we recall that the inclusion homomorphism S ↪→ T induces a homomorphism
π : H∗(BT ) → H∗(BS) and from the definition of φ we obtain

(2.1) π(αi) = t (i = 1, 2, . . . , n).
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We now consider the following commutative diagram

(2.2)

H∗
T (G/B) −−−−→

⊕
w∈(G/B)T =W

H∗
T (w)

ρ

y π

y
H∗

S(Pet) −−−−→
⊕

w∈PetS⊆W

H∗
S(w)

where all the maps are induced from inclusions of subgroups or inclusions of sub-
spaces. As is well-known, the odd cohomology Hodd(G/B) of G/B vanishes. The
same holds for the Peterson variety, i.e. Hodd(Pet) = 0 [12]. Thus we obtain
that both horizontal maps in (2.2) are injective, and we may identify H∗

T (G/B)
(respectively H∗

S(Pet)) with its image under these maps. For w ∈ (G/B)T ∼= W
(respectively w ∈ PetS ⊆ W ) and f ∈ H∗

T (G/B) (respectively f ∈ H∗
S(Pet)) we

will denote by f(w) the restriction of f to the w-th factor H∗
T (w) = H∗(BT ) =

C[α1, . . . , αn] (resp. H∗
S(w) = H∗(BS) = C[t]) in the direct products on the right

hand sides of (2.2).
For v ∈ W , we let σv denote the corresponding equivariant Schubert class in

H∗
T (G/B), and let pv denote its image ρ(σv) in H∗

S(Pet). We call pv a Peterson
Schubert class (associated to v). Let si be the simple reflection corresponding to
a simple root αi. The vertices of the Dynkin diagram corresponding to the set of
simple roots ∆ = {α1, . . . , αn} is in 1-1 correspondence with ∆. Here and below,
we assume to be fixed an ordering of the simple roots as given in [4, Figure 1]
(which in turn agrees with the standard ordering in [9, p.58]). With respect to
this ordering, given any subset K = {αa1 , αa2 , . . . , αak

} of the simple roots with
a1 < a2 < · · · < ak, we define an element vK of W by the formula

vK := sa1sa2 · · · sak
.

The Peterson Schubert classes pvK
corresponding to the Weyl group elements vK

defined above satisfy the following property.

Proposition 2.1 (Theorem 3.5 in [4]). The Peterson Schubert classes {pvK
| K ⊆

∆} form a C[t]-module basis for H∗
S(Pet).

It follows from Proposition 2.1 that the ρ in (2.2) is surjective. It is well-known
that the equivariant Schubert classes σsi generate H∗

T (G/B) as a C[α1, . . . , αn]-
algebra. From the surjectivity of the homomorphism ρ we immediately obtain the
following.

Proposition 2.2. The Peterson Schubert classes psi (i = 1, 2, . . . , n) generate
H∗

S(Pet) as a C[t]-algebra.

Since the odd cohomology Hodd(Pet) of the Peterson variety vanishes, we know
that as a C[t]-module the equivariant cohomology H∗

S(Pet) is isomorphic to C[t]⊗
H∗(Pet). It is known [3, Theorem 3] that

F (H∗(Pet), s) = (1 + s2)n

F (H∗
S(Pet), s) =

(1 + s2)n

1− s2

(2.3)

where the left hand sides denotes the Hilbert series of the graded rings H∗(Pet)
and H∗

S(Pet) with respect to the variable s (of degree 1).
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Fix an integer i with 1 ≤ i ≤ n and a subset K ⊆ ∆. From Proposition 2.1 it
follows that the product psi

·pvK
can be written uniquely as a C[t]-linear combination

of the pvJ
(for J ⊆ ∆). The so-called Monk’s formula gives a concrete computation

of the coefficients in this linear combination.

Theorem 2.3 (Monk’s formula for Peterson varieties for all Lie types, Theorem
4.2 in [4]). The Peterson Schubert classes satisfy the following relation:

psi · pvK
= psi(wK) · pvK

+
∑
J⊃K

|J|=|K|+1

cJ
i,K · pvJ

where the coefficient cJ
i,K are non-negative rational numbers. More specifically, we

have

cJ
i,K = (psi(wJ)− psi(wK)) · pvK

(wJ)
pvJ

(wJ)
.

Next we recall the so-called Giambelli’s formula. From Proposition 2.2 it fol-
lows that each module generator pvK

can be expressed as a polynomial (with C[t]
coefficients) in the (ring) generators psi . The Giambelli formula gives a concrete
expression for this polynomial as follows.

Theorem 2.4 (Giambelli’s formula for Peterson varieties for all Lie types, Theorem
5.5 in [4]). Suppose K is a subset of the simple roots ∆. Assume that the Dynkin
diagram corresponding to the subset K is connected. Then

|K|!
|R(vK)|

· pvK
=

∏
αi∈K

psi

where |R(vK)| denotes the number of distinct reduced-word expressions for vK .

Remark (cf. Theorem 5.3 in [4]). The connectedness assumption in the above
theorem is not serious, in the following sense. Suppose J,K ⊆ ∆ are two subsets of
∆ such that their corresponding Dynkin diagrams are connected. Suppose, however,
that J ∪K has corresponding Dynkin diagram that is not connected. Then pvJ∪K

is simply the product of pvJ
and pvK

, i.e.

pvJ∪K
= pvJ

· pvK
.

3. Quadratic relations satisfied by the Peterson Schubert classes psi

In this section, we derive certain quadratic relations satisfied by the cohomology-
degree-2 Peterson Schubert classes psi (i = 1, 2, . . . , n) by using Monk’s formula
(Theorem 2.3), Giambelli’s formula (Theorem 2.4), and Billey’s formula recalled
below. We will then show in the next section that these relations are sufficient to
determine the equivariant cohomology ring H∗

S(Pet) of the Peterson variety.

Theorem 3.1 (Billey’s formula, Theorem 4 in [2]). Let w ∈ W and fix a reduced
word decomposition w = sb1sb2 · · · sbm

of w. Set r(i, w) := sb1sb2 · · · sbi−1(αbi
). For

an equivariant Schubert class σv for v ∈ W we have the following:

σv(w) =
∑

reduced words
v=sbj1

sbj2
···sbj`

∏̀
i=1

r(ji, w).
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We begin with some elementary computations involving Peterson Schubert classes.
First, from Monk’s formula (Theorem 2.3) applied to the case K = {αi} and
vK = si we obtain

(3.1) p2
si

= psi(si) · psi +
∑
j 6=i

cj
i · pv{αi,αj}

where

(3.2) cj
i = (psi(w{αi,αj})− psi(si)) ·

psi(w{αi,αj})
pv{αi,αj}

(w{αi,αj})
.

More specifically, since Theorem 3.1 implies that σsi
(si) = αi, from (2.1) we con-

clude

(3.3) psi(si) = t.

We record the following.

Lemma 3.2. In (3.1), if si and sj commute, then cj
i = 0.

Proof. Since si and sj commute, we have w{αi,αj} = sisj . Moreover from Theo-
rem 3.1 we can compute

σsi(w{αi,αj}) = σsi(sisj) = αi.

From (2.1) we get psi(w{αi,αj}) = t. Then the equations (3.2), (3.3) imply cj
i = 0

as desired. 2

In the case when si and sj do not commute, the Dynkin diagram corresponding
to the subset K = {αi, αj} is connected, so Giambelli’s formula (Theorem 2.4)
yields

(3.4) pv{αi,αj}
=

1
2
psipsj .

In this case, the coefficient appearing in (3.1) can be expressed in terms of the
Cartan matrix.

Lemma 3.3. In (3.1), if si and sj do not commute, then

cj
i = −〈αi, αj〉

where 〈αi, αj〉 denotes the Cartan integer.

Proof. From (3.2), (3.3), (3.4) we can compute

(3.5) cj
i =

2(psi
(w{αi,αj})− t)

psj
(w{αi,αj})

so it suffices to compute psi(w{αi,αj}) and psj (w{αi,αj}). In what follows we use
the notation

aij := 〈αi, αj〉 (i 6= j), a := aijaji.

With this notation in place, note that by definition of the Cartan integers we have
that the action of the simple reflections sj on the simple roots αj may be expressed
as

(3.6) sj(αi) =

{
αi − aijαj (i 6= j),
−αi (i = j).

In order to prove the lemma, we consider each of the possible cases.
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(i) In the case when the Dynkin diagram corresponding to {αi, αj} is of the formd d
i j

the order of sisj is 3 so we have

w{αi,αj} = sisjsi = sjsisj .

Using Theorem 3.1 and (3.6) in this case we can compute that

σsi
(w{αi,αj}) = σsi(sisjsi) = αi + sisj(αi) = aαi − aijαj ,

σsj (w{αi,αj}) = σsj (sjsisj) = αj + sjsi(αj) = aαj − ajiαi.

Then (2.1) implies

psi(w{αi,αj}) = (a− aij)t, psj (w{αi,αj}) = (a− aji)t.

Finally (3.5) yields

(3.7) cj
i =

2(a− aij − 1)
(a− aji)

and substituting a = aijaji, aij = −1 we obtain cj
i = −aij as desired.

(ii) In the case d d
i j

the order of sisj is 4 so we have

w{αi,αj} = sisjsisj = sjsisjsi.

Using the above together with Theorem 3.1 and (3.6) we may compute

σsi(w{αi,αj}) = σsi(sisjsisj) = αi + sisj(αi) = aαi − aijαj ,

σsj (w{αi,αj}) = σsj (sjsisjsi) = αj + sjsi(αj) = aαj − ajiαi

which is the same as case (i) above. Thus (3.7) also holds in this case and since
a = aijaji = 2 we obtain cj

i = −aij as required.
(iii) Finally, in the case d d

i j
the element sisj has order 6 and thus

w{αi,αj} = sisjsisjsisj = sjsisjsisjsi.

In this case we have a = 3 so Theorem 3.1 and (3.6) yield that

σsi
(w{αi,αj}) = σsi(sisjsisjsisj) = αi + sisj(αi) + (sisj)2(αi) = 4αi − 2aijαj ,

σsj
(w{αi,αj}) = σsj (sjsisjsisjsi) = αj + sjsi(αj) + (sjsi)2(αj) = 4αj − 2ajiαi.

Then from (2.1) we compute

psi(w{αi,αj}) = (4− 2aij)t, psj (w{αi,αj}) = (4− 2aji)t.

Equation (3.5) then implies

cj
i =

2(3− 2aij)
4− 2aji

and finally using that aijaji = 3 we get that cj
i = −aij as desired.

This completes the proof of the lemma. 2

From the above considerations we obtain the following proposition.

Proposition 3.4. In the equivariant cohomology ring H∗
S(Pet) of the Peterson

variety, the following quadratic relations are satisfied:
n∑

j=1

〈αi, αj〉psipsj − 2tpsi = 0 (1 ≤ i ≤ n).
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Proof. If si and sj commute then 〈αi, αj〉 = 0, so by Lemma 3.2 the conclusion
of Lemma 3.3 holds in this case. From this and (3.4) we see that (3.1) can be
expressed as

p2
si

= t · psi −
1
2

∑
j 6=i

〈αi, αj〉psi
psj

.

Since 〈αi, αi〉 = 2 for any i, the above equation can be re-written to be of the form
given in the statement of the proposition. 2

4. The main theorem

Let (〈αi, αj〉)1≤i,j≤n be the Cartan matrix associated to a rank n semisimple Lie
algebra g. Using the coefficients in the Cartan matrix, we define an ideal J in the
polynomial ring C[x1, . . . , xn, t] as follows:

J :=

 n∑
j=1

〈αi, αj〉xixj − 2txi | 1 ≤ i ≤ n

 .

From Proposition 2.2 and Proposition 3.4 it then follows that the map sending xi

to psi defines a surjective C[t]-algebra homomorphism

(4.1) ϕ : C[x1, . . . , xn, t]/J � H∗
S(Pet).

Here H∗(BS) = C[t] and Pet denotes the Peterson variety associated to the
Lie algebra g. Since Hodd(Pet) = 0, as a H∗(BS)-module we have H∗

S(Pet) ∼=
H∗(BS)⊗H∗(Pet). Defining the ideal J̌ as

(4.2) J̌ =

 n∑
j=1

〈αi, αj〉xixj | 1 ≤ i ≤ n


we then also have a surjective ring homomorphism

(4.3) ϕ̌ : C[x1, . . . , xn]/J̌ � H∗(Pet).

The following is the main theorem of this paper.

Theorem 4.1. The maps ϕ and ϕ̌ of (4.1) and (4.3) are both isomorphisms.

In order to prove Theorem 4.1 we use the theory of regular sequences. For
reference we briefly recall the definition and a key property of regular sequences
(cf. [7]).

Definition. Let R be a graded commutative algebra over C and let R+ denote the
positive-degree elements in R. Then a homogeneous sequence θ1, . . . , θr ∈ R+ is
a regular sequence if θk is a non-zero-divisor in the quotient ring R/(θ1, . . . , θk−1)
for every 1 ≤ k ≤ r. This is equivalent to saying that θ1, . . . , θr is algebraically
independent over C and R is a free C[θ1, . . . , θr]-module.

It is a well-known fact (see for instance [14, p.35]) that a homogeneous sequence
θ1, . . . , θr ∈ R+ is a regular sequence if and only if

(4.4) F (R/(θ1, . . . , θr), s) = F (R, s)
r∏

k=1

(1− sdeg θk)

where F (R/(θ1, . . . , θr), s) and F (R, s) denote the Hilbert series of the graded rings
R/(θ1, . . . , θr) and R, respectively.
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The following proposition gives a convenient characterization of regular sequences.

Proposition 4.2. [7, Proposition 5.1] A sequence of positive-degree homogeneous
elements θ1, . . . , θr in the polynomial ring C[z1, . . . , zr] is a regular sequence if and
only if the solution set in Cr of the equations θ1 = 0, . . . , θr = 0 consists only of
the origin {0}.

We can now prove our main theorem.

Proof of Theorem 4.1. We first claim that if ϕ̌ is an isomorphism then it follows
that ϕ is an isomorphism. To see this, suppose that ϕ̌ is an isomorphism. Then
the sequence

θi : =
n∑

j=1

〈αi, αj〉xixj − 2txi for 1 ≤ i ≤ n,

θn+1 : = t

in C[x1, . . . , xn, t] is regular, where deg(xi) = deg(t) = 2. Indeed,

F (C[x1, . . . , xn, t]/(θ1, . . . , θn, θn+1), s)

=F (C[x1, . . . , xn]/J̌, s)

=(1 + s2)n

=
1

(1− s2)n+1
· (1− s4)n(1− s2)

=F (C[x1, . . . , xn, t], s)
n+1∏
i=1

(1− sdeg θi)

so this follows from (4.4). Note that a subsequence θ1, . . . , θn of a regular sequence
θ1, . . . , θn+1 is again a regular sequence, so from (4.4) and (2.3) we obtain

F (C[x1, . . . , xn, t]/J, s) = F (C[x1, . . . , xn, t]/(θ1, . . . , θn), s)

=
1

(1− s2)n+1

n∏
i=1

(1− sdeg θi)

=
(1 + s2)n

1− s2

= F (H∗
S(Pet), s)

from which it follows that ϕ is an isomorphism.
Thus it suffices to check that ϕ̌ is an isomorphism. We already know that ϕ̌ is

surjective and from equation (2.3) we know that F (H∗(Pet), s) = (1 + s2)n. Thus
in order to show that ϕ̌ is injective it suffices to show that

(4.5) F (C[x1, . . . , xn]/J̌, s) = (1 + s2)n.

Note that by (4.4), the equality (4.5) is equivalent to the statement that
∑n

j=1〈αi, αj〉xixj

(1 ≤ i ≤ n) is a regular sequence. Furthermore, by Proposition 4.2 , in order to
prove (4.5) it in turn suffices to show that the zero set of the collection of quadratic
equations

(4.6)
n∑

j=1

〈αi, αj〉xixj = 0 (1 ≤ i ≤ n),
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given by the generators of the ideal J̌ of (4.2) is {0}, i.e., the equations (4.6) have
only the trivial solution.

Suppose in order to derive a contradiction that (4.6) has a non-trivial solution
(b1, . . . , bn). In particular, setting I = {i | bi 6= 0}, we have I 6= ∅ and so since
bi 6= 0 for i ∈ I we obtain from (4.6) that∑

j∈I

〈αi, αj〉bj = 0 (i ∈ I).

Since (〈αi, αj〉)i,j∈I is a |I|×|I| square matrix which is again the Cartan matrix of a
semisimple Lie algebra, it must be positive definite [10, section 2.4] and in particular
non-singular. Thus the bi must be 0 for i ∈ I, contradicting the assumption on I.
Thus (4.6) has only the trivial solution, as desired. 2

Remark. Theorem 4.1 is a generalization to all Lie types of the computation given
in [7]. Indeed, the generators of the ideal given in [7] are the same as those given
above, up to a scalar factor of 1/2.

Remark. In fact, Theorem 4.1 holds also with Q coefficients. Indeed, since both
ϕ and ϕ̌ can be defined over Z, if the maps become isomorphisms upon tensoring
with C then they are also isomorphisms upon tensoring with Q.
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