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ON THE LOCATION OF TWO BLOW UP POINTS ON AN

ANNULUS FOR THE MEAN FIELD EQUATION

MASSIMO GROSSI AND FUTOSHI TAKAHASHI

Abstract. We consider the mean field equation on two-dimensional
annular domains, and prove that if P1 and P2 are two blow up points
of a blowing-up solution sequence of the equation, then we must have
P1 = −P2.

1. Introduction

In this paper we consider the problem{
−∆u = λ eu∫

Ω eudx
in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a smooth bounded domain in R2 and λ > 0 is a parameter.
The equation (1.1) is known as the mean field equation and is considered
to have relations with various fields of mathematical physics, such as On-
sager’s vortex theories, Chern-Simons-Higgs gauge theory, and so on. The
interested readers should refer the books by Tarantello [15], Yang [16], and
the references therein. The possible blowing-up or non-compactness for a
solution sequence of the problem have attracted many authors for more than
two decades, and many efforts have been devoted to study such a critical
phenomena.

Now, thanks to the works by [14], [3] and [13], we have the following
description of the blowing-up solution sequences: Let un be a sequence of
solutions to (1.1) for λ = λn such that ∥un∥L∞(Ω) is not bounded from above
while λn = O(1) as n → ∞. Then there exists a subsequence λn and a set
S = {a1, · · · , al} with ai ∈ Ω, such that λn → 8πl, l ∈ N, and

λn
eun∫

Ω eundx
⇀ 8π

l∑
i=1

δai

in the sense of measures. Moreover, each ai ∈ S must satisfy the condition

1

2
∇R(ai)−

l∑
j=1,j ̸=i

∇xG(ai, aj) = 0⃗, (i = 1, 2, · · · , l) (1.2)
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where G = G(x, y) is the Green function with pole y ∈ Ω subject to the
Dirichlet boundary condition:

−∆xG(x, y) = 2πδy in Ω, G(x, y)
∣∣∣
x∈∂Ω

= 0,

and R is the Robin function defined as

R(y) = lim
x→y

(
log |x− y|−1 −G(x, y)

)
.

Therefore, the relation (1.2) can be considered as a characterization of the
location of blow up points for (1.1).

On the other hand, several existence results of l-points blowing-up solu-
tions to (1.1) have been found by several authors, see [8], [7]. Their results
can be summarized as follows:

Let l ≥ 1 be an integer and set

∆ = {(x1, · · · , xl) ∈ Ωl | xi = xj for some i, j ∈ {1, · · · , l}},

where Ωl ⊂ R2l denotes an l-time products of Ω. Define F : Ωl \∆ → R as

F(ξ1, · · · , ξl) =
l∑

i=1

R(ξi)−
∑
i̸=j

1≤i,j≤l

G(ξi, ξj),

here, we agree that F(ξ) = R(ξ) for ξ ∈ Ω when l = 1. Note that the condi-
tion ∇(ξ1,··· ,ξl)F(a1, · · · , al) = 0 is equivalent to (1.2) for (a1, · · · , al) ∈ Ωl.

By these notations, let (a1, · · · , al) ∈ Ωl\∆ be a “stable” critical point [8], or
a “nontrivial” critical point [7] of F , that is, (a1, · · · , al) satisfies (1.2) and
some additional “stability” or “nontriviality” condition is satisfied. Then
there exists a sequence of solutions blowing up exactly at S = {a1, · · · , al}.
In particular, if the domain is not simply-connected, there always exists a
sequence of blowing-up solution which blows up at l points on the domain
for any l ∈ N. Contrary to the above, we do not have any blowing-up solu-
tion sequence with multiple (l ≥ 2) blow up points, if the domain is convex.
This nonexistence of multiple blow up points holds true for several nonlinear
problems other than (1.1), see [9]. The relationship between the location of
blow up points and the geometry of the domain seems to be an interesting
subject.

In this note, we turn to the study of the location of blow up points for the
mean field equation (1.1). We concentrate to the case when Ω is an annulus.
In this case, C. C. Chen and C. S. Lin [5] showed the following:

Theorem 1.1. ([5] Theorem 1.4.) Let {un} be a solution sequence to (1.1)
for λ = λn with λn → 16π such that un blows up at two points P1 and P2

on the annulus, Let P1,n and P2,n be the two local maximum points near P1

and P2 respectively, then P1,n, P2,n and the origin form a straight line ln
and un is symmetric with respect to the line ln for n large. Consequently,
P1, P2 and the origin are located on a same line.
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The proof of Theorem 1.1 is done by the method of rotating planes, which
is applicable to other kinds of nonlinear elliptic equations, see for example
[12]. An analogous result for problems involving the critical Sobolev expo-
nent was obtained in [4].
Theorem 1.1 leaves open the question of whether the blow up points P1 and
P2 are anti-symmetric, i.e.

P1 = −P2. (1.3)

In this note, by using the characterization of blow up points (1.2) and the
explicit form of the Green function on an annulus derived by D. M. Hickey
[10], [11], we show (1.3).

Theorem 1.2. Let {un} be a sequence of solutions to (1.1) for λ = λn with
λn → 16π such that un blows up at two points P1 and P2 on the annulus,
Then we have P1 = −P2.

Next we compute the value of |P1| = |P2|.

Theorem 1.3. Define r0 = |P1| = |P2| where P1, P2 ∈ A = {a < |x| < a}
are two blow up points. Then r0 is the unique solution of the equation

2
log(r/b)

log(a/b)
− 1

2
=

∞∑
m=1

1

b2m − a2m
(r2m − (ab)2mr−2m)((−1)m + 1) (1.4)

for r ∈ (a, b).

The explicit form of the Dirichlet Green function on a two dimensional
annulus can be seen in several literatures, see for example, [6], [1], [2]. Most
of them use the Weierstrass doubly periodic functions. We find that the
Fourier expansion of the Green function is convenient to our analysis. Since
the derivation in [10] is easy and seems less known, we prove the formula in
Appendix for the sake of completeness.

2. Proof of Theorem 1.2.

Let A = {x ∈ R2 | a < |x| < b} be a two-dimensional annulus. Then the
Green function on A is explicitly written as follows.

Proposition 2.1. (Hickey’s formula [10]) Let GA = GA(x, y) be the Green
function on A with pole y ∈ A:

−∆xGA(x, y) = 2πδy in A, GA(x, y)
∣∣∣
x∈∂A

= 0.

Then we have

GA(x, y) = − log |x− y|+A0(y) +B0(y) log |x|

−
∞∑

m=1

1

m
(Am(y)|x|m +Bm(y)|x|−m) cosm(θ − θy), (2.1)
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where x = (x1, x2) = (|x| cos θ, |x| sin θ), y = (|y| cos θy, |y| sin θy), and

A0(y) = log b
log(a/|y|)
log(a/b)

, B0(y) =
log(|y|/b)
log(a/b)

,

Am(y) =
|y|m −

(
a2

|y|

)m

b2m − a2m
, Bm(y) =

a2m
((

b2

|y|

)m
− |y|m

)
b2m − a2m

. (2.2)

As a corollary, we have

Corollary 2.2. The Robin function on the annulus A = {a < |x| < b} ⊂ R2

is

RA(y) := lim
x→y

(− log |x− y| −GA(x, y))

= −(log |y| − log b)2

log(a/b)
− log b

+

∞∑
m=1

1

m

1

b2m − a2m
(|y|2m − 2a2m + (ab)2m|y|−2m). (2.3)

Note that RA is a radial function on A, as it was stated in [5] (Lemma
3.3).

Also using the fact

∇x =
x

r

∂

∂r
+

x⊥

r2
∂

∂θ
where r = |x|, x⊥ = (−x2, x1) for x = (x1, x2), we obtain the formula for
the gradients of GA and RA as follows:

Corollary 2.3. We have

∇xGA(x, y) = − (x− y)

|x− y|2
+B0(y)

x

|x|2

− x

|x|

∞∑
m=1

(Am(y)|x|m−1 −Bm(y)|x|−m−1) cosm(θ − θy)

+
x⊥

|x|2
∞∑

m=1

(Am(y)|x|m +Bm(y)|x|−m) sinm(θ − θy), (2.4)

and

1

2
∇RA(y) = − log(|y|/b)

log(a/b)

y

|y|2

+

∞∑
m=1

1

b2m − a2m
(|y|2m−1 − (ab)2m|y|−2m−1)

y

|y|
. (2.5)

Now, we prove Theorem 1.2 by direct calculations.

Proof of Theorem 1.2. Let P1, P2 ∈ A, P1 ̸= P2 be two blow up points
for a blowing-up solution sequence {un} to (1.1). Since Theorem 1.1 holds,
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the only thing we have to prove Theorem 1.2 is that |P1| = |P2|. For that
purpose, we will exploit the characterization of blow up points (1.2). In this
case, it reads that {

1
2∇RA(P1) = ∇xGA(P1, P2),
1
2∇RA(P2) = ∇xGA(P2, P1),

(2.6)

which implies {
1
2∇RA(P1) · P1 = ∇xGA(P1, P2) · P1,
1
2∇RA(P2) · P2 = ∇xGA(P2, P1) · P2.

(2.7)

By using the formulae (2.4), (2.5), we can write the equations (2.7) as

−B0(P1) +
∞∑

m=1

1

b2m − a2m
(|P1|2m − (ab)2m|P1|−2m)

= −(P1 − P2) · P1

|P1 − P2|2
+B0(P2)−

∞∑
m=1

(Am(P2)|P1|m −Bm(P2)|P1|−m) cosm(θP1 − θP2),

(2.8)

and

−B0(P2) +
∞∑

m=1

1

b2m − a2m
(|P2|2m − (ab)2m|P2|−2m)

= −(P2 − P1) · P2

|P2 − P1|2
+B0(P1)−

∞∑
m=1

(Am(P1)|P2|m −Bm(P1)|P2|−m) cosm(θP1 − θP2),

(2.9)

where P1 = (|P1| cos θP1 , |P1| sin θP1), P2 = (|P2| cos θP2 , |P2| sin θP2) in polar
coordinates. Inserting (2.2), we have

Am(P2)|P1|m −Bm(P2)|P1|−m =
1

b2m − a2m
×{

|P1|m|P2|m − a2m|P1|m|P2|−m + a2m|P1|−m|P2|m − (ab)2m|P1|−m|P2|−m
}
,

Am(P1)|P2|m −Bm(P1)|P2|−m =
1

b2m − a2m
×{

|P1|m|P2|m − a2m|P1|−m|P2|m + a2m|P1|m|P2|−m − (ab)2m|P1|−m|P2|−m
}
.

Thus, subtracting (2.9) from (2.8), we have

∞∑
m=1

1

b2m − a2m
(|P1|2m − (ab)2m|P1|−2m − |P2|2m + (ab)2m|P2|−2m)

=
|P2|2 − |P1|2

|P1 − P2|2
−

∞∑
m=1

2a2m

b2m − a2m
(|P1|−m|P2|m − |P1|m|P2|−m) cosm(θP1 − θP2).
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From this, we obtain

|P2|2 − |P1|2

|P2 − P1|2

=

∞∑
m=1

|P1|2m − |P2|2m

b2m − a2m

{
1 +

(ab)2m

|P1|2m|P2|2m
− 2a2m

|P1|m|P2|m
cosm(θP1 − θP2)

}
.

(2.10)

Concerning the RHS of (2.10), we see{
1 +

(ab)2m

|P1|2m|P2|2m
− 2a2m

|P1|m|P2|m
cosm(θP1 − θP2)

}
≥ 1 +

(ab)2m

|P1|2m|P2|2m
− 2ambm

|P1|m|P2|m
=

(
1− (ab)m

|P1|m|P2|m

)2

≥ 0,

since a < b. Thus, if |P1| > |P2|, LHS of (2.10) < 0 while RHS of (2.10) ≥
0, which is a contradiction. The case of |P1| < |P2| leads to the same
contradiction. This implies that |P1| = |P2| must hold, which ends the proof
of Theorem 1.2.

Now we compute the value of |P1| = |P2|.
Proof of Theorem 1.3. By inserting P2 = −P1 into the first equation of
(2.6):

1

2
∇RA(P1) = ∇xGA(P1, P2),

and using (2.4), (2.5), we have

− log(|P1|/b)
log(a/b)

P1

|P1|2
+

P1

|P1|2
∞∑

m=1

1

b2m − a2m
(|P1|2m − (ab)2m|P1|−2m)

= −1

2

P1

|P1|2
+

log(|P1|/b)
log(a/b)

P1

|P1|2

− P1

|P1|2
∞∑

m=1

(−1)m

b2m − a2m
(|P1|2m − (ab)2m|P1|−2m),

which in turn implies

2
log(|P1|/b)
log(a/b)

− 1

2
=

∞∑
m=1

1

b2m − a2m
(|P1|2m − (ab)2m|P1|−2m){(−1)m + 1}

(2.11)

since P1 ̸= 0. Let f(r) = 2 log(r/b)
log(a/b) −

1
2 for a < r < b. f is a monotonically

decreasing function with f(a+ 0) = 3
2 , f(b− 0) = −1

2 , and having a unique

zero at r = b3/4a1/4. Also define

g(r) =

∞∑
m=1

1

b2m − a2m
(r2m − (ab)2mr−2m){(−1)m + 1}.
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Since (−1)m + 1 ≥ 0 for any m ∈ N, we see g is monotonically increasing
with respect to r and

lim
r↓a

g(r) =
∞∑

m=1

1

b2m − a2m
(a2m − b2m){(−1)m + 1} = −∞,

lim
r↑b

g(r) =
∞∑

m=1

1

b2m − a2m
(b2m − a2m){(−1)m + 1} = +∞,

with having unique zero r =
√
ab. Thus we have the unique r0,

√
ab < r0 <

b3/4a1/4 such that f(r0) = g(r0) by the Intermediate Value Theorem for
continuous functions.

Remark 2.4. By the proof of the last theorem it follows that
√
ab < r0 <

b3/4a1/4.

Remark 2.5. It is interesting to know what will happen when the number of
blow up points is three or more: Up to now, we do not obtain the possible
conclusion |P1| = |P2| = |P3| from the identities

1
2∇RA(P1) = ∇xGA(P1, P2) +∇xGA(P1, P3),
1
2∇RA(P2) = ∇xGA(P2, P1) +∇xGA(P2, P3),
1
2∇RA(P3) = ∇xGA(P3, P1) +∇xGA(P3, P2).

We conjecture that if we have m-blow up points on the two-dimensional
annulus, then they must be located on the vertices of regular m-polygon.
The verification of this seems difficult.

3. Appendix. Proof of Proposition 2.1

In this Appendix, we prove Proposition 2.1. Let A = {x ∈ R2 | a < |x| <
b} be an annulus in R2 as before and set

GA(x, y) = − log |x− y|+ u(x, y),

where u(x, y) is harmonic with respect to x ∈ A and coincides with log |x−y|
when x ∈ ∂A. We use the polar coordinate for x, y ∈ A and write x =
(|x| cos θ, |x| sin θ), y = (|y| cos θy, |y| sin θy). Take u(x, y) in the form

u(x, y) = a0(y) + b0(y) log |x|

+
∞∑

m=1

(
am(y)|x|m + bm(y)|x|−m

)
cosmθ

+
∞∑

m=1

(
cm(y)|x|m + dm(y)|x|−m

)
sinmθ
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which is harmonic in x. Recalling the expansion

log |x− y|
∣∣∣
|x|=b

= log b−
∞∑

m=1

1

m

(
|y|
b

)m

cosm(θ − θy)

= log b−
∞∑

m=1

1

m

(
|y|
b

)m

cosmθy cosmθ −
∞∑

m=1

1

m

(
|y|
b

)m

sinmθy sinmθ,

for y ∈ A, x = (b cos θ, b sin θ), and

log |x− y|
∣∣∣
|x|=a

= log |y| −
∞∑

m=1

1

m

(
a

|y|

)m

cosm(θ − θy)

= log |y| −
∞∑

m=1

1

m

(
a

|y|

)m

cosmθy cosmθ −
∞∑

m=1

1

m

(
a

|y|

)m

sinmθy sinmθ

for y ∈ A, x = (a cos θ, a sin θ). Thus the conditions

u(x, y) = log |x− y| for |x| = b and |x| = a

reduces to that

a0(y) + b0(y) log b = log b,

am(y)bm + bm(y)b−m = − 1

m

(
|y|
b

)m

cosmθy,

cm(y)bm + dm(y)b−m = − 1

m

(
|y|
b

)m

sinmθy,

a0(y) + b0(y) log a = log |y|,

am(y)am + bm(y)a−m = − 1

m

(
a

|y|

)m

cosmθy,

cm(y)am + dm(y)a−m = − 1

m

(
a

|y|

)m

sinmθy,
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which in turn implies

a0(y) = A0(y) = log b
log a

|y|

log a
b

,

b0(y) = B0(y) =
log b

|y|

log b
a

,

am(y) = − 1

m
Am(y) cosmθy = − 1

m

|y|m −
(

a2

|y|

)m

b2m − a2m
cosmθy,

bm(y) = − 1

m
Bm(y) cosmθy = − 1

m

a2m
((

b2

|y|

)m
− |y|m

)
b2m − a2m

cosmθy,

cm(y) = − 1

m
Am(y) sinmθy = − 1

m

|y|m −
(

a2

|y|

)m

b2m − a2m
sinmθy,

dm(y) = − 1

m
Bm(y) sinmθy = − 1

m

a2m
((

b2

|y|

)m
− |y|m

)
b2m − a2m

sinmθy.

Thus the Green function on A = {a < |x| < b} is written in the form (2.1).
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(2008) MR2403845 (2009k:58028)

16. Y. Yang: Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in
Mathematics, Springer-Verlag, New York (2001) MR1838682 (2002m:58001)

Dipartimento di Matematica, Università di Roma “La Sapienza”, P.le A.
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