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SINGULAR EXTREMAL SOLUTIONS TO A
LIOUVILLE-GELFAND TYPE PROBLEM WITH

EXPONENTIAL NONLINEARITY

FUTOSHI TAKAHASHI

Abstract. We consider a Liouville-Gelfand type problem

−∆u = eu + λf(x) in Ω, u > 0 in Ω, u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 1) is a smooth bounded domain, f ≥ 0,
f 6≡ 0 is a given smooth function, and λ ≥ 0 is a parameter. We
are concerned with the regularity property of extremal solutions
to the problem, and prove that there exists a domain Ω and a
smooth nonnegative function f such that the extremal solution of
the problem is singular when the dimension N ≥ 10. This result
is sharp in the sense that the extremal solution is always regular
(bounded) for any f and Ω when 1 ≤ N ≤ 9.

1. Introduction.

In this paper, we consider a Liouville-Gelfand type problem with the
exponential nonlinearity:

(1.1)





−∆u = eu + λf(x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN , N ≥ 1 is a smooth bounded domain, f ∈ C∞(Ω) is
a nonnegative function, not identically equal to zero, and λ ≥ 0 is a
parameter.

First, we recall the notion of a weak solution to (1.1); see Brezis et
al. [2].

Definition 1.1. A function u ∈ L1(Ω) is called a weak solution to
(1.1) if u > 0 in Ω, euδ ∈ L1(Ω), and

(1.2) −
∫

Ω

u∆ζdx =

∫

Ω

(eu + λf) ζdx
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holds for any ζ ∈ C2(Ω) such that ζ = 0 on ∂Ω, where δ(x) =
dist(x, ∂Ω).

Note that since |ζ| ≤ Cδ for any ζ ∈ C2(Ω), ζ = 0 on ∂Ω, the
integral of the right hand side of (1.2) is well-defined.

By the methods in [2], [3] and [8], we can prove the following basic
facts concerning the problem (1.1)λ.

Proposition 1.2. Let f ∈ C∞(Ω), f ≥ 0, f 6≡ 0 be a given function.
Then there exists λ∗ ∈ (0, +∞), called an extremal parameter, such
that the followings hold true.

(i) For λ ∈ (0, λ∗), there exists a minimal solution uλ to (1.1)λ. uλ

is smooth, stable in the sense that

(1.3)

∫

Ω

|∇φ|2dx ≥
∫

Ω

euλφ2dx

holds for any φ ∈ C1
0(Ω). Furthermore, uλ depends continuously and

monotone increasingly on λ ∈ (0, λ∗).
(ii) For λ = λ∗, there exists a unique weak solution u∗ to (1.1)λ. u∗

is called the extremal solution and is obtained as an increasing limit of
the minimal solutions uλ:

u∗(x) = lim
λ↑λ∗

uλ(x) (x ∈ Ω).

(iii) For λ > λ∗, there is no solution to (1.1)λ, even in the weak
sense.

In this paper, we concern the regularity issue of the extremal solution
u∗ in Proposition 1.2 (ii). In some cases, u∗ may be singular (i.e.,
u∗ 6∈ L∞(Ω)), but little is known about the singular extremal solutions.

For the well-studied problem

(1.4)

{
−∆u = λeu in Ω,

u = 0 on ∂Ω,

we have also the extremal parameter λ∗ ∈ (0, +∞) for which there is
a minimal, strict stable solution for 0 < λ < λ∗, the unique extremal
solution (may be singular) for λ = λ∗, and no solution for λ > λ∗

even in the weak sense [2] [8]. If Ω = B, the unit ball in RN , and
N ≥ 10, then the explicit radial function v(x) = −2 log |x| becomes
the singular extremal solution of (1.4) for λ = 2(N − 2) [3]. Note that
v ∈ H1

0 (B) if N ≥ 3. On the other hand, the extremal solution of
(1.4) is bounded on any bounded smooth domain Ω when 1 ≤ N ≤ 9
[4], [9]. The readers are recommended to refer to the recent book
by Dupaigne [7] and its references for these results. Concerning the
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existence of singular solutions, Dávila and Dupaigne [6] prove that
there exists an 1-parameter family of singular solutions (u(t), λ(t))t>0

to (1.4) for λ = λ(t) with the property

‖u(t)− log
1

| · −ξ(t)|2‖L∞(Ω) + |λ(t)− 2(N − 2)| → 0 (t → 0)

for some ξ(t) ∈ Ω, where the domain Ω is a small perturbation of
a ball in an appropriate sense in RN , N ≥ 4. The authors also prove
that these singular solutions correspond to the extremal solutions when
N ≥ 11. Recently, Miyamoto [10] studies the perturbed Liouville-
Gelfand problem on the unit ball B in RN , N ≥ 3:





−∆u = λ(eu + g(u)) in B,

u > 0 in B,

u = 0 on ∂B,

where g ∈ C1 is an appropriate nonlinearity which is “small” com-
pared to eu. The author proves the existence of radial singular solution
(u∗, λ∗) with the property

u∗(|x|) ∼ −2 log |x| − log λ∗ + log 2(N − 2) (|x| → 0),

and if N ≥ 10, this singular radial solution corresponds to the extremal
solution.

For other nonlinearities, Dávila [5] studies the regularity and singu-
larity issue of extremal solutions to the problem





−∆u = up + λf(x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

where Ω ⊂ RN , N ≥ 1 is a smooth bounded domain, f ∈ C∞(Ω) is
a nonnegative function, not identically equal to zero, and λ > 0. The
results in this paper correspond to the ones in [5] for the exponential
nonlinear case.

This paper is organized as follows: In §2, we prove that the extremal
solutions are regular for any f and Ω when 1 ≤ N ≤ 9. In §3, we
examine the sharpness of this regularity theorem in terms of the di-
mension of the domain, and prove that there exists a bounded domain
Ω and a smooth f ≥ 0, f 6≡ 0 such that the extremal solution u∗ is not
bounded when N ≥ 10. This means that the assumption 1 ≤ N ≤ 9 in
the regularity theorem in §2 is sharp and cannot be relaxed in general.
Finally in §4, we treat the case when the domain is a ball.
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2. Extremal solutions are regular for 1 ≤ N ≤ 9.

First, we prove the boundedness of the extremal solution to (1.1) in
lower dimensions.

Theorem 2.1. Let Ω be any smooth bounded domain in RN and let
f ∈ C∞(Ω), f ≥ 0, f 6≡ 0 be any given function. If 1 ≤ N ≤ 9, then
there exists a constant C > 0 such that for any 0 < λ < λ∗, it holds

‖uλ‖L∞(Ω) ≤ C

for the minimal solution uλ to (1.1)λ. Consequently, the extremal so-
lution u∗ is bounded, hence smooth.

Proof. We follow the arguments in [4], [9] with some modifications for
our context. Recall the minimal solution u = uλ satisfies the stability
inequality ∫

Ω

|∇φ|2dx ≥
∫

Ω

euφ2dx, ∀φ ∈ C1
0(Ω)

and the weak form of the equation∫

Ω

∇ψ · ∇udx =

∫

Ω

(eu + λf) ψdx, ∀ψ ∈ C1
0(Ω).

We put φ = etu − 1 and ψ = t
2
(e2tu − 1), where t > 0. Testing with

them, we have ∫

Ω

t2e2tu|∇u|2dx ≥
∫

Ω

eu(etu − 1)2dx

and ∫

Ω

t2e2tu|∇u|2dx =
t

2

∫

Ω

(eu + λf)
(
e2tu − 1

)
dx.

Combining these, we obtain∫

Ω

eu(etu − 1)2dx ≤ t

2

∫

Ω

(eu + λf)
(
e2tu − 1

)
dx,

which in turn implies(
1− t

2

) ∫

Ω

e(2t+1)udx ≤
∫

Ω

(
2e(t+1)u −

(
t

2
+ 1

)
eu +

λt

2

(
e2tu − 1

)
f

)
dx

≤ 2

∫

Ω

e(t+1)udx +
λt

2

∫

Ω

e2tufdx

≤ 2

(∫

Ω

e(2t+1)udx

) t+1
2t+1

|Ω| t
2t+1

+
tλ∗

2

(∫

Ω

e(2t+1)udx

) 2t
2t+1

(∫

Ω

f 2t+1dx

) 1
2t+1

.
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We may assume that ∫

Ω

e(2t+1)udx > 1,

because on the contrary, we have ‖eu‖L2t+1(Ω) ≤ 1, and the estimate is
independent of λ ∈ (0, λ∗). In this case, if 1 − t

2
> 0 and t+1

2t+1
< 2t

2t+1
,

that is, if 1 < t < 2, then we have

∫

Ω

e(2t+1)udx ≤
[(

1− t

2

)−1
{

2|Ω| t
2t+1 +

tλ∗

2

(∫

Ω

f 2t+1dx

) 1
2t+1

}]2t+1

=: C,

here C = C(|Ω|, f) is independent of λ ∈ (0, λ∗). Thus we have
‖eu‖L2t+1(Ω) ≤ C, which implies

‖euλ + λf‖L2t+1(Ω) ≤ C

when 1 < t < 2. Now, standard elliptic estimates and Sobolev embed-
ding imply that ‖uλ‖L∞(Ω) ≤ C uniformly in λ if 2(2t + 1) > N . Since
we may choose t ∈ (1, 2) very close to 2, we obtain the uniform L∞

bound for uλ when N ≤ 9. This proves Theorem 2.1.

3. Singular extremal solutions when N ≥ 10.

In this section, we prove the following theorem, which says that the
restriction of the dimension in Theorem 2.1 is sharp concerning the
boundedness of the extremal solutions.

Theorem 3.1. Let Ω be a smooth bounded domain in RN . Assume
that N ≥ 10, 0 ∈ Ω and

(3.1) max
x∈∂Ω

|x|2 ≤ 2(N − 2)

holds true. Then there exists f ∈ C∞(Ω), f ≥ 0, f 6≡ 0 such that the
extremal solution u∗ to (1.1) with f satisfies

u∗ 6∈ L∞(Ω) and λ∗ = 1.

In the proof of Theorem 3.1, we need a characterization of the un-
bounded extremal solutions in the energy class H1(Ω), which is similar
to Brezis and Vázquez [3], Theorem 3.1. See also Dávila [5], Lemma 4.

Lemma 3.2. Let u ∈ H1
0 (Ω), u 6∈ L∞(Ω), be a singular weak solution

to (1.1)λ. Then the followings are equivalent:
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(i) euδ ∈ L1(Ω) and
∫

Ω

|∇φ|2dx ≥
∫

Ω

euφ2dx

holds for every φ ∈ C1
0(Ω).

(ii) λ = λ∗ and u = u∗.

Proof. The implication (ii) =⇒ (i) follows easily by the stability prop-
erty of the minimal solutions uλ and Fatou’s lemma.

Let us prove (i) =⇒ (ii). Since no solution exists for λ > λ∗ by
Proposition 1.2, we have λ ≤ λ∗. Assume the contrary that λ < λ∗.
By the density argument and the fact that u, uλ ∈ H1

0 (Ω), we can take
the test function φ = u − uλ ∈ H1

0 (Ω). By the minimality of uλ, we
see u − uλ ≥ 0 in Ω, and the assumption u 6∈ L∞(Ω) implies that
u − uλ 6≡ 0, since uλ is bounded for λ < λ∗. Combining the equation
satisfied by u− uλ with (i), we obtain

∫

Ω

(eu + λf − euλ − λf) (u− uλ)dx =

∫

Ω

|∇(u− uλ)|2dx

≥
∫

Ω

eu(u− uλ)
2dx,

which implies ∫

Ω

(u− uλ) (eu − euλ − eu(u− uλ)) dx ≥ 0.

Since the integrand is non positive by the convexity of s 7→ es, we
conclude that eu = euλ + eu(u − uλ) a.e. on Ω. Again the strict
convexity of s 7→ es implies u = uλ a.e. on Ω, which is a contradiction.
Thus we must have λ = λ∗.

In the following, let vs denote the explicit singular radial function
defined as

(3.2) vs(x) = −2 log |x|+ log 2(N − 2), x ∈ RN .

Then vs ∈ H1
loc(RN) if N ≥ 3 and vs satisfies the equation −∆v = ev

in RN . Recall we have assumed 0 ∈ Ω in Theorem 3.1. As in [5], our
strategy is to look for a singular solution u to (1.1) (with a suitable f)
of the form

u = vs − ψ

for some ψ ∈ C∞(Ω), ψ ≥ 0. The extremality of u will follow from the
fact that u ∈ H1

0 (Ω) and Lemma 3.2.
Next simple lemma is well-known and in fact is used in [5].
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Lemma 3.3. Let Ω be a smooth bounded domain in RN and ω be a
smooth subdomain of Ω with ω ⊂ Ω. Let ψ satisfy




∆ψ = 0 in Ω \ ω,

ψ = 0 on ∂ω,
∂ψ
∂ν
≥ 0 on ∂ω,

where ν is the unit normal vector on ∂ω pointing to the inside of Ω\ω.
Then if we put {

ψ = ψ on Ω \ ω,

ψ = 0 on ω,

ψ satisfies

∆ψ ≥ 0 in D′(Ω).

Proof. For any φ ∈ D(Ω), φ ≥ 0, we have∫

Ω

ψ∆φdx =

∫

Ω\ω
ψ∆φdx =

∫

Ω\ω
φ∆ψdx

+

∫

∂(Ω\ω)

∂φ

∂ν
ψdx−

∫

∂(Ω\ω)

∂ψ

∂ν
φdx.

Now, ∫

∂(Ω\ω)

∂φ

∂ν
ψdx =

∫

∂Ω

∂φ

∂ν
ψdx−

∫

∂ω

∂φ

∂ν
ψdx = 0

since ψ = 0 on ∂ω and ∂φ
∂ν

= 0 on ∂Ω. On the other hand,

−
∫

∂(Ω\ω)

∂ψ

∂ν
φdx = −

(∫

∂Ω

∂ψ

∂ν
φdx−

∫

∂ω

∂ψ

∂ν
φdx

)
=

∫

∂ω

∂ψ

∂ν
φdx ≥ 0

by ∂ψ
∂ν
≥ 0 and φ ≥ 0. Thus we obtain

∫

Ω

ψ∆φdx = −
∫

∂(Ω\ω)

∂ψ

∂ν
φdx ≥ 0,

which proves the lemma.

Next is a variant of [5]: Lemma 5.

Lemma 3.4. Let Ω be a smooth bounded domain in RN , 0 ∈ Ω, sat-
isfying the assumption (3.1). Then there exists a function ψ ∈ C∞(Ω)
such that

(i) ψ ≥ 0 in Ω,
(ii) ∆ψ ≥ 0 in Ω,
(iii) ψ ≡ 0 in a neighborhood of 0 ∈ Ω,
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(iv) ψ(x) = vs(x) = log 2(N−2)
|x|2 on ∂Ω.

Proof. This lemma is essentially the same one in Dávila [5]. We recall
the proof here for the reader’s convenience.

Put r = 1
2
dist(0, ∂Ω) and let Br denote the open ball with center 0

and radius r. Note that the smallness assumption of Ω (3.1) implies
that vs(x) ≥ 0 for x ∈ ∂Ω. Now, let ψ1 be th solution of




∆ψ1 = 0 in Ω \Br,

ψ1 = vs on ∂Ω,

ψ1 = 0 on ∂Br

where vs is defined in (3.2). Then ψ1 is smooth and by the maximum
principle, ψ1 > 0 on Ω\Br. Thus ∂ψ1

∂ν
> 0 by the Hopf lemma, where ν

is the unit normal vector on ∂Br pointing to the inside of Ω \Br. Put{
ψ1 = ψ1 on Ω \Br,

ψ1 = 0 on Br.

Then by Lemma 3.3, we have

∆ψ1 ≥ 0 in D′(Ω).

Put
ψ = ψ1 ∗ ρε

where ρε(x) = 1
εN ρ(x

ε
) with ρ satisfying ρ ∈ C∞

0 (RN), ρ ≥ 0, ρ(x) =
ρ(|x|), supp(ρ) ⊂ B1, and

∫
RN ρdx = 1. Then we check that ψ is the

desired function.

Proof of Theorem 3.1. Let u = vs − ψ, where vs is an explicit singular
solution (3.2) and ψ ∈ C∞(Ω) is as in Lemma 3.4. Since we assume
0 ∈ Ω, we have u 6∈ L∞(Ω). By Lemma 3.4 (ii) and (iv), we have

−∆u = −∆vs + ∆ψ = evs + ∆ψ ≥ evs > 0

on Ω and u = 0 on ∂Ω. Thus u ≥ 0 by the maximum principle. Now,
put

f(x) = evs + ∆ψ − eu = evs − evs−ψ + ∆ψ.

Then f ≥ 0 in Ω since vs ≥ u by Lemma 3.4 (i) and (ii). Also, we have

−∆u = evs + ∆ψ = eu + f(x)

in Ω. Furthermore, by Lemma 3.4 (iv),

f(x) = evs(x)(1− e−ψ(x)) + ∆ψ(x) = ∆ψ(x)

for x in a neighborhood of 0. Thus f is smooth on Ω.



SINGULAR EXTREMAL SOLUTION 9

Finally, we check that u is stable in the sense of (1.3). Indeed, for
any φ ∈ C1

0(Ω), we have
∫

Ω

euφ2dx ≤
∫

Ω

evsφ2dx = 2(N − 2)

∫

Ω

φ2

|x|2dx

≤ 2(N − 2)

(
2

N − 2

)2 ∫

Ω

|∇φ|2dx

≤
∫

Ω

|∇φ|2dx,

here we have used the fact u ≤ vs for the first inequality, the Hardy
inequality

(
N − 2

2

)2 ∫

Ω

φ2

|x|2dx ≤
∫

Ω

|∇φ|2dx ∀φ ∈ C1
0(Ω)

for the second inequality. Note that the assumption N ≥ 10 is equiva-

lent to 2(N − 2)
(

2
N−2

)2 ≤ 1 for the third inequality.

Thus u is an unbounded, stable, H1
0 -solution of (1.1) (with λ =

1). By the characterization of the singular energy extremal solutions
Lemma 3.2, we conclude that u = u∗ and λ∗ = 1.

4. The ball case.

In this section, we treat the case where the domain is a ball. Note
that in this case, the minimal solution uλ of (1.1)λ is radially symmetric
if f is assumed to be radial. More generally, we prove the lemma below,
which is a slight modification of Proposition 1.3.4 in [7].

Lemma 4.1. Let g ∈ C1(R). Let Ω be a smooth bounded, radially sym-
metric domain with the symmetric center the origin (ball or annulus)
in RN , N ≥ 2, and f = f(x) be a smooth radial function. If u ∈ C2(Ω)
is a stable solution of{

−∆u = g(u) + f(x) in Ω,

u = 0 on ∂Ω,

then u is radially symmetric.

Proof. We show that any tangential derivative h = xiuxj
−xjuxi

, (i, j ∈
{1, · · · , N}) must satisfy h ≡ 0. First, by integrating by parts and
using the boundary condition, we have∫

Ω

hdx =

∫

∂Ω

(xiνj − xjνi)udsx = 0,
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here νi denotes the i-th component of the unit normal vector ν to ∂Ω.
Next, by differentiating the equation, we have

−∆h = g′(u)h + xifxj
− xjfxi

= g′(u)h in Ω

since ∆(xiuxj
) = xi∆uxj

+ 2uxixj
and f is radially symmetric. Also we

have h = 0 on ∂Ω since ∇u ⊥ ∂Ω and thus x ∧ ∇u = 0 on ∂Ω, where
∧ denotes the exterior product. Then, multiplying h and integrating
by parts, we obtain∫

Ω

|∇h|2dx−
∫

Ω

g′(u)h2dx = 0.

Since u is stable, this means that h is a minimizer of

inf
φ∈H1

0 (Ω),φ 6≡0

∫
Ω
|∇φ|2dx− ∫

Ω
g′(u)φ2dx∫

Ω
φ2dx

if h 6≡ 0. Thus the linearized operator −∆− g′(u)· (acting on H1
0 (Ω))

has the smallest eigenvalue λ1(−∆− g′(u)·) = 0, and h 6≡ 0 is the first
eigenfunction corresponding to λ1(−∆ − g′(u)·). But in this case, h
must be of constant sign on Ω, which contradicts the fact

∫
Ω

hdx = 0.
Thus we obtain h ≡ 0, which in turn implies u is radial.

If the domain is a ball, we obtain the following result.

Theorem 4.2. Let B denote the open unit ball in RN and assume that
f ≥ 0, f 6≡ 0 be any smooth radially symmetric function. If N ≥ 10,
then the extremal solution u∗ of the problem{

−∆u = eu + λf in B,

u = 0 on ∂B

satisfies u∗ 6∈ L∞(B).

Proof. First, we recall the improved Hardy inequality by Brezis and
Vázquez [3]: For any bounded domain Ω ⊂ RN , N ≥ 2, and for any
φ ∈ H1

0 (Ω), it holds that
∫

Ω

|∇φ|2dx ≥
(

N − 2

2

)2 ∫

Ω

φ2

|x|2dx + H2

(
ωN

|Ω|
)2/N ∫

Ω

φ2dx,

where H2 is the first Dirichlet eigenvalue of the Laplacian on the unit
ball in R2 and ωN is the measure of the unit ball in RN . By this
inequality, we derive that the linearized operator −∆ − evs· = −∆ −
2(N−2)
|x|2 · (acting on H1

0 (Ω)), where vs is a function as in (3.2), has a strict

positive first eigenvalue. This fact in turn implies that the maximum
principle is valid for the operator −∆− evs·; see, for example, [1].
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Next, we claim that uλ < vs holds for the minimal solution uλ for any
λ ∈ (0, λ∗). Indeed, uλ is radial by Lemma 4.1. Assume the contrary
that there exists r ∈ (0, 1) such that uλ(r) ≥ vs(r) for some λ ∈ (0, λ∗),
where r = |x|. Then uλ − vs ≥ 0 on ∂Br and

−∆(uλ − vs) = euλ − evs + λf ≥ evs(uλ − vs) + λf

by the convexity of s 7→ es. Thus

−∆(uλ − vs)− evs(uλ − vs) ≥ 0 on Br

and we have uλ − vs ≥ 0 on Br by the maximum principle for the
operator −∆− evs·. But this is impossible since 0 ∈ Br, uλ ∈ L∞(Br)
and vs 6∈ L∞(Br). Thus we obtain the claim. By letting λ → λ∗, we
also get that u∗ ≤ vs on B.

By the above claim, we obtain that
∫

B

|∇φ|2dx−
∫

B

eu∗φ2dx ≥ inf
‖φ‖L2(B)=1

{∫

B

|∇φ|2dx−
∫

B

evsφ2dx

}

for any φ ∈ H1
0 (B) with ‖φ‖L2(B) = 1. The right hand side is strictly

positive by the improved Hardy inequality and the assumption N ≥ 10.
On the other hand, if u∗ is the classical solution to (1.1)λ∗ , the first
eigenvalue of the operator −∆− eu∗· (acting on H1

0 (B))

λ1(−∆− eu∗) = inf
φ∈H1

0 (B),φ6≡0

∫
B
|∇φ|2dx− ∫

B
eu∗φ2dx∫

B
φ2dx

must be 0 by the Implicit Function Theorem. Thus u∗ cannot be
bounded. This proves Theorem 4.2.
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